
A Formal Approach to the Vertical Partitioning Problemin Distributed Database DesignJ. Muthuraj1S. Chakravarthy2R. VaradarajanComputer and Information Sciences DepartmentUniversity of Florida, Gainesville, FL 32611, USAEmail: sharma@snapper.cis.u.eduS. B. Navathe1College of ComputingGeorgia Institute of TechnologyAtlanta, GA 30332AbstractThe design of distributed databases is an optimization problem requiring solutions toseveral interrelated problems: data fragmentation, allocation, and local optimization. Eachproblem can be solved with several di�erent approaches thereby making the distributeddatabase design a very di�cult task.Although there is a large body of work on the design of data fragmentation, most ofthem are either ad hoc solutions or formal solutions for special cases (e. g., binary verticalpartitioning). In this paper, we address the problem of n-ary vertical partitioning problemand derive an objective function that generalizes and subsumes earlier work. The objectivefunction derived in this paper is being used for developing heuristic algorithms that canbe shown to satisfy the objective function. The objective function is also being used forcomparing previously proposed algorithms for vertical partitioning. We �rst derive anobjective function that is suited to distributed transaction processing and then show howit can be extended to include additional information, such as transaction types, di�erentlocal and remote accessing costs and replication. Finally, we indicate the current status ofimplementation.1 IntroductionThe design of distributed databases is an optimization problem requiring solutions to severalinterrelated problems: data fragmentation, allocation, and local optimization. Each problemphase can be solved with several di�erent approaches thereby making the distributed databasedesign a very di�cult task. Traditionally database design has been heuristic in nature. Al-though the metric being optimized is not stated quantitatively, it is implicitly assumed tobe the processing cost for a given set of important transactions that constitute the bulk oftransaction load for the given database.1This work is supported by the National Science Foundation Research Initiation Grant IRI-87167982This work is supported by the National Science Foundation Research Initiation Grant IRI-90112161

Requirement Specification

Implementation Schema

 Distribution of the enterprise schema into local logical schemas

Vertical Partitioning

Data

Acquisition

Partitioning

Allocation
&

Replication

Optimization

Local

Horizontal Partitioning

Mixed Partitioning

VIEW ANALYSIS AND INTEGRATION

REQUIREMENT COLLECTION

USERS

PHYSICAL DATABASE DESIGN FOR EACH LOCAL DATABASE

OPERATIONAL DATABASE

Enterprise

Schema

Transaction

Definition

Distribution

Requirement

DISTRIBUTION DESIGN

FeedbackFigure 1: Distributed Database Design MethodologyFigure 1 gives an outline of the overall distributed database design methodology [2]. Dis-tributed database design deviates from conventional non-distributed database design only inthe distribution aspect which is highlighted by the box titled distribution design in �gure 1.The distribution design involves data acquisition, partitioning of the database, allocation andreplication of the partitions and local optimization. Partitioning of the database is done inseveral ways: vertical, horizontal, and hybrid (also called mixed). Our long-term objectiveis to develop a distributed database design testbed in which di�erent algorithms for variouscomponents of distribution design can be mixed and matched. This work is a �rst step in thatdirection and addresses the partitioning (or fragmentation) problem.In this paper, we delimit our discussion to one of the data fragmentation problems, namelythe vertical partitioning problem. More information on this vertical partitioning problem, canbe found in Muthuraj's thesis [14]. Vertical Partitioning (also called attribute partitioning)is a technique that is used during the design of a database to improve the performance of2

transactions [15]. In vertical partitioning, attributes of a relation R3 are clustered into non-overlapping4 groups and the relation R is projected into fragment relations according to theseattribute groups. In distributed database systems, these fragments are allocated among thedi�erent sites. Thus the objective of vertical partitioning is to create vertical fragments ofa relation so as to minimize the cost of accessing data items during transaction processing.If the fragments closely match the requirements of the set of transactions provided, thenthe transaction processing cost could be minimized. Vertical partitioning also has its use inpartitioning individual �les in centralized databases, and dividing data among di�erent levelsof memory hierarchies etc. [15, 18]. In the case of distributed database design, transactionprocessing cost is minimized by increasing the local processing of transactions (at a site) aswell as by reducing the amount of accesses to data items that are not local. The aim of verticalpartitioning technique (and in general data partitioning techniques) is to �nd a partitioningscheme which would satisfy the above objective.It should be noted that the problem of partitioning can be addressed at various levels of detailby taking additional information into consideration. Figure 1 clearly distinguishes variouslevels and a feedback path is provided to re�ne the outcome of the earlier levels if it does notsuit the objectives of the next level. In this paper, we are taking only transaction informationas input to keep the problem manageable. In essence, the global optimization problem (whichincludes a large number of parameters and a very complex metric) is partitioned into severalsmaller optimization problems to reduce the search space and the complexity of each problem.Other detailed information need to be considered on the outcome of this stage in order toobtain a design at the physical level.Several vertical partitioning algorithms have been proposed in the literature. Ho�er andSeverance [7] measure the a�nity between pairs of attributes and try to cluster attributesaccording to their pairwise a�nity by using the bond energy algorithm (BEA) [12]. Hammerand Niamir [6] use a �le design cost estimator and a heuristic to arrive at a \bottom up"partitioning scheme. Navathe, et al [15] extend the BEA approach and propose a two phaseapproach for vertical partitioning. Cornell and Yu [4] apply the work of Navathe [15] tophysical design of relational databases. Ceri, Pernici and Wiederhold [3] extend the work ofNavathe [15] by considering it as a `divide' tool and by adding a `conquer' tool. Navatheand Ra [16] construct a graph-based algorithm to the vertical partitioning problem where theheuristics used includes an intuitive objective function which is not explicitly quanti�ed. Inaddition to these vertical partitioning algorithms, there are many data clustering techniques[9], traditionally used in pattern recognition and statistics, some of which can be adapted topartitioning of a database. These data clustering algorithms include Square-error clustering[9], Zahn's clustering [22], Nearest-neighbor clustering [11] and Fuzzy [9]clustering.The partitioning algorithms mentioned above use some heuristics to create fragments of arelation. The input to most of these algorithms is an Attribute Usage Matrix (AUM). AUM is3For most of our discussion it does not matter whether R is a Universal relation or a relation that is in somenormal form as long as key attributes are identi�ed. In the section on extensions, we discuss how we can takethat information into account.4Overlapping partitions (of non-primary key attributes) may also be considered when availability is animportant criterion. This is discussed in the section on extensions.3

a matrix which has attributes as columns, and transactions as rows and the access frequencyof the transactions as values in the matrix. Most of the earlier data fragmentation algorithmsuse an Attribute A�nity Matrix (AAM) derived from the AUM provided as input. An AAMis a matrix in which for each pair of attributes, the sum total of frequencies of transactionsaccessing that pair of attributes together is stored. The results of the di�erent algorithms aresometimes di�erent even for the same attribute a�nity matrix indicating that the objectivefunctions used by these algorithms are di�erent. Most of the proposed vertical partitioningalgorithms do not have an objective function to evaluate the \goodness" of partitions that theyproduce. Also, there is no common criterion or objective function to compare and evaluate theresults of these vertical partitioning algorithms.1.1 ContributionsThis paper makes several contributions to the problem of data fragmentation in general andthe design of vertical partitioning in particular [14]. Speci�cally:1. We have, perhaps for the �rst time, studied the applicability of some data clusteringalgorithms for distributed database design5 proposed in areas such as pattern classi�ca-tion, statistics etc., [9], [22], [11], to data fragmentation problem. In fact, we start fromone such objective function proposed for data clustering and modify and extend it to thespeci�c problem at hand.2. We have formulated an objective function for n-ary partitions, with two components thatprovide the desirable behavior for minimizing transaction processing cost.3. Finally, we are using the approach of formulating an objective function (termed Parti-tion Evaluator in this paper) before developing (heuristic) algorithms for the partitioningproblem. This approach enables us to study the properties of algorithms with respect toan agreed upon objective function, and also to compare di�erent algorithms for \good-ness" using the same criteria. The objective function formulated in this paper is a stepin this direction. Moreover, the objective function derived in this paper can be easilyextended to include additional information (e. g., query types { retrieval/update, al-location information about the partitions, remote processing cost, and the transactionusage pattern at any particular site). Some of these extensions are discussed at end ofthe paper.Our long-term objective is to either extend this objective function or to develop new objectivefunctions to take into account additional information pertaining to replication, storage, andtransmission costs that are critical to a distributed environment. However, we view this workas �lling a void that currently exists even at the conceptual level.The organization of the paper is as follows. Section 2 discusses previous related work on dataclustering. Section 3 describes prior work in the area of vertical partitioning and summarizesthe need for the development of our Partition Evaluator. In section 4, we derive the Partition5Schkolnik [18] uses data clustering techniques for partitioning a hierarchical structure for an IMS databaseusing detailed cost information which is di�erent from the problem addressed in this paper.4

Evaluator (PE) appropriate for distributed database design at the conceptual level. In section5, we illustrate the use of our Partition Evaluator with an example. We show the actualbehavior of the PE and compare it with the expected behavior. Section 6 describes how the PEis amenable to extensions with illustrations and includes the current status of implementation.We show the actual behavior of the PE and compare it with the expected behavior. Sectionincludes summary and future work.2 Previous WorkIn this section we briey summarize the work done in the area of data clustering and the workdone in data fragmentation and bring out the similarities and di�erences between them.A number of data clustering algorithms have been developed in application areas such asstatistics and pattern classi�cation and analysis which address the problem of grouping orclustering data using various criteria. The most commonly used partitioning clustering strategyis based on the square-error criterion [9]. The general objective is to obtain that partitionwhich, for a �xed number of clusters, minimizes the square-error. Minimizing square-error, orwithin-cluster variation, has been shown to be equivalent to maximizing the between-clustervariation. Clusters can also be viewed as regions of the attribute pattern space in which thepatterns are dense, separated by regions of low attribute pattern density. In the mode-seekingpartitioning algorithm due to Torn [21], clusters are identi�ed by searching for regions of highdensity, called modes, in the pattern space. Each mode is associated with a cluster center andeach pattern is assigned to the cluster with the closest center.Zahn [22] has demonstrated how the minimum spanning tree (MST) can be used to detectclusters. His choice of MST was inuenced by the Gestalt principle, which favors the groupingof attribute patterns based on Euclidean distance measure. Sha�er et al [19] demonstrate thesimilarity of the mode-seeking partitioning algorithm [10] to the graph algorithm of Zahn [22]based on minimum spanning trees. Lu and Fu [11] used another graph-based approach called\Nearest-Neighbor clustering algorithm" to cluster patterns during character recognition [9].The concept of using fragmentation of data as a means of improving the performance of adatabase management system has often appeared in the literature on �le design and optimiza-tion. Ho�er [8] developed a non-linear, zero-one program which minimizes a linear combinationof storage, retrieval and update costs, with capacity constraints for each �le. Babad [1] formu-lated a less restrictive vertical partitioning problem for variable length attributes as a non-linearzero-one program. In the work of Eisner and Severance [5], a �le can be partitioned into twosub�les: a primary and secondary sub�le. Two forms of cost function are used in this approach.The �rst function is the sum of storage charges for subtuples in the primary sub�le, and thecost of accessing all the subtuples residing in the secondary sub�le. The second function isnonlinear, and measures the total costs of access, transfer, and storage for subtuples in bothprimary and secondary sub�les. The limitation of this approach is that at most two sub�lesare allowed [17]. March and Severance [13] extended this model to incorporate block factorsfor both primary and secondary memories. Ho�er and Severance [7] grouped the attributesof a relation based on the extent to which they were used together (measured the \a�nitybetween pairs of attributes"). This clustering of attributes based on their pairwise a�nity wasdone using the bond energy algorithm (BEA). The BEA produced matrix in which an costfunction was minimized for the entire matrix using the a�nity attribute matrix. They left the5

creation of partitions to the subjective evaluation of the designer. Schklonik [18] has examinedthe problem of partitioning a hierarchical structure (for a hierarchical database) in order tominimize the access time to it for a given access pattern. Segment sizes and scan informationis used to minimize the page faults.Hammer and Niamir [6] developed two heuristics, grouping and regrouping, and used them toperform the partitioning. The grouping heuristic starts by initially assigning each attribute toa di�erent partition. On each iteration, all possible grouping of these partitions is consideredand the one with maximum improvement is chosen as the candidate grouping for the nextiteration. During regrouping, attributes are moved between partitions to achieve any additionalimprovements possible. Navathe et al [15] use a two step approach for vertical partitioning. Inthe �rst step, they use the given input parameters in the form of an attribute usage matrix toconstruct the attribute a�nity matrix on which clustering is performed. After clustering, anempirical objective function is used to perform iterative binary partitioning. In the second step,estimated cost factors reecting the physical environment of fragment storage are consideredfor further re�nement of the partitioning scheme. Cornell and Yu [4] propose an algorithm,as an extension of Navathe et al [15] approach, which decreases the number of disk accessesto obtain an optimal binary partitioning. This algorithm uses speci�c physical factors suchas number of attributes, their length and selectivity, cardinality of the relation etc. Navatheand Ra [Nava 89] present a graph-based approach to the vertical partitioning problem. Thisapproach is based on the observation that all pairs of attributes in a fragment must have high\within fragment a�nity" but low \between fragment a�nity". Reduction in complexity isclaimed as the main advantage of their approach.There are important di�erences in the criteria that are used in traditional clustering problemsand data fragmentation problem. In data clustering algorithms, the number of clusters isusually �xed. Otherwise, the extreme case of only a single cluster in the partition will minimizethe inter-cluster variation. However in the database design application, there is a need todetermine the number of clusters as well and hence the objective function used in data clusteringalgorithms cannot be borrowed without any changes to vertical partitioning in databases. Mostimportantly, in data base design problem, the number of clusters is an important factor thatinuences the trade-o� between local and remote transaction processing costs.Our interest in the above was to see whether the criteria used in the data clustering domaincould be adapted, with some changes, to the data fragmentation problem.3 Need for an objective functionAlgorithms such as Bond Energy, Binary Vertical Partitioning, Ra's algorithm and Zahn'salgorithm etc. use a�nity matrix as the input. The attribute a�nity is a measure of animaginary bond between a pair of attributes. Because only a pair of attributes is involved, thismeasure does not reect the closeness or a�nity when more than two attributes are involved.Hence the algorithms which use attribute a�nity matrix are using a measure (that is an adhoc extrapolation of pairwise a�nity to cluster a�nity) that has no bearing on the a�nityas measured with respect to the entire cluster. As a consequence, we believe, it was di�cultto show or even characterize a�nity values for the resulting clusters having more than twoattributes. 6

As we wanted to obtain a general objective function and a criterion for describing a�nityvalue for clusters of di�erent sizes, our approach does not assume an attribute a�nity matrix.The input model that we consider is a matrix which consists of attributes (columns) and thetransactions (rows) with the frequency of access to the attributes for each transaction, as thevalues in the matrix. With this input model we overcome the limitations that are inherent toapproaches based on attribute a�nity matrix.As is evident from the discussion in the previous section, there are a number of partitioningalgorithms available both in the database design area and in other application areas. Many ofthese algorithms use di�erent criteria to arrive at a partitioning scheme. The objective functionused by one algorithm is not suitable for evaluating the \goodness" of other algorithms. Thuswe do not have a common objective function to compare and evaluate the results of thesepartitioning algorithms, or in general evaluate the \goodness" of a particular partitioningscheme. Hence we need a partition Evaluator to compare and evaluate di�erent algorithms,that use the same input in the database design process. Since attribute usage matrix is themost commonly used input available during the initial design stage, we �rst design an Evaluatorwhich can be used to evaluate the \goodness" of partitions arrived at using this input. ThisPartition Evaluator can be used as a basis for developing algorithms to create fragments ofa relation. With this approach, there is hope that admissibility aspects of algorithms can beshown. In addition, this Partition Evaluator has the exibility to incorporate other information,such as type of queries (retrieval/updates), allocation information about the partitions, remoteprocessing cost (transmission cost) and the transaction usage pattern at any particular site.In the next section we will discuss the development of the Partition Evaluator in detail.4 Development of the Partition EvaluatorIn any practical database application, a transaction does not usually require all the attributesof the tuples of a relation being retrieved during the processing of the transaction. When arelation is vertically divided into data fragments, the attributes stored in a data fragment thatare irrelevant (i.e., not accessed by the transaction) with respect to a transaction, add to theretrieval and processing cost, especially when the number of tuples involved in the relation isvery large. In a centralized database system with memory hierarchy, this will lead to too manyaccesses to the secondary storage. In a distributed database management system, when therelevant attributes (i.e., attributes accessed by a transaction) are in di�erent data fragmentsand allocated to di�erent sites, there is an additional cost due to remote access of data. Thusone of the desirable characteristics of a distributed database management systems that we wishto achieve through partitioning is the local accessibility at any site. In other words, each sitemust be able to process the transactions locally with minimal access to data located at remotesites.Ideally, we would like any transaction to access only the attributes in a single data fragmentwith no or minimal access of irrelevant attributes in that fragment. But this is impossibleto achieve in the general cased since transactions access di�erent and overlapping subsets ofattributes of a relation. Moreover, transactions are run at di�erent sites and hence some ofthe data fragments that contain relevant attributes of a transaction may reside in remotesites. The overall transaction processing cost in a distributed environment thus consists oflocal transaction processing cost and the remote transaction processing cost. Though it is7

possible to replicate the data to avoid remote processing cost, for the �rst step we assumeno data redundancy to avoid modeling overhead to ensure data integrity and consistencyand also additional storage costs. In this paper, we assume that during the database designprocess, \partitioning" phase is followed by the \allocation" phase during which the non-overlapping data fragments obtained during the partitioning phase are allocated to di�erentsites possibly with some replication. Hence the partition evaluator we propose will evaluatevertical partitioning schemes wherein the data fragments are non-overlapping in the attributes.Here non-overlapping refers only to non-primary key attributes. The primary key is preservedin each partition. This is necessary to obtain the original relation without any loss or additionof spurious tuples. Discussion of our approach to relations that are not in Boyce-Codd normalform is in a later section.The goal of partitioning the attributes and allocating to di�erent sites, is to arrive at a minimumprocessing cost for any transaction originating at any site. Since the transaction processingcost has two components, one due to local processing and another due to remote processing,our Partition Evaluator that measures the \goodness" of a vertical partitioning scheme alsohas two corresponding component terms; we refer to these terms as \irrelevant local attributeaccess cost" and \relevant remote attribute access cost" terms respectively. For simplicity, weassume that a single access of a data fragment corresponds to an unit cost; this assumptioncan easily be relaxed if more information is available regarding the access methods, networkparameters etc. The irrelevant local attribute cost term measures the local processing cost oftransactions that is due to irrelevant attributes of data fragments assuming that all the datafragments required by a transaction are available locally. The relevant remote attribute accessterm measures the remote processing cost due to relevant attributes of data fragments thatare accessed remotely by transactions; note that the contribution to remote access cost dueto irrelevant attributes is already included in the �rst term. Since we do not know duringpartitioning how the data fragments are allocated, we compute the second term assumingthat data fragments needed by a transaction are located at di�erent sites. In the absence ofany information regarding the transaction execution strategies, we can compute the secondterm either by determining the average of all the remote access costs obtained by running thetransaction at every site containing a fragment needed by the transaction or by assuming thetransaction to be run at one of the fragment sites. If more information is available regardingthe transaction strategies, we can incorporate it in the second term.The ideal characteristic of a Partition Evaluator is summarized in Figure 2 where thebehavior of the two components as a function of partition size (number of data fragments) isillustrated. The �rst component should be maximum for a partition size of 1 and should bezero for a partition size equal to number of attributes in the relation. The second componenton the other hand should be zero and maximum respectively for these two extremes. Inbetween the two extremes, the �rst component should be more responsive to smaller partitionsizes while the second component should be more responsive to larger partition sizes. This isnecessary to avoid unnecessary bias toward one component or another since we know that in adistributed database design, it is undesirable to have the two extreme cases of the partition size.In addition to being responsive to partition sizes, the evaluator function should discriminatebetween di�erent distributions of the attributes among the fragments for a �xed partitionsize. Later, we will present experimental evidence to demonstrate that our Partition Evaluatormeets these criteria reasonably well. 8

II
I

(II)(I)

Access Cost
Remote Attribute
Relevant

n

Irrelevant

Access Cost
Local Attribute

0

1
Number of PartitionsFigure 2: Ideal characteristics of PE components4.1 Derivation of the Partition Evaluator4.1.1 Database and Transaction Speci�cationWe derive a partition evaluator in this section without making any assumptions on the input.The input assumed is a relation (consisting of a set of attributes) and an attribute usagematrix. We really do not have to make any assumptions as to whether the input relation is aUniversal relation or whether it is in a particular normal form. The partitioning obtained isnon-overlapping except for the key attributes in the input relation. The key attributes are partof each partition. In a later section we indicate how normalization and functional dependencyinformation can be easily added to our approach.The input model that we use is an attribute usage matrix [AUM(t,j)] which consists of theattributes(j) in a relation as columns and the transactions(t) as rows with the frequency ofaccess to the attributes for each transaction as the values in the matrix. Note that we areavoiding the construction of any attribute a�nity matrix which has its own limitation pointedout earlier.A representative attribute usage matrix6 is shown below:6In this section, no distinction is made between update and retrieval transactions; it is discussed as one ofthe extensions in a later section

9

TransnAttrs A1 A2 A3 A4 A5T1 0 q1 0 q1 q1T2 q2 q2 q2 0 q2T3 q3 0 0 q3 q3T4 0 q4 q4 0 0T5 q5 q5 q5 0 04.1.2 De�nitions and NotationsA partition (scheme) is a division of attributes of a relation into vertical fragments in which forany two fragments, the set of attributes of one is non-overlapping with the set of attributes ofanother. For example, the partition f(1; 3)(2; 4)(5)g de�nes a collection of fragments in whichattributes 1 and 3 are in one fragment, 2 and 4 are in another and 5 is in a separate fragment.The following are used in the derivation of the Partition Evaluator.n : Total number of attributes in a relation that is being partitioned.T : Total number of transactions that are under consideration.qt : frequency of transaction t for t = 1; 2; : : : ; T .M : Total number of fragments of a partition.ni : Number of attributes in fragment i.nrikt : Total number of attributes that are in fragment kaccessed remotely with respect to fragment i by transaction t.f itj : frequency of transaction t accessing attribute j in fragment inote that f itj is either 0 or qtAij : Attribute Vector for attribute j in fragment i.t-th component of this vector is f itjSit : Set of attributes contained in fragment i that the transaction taccesses; It is empty if t does not need fragment i.jSitj : number of attributes in fragment i that the transaction t accesses.Ritk : Set of relevant attributes in fragment k accessed remotelywith respect to fragment i by transaction t;these are attributes not in fragment i but needed by tjRitkj : number of relevant attributes in fragment k accessed remotelywith respect to fragment i by transaction tThe attribute vector A11 (assuming A1 is in partition 1) for the example given above is asfollows. 10

A11 = 2666664 0q2q30q5 3777775Consider the partitioning scheme (1,3),(2,4),(5), for the attribute usage matrix given above.Fragment 1 is (1,3), fragment 2 is (2,4) and fragment 3 is (5). Assume that transaction T2(i.e., t = 2) is run at the site where fragment 1 is located. Then Sit is (1,3) and jSitj is 2. nri2tis 2 and nri3t is 1. jRit2j is 1 and jRit3j is 1.Next we explain how each of the two components of our Partition Evaluator is derived.4.1.3 Irrelevant local attribute access costFor the �rst component, we use the square-error criterion as given in [Jain 88] for data cluster-ing. The objective here is to obtain a partition which will minimize the square-error for a �xednumber of fragments. This criterion assigns a penalty factor whenever irrelevant attributes areaccessed in a particular fragment.Let us assume that n attributes have been partitioned into M fragments (P1; P2; ::::::PM)with ni attributes in each fragment. Thus PMi=1 ni = n. The mean vector Vi for fragment i isde�ned as follows. Vi = 1ni niXj=1Aij 0 < i � M (1)This mean vector represents an average access pattern of the transactions over all attributes offragment i. For an attribute vector Aij , (Aij�Vi) is called the \di�erence vector" for attributej in fragment i. The square-error for the fragment Pi is the sum of the squares of the lengthsof the di�erence vectors of all the attributes in fragment i. It is given bye2i = niXj=1(Aij � Vi)T (Aij � Vi) 0 < i � M (2)If Aij = Vi then e2i will be zero. This will occur for the trivial case when there is a singleattribute in each fragment or for the case when all the attribute in each fragment are relevantto all the transactions that access that fragment. It is the latter case that we are interested inand to avoid the former case, we will use the second component.The square-error for the entire partition scheme containing M fragments is given by11

E2M = MXi=1 e2i (3)Smaller the value of E2M , smaller is the cost due to access of irrelevant attributes. E2M howeverdoes not reect the cost that might be incurred by accessing attributes remotely when thefragments may be in di�erent sites. Hence, for distributed database applications, we cannotevaluate partitions on the basis of E2M alone. The behavior of E2M is given in �gure 3 as curveI for a data set consisting of 10 attributes and eight transactions (more details of this exampleare discussed in the next section).From this graph, we can see that the minimum value for E2M is certainly achieved for npartitions in an n attribute system (The minimum value may be reached even for less thann partitions depending on the AUM). We would like to have a number of fragments whichis typically much less than n and still having the least E2M value. In some data clusteringtechniques, the number of data clusters is minimized using an index called Davies-Bouldwin(DB) index [9] which is a measure of the spread between centers of the clusters. For a typicaldata set with small standard deviation (less than 0:1), this index reaches a global minimum(highest spread) for a partition size that falls between the extremes. From the curve I of �gure3, we can see that the standard deviation of the data set given by the attribute usage matrixis greater than 0.1, which does not meet the condition for using the DB index. For this reason,we seek another quantity which will reect the remote access cost. In the next section, we willdiscuss the development of a quantity for remote attribute access cost.4.1.4 Relevant Remote Attribute Access CostNow we will include the second component which would compute a penalty factor that com-putes the function shown earlier in �gure 2. Given a set of partitions, for each transactionrunning on a partition compute the ratio of the number of remote attributes to be accessed tothe total number of attributes in each of the remote partitions. This is summed over all thepartitions and over all transactions giving the following equation. The second term is given byE2R = TXt=1�Mi=1Xk 6=i "q2t � jRitkj jRitkjnritk # (4)Here �7 is an operator that is either an average, minimum or maximum over all i. Thesedi�erent choices of the operator give rise to average, optimistic and pessimistic estimates ofthe remote access cost. If speci�c information is available regarding transaction executionstrategies, then we can determine for each transaction t, the remote fragments accessed bythe transaction and the remote access cost can be re�ned accordingly. In our experimentalinvestigation, we use the optimistic estimate for illustration.We will show in the next section how we obtained the above form for the second term. OurPartition Evaluator (PE) function is given by7� is introduced to keep the formula general and applicable to a wide class of problems; also, a desired newoperator can be substituted for � without having to change the objective function.12

PE = E2M +E2R (5)4.1.5 Compatibility of the Two Components in PEAs the second component has frequency in quadratic form, we need to make sure that boththe components are compatible in terms of the units they produce. Speci�cally, we need to seewhether the frequency appears in the same way in the �rst component. In order to do that,it is instructive to look closely at the �rst term. In particular, we will rewrite E2M di�erentlyso as to identify the contributions due to each transaction to the square error term of eachfragment in the partition. ThusE2M = MXi=1 niXj=1(Aij � Vi)T (Aij � Vi) (6)Now the mean Vector Vi for fragment i, can be de�ned as follows.Vi = 2666666666664 jSi1j�q1nijSi2j�q2ni� � �� � �� � �� � �jSitj�qtni 3777777777775The attribute vector Aij is, Aij = 266666666664 f i1jf i2j� � �� � �� � �� � �f itj 377777777775Now, 13

E2M = MXi=1 niXj=1 �f i1j � jSi1j � q1ni ; : : : ; f itj � jSitj � qtni �2666666666664 f i1j � jSi1 j�q1nif i2j � jSi2 j�q2ni� � �� � �� � �� � �f itj � jSitj�qtni 3777777777775 (7)The above formula can be rewritten as follows so as to allow us to identify the di�erentcomponents that make up the irrelevant local attribute access term.E2M = MXi=1 niXj=1 TXt=1 "�jt � q2t �1� jSitjni �2 + (1� �jt)�qt � jSitjni �2# (8)where,�jt = 1 if the attribute j is accessed by the transaction t= 0 if the attribute j is not accessed by the transaction t.The �rst term q2t �1� jSitjni �2 represents relevant attribute accesses andthe second term represents irrelevant attribute accesses. Even if wehave a 0 in Aij , we still have the mean squared quantity �qt � jSitjni �2.Therefore, E2M = MXi=1 TXt=1 "jSitj � q2t �1� jSitjni �2 + (ni � jSitj)�qt � jSitjni �2# (9)wherePnij=1 �jt = jSitj andPnij=1(1� �jt) = ni � jSitjHence, E2M = MXi=1 TXt=1 "q2t jSitj�1� jSitjni �2 + q2t (ni � jSitj)� jSitjni �2# (10)If ni = jSitj, then E2M = 0. This implies that the transaction t accesses all attributes infragment i whenever it accesses the fragment i. We can still reduce the above equation asfollows.E2M = MXi=1 TXt=1 "q2t � jSitj 1 + jSitj2n2i � 2 � jSitjni !+ q2t � jSitj (ni � jSitj) jSitjn2i !# (11)14

20000

Number of Partitions

III

(II)

Access Cost
Remote Attribute
Relevant

(I)

Access Cost
Local Attribute
Irrelevant

8 9 107654321

4000

20000

16000

12000

8000

0

16000

12000

8000

4000

0 Figure 3: Behavior of PE components for an exampleSimplifying the equation above we get,E2M = MXi=1 TXt=1 �q2t � jSitj�1� jSitjni �� (12)The equation above is the same as equation as 6, but in a much simpler form. We can clearlysee from this equation the contribution to E2M by the irrelevant attributes; (1�jSitj)ni is thefraction of irrelevant attributes in fragment i as far as transaction t is concerned. As it wasmentioned earlier, E2M is the cost factor only for local transaction processing.Now we can see that the E2R term shown earlier, is very much similar in form to the E2M term.Also the necessity for having a squared frequency term in E2R is made clear. Hence the PE isgiven by PE = E2M +E2R (13)Curve II of Figure 3 illustrates the behavior of E2R for the same example of 10 attributes and8 transactions. 15

5 Analysis of the Partition EvaluatorThe �nal form of the Partition Evaluator is given in equation 13. In order to analyze andtest the behavior of the PE, an exhaustive enumeration algorithm has been implemented. Theinput to the program is an attribute usage matrix. The following input was used to test thePartition Evaluator. For each fragment (from 1 to 10), the Partition Evaluator was computed.Input: Attribute Usage matrix.Trans:nAttrs: 1 2 3 4 5 6 7 8 9 10T1 25 0 0 0 25 0 25 0 0 0T2 0 50 50 0 0 0 0 50 50 0T3 0 0 0 25 0 25 0 0 0 25T4 0 35 0 0 0 0 35 35 0 0T5 25 25 25 0 25 0 25 25 25 0T6 25 0 0 0 25 0 0 0 0 0T7 0 0 25 0 0 0 0 0 25 0T8 0 0 15 15 0 15 0 0 15 15An exhaustive enumeration program was written in C/C++ to produce all the possible combi-nations of attributes with number of fragments varying from 1 to 10. The Partition Evaluatorwas applied to each of these combinations. We assume that if a transaction is to be run on afragment, and that fragment does not contain even a single attribute accessed by that trans-action, then that transaction is not run on that fragment. Each of the transactions is run oneach fragment and the minimum, maximum and the average value of the Partition Evaluatoris calculated. Total number of fragments evaluated was 115975. The optimal values (mini-mum) along with the partitioning scheme for each partition size is given below. The resultsare plotted in �gure 4.
16

Value
Evaluator
Partition

10000

20000

15000

5000

0

Number of Partitions
1095 8764321Figure 4: Behavior of partition evaluator for an exampleNumber Of Fragments Min PE V alue Partition Scheme1 15085 (12345678910)2 8457 (1456710)(2389)3 5820 (157)(2389)(4610)4 6024 (15)(2389)(4610)(7)5 6874 (15)(2389)(46)(7)(10)6 7724 (15)(2389)(4)(6)(7)(10)7 8976 (1)(2389)(4)(5)(6)(7)(10)8 11692 (1)(289)(3)(4)(5)(6)(7)(10)9 14000 (1)(28)(3)(4)(5)(6)(7)(9)(10)10 18350 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)As we can see from the above table the optimum value (third row above) is found to be in apartition of three fragments. The Partition Evaluator values above are the minimum of thevalues where the second component of the PE is calculated using optimistic (minimum value)estimate. For this particular example, other algorithms such as Ra's [16], Zahn's [22] andBinary Vertical Partitioning [15] identify the above mentioned partition set (i.e., 3 fragments)as optimum. In Zahn's approach, once the maximum spanning tree is obtained two di�erentconditions can be used to determine the partitions [9]. For this example, when these two17

conditions are applied to Zahn's algorithm, they produce two di�erent partitioning schemes.One of them is the same as the optimal partitioning scheme obtained as above and the otherone is not. Hence, one may want to use another criterion (such as the PE) to guide the selectionof the most appropriate condition when faced with a number of alternatives. Since producingany partitioning scheme using the Bond Energy algorithm is subjective in nature, this PartitionEvaluator can be used to guide the partitioning once the Bond Energy Algorithm is applied.Ra's and Binary Vertical Partitioning algorithms were applied to another example with twentyattributes and �fteen transactions [Nava 84]. The results of these two algorithms were di�erent.Ra's algorithm produces �ve fragments and Binary Vertical partitioning algorithm producedfour fragments. The Partition Evaluator was applied to both the results and it was found thatindeed the four fragment result is better than the �ve fragment result. This example highlightsthe usefulness of the Partition Evaluator to evaluate the results of the di�erent partitioningalgorithms and select the appropriate partitioning algorithm.EXAMPLE: The following discussion explains how one of these �gures is arrived at.Number Of Fragments Min PE V alue Partition Scheme3 5820 (157)(2389)(4610)Let us call (1 5 7) as fragment I, (2 3 8 9) as fragment II and (4 6 10) as fragment III. The�rst step is to calculate the square error for the given input.Mean for each fragment is:FragmentI FragmentII FragmentIII25 0 00 50 00 0 2512 18 025 25 017 0 00 13 00 8 151) The square error E2M = MXi=1 niXj=1(Xij � Vi)T (Xij � Vi)E2M = 1234 + 2078 + 0 = 33122) Cost due to relevant remote attribute accesses of a transaction (T4) is:18

Value Minimum of the valuesT4 run @ Fragment I: 352 � 2 � 2=4 = 1225T4 run @ Fragment II: 352 � 1 � 1=3 = 408 408T4 run @ Fragment III: cannot be runTotal cost of accessing relevant remote attributes by all transactions is408 + 1875 + 225 = 2508Therefore, PE = 3312 + 2508 = 5820.The above example shows that utility of the Partition Evaluator developed in this paperto evaluate the results of any partitioning scheme and especially for comparing previouslydeveloped algorithms.6 Extensions and ImplementationSo far, we have discussed the formulation of an objective function (Partition Evaluator) as-suming that attribute usage matrix is the only information available to the designer during thepartitioning phase of the design process. In this section we �rst discuss briey how we can usethe objective function in the presence of additional information and then discuss the status ofthe implementation e�ort.Dependencies: If a universal relation or a relation which is not in the Boyce-Codd normalform is used as input, several constraints need to be considered when a partition isgenerated. The cost of maintaining functional and multi-valued dependencies is reducedif all the attributes participating in a dependency are either in the same fragment or atleast allocated to the same node. The �rst case can be easily accommodated withoutchanging the objective function by de�ning a dependency checker which evaluates whethera partition should be considered for cost computation. In other words, during the designprocess any fragment that violates any of the dependencies would be rejected even thoughthat fragment might give the minimum value for the partition evaluator; such partitioningschemes are deemed not admissible. For the second case, the information is passed tothe allocation phase.Fixed partition size: In many cases, the number of sites are known a priori and the objectivefunction need to minimize the cost for a given number of fragments. This, again, doesnot require any changes as one can choose the minimum cost of all the alternatives forthe number of fragments speci�ed.Update vs. retrieval transactions: Although no distinction was made between update andretrieval transaction in the earlier discussion, it is quite straightforward to distinguish19

between them. Typically, retrieve only transaction access data items only once where asthere is an additional overhead of writing back for updated data items on to secondarystorage (sometimes more if the data item has already been ushed to secondary storage).A weight factor can be used to distinguish update type from retrieval type transactions.We can increase the frequency (for example double it) of update type transactions toreect their processing cost. In our simulation, we can take into account the type ofqueries by increasing the frequency for update type queries in the attribute usage matrix.Local vs. remote processing cost : In our formulation of PE, we have assumed a unit costfor processing local as well as remote data once the remote data reaches the local node.We also assumed a uniform transmission cost between any two sites in the network. How-ever, realistically, there is di�erence between accessing local data possibly using accessmethods and remote data for which there are no access methods (unless dynamicallycreated at the local site). Also, the transmission costs between any two nodes is notlikely to be the same.We can include another factor to reect the ratio of local processing cost to the processingof data coming from remote sites. This factor can be included giving di�erent weightsto the two component terms in equation 13. If W1 is the factor for processing local dataand W2 is the factor for processing remote data, it can be accommodated by modifyingequation 13 as follows: PE = E2M + (W2=W1)E2R (14)Note, however, that a better way would be to integrate the factors into the formula.Non-uniform transmission cost between nodes can be taken into account by modifyingequation 4 to include a multiplicative factor TRik (which reects the actual transmissioncost/unit data between sites i and k) inside the inner summation.Replication: The Partition Evaluator can be extended with minimal changes to accommodatereplication of fragments. In this case, we assume that attributes are remotely accessedonly if they do not exist locally. Thus in computing the second term, only those attributesthat exist in a fragment remotely accessed with respect to the site of another fragment(call it \local") but do not exist in the local fragment are taken into account. However,the form of the Partition Evaluator remains the same. Although replication providesavailability, the cost of maintaining consistency of replicated data need to be considered.The above suggestion takes only the cost of retrieval into account and not the cost ofupdate propagation.6.1 Implementation StatusA distributed database design testbed is being developed at the Database Systems R & DCenter, Univ. of Florida, Gainesville. The testbed includes several di�erent vertical partition-ing algorithms and modules that compare and evaluate the results of these algorithms. Thealgorithms that were developed as part of this e�ort are as follows:� Bond Energy Algorithm [12]. 20

OUTPUT

COMPARE
&

EVALUATE

ATTRIBUTE

AFFINITY MATRIX

ATTRIBUTE

BOND ENERGY

ALGORITHM ENUMERATION

(AAM) USAGE MATRIX
INPUT

ALGORITHM
ALGORITHM

BINARY V.P. MINYOUNG RA’S

ALGORITHM
USING PE

EXHAUSTIVE

PARTITIONSCLUSTERED
AAM

PARTITIONSPARTITIONS

COMPARE
AND

EVALUATE (USING PE)

PARTITION

SCHEME BEST PARTITION SCHEME

N - ARY

Figure 5: Distributed Database Design testbed prototype� Binary Vertical Partitioning Algorithm [15].� Minyoung Ra's Graphical Algorithm [16].� Exhaustive Enumeration Algorithm.The �gure 5 gives an overall outline of the design testbed.More algorithms can be easily \hooked" on to this design testbed prototype.7 Summary and Future WorkIn this paper, we have presented a general approach to the vertical partitioning problem. Ourstudy brought out the problems associated with the use of attribute a�nity matrix currentlyused in almost all of the earlier data partitioning algorithms. We started with the objectivefunction used in clustering methods and extended it to suit the requirements of databasedesign. As a result we have brought together work in two isolated areas and established acorrespondence between them. Using the objective function derived in this paper and theapproach proposed, one can evaluate any vertical partitioning algorithm that uses the same21

input as our model. We wanted to identify and express an objective function quantitativelybefore embarking on the development of algorithms. It will now be easier to develop algorithms(heuristics-based or otherwise) exploiting the properties of the function being optimized. OurPartition Evaluator satis�es the need for a common criteria or objective function and can beused to compare and evaluate the extant vertical partitioning algorithms. Finally, the PEdeveloped in this paper has the exibility to incorporate additional design information suchas type of queries (retrieval/updates), transmission cost, and replication as briey outlined inthe previous section.We are currently developing heuristic algorithms for the objective function derived in thispaper. We are in the process of developing integrated objective function to include other inputsto the database design process, such as query types, constraints on allocation, transmissioncost, transaction usage pattern at any particular site, into the objective function derived in thispaper. We plan on comparing di�erent algorithms in more detail using the partition evaluator.We hope to integrate the the Partition Evaluator into a database design testbed which willhelp designers to choose the right algorithm for database initial design as well as for redesign.

22

References[1] M. Babad. A record and �le partitioning model. Commun. ACM 20, 1(Jan 1977).[2] S. Ceri, S.B. Navathe, G. Weiderhold. Distribution Design of Logical Database SchemasIEEE trans. on SW engg. Vol SE-9 No.4, p 487 - 503, July 1983.[3] S. Ceri, S. Pernici, and G. Weiderhold. Optimization Problems and Solution Methods inthe Design of Data distribution. Information Sciences Vol 14, No. 3, p 261-272, 1989.[4] D. Cornell, and P. Yu. A Vertical Partitioning Algorithm for Relational Databases. Proc.Third International Conference on Data Engineering, Feb. 1987, pp. 30-35.[5] M. Eisner, and D. Severance. Mathematical techniques for e�cient record segmentationin large shared databases. J. ACM 23, 4(Oct. 1976).[6] M. Hammer, and B. Niamir. A heuristic approach to attribute partitioning. In ProceedingsACM SIGMOD Int. Conf. on Management of Data, (Boston, Mass., 1979), ACM, NewYork.[7] J. Ho�er, and D. Severance. The Uses of Cluster Analysis in Physical Database DesignIn Proc. 1st International Conference on VLDB, Framingham, MA, 1975, pp. 69 - 86.[8] J. Ho�er. An integer programming formulation of computer database design problems.Inf. Sci., 11(July 1976), 29-48.[9] A. Jain, and R. Dubes. Algorithms for clustering Data. Prentice Hall Advanced ReferenceSeries, Englewood Cli�s, NJ, 1988.[10] J. Kittler. A locally sensitive method for cluster analysis. Pattern Recognition 8, 22-33.[11] S. Lu, and K. Fu. A sentence-to-sentence clustering procedure for pattern analysis. IEEETransactions on Systems, Man and Cybernetics SMC 8, 381-389.[12] W. McCormick, P. Schweitzer, and T. White. Problem Decomposition and Data Reorga-nization by a Clustering technique Operations Research, 20 Sep. 1972.[13] S. March, and D. Severance. The determination of e�cient record segmentation andblocking factors for share data �les. ACM Trans. Database Syst. 2, 3(Sept. 1977).[14] R. Muthuraj. A formal approach to the vertical partitioning problem in distributeddatabase design. M.S. Thesis, Dept. of Computer Science, Univ. of Florida, Aug. 1992.[15] S. Navathe, S. Ceri, G. Weiderhold, and J. Dou. Vertical Partitioning Algorithms forDatabase Design ACM Transactions on Database Systems, Vol. 9, No. 4, Dec. 1984.[16] S. Navathe, and M. Ra. Vertical Partitioning for Database Design: A Graphical Algorithm.ACM SIGMOD, Portland, June 1989.[17] B. Niamir. Attribute Partitioning in Self-Adaptive Relational Database System. Ph. D.Dissertation, M.I.T. Lab. for Computer Science, Jan. 1978.[18] M. Schkolnic. A Clustering Algorithm for Hierarchical Structures ACM TODS, Vol. 1,No. 2, pp. 27-44. March 1977. 23

[19] E. Sha�er, R. Dubes, and A. Jain. Single-link characteristics of a mode-seeking algorithm.Pattern Recognition 11, 65-73.[20] N. Tamer, P. Valduriez. Principles of Distributed Database Systems. Prentice Hall En-glewood Cli�s, New Jersey 07362.[21] A. Torn. Cluster analysis using seed points and density-determined hyperspheres as anaid to global optimization. IEEE Transactions on Systems, Man and Cybernetics SMC7, 610-616.[22] C. Zahn. Graph-theoretical methods for detecting and describing Gestalt Clusters. IEEETransactions on Computers C 20, 68-86.

24

