Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery

O. VERBITSKY,1 J. MIZRAHI,1 M. LEVIN,1 AND E. ISAKOV2

1Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000; and 2Loewenstein Rehabilitation Hospital, Raanana 43100, Israel

Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J. Appl. Physiol. 83(2): 333–337, 1997.—The influence of acute ingestion of NaHCO3 on fatigue and recovery of the quadriceps femoris muscle after exercise was studied in six healthy male subjects. A bicycle ergometer was used for exercising under three loading conditions: test A, load corresponding to maximal oxygen consumption; test B, load in test A + 17%; test C, load in test B but performed 1 h after acute ingestion of NaHCO3. Functional electrical stimulation (FES) was applied to provoke isometric contraction of the quadriceps femoris. The resulting knee torque was monitored during fatigue (2-min chronic FES) and recovery (10-s FES every 10 min, for 40 min). Quadriceps torques were higher in the presence of NaHCO3 (P < 0.05): with NaHCO3 the peak, residual, and recovery (after 40 min) normalized torques were, respectively, 0.68 ± 0.05 (SD), 0.58 ± 0.05, and 0.73 ± 0.05; without NaHCO3 the values were 0.45 ± 0.04, 0.30 ± 0.06, and 0.63 ± 0.06. The increased torques obtained after acute ingestion of NaHCO3 indicate the possible existence of improved nonoxidative glycolysis in isometric contraction, resulting in reduced fatigue and enhanced recovery.

The aim of the present work, therefore, was to evaluate the effect of ingestion of NaHCO3 on muscle progressive fatigue as induced by FES and on muscle recovery after intensive cycling exercise. The relationship between short-term physical effort performed during cycling and the resulting decrease in blood pH level due to lactic acid accumulation is well documented (7, 11, 12, 14). End-tidal Pco2 (Petco2) was used in this study to indirectly reflect humoral acid-base changes due to NaHCO3 decrease (19, 27). Isometric contraction of the quadriceps femoris was used as a procedure to monitor the muscle torque during the progressively developing fatigue and recovery. This procedure provided standardized testing protocols and ensured reproducibility of the testing conditions.

MATERIALS AND METHODS

Subjects

Six volunteer male subjects took part in this study. Their mean age, height, and mass were 36.5 ± 6.0 (SD) yr, 172 ± 2.3 cm, and 68.8 ± 5.8 kg, respectively. All subjects were in an excellent state of health and practiced calisthenics at least twice a week. No previous history of muscle weakness, neurological disease, or drug therapy was recorded.

Methodology

Determination of load at maximum oxygen consumption (V02max). Before the actual tests, V02max was determined for each subject as follows: the subjects were asked to cycle continuously at the constant speed of 50 revolutions/min on a bicycle ergometer (Monark Ergometric 818E) while the load was increased every 3 min from an initial load of 50 W by increments of 50 W, until physical exhaustion. The load obtained at V02max was denoted by load V02max. The mean values for all subjects for load V02max and for the actual
EFFECT OF NaHCO₃ ON MUSCLE FATIGUE AND RECOVERY

\(V_{O2\max} \) were 200 ± 44 W and 44.5 ± 4.0 ml·kg⁻¹·min⁻¹, respectively.

Respiratory parameters. Values of oxygen consumption (\(V_O2 \)), minute ventilation (\(V_E \)), and PET\(CO_2 \), were monitored continuously by means of a respiratory diagnostics system (model MTS 4400 metabolic and respiratory diagnosis system, Alpha Technologies). These quantities were measured continuously, and their average values were calculated every 5 s, corresponding to a sampling rate of 12 samples/min.

Testing procedure. Each subject performed three different tests, which were made on separate days. At least a 1-wk interval of time was taken between the tests to ensure fatigue-free initial conditions. Loading conditions differed from one test to another as follows: test A was at load \(V_{O2\max} \); test B was at supramaximal loading, determined as load \(V_{O2\max} + 17\% \) and test C was at the supramaximal loading as defined in test B but was performed 1 h after acute ingestion of NaHCO₃ with a dosage of 400 mg/kg body mass.

Preload isometric test by FES. Each test was started with 2 min of surface FES of the right quadriceps femoris muscle, during which this muscle was fatigued (preload fatigue). This stage served for reference for the subsequent stages. The subject was instructed to remain relaxed during FES so that voluntary contraction of the muscle would be avoided.

The knee torque was continuously monitored during the preload isometric test, by using a specially constructed testing apparatus. The subject was seated on an adjustable testing chair, and his right thigh was belted to the seat to ensure that the hip angle remained constant at 90° during the tests. The lower leg was hinged at the level of the ankle to a pendulum arm. The pendulum could be locked at any desired angle for isometric activation. The knee angle chosen in this study was 60°, around which isometric torque was reported to be maximal (24). The torque at the knee, which was a result of activation of the quadriceps femoris and corresponding to the external force at the ankle level, was measured by means of an instrumented horizontal cantilever at the lower part of the pendulum arm.

Transcutaneous electrical stimulation was applied through a pair of rectangular rubber electrodes (4 × 5 cm) with Karaya gum as an interface. One electrode was placed on the quadriceps' motor point, which corresponds approximately to the center of the muscle belly area, and the second was placed more distally, near the patella. The stimulator (17) provided a train of rectangular monophasic positive pulses at 20 Hz. Pulse width was kept constant at 0.25 ms, and the current intensity was adjusted for each subject in accordance with his pain limit. This corresponded to ~75% of maximum voluntary contraction of each subject. The mean current intensity for all subjects was 62.5 ± 6.9 (SD) mA.

Isotonic load. After the 2-min FES fatigue a 3-min cycling exercise at load \(V_{O2\max} \), supramaximal load, and supramaximal load after 1 h of acute ingestion of NaHCO₃ was performed for tests A, B, and C, respectively, as described in Testing procedure.

The respiratory parameters were measured continuously during the exercise and averaged every 5 s. Monitoring of the respiratory parameters was extended to an additional period of 3 min after termination of the exercise. This was done because, as has been previously reported, after heavy exercise, the change in blood lactate (consequently also the change in PET\(CO_2 \)) continues for a few minutes (2, 6).

Postload isometric test by FES. After the 3-min cycling load and the subsequent 3-min rest, surface FES was given to the right quadriceps for 2 min under isometric testing conditions similar to those of the previously described preload FES (see Preload isometric test by FES). The knee torque was monitored during the isometric postload test (postload fatigue).

Recovery. After the postload isometric test by means of FES, there was a 40-min recovery period for the loads of tests B and C. During this period the knee torque resulting from a 10-s stimulation train was monitored every 10 min. The FES conditions were similar to those used during the previously described pre- and postload isometric test protocols (see Preload isometric test by FES and Postload isometric test by FES).

Intrasubject variability. On one of the subjects the above procedure was repeated five times to verify repeatability of the results.

Statistics

To identify statistically meaningful variations, the Student's t-test was used, with \(P < 0.05 \) as level of significance. Differences between intrasubject variability and variability within the whole group were verified by using analysis of variance (ANOVA).

RESULTS

Figure 1 presents the variations of \(V_E \) during the 3-min isotonic exercise and the subsequent 3-min rest. The mean values (±SD) for all six subjects are plotted for each of the three tests. Statistical comparisons between the tests were made on the means every minute on the minute. It was found that \(V_E \) was significantly higher (\(P < 0.05 \)) in test B (supramaximal load) compared with test A (load \(V_{O2\max} \)). There was a statistically significant difference between tests B and A. However, when test C (supramaximal plus NaHCO₃) is compared with test A (load \(V_{O2\max} \)), the differences were not statistically significant.

The mean variation (±SD) of \(V_O2 \) during isotonic exercise and rest for all tested subjects is shown in Fig. 2. The results of all three tests did not differ significantly from one another except after the first minute of

Fig. 1. Minute ventilation during 3-min exercise load and subsequent 3-min rest. Mean values for all 6 subjects are plotted for each of the 3 tests. Test A (A): load \(V_{O2\max} \); test B (B): load \(V_{O2\max} + 17\% \); test C (C): load \(V_{O2\max} + \text{NaHCO}_3 \). Bars, SD. Statistical comparisons between tests were made on mean values every minute on the minute. *Significant difference between tests A and B, \(P < 0.05 \).
exercise, when the value in test A was smaller than those of tests B and C (P < 0.05).

Mean (±SD) levels of PET_{CO_2} for all subjects are plotted in Fig. 3. Significantly lower PET_{CO_2} values were found in test B compared with both tests A and C. The peak value of PET_{CO_2} (after 1 min of exercise) in test C was significantly higher than those of tests A and B. Similar results were found at the end of the rest period (6th min).

The torque curves during the pre- and postload isometric FES tests are shown in Fig. 4. It should be remembered that the postload FES test was carried out after each of the three loads in tests A, B, and C, which correspond to load VO_2max, supramaximal load, and supramaximal load 1 h after acute ingestion of NaHCO$_3$, respectively. Mean values for all 6 subjects are plotted in each of the curves. Bars, SD. Statistical comparisons between tests were made on mean values every 20 s. *Significant difference between preload and postload in test A, P < 0.05. **Significant difference between preload and postload in test B, P < 0.05. ***Significant difference between preload and postload in test C, P < 0.05.

The peak torques obtained during the 40-min recovery post-FES are presented in Fig. 5. As described in Recovery, the torques were measured by stimulation trains of short durations, 10 s each, delivered to the quadriceps femoris every 10 min of the recovery time. The mean normalized torque magnitudes for tests B and C were, respectively, 0.46 ± 0.07 and 0.55 ± 0.05 after 10 min and 0.63 ± 0.06 and 0.73 ± 0.05 after 40 min of recovery. In all the four measurements, values of NaHCO$_3$ was ingested.

The peak torques obtained during the 40-min recovery post-FES are presented in Fig. 5. As described in Recovery, the torques were measured by stimulation trains of short durations, 10 s each, delivered to the quadriceps femoris every 10 min of the recovery time. The mean normalized torque magnitudes for tests B and C were, respectively, 0.46 ± 0.07 and 0.55 ± 0.05 after 10 min and 0.63 ± 0.06 and 0.73 ± 0.05 after 40 min of recovery. In all the four measurements, values of NaHCO$_3$ was ingested.

The peak torques obtained during the 40-min recovery post-FES are presented in Fig. 5. As described in Recovery, the torques were measured by stimulation trains of short durations, 10 s each, delivered to the quadriceps femoris every 10 min of the recovery time. The mean normalized torque magnitudes for tests B and C were, respectively, 0.46 ± 0.07 and 0.55 ± 0.05 after 10 min and 0.63 ± 0.06 and 0.73 ± 0.05 after 40 min of recovery. In all the four measurements, values of NaHCO$_3$ was ingested.

The peak torques obtained during the 40-min recovery post-FES are presented in Fig. 5. As described in Recovery, the torques were measured by stimulation trains of short durations, 10 s each, delivered to the quadriceps femoris every 10 min of the recovery time. The mean normalized torque magnitudes for tests B and C were, respectively, 0.46 ± 0.07 and 0.55 ± 0.05 after 10 min and 0.63 ± 0.06 and 0.73 ± 0.05 after 40 min of recovery. In all the four measurements, values of NaHCO$_3$ was ingested.

The peak torques obtained during the 40-min recovery post-FES are presented in Fig. 5. As described in Recovery, the torques were measured by stimulation trains of short durations, 10 s each, delivered to the quadriceps femoris every 10 min of the recovery time. The mean normalized torque magnitudes for tests B and C were, respectively, 0.46 ± 0.07 and 0.55 ± 0.05 after 10 min and 0.63 ± 0.06 and 0.73 ± 0.05 after 40 min of recovery. In all the four measurements, values of NaHCO$_3$ was ingested.
the peak torque in test C significantly exceeded those of test B (P < 0.05).

The results obtained for the subject on whom the whole experimental procedure was repeated five times indicate that there was no significant difference between intra- and intersubject variability, as revealed by performance of ANOVA (P > 0.05).

DISCUSSION

The central issue in this study was to investigate the influence of acute ingestion of NaHCO₃ on fatigue and recovery. The methodology adopted was to use FES to provoke an isometric contraction of the quadriceps femoris as a means of testing the muscle before and after the isometric cycling exercise. The rationale of this methodology was as follows: 1) Because the subject was instructed to remain relaxed, voluntary contractions of the muscle were avoided when FES was applied, thus isolating the quadriceps muscle and minimizing problems associated with performance-based testing criteria. We found that, in the preload fatigue, the torque decreased to ~75% of the initial value after 50 s of activation (Fig. 4). Similar results were obtained by other investigators using similar testing conditions (8), confirming that this test can serve as a standardized and reliable procedure for monitoring the quadriceps muscle developing fatigue, before and after load, with and without NaHCO₃. 2) Although, in the cycling exercise, several muscle groups are being activated, involving both peripheral and central mechanisms, it has been reported that in high-intensity bicycle exercise the dominant subjective sensation limiting further exercise was fatigue of the quadriceps (10), which was the basis for the previously described isometric tests (see Preload isometric test by FES and Postload isometric test by FES). It should also be mentioned that a similar approach of combining isometric exercise with isometric FES as a means of testing was previously used to assess the effect of exercise training on resistance to fatigue of the quadriceps femoris (25).

The isotonic active load was given in three different modes, applied in separate tests, during which the ventilation variables were monitored. Because the dynamics of PETCO₂ were reported to possibly reflect the arterial PCO₂ in men (19), the measured PETCO₂ served as an indicator of the hemeral acid-base changes due to metabolic acidosis (27). Decreased levels of CO₂ in the blood create unfavorable metabolic conditions for the extracellular buffering capacity, necessary to counterbalance the acidosis that results in reduced physical work capacity (1, 26).

The ergogenic properties of NaHCO₃ ingestion have in the past been the focus of numerous investigations (see, e.g., Refs. 12, 14). It has been shown that during short-term, high-intensity physical activity progressive metabolic acidosis due to lactic acid accumulation and a drop of pH takes place, in both the blood and the working muscle (2). The resultant accumulation of H⁺ within the muscle directly inhibits the contractile process by inhibiting the release of Ca²⁺ from the sarcoplasmic reticulum, as well as by reducing the activity of glycolytic enzymes, thus impairing the propagation of neural impulses (8, 9). As exercise progresses, various buffering mechanisms function to neutralize this effect. Eventually, when the intracellular buffering capacity is exceeded, H⁺ diffuse into the blood, causing a drop in extracellular pH. This, in turn, stimulates extracellular buffering mechanisms of which HCO₃⁻ is one of the most effective constituents (18). It is thus expected that acute ingestion of NaHCO₃ should at this stage enhance the buffering capacity in the blood and hence delay exhaustion and improve performance (12).

The presence of NaHCO₃ induces an increased efflux of H⁺ and lactate ions from the cell across the membrane, reported to take place via pH-sensitive transport of the lactic acid in the dissociated condition (20, 21).

The results obtained indicate that during supramaximal load (test B) a significant decrease in PETCO₂ resulted compared with load VO₂max (test A), reflecting a decrease in NaHCO₃ buffer formation (27). However, when the supramaximal load was combined with acute ingestion of NaHCO₃ (test C), a significantly higher PETCO₂ level resulted, indicating an increased CO₂ accumulation in the blood and a more effective NaHCO₃ buffer activity (26). It should be remembered, however, that PETCO₂ served as an indirect measure of extracellular NaHCO₃ buffer capacity (27), limiting its role as a major indicator of performance (22).

A more direct evidence for the beneficial effect of NaHCO₃ came from the biomechanical measurements. The fatigue curves obtained during FES indicated that both the peak and the residual torques decreased significantly as a result of isotonic load increase (comparison between tests B and A). However, when the supramaximal load was combined with acute ingestion of NaHCO₃ (test C), higher peak and residual torques resulted, compared with both the maximal (test A) and supramaximal (test B) loads. Of special interest was
comparison of the torque traces between 20 and 60 s of FES (Fig. 4). Whereas in tests A and B the torques were declining after having reached their respective peaks, in test C the torque continued increasing toward its elevated and delayed peak at ~60 s of FES. Higher torques in the presence of NaHCO₃ were also obtained in the postfatigue measurements, indicating that the buffer capacity in the blood was enhanced in the recovery process as well.

The relationship between performance and levels of HCO₃⁻ and CO₂ in the blood was demonstrated (26); hence the effect of H+ is obvious: H+ accumulation is a limiting factor in the usage of nonoxidative sources of energy (12). NaHCO₃ ingestion clearly results in a more alkaline extracellular environment.

Published work on the effect of NaHCO₃ on anaerobic performance shows variable results (14). The inconsistency in results has been attributed to differences in the methodologies used, including dosage ingested, time between completion of ingestion and initiation of exercise, exercise protocols and methodology of controls. However, there is agreement that NaHCO₃ ingestion of at least 300 mg/kg body mass prolongs high-intensity exercise with a duration ranging between 60 s and 7 min (12). The protocols selected in the present study matched those of reported enhanced performance after NaHCO₃ administration: dosage of 400 mg/kg body mass (5, 26) and time of 1 h between completion of ingestion and initiation of exercise. As previously mentioned in the introductory section, the exercise protocols were designed to objectively monitor the progressively developing fatigue and the subsequent recovery of the quadriceps femoris with and without acute digestion of NaHCO₃. On the basis of the results obtained, it may thus be concluded that acute ingestion of NaHCO₃ is an effective means for increasing the torques in isometric contraction, thus reducing muscle fatigue and enhancing recovery.

This work was supported in part by the Segal Foundation. Address for reprint requests: J. Mizrahi, Technion-Israel Institute of Technology, Dept. of Biomedical Engineering, Haifa 32000, Israel (E-mail: J @Biomed.Technion.Ac.IL).

Received 29 July 1996; accepted in final form 31 March 1997.

REFERENCES