Memory Variability Is Due to the Contribution of Recollection and Familiarity, Not to Encoding Variability

Article in Journal of Experimental Psychology Learning Memory and Cognition · November 2010
DOI: 10.1037/a0020448 · Source: PubMed

2 authors, including:

Joshua D Koen
University of Texas at Dallas
12 PUBLICATIONS 246 CITATIONS

Available from: Joshua D Koen
Retrieved on: 17 September 2016
Memory Variability Is Due to the Contribution of Recollection and Familiarity, Not to Encoding Variability

Joshua D. Koen and Andrew P. Yonelinas
University of California, Davis

It is well established that the memory strength of studied items is more variable than the strength of new items on tests of recognition memory, but the reason why this occurs is poorly understood. One account for this old item variance effect is based on single-process theory, which proposes that this effect is due to variability in how well items are initially encoded into memory (i.e., the encoding variability account). In contrast, dual-process theory argues that old items are more variable because they are influenced by both recollection and familiarity, whereas recognition of new items relies primarily on familiarity. The present study shows that increasing encoding variability did not increase old item variance and that old item variance is directly related to the contribution of recollection. These results indicate that old item memory variability is due to the relative contribution of recollection and familiarity.

Keywords: recognition memory, dual-process theory, single-process theory, recollection, encoding variability
Although it seems reasonable that encoding variability may account for the old item variance effect, this hypothesis has never been tested.

An alternative account of the old item variance effect is based on dual-process theory (Yonelinas, 1994, 1999, 2001), which argues that studied items are associated with more variable memory strengths than new items because both recollection and familiarity contribute to the recognition of old items, whereas only familiarity typically contributes to new item recognition. According to this account, the variance of studied and nonstudied items recognized on the basis of familiarity is approximately equal. However, because recollection is assumed to support relatively high confidence recognition responses of old items compared with familiarity, recollection will effectively cause the old items to be more variable than the new items.

The purpose of the present experiment was to test novel predictions of the encoding variability and dual-process accounts of the old item variance effect. Participants studied two lists of words. In the pure study list, every word was presented for 2.5 s. In the mixed study list, which was designed to increase encoding variability relative to the pure study list, half the words at study were presented for 1 s and half were presented for 4 s. These presentation rates were selected because they were expected to lead to significant differences in encoding, but avoid floor and ceiling effects that can bias recognition memory variance measures (Yonelinas & Parks, 2007). The expectation was that the average strength of items in the pure and mixed lists would be approximately equal, but the variability in memory strength should be greater in the mixed list because some items are encoded very well (4-s items), whereas others are encode less well (1-s items). This can be verified by looking to see whether memory is better for the 4-s items compared with the 1-s items. After each study list, participants completed a recognition memory test for which they made two judgments. Participants first made an old or new judgment on a 6-point confidence scale (e.g., 1 = sure new; 6 = sure old), which was used to assess variability in memory strength, followed by a remember, know, or new judgment (Gardiner, 1988; Tulving, 1985), which was used to assess recollection and familiarity. The confidence judgment was always made first because the primary aim was to examine old item variance.

If the old item variance effect is due to encoding variability, then estimates of old item variance should be larger in the mixed list compared with the pure list. However, if old item variance is due to the relative contribution of recollection and familiarity, old item variance should be directly related to the inclusion of recollection-based responses as measured by remember/know judgments (Yonelinas, 2001; Yonelinas & Jacoby, 1995), and not encoding variability per se. It is important to note that when using standard remember/know instructions, participants often make remember responses even when they do not recollect any specific details about the study event (Rotello et al., 2005; Yonelinas, 2001; Yonelinas & Parks, 2007). To ensure that the remember/know responses were indicative of recollection and familiarity, participants in the present study were given more conservative remember/know instructions, which have been shown to produce process estimates that converge with estimates from other measures (see Rotello et al., 2005; Yonelinas, 2001).

Method

Participants and Materials

Thirty-two undergraduates (22 women) from the University of California, Davis with an average age of 19.16 ($SD = 1.25$) consented to participate in this experiment for partial fulfillment of a course requirement. One participant’s data was excluded from the remember/know analysis because she or he failed use the new response.

The materials consisted of 640 seven-letter low-frequency nouns (i.e., frequencies between 1 and 30, $M = 5.73$, $SD = 6.45$; Kučera & Francis, 1967) taken from the MRC psycholinguistic database (Coltheart, 1981). Low-frequency words were chosen to facilitate comparison to other studies examining similar issues (e.g., Yonelinas, 1999). Participants viewed the materials on a Dell computer using E-Prime software (Version 1.1.4.1; www.pstnet.com).

Design and Procedure

After informed consent was obtained, each participant completed a study-test phase for both the pure and mixed study conditions. In the pure study condition, 160 words were each presented for 2.5 s at study. In the mixed study condition, 80 of the 160 words in the study list were presented for 1 s, and these were mixed with the remaining 80 words, which were presented for 4 s. A 500-ms blank screen followed the presentation of each word in both study conditions. The order of the mixed and pure study conditions was counterbalanced across participants. After each study phase, participants completed a series of arithmetic problems for 30 s, which served as a distractor task.

After each study list, participants were given a self-paced recognition memory test that contained the 160 words from the study phase intermixed with 160 new words. First, participants judged each word as old or new using a 6-point confidence scale (e.g., 1 = sure new, 6 = sure old) and were instructed to use the entire range of confidence responses to make their memory judgments. Following the confidence response, participants were required to give a remember, know, or new judgment. The instructions for this task were similar to previous studies (see Yonelinas, 2001). Specifically, participants were instructed to respond remember only if they could remember something specific about the study environment, such as what they were thinking when they studied the word or what the word looked like. They were further instructed that they may have to communicate the information they recollected to the experimenter, although they were never asked to do so. Participants were instructed to respond know if they believed that the word had appeared on the study list but were unable to remember anything specific about previously seeing the word. Finally, participants were instructed to respond new if the word was new and had not been previously studied. The materials were counterbalanced such that each word appeared in each condition an equal number of times across participants. A brief practice study-test phase was completed before both the pure and mixed study conditions.

2 The order of the pure and mixed phases had no appreciable effect and is not discussed further.
Results

Figure 1 presents the proportion of responses in each confidence bin given to old and new items in both the pure and mixed study lists, as well as the proportion of items that were given a remember response (hatched area). An examination of this figure reveals that the old items (top panels) were associated with higher levels of confidence than new items (lower panels), indicating that old items achieved higher memory strengths than new items. More importantly, the distributions in the pure list conditions (left panels) were almost identical to those in the mixed list conditions (right panels), showing that increasing encoding variability did not influence old item variability, which contradicts the prediction made by the encoding variability account. Moreover, the old item distributions appear to be more variable than the new item distributions because the old items had a disproportionately large number of the highest confidence responses. Critically, this difference was driven primarily by items receiving a remember response. Thus, it is apparent from the strength distributions that the increased variability of the old item distributions was not related to encoding variability, but rather was due largely to the inclusion of the recollected items. More formal analyses confirming these initial observations are described below.

Assessing the Effects of Encoding Variability on Old Item Variance

Memory strength and variance were assessed by plotting the hit rate against the false-alarm rate as a function of response confidence and analyzing the resulting receiver operating characteristics (ROCs) using signal detection theory (for a review, see MacMillan & Creelman, 2005). When the ROC is plotted on z coordinates, the intercept of the z-ROC provides a rough index of recognition memory strength or sensitivity, such that a higher intercept reflects better sensitivity. Moreover, the slope of the z-ROC provides a measure of the relative variance of the old and new items (i.e., s_{new}/s_{old}). A z-slope of one indicates that the old and new item variances are the same, whereas z-slopes less than one indicate that old items are associated with greater variance than new items. Thus, if encoding variability increases old item variance, the z-slope should be lower in the mixed list than in the pure list.

The aggregate ROCs and z-ROCs for the pure and mixed list conditions are plotted in Figure 2a and 2b, respectively. As can be seen in Figure 2b, the z-ROCs for the mixed and pure conditions were quite similar, and there was no evidence that the z-ROC in the mixed condition had a lower slope than that of the pure condition. An examination of each individual’s z-ROCs demonstrated that the z-slope for the mixed study condition was not lower than the z-slope in the pure study condition (see Table 1), which is inconsistent with the encoding variability account, and in fact there was a numerical trend in the opposite direction, $t(31) = 1.38, SE = .04, p = .18$. The same pattern of results was obtained when the data was fit to the unequal-variance signal detection model using maximum likelihood estimation.

Next, we directly contrasted performance (i.e., z-intercept) on the weak (1-s) and strong (4-s) items in the mixed list to verify that the strength manipulation in the mixed list had a significant impact.

Figure 1. Proportion of responses in each confidence bin and the proportion of remember (‘R’) responses given in each confidence bin to old (top panels) and new (bottom panels) items in the pure (left panels) and mixed (right panels) study conditions.
on memory encoding. As would be expected, the z-intercept was significantly larger for words presented for 4 s than for words presented for 1 s, $t(31) = 4.31, SE = .04, d = 0.39, p < .01$, indicating that the strong items were better encoded than the weak items. However, the difference in performance between the 1-s and 4-s items was associated with a small effect size (Cohen, 1988). Thus, we were concerned that it may not have been large enough to bring about a variance difference between the pure and mixed lists. To address this possibility, we conducted a median split analysis in which we examined only the participants who had the largest difference in intercept between the strong and weak items in the mixed list (i.e., those showing the largest 4-s $<$ 1-s encoding difference). For this subset of participants, the z-intercept was greater for the words presented for 4 s ($M = 1.09, SE = .10$) than for words presented for 1 s ($M = 0.77, SE = .08$), and this difference was accompanied by a large effect size, $t(15) = 16.62, SE = .02, d = 0.89, p < .01$. Furthermore, these participants showed no difference in z-slope between words in the mixed study condition presented for 4 s ($M = 0.71, SE = .03$) and words presented for 1 s ($M = 0.72, SE = .04$), $t(15) < 1$, and no difference between the z-intercept in the pure ($M = 0.87, SE = .09$) and mixed ($M = 0.92, SE = .09$) study conditions, $t(15) < 1$. Most importantly, as with the initial analysis, there was no evidence in this subset of participants that the z-slopes in the mixed list ($M = 0.71, SE = .03$) were lower than in the pure list ($M = 0.66, SE = .04$), $t(15) = 1.33, SE = .03, p = .20$. In conclusion, the present data does not support the encoding variability account of the old item variance effect.

However, one might still argue that increasing the encoding duration by a factor of four was simply not sufficient to produce an increase in old item variability in the mixed item condition above and beyond the old item variance generated by the encoding variability already present within the weak and strong items. To

Table 1

<table>
<thead>
<tr>
<th>Study condition</th>
<th>z-intercept</th>
<th>z-slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall z-ROC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure</td>
<td>.81 (.07)</td>
<td>.68 (.03)</td>
</tr>
<tr>
<td>Mixed</td>
<td>.83 (.07)</td>
<td>.74 (.04)</td>
</tr>
<tr>
<td>Familiarity z-ROC*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure</td>
<td>.52 (.06)</td>
<td>.95 (.04)</td>
</tr>
<tr>
<td>Mixed</td>
<td>.52 (.06)</td>
<td>.98 (.05)</td>
</tr>
</tbody>
</table>

Note. Lower z-slopes reflect increased old item variance. Standard errors of the mean are provided in parentheses. z-ROC = z-transformed receiver operating characteristic.

*These values are based on the 31 participants included in the remember/know analysis.

Figure 2. The aggregate (a) receiver operating characteristic (ROC) and (b) z-ROC for the pure and mixed study conditions. The aggregate familiarity-only (c) ROC and (d) z-ROC for the pure and mixed study conditions after recollection was removed from each cumulative hit rate.
address this, the strength distributions of the weak and strong items in the mixed condition were separately measured. Next, we estimated what the overall z-ROC would look like given that half the items were from the strong condition and half were from the weak condition by combining the two distributions into a single distribution. If encoding variability can accurately account for the old item variance effect, then old item variability estimated from combining the weak and strong distributions into a single distribution should converge with the old item variability as measured by the z-ROC analysis of the overall mixed list. However, the z-slope estimated from the weak and strong item distributions \(M = 0.70, SE = .03 \) was significantly lower than the observed z-slope, \(t(31) = 2.72, SE = .04, d = 0.21 \). These results provide further evidence that encoding variability does not explain the old item variance effect because the variability of old item memory strengths estimated from the weak and strong item distributions did not converge with the observed old item variance in the mixed list condition.

Assessing the Effects of Recollection and Familiarity on Old Item Variance

The remember/know responses were used to provide estimates of recollection and familiarity to determine whether the increased variability of old items was related to the contribution of recollection. This was examined by (a) assessing the old item variance after removing the contribution of recollection from recognition performance and (b) using the estimates of recollection and familiarity to predict the amount of old item variability that was observed. If the old item variance effect is due to recollection, then the old and new item variance measures should be equal (i.e., the slope of the z-ROC should not differ from one) after recollected items are removed from the analysis. The contribution of recollection was removed from each individual’s z-ROC by subtracting the recollection estimate from the cumulative hit rate at each confidence point (cf. Yonelinas, 2001). The resulting familiarity-only ROCs and z-ROCs are presented in Figure 2c and 2d, respectively. An examination of Figure 2d shows that the z-slope no longer differed from one in either the pure or mixed study conditions once recollection was removed. The analysis of each individual’s familiarity-only z-ROC confirmed this observation as the average z-slope did not differ from one in either the pure or mixed study conditions after recollection was removed, both \(ts(30) < 1.12 \) (see Table 1). This demonstrates that it was the contribution of recollection to recognition of studied items that produced the old item variance effect.

Next, we investigated whether the estimates of recollection and familiarity derived from remember/ know responses could be used to accurately predict the old item variance observed in the confidence z-ROCs on a participant-by-participant basis. Specifically, each participant’s recollection and familiarity estimates from the remember/know reports were inserted in the dual-process signal detection model using the observed false-alarm rates from each participant’s confidence data to examine the implied z-slope (for further discussion, see Yonelinas, 1994, 1999). Finally, the relationship between the predicted z-slopes and the z-slopes obtained from the confidence data was examined. There was a significant positive correlation between the observed z-slope and the dual-process predicted z-slope in both study conditions, \(r_{\text{pure}}(29) = .50; r_{\text{mixed}}(29) = .56 \); both \(ps < .05 \), indicating that the old item variance was directly related to the relative contributions of recollection and familiarity to the recognition of studied items. This result suggests that one can accurately predict the size of the old item variance effect if one estimates the contribution of recollection and familiarity using remember/know reports.

However, the confidence and remember/know procedures are quite similar, and it may be possible to capture the same relationship using a single-process model such as the unequal-variance signal detection model (e.g., Starns & Ratcliff, 2008; Wixted & Stretch, 2004). To examine this, remember and know judgments were plotted in z-space as different confidence levels, and the slope and intercept of the best fitting line was measured. One participant was excluded from this analysis because her or his estimated z-slope was greater than five standard deviations from the group mean. Unlike the results obtained with the dual-process signal detection model, the correlation between the observed z-ROC slope and the slope predicted by the unequal-variance signal detection model was not significant in either study condition, \(r_{\text{pure}}(28) = .09; r_{\text{mixed}}(28) = .17 \); both \(ps > .36 \). Thus, the success of the dual-process approach in accounting for old item variance does not generalize to just any model of recognition memory, such as the unequal-variance signal detection model (for related arguments, see Rotello, MacMillan, & Reeder, 2004).

Discussion

In the present experiment, we investigated the encoding variability (e.g., Wixted, 2007) and dual-process (e.g., Yonelinas, 1994) accounts of the common finding that the memory strengths of studied items are more variable than the memory strengths of new items (i.e., the old item variance effect). We directly manipulated encoding variability by varying presentation rate at study (e.g., 2.5 s in the pure lists compared with 1 s and 4 s in the mixed list) and found no evidence that encoding variability led to an increase in old item variance. In fact, the old item variance in the mixed study condition was numerically smaller than in the pure study condition, which is the opposite of what the encoding variability account predicts. In addition, an examination of performance on the weak and strong items in the mixed study condition showed that the observed old item variance in the mixed list was not consistent with the encoding variability hypothesis. In contrast, the results revealed that the increased old item variability was directly related to the contribution of recollection and familiarity. Specifically, we found that the old item variance effect was due entirely to the inclusion of recollected items, and the magnitude of the old item variance effect observed in the confidence responses was accurately predicted on the basis of recollection and familiarity estimates derived from remember/know reports.

The results from the present experiment are relevant in resolving the debate between single- and dual-process models of recognition memory. Most importantly, the results supported the a priori prediction of the dual-process model, which states that the old item variance effect arises because both recollection and familiarity contribute to old item recognition. The present results join several previous examples of empirical regularities that were discovered by directly testing the novel predictions of the dual-process model, such as finding U-shaped z-ROCs in associative and source memory recognition tests, and z-ROCs with unit slopes (i.e., equal
variances between old and new item memory strengths) in patients with hippocampal damage (see Yonelinas & Parks, 2007). Additionally, the lawful relationship that was observed between subjective reports of remembering and old item variability was revealed when the results were interpreted from the viewpoint of the dual-process model. However, this relationship was not observed if one attempted to understand recognition memory in terms of a single-process model like the unequal-variance signal detection model. Although the single-process approach provides a parsimonious account of remember/know judgments, the present results indicate that this account is insufficient because remember judgments do not simply reflect high-confidence responses; they provide important information about the variability present in the distribution of old item memory strengths.

However, a number of recent reports have suggested that results from remember/know studies can be well explained by a single-process model whereby remember responses simply reflect stronger memories than familiarity-based responses (e.g., Dunn, 2004, 2008; Malmberg, 2008; Wixted & Stretch, 2004). These results, however, do not show that the remember/know reports do not reflect recollection and familiarity, just that a single-process model can also account for the data. As Dunn (2004) noted about the results from his meta-analysis, “it should not be inferred that the alternative dual-process interpretation has been shown to be incorrect” (p. 539). Moreover, a review of the literature indicates that when appropriate instructions are used, remember/know judgments provide process measures that converge quite well with other measures of recollection, such as source discrimination or ROC estimates (Rotello et al., 2005; Yonelinas, 2001; for a review, see Yonelinas, 2002). When more constraining data sets are considered, like the one in the present experiment, it becomes clear that a single-process account of recognition memory is insufficient and that a dual-process model should be adopted.

Although the results argue against an encoding variability account of the old item variance effect, one may ask whether encoding variability has to account for at least some of the old item variance. Intuitively it seems like this should be the case, but a careful consideration of present computational work suggests otherwise. For example, computational models such as the complementary learning systems model (Norman & O’Reilly, 2003) and theory of distributed associated memory 2 (Murdock, 1993) assume that familiarity reflects how well a test item matches what is stored in a distributed memory network, and models such as these can produce old and new item distributions with equal variance. This occurs because both old and new items are assessed in exactly the same way; the test item is matched to all items stored in memory. The amount of encoding variability will influence what is stored in memory, but this in turn influences how well both old and new items match what is stored there. It remains to be determined, however, whether more extreme manipulations of encoding strength (e.g., a study time ratio of greater than 4:1) might begin to impact old item variability (see Norman & O’Reilly, 2003). The important point is that relative to the increase in old item variance produced by mixing recollected and familiar items, the effect of encoding variability appears to be negligible.

In summary, the present results help to clarify why the strength of studied items is more variable than the strength of new items. Specifically, our results support a dual-process model of recognition memory by suggesting that the reason studied items are more variable in memory strength than new items is because recollection and familiarity contribute to old item recognition, whereas recognition of new items is primarily influenced by only the familiarity process. In addition, there was no evidence that encoding variability increased the old item variance, and the unequal-variance signal detection model did not capture the relationship between remember/know reports and the amount of old item variability seen in recognition responses. Importantly, the results from this experiment add to the extant literature, indicating that at least two processes are required to adequately explain recognition memory and that understanding recognition memory performance can be obscured if the unequal-variance signal detection model is adopted.

References

Call for Papers: Journal of Experimental Psychology: Learning, Memory, and Cognition Special Section on Neural Mechanisms of Analogical Reasoning

The Journal of Experimental Psychology: Learning, Memory, and Cognition invites submissions of manuscripts for a special section on the Neural Mechanisms of Analogical Reasoning to be compiled by Associate Editor Miriam Bassok and Guest Editors Kevin Dunbar and Keith Holyoak. The goal of the special section is to showcase high-quality research that brings together behavioral, neuropsychological, computational, and neuroimaging approaches to understanding the cognitive and neural mechanisms that are involved in analogical reasoning. The editors are seeking articles on analogy and related cognitive processes (e.g., schema induction, metaphor, role-based relational reasoning, category-based induction) that either present original research using methods of cognitive neuroscience or that present behavioral research (including studies of cognitive development and/or aging and studies of brain-damaged patients) strongly connected to the neural mechanisms of analogical reasoning.

The submission deadline is December 1, 2010. The main text of each manuscript, exclusive of figures, tables, references, or appendixes, should not exceed 35 double-spaced pages (approximately 7,500 words). Initial inquiries regarding the special section may be sent to Miriam Bassok (mbassok@u.washington.edu). Papers should be submitted through the journal’s submission portal (see www.apa.org/pubs/journals/xlm/) with a cover letter indicating that the paper is to be considered for the special section.