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ABSTRACT

The theory of partial inductive definitions is a mathematical formalism which has proved to be
useful in a number of different applications. The fundamentals of the theory is shortly
described. Partial inductive definitions and their associated calculi are essentially infinitary. To
implement them on a computer, they must be given a formal finitary representation. We present
such a finitary representation, and prove its soundness. The finitary representation is given in a
form with and without variables. Without variables, derivations are unchanging entities. With
variables, derivations can contain logical variables that can become bound by a binding
environment that is extended as the derivation is constructed. The variant with variables is
essentially a generalization of the pure GCLA programming language.

ACKNOWLEDGEMENTS

The author wishes to thank his colleagues at the Swedish Institute of Computer Science for their
suggestions and for providing a stimulating research environment. In particular, I want to thank
the people of the GCLA project for provoking me to develop many of the results presented
here, as well as Philipp Hanschke (of DFKI, Kaiserslautern) who read a draft version of the
article and suggested several improvements.

*) Also published in: Lars-Henrik Eriksson, Lars Hallnäs and Peter Schroeder-Heister (eds.),
ELP '91, Proceedings of the Second Workshop on Extensions of Logic Programming held at
SICS, Stockholm, Sweden, January 1991, Lecture Notes in Artificial Intelligence, Springer-
Verlag, 1992.



1 . INTRODUCTION

The theory of partial inductive definitions is a mathematical formalism developed by Lars
Hallnäs [7,11]. It has proved to be useful in a number of different applications, both theoretical
and practical. So far, the theory has been used for such diverse things as knowledge
representation and reasoning [2,10,15,24], logic programming [4,5,13,14,18], functional
programming [3,12], general logic [6,7], program verification [7], recursion theory [8] and
typing non-normalizable terms of the lambda calculus [9]. Some of these application areas have
been subject to extensive investigations, while in other only exploratory work has been done.

A "partial inductive definition" is similar in form and concept to an ordinary inductive definition
[1], but is extended by permitting definitions depending on hypotheses, e.g.

X → Y is a true proposition if Y is a true proposition under the assumption that X is one

While any set that can be expressed using a partial inductive definition can also be expressed by
an ordinary one (trivially, by listing all members), the expressive power of a partial inductive
definition is much greater.

Every partial inductive definition defines a particular sequent calculus used to infer whether an
object belongs to the defined set. The exact form of the inference rules depend in a natural way
of the particular partial inductive definitions.

A problem with the partial inductive definitions and their associated calculi, as defined by
Hallnäs, is that they are purely mathematical objects. In particular, they are in general infinite.
To use a mathematical formalism on a computer, or even for a human to deal with it in an
efficient way, it must be possible to capture the infinities in a finite representation. In [11] and
other original work on the subject there is no mention of how this could be done. Also, the
meaning of the concept of "proof" in infinitary deductive systems is unclear.

Hallnäs and Schroeder-Heister [13,14] developed a formal base for logic programming, based
on partial inductive definitions. This work was the foundation for the programming language
GCLA [4,5], and thus a kind of finitary representation. However, the connection between the
system of Hallnäs and Schroeder-Heister and pure partial inductive definitions was never made
explicit. Also, their system could not handle partial inductive definitions with infinite
conditions. In [7] this author, and in [15] Hanschke, present partial ad-hoc solutions to these
problems. The work presented in the present article is a further development and formalisation
of the approach from [7].

We will present a finitary representation and its corresponding finitary sequent calculi, show the
correspondence with the infinitary partial inductive definition and prove that the finitary calculus
is sound. By soundness we mean that any derivation in the finitary calculus faithfully represents
some derivation of the infinitary calculus.

With a finitary representation we can, of course, only represent countably many partial
inductive definitions and derivations. Since there are uncountably many of both kinds, it will be
impossible to represent every definition or derivation. We will not attempt a formal



characterisation of precisely which objects we can represent. Intuitively, we can represent those
definitions and derivations which can be generated by uniform replacement of quantified
variables by elements of some set.

To permit our finitary system to be used as a suitable base for the construction of proofs in the
calculi of partial inductive definitions, we further introduce logical variables in proofs. As in a
logic programming language, logical variables can be bound to terms as the proof construction
progresses. Indeed, our finitary calculus with variables is an extension of the system of Hallnäs
and Schroeder-Heister used as the foundation for the GCLA language. We will give a natural
interpretation to the occurrence of variables in derivations, and show that binding a variable is a
meaningful operation, given our interpretation.

2 . PARTIAL INDUCTIVE DEFINITIONS

The theory of partial inductive definitions is given a short presentation. The intention of this
presentation is to provide a reference for the rest of the paper. The motivation and intuition
behind partial inductive definitions will not be described, the interested reader is referred to [7]
and [11].

The precise definition of partial inductive definitions and the notation used varies considerably
between different articles on the subject, although all are essentially equivalent. This is partly
due to the evolving of the theory, partly for technical reasons in computer implementations. The
concepts and notation used here for the pure theory will be the ones currently used at the
University of Gothenburg. The concepts and notation used for the finitary version will be the
more computer-oriented ones used at SICS.

Assume that there is a universe, U, of objects which we call atoms. We define the set of
conditions (over U), denoted Cond(U), to be all of the following:

^ (The universal condition)
⊥ (The empty condition)
a for every atom a∈U
(Ci)i∈I where every Ci is a condition (over U)
C→C′ where C and C′ are conditions (over U)

The notation (Ci)i∈I should be understood as the set of all Ci such that i∈I. Note that the (Ci)i∈I
-conditions can be infinite collections, if the index set I is infinite.

If a is an atom in U and A is a condition (over U), then a (definitional) clause (over U) has
the form

a=A

A partial inductive definition (over U) is a set of clauses (over U). Definitions will be
denoted by D (possibly indexed or annotated). Note that a partial inductive definition can
comprise an infinite number of clauses.



The domain of a definition, denoted Dom(D), is defined as Dom(D) = {a | (a=A) ∈ D}.

The definiens of an atom, denoted D(a) is defined as
D(a) = {A | (a = A) ∈ D} when a ∈ Dom(D)
D(a) = {⊥} otherwise

The interpretation of a definition is given by the "D-consequence" relation -D. -D is a relation
between finite sets of conditions and conditions. When it is clear from the context which
definition is intended, the index will be dropped. Expressions of the form Γ - C will be called
sequents, as usual. In every case, the assumption Γ is an unordered finite set of conditions. A
sequent such as Γ,C - C′ has the set Γ∪{C} as its assumptions set. Note that in this case C
may occur in Γ, i.e. the union is not disjoint.

The set Def(D) defined by a partial inductive inductive D, is the set of atoms {a∈U | -D a}.

 - is defined to be the smallest relation satisfying all the following properties:

Γ,a - a (axiom)

Γ,⊥ - C (⊥)

Γ - ^ (̂ )

Γ - Ci | i∈I

Γ - (Ci) i∈I

(-())

        
Γ,Ci - C

Γ,(Ci)i∈I - C
   i∈I (() -)

Γ,C - C′

Γ - C→C′
(-→ )

Γ - C′    Γ,C″ - C

Γ,C′→C″ - C
(→-)

                    Γ - A
Γ - a

   A∈D(a) (-D)

Γ,A - C | A∈D(a)

Γ,a - C
(D -)

The use of a set expression as premise should be taken to mean that the premises of the rule are
the elements of the set expression.



EXAMPLE 2.1
Let D be the definition comprising the clauses a=b, a=c, b=^ and c=d. Then we have
Def(D)={a,b}. ®

The properties of - can be taken as the inference rules of a formal system, called the calculus
of the particular partial inductive definition. In the calculus, it will be convenient to regard the
assumptions as unordered sequences instead of sets. We will then have to include the
contraction rule

Γ,C,C - C′

Γ,C - C′
(contraction)

It is sometimes convenient to also include the weakening rule. We can see from the rules above
that adding extra assumptions to all sequents in a subderivation never invalidates that derivation.
The extra assumptions are simply added to Γ and play no part in the rules. Thus the weakening
rule does not add any more power to the system, but can be included or excluded at will.

Γ - C′

Γ,C - C′
(weakening)

The infinitary nature of this calculus can be seen in rules -() and D-, which can both take an
infinite number of premises, provided the set I is infinite. In earlier formulations of partial
inductive definitions, the set of assumptions could also be infinite, as the right-hand side of a
clause could be an infinite set of conditions. The D--rule would then bring the infinite number
of conditions into the assumption of a sequent. In the present version, all sets of conditions are
encapsulated in the () construction, so it is sufficient to have finite sets as assumptions.

From the formulation of the rules, we can see that ^ has the same properties as (Ci)i∈∅, for any
Ci. Also ⊥ has the same properties as any undefined atom. Thus, we do not actually need ^ and
⊥, they could be removed without changing the properties or expressiveness of the system.

3 . FINITARY PARTIAL INDUCTIVE DEFINITIONS

As we could see in the previous section, there are two main reasons for the infinitary nature of
partial inductive definitions - that a definition could comprise an infinite number of clauses and
that the (Ci)i∈I -conditions could be infinite collections. To avoid this, we will define finite
representations of the concepts from section 2 and define a finitary calculus that will let us
derive that a particular sequent Γ - C holds, only in those cases where the corresponding
represented sequent holds according to the rules in section 2. Any represented concept can be
mapped to the corresponding pure concept. We will use [ ] to denote this mapping.

We assume there is some set of terms. To avoid restricting the applicability of the finitary
calculus, we will make very few assumptions about terms. Essentially, we only assume that
terms can contain variables that can be replaced by other terms, that equality is decidable, and



that axiom 3.3 below holds. These very general requirements permit different kinds of terms,
such as first-order terms, higher-order terms, various equality theories etc.

Unless we say otherwise, the examples of this article will use ordinary first-order terms or
higher-order terms of the simply typed lambda calculus, with two terms being equal if they, or
their αβη-normal forms, are identical. Actually, in applications of the finitary system, we are
only interested in these kinds of terms. However, as the presentation could be extended with
little complication to include much more general term theories, it seemed reasonable to do this.

To represent the universe U, we will take the set of variable-free terms. We assume that the
mapping [ ] from variable-free terms to atoms is given. The mapping will not be defined for
terms with variables. It must hold that [x]=[y] → x=y, i.e. [ ] must be injective.

We divide the set of variables into two classes, the class of parameters, and the class of
ordinary variables. Ordinary variables will be denoted by X, Y, Z,… Parameters will be
denoted by X* , Y* , Z* ,... As usual, the particular name of a variable or parameter should not
matter.

The special significance of parameters will be formally explained below. Intuitively, parameters
occurring in sequents can be seen as variables that are implicitly universally quantified on the
meta level - a dual  to ordinary variables that can be seen as being implicitly existentially
quantified on the meta level. For historical reasons, parameters are sometimes called "starred
variables". Parameters having a special role in induction schemas will be called induction
parameters, see section 4.

Any bound variables will be part of the internal structure of terms and are not considered here,
except that it is assumed that the usual precautions are taken to avoid capture of free variables
when a variable is replaced with a term.

In the sequel, the term "variable" will always refer to ordinary variables. All definitions and
concepts regarding variables should be assumed to be defined in the analogous way for
parameters also.

Terms not containing any variables will be called ground. A term not containing parameters is
called simple. Note that a ground term may contain parameters and that a simple term may
contain variables.

With any variable, we associate a range, which is the set of ground simple terms that are
intended to potentially be substituted for it. The range will be denoted ran(X). The extended
range is the largest set of terms which has the range as the set of its ground and simple
instances,  i.e. RAN(X) = {t | tσ∈ran(X), t is ground and simple}. We can see that the
extended range is closed under substitution, i.e. for any substitution τ, if t∈RAN(x) then
tτ∈RAN(x). In a typed system, the extended range of a variable could be a set of terms with the
same type. Parameters are given ranges in the analogous way. In our examples, we will
generally let it be clear from the context what the ranges of variables and parameters are.



Apart from terms, we will use a few special expressions, finitary conditions and finitary
sequents. These will be defined below. Finitary conditions, finitary sequents, terms, or sets and
sequences of these will together be called just expressions.

The notation E(X) is used to make explicit the occurrence of the variable X in the expression E.
E(t) will denote the expression obtained by replacing all occurrences of X in E by t. Note that it
is permissible to write E(X), even if E does not contain X.

A substitution is a set of variable-term pairs, as usual, where every term must be in the range
of the corresponding variable. Substitutions will be denoted σ, τ, … A particular substitution is
written as {X1/t1,…,Xn/tn}. We will assume that a substitution never contains an identical pair,
X/X, for some X. In the same way, a parameter substitution is a set of parameter-term
pairs. Parameter substitutions will be denoted σ* , τ*,…  We will not use any particular symbol
to denote a substitution that can substitute both variables and parameters. Any such substitution
must be written as an explicit composition of variable and parameter substitutions, e.g. σσ∗.

In the usual way, applying a substitution to a term involves simultaneously replacing the
variables of every variable-term pair with the corresponding term. The result of applying a
substitution to an special expression is the same expression with the substitution applied to all
component terms. Composition of substitutions will be done in the usual way.

We call the set of all variables occurring in the variable part of the variable-term pairs of a
substitution the domain of that substitution. Formally, DOM(σ)={X | (X/t)∈σ}, is the domain
of the substitution σ. Informally, the domain can be said to be the set of variables "affected" by
the substitution.

We will denote the set of variables occurring in (the normal form of) an expression E by
VAR(E). Formally, VAR(E) = {X | ∃t E{X/t} ≠E}. The set of variables occurring in a variable
(parameter) substitution σ, are the variables than can be introduced by an application of the
substitution. Formally, VAR(σ) = ∪{VAR(t) | (X/t)∈σ}. PARM(E) and PARM(σ) are defined
similarly.

We may also speak of the restriction of a composite variable-parameter substitution σσ∗ to
variables (or parameters). By this we mean (σσ∗)\V where V is the set of all variables
(parameters).

EXAMPLE 3.1
Let E=p(X* ,λx.x(Y)) and σ={Y/f(Z)}. Then VAR(E)={Y}, PARM(E)={X *}, DOM(σ)={Y},
VAR(σ)={Z} and PARM(σ)=∅. ®

A ground (simple) substitution will be a substitution where all terms are ground (simple).
σ is a grounding (simplifying) substitution for an expression E, if Eσ is a ground
(simple) expression. The restriction of a substitution σ to an expression E, written σ\E, is a
substitution, such that Eσ=E(σ\E), but X=X(σ\E), for every variable X∉VAR(E). A
substitution σ is nonredundant for E, if σ=σ\E, i.e. if X=Xτ, for every variable X∉VAR(E).
These concepts are also defined for parameter substitutions in the obvious way.



We have the following important lemma:

LEMMA 3.2 Substitution equality lemma
σ=τ iff X σ=Xτ for all variables X.
PROOF
Follows immediately from the definition of substitutions. ®

AXIOM 3.3 Substitution equality axiom
aσ=aτ iff for all variables X∈VAR(a), Xσ=Xτ.
NOTE
This axiom is a property that must hold for any term theory used with the finitary system.
Given the definition of substitutions, this property is clearly true for the usual term theories
such as first order terms or lambda terms. As an alternative to this axiom, it would possible to
take as axioms more primitive properties, namely as the existence of a computable normal form
of every term and that structural induction can be done over terms. From these more primitive
properties, the statement of the present axiom could be obtained as a lemma. ®

Substitutions may be composed in the usual way. As usual, a substitution σ is less general
than a substitution τ, written σ≤τ iff ∃υ:  σ=τυ. The same holds for parameter substitutions.

EXAMPLE 3.4
Let σ={X/f(A)}, τ={X/f(3)} and υ={X/f(A), Y/a}. Then τ≤σ, υ≤σ, but neither τ≤υ, nor υ≤τ.

We will need a way to compare sets of instances of expressions. We say that a set S is less
general than the set T, written S≤T, iff ∀s∈S ∃t∈T ∃υ s=tυ. Intuitively, this means that the
set of variable instances of S is a subset of the set of (variable) instances of T. Without loss of
generality, we can assume that υ is nonredundant for t. The sets S and T are equally
general, written S≅T, iff S≤T and T≤S. Note that if S and T are ground, these concepts are
exactly subset and equality, respectively. We define ≤*  and ≅*  for parameter instances in the
analogous way.

EXAMPLE 3.5
Let R={p(2,2), p(X,X)}, S={p(X,Y)} and T={p(1,1), p(X,X)}. Then we have R≤S and
R≅T. ®

It is easy to show the following lemma.

LEMMA 3.6
1) If S≅T and T≅V, then S≅V, likewise S≅∗T and T≅∗V, then S≅∗V.
2) If S≅T, then Sθ≅Tθ, provided that (DOM(θ)∪VAR(θ))∩(VAR(S)∪VAR(T))=∅,

likewise if S≅∗T, then Sθ∗≅∗Tθ∗, provided that
(DOM(θ∗)∪PARM(θ∗))∩(PARM(S)∪PARM(T))=∅

3) If S≅T, then Sθ∗≅Tθ∗, provided that VAR(θ∗)∩(VAR(S)∪VAR(T))=∅, likewise
if S≅∗T, then Sθ≅∗Tθ, provided that PARM(θ)∩(PARM(S)∪PARM(T))=∅



PROOF
The first part follows easily from the definitions of ≅ and ≤.

To prove the second part, we show that if S≤T, then Sθ≤Tθ. By analogy, this implies that if
T≤S, then Tθ≤Sθ. Together the we establish that if S≅T, then Sθ≅Tθ. The proof for ≅∗ is
done in the same way.

Assume that S≤T, and that (DOM(θ)∪VAR(θ))∩VAR(T)=∅ . By the definition of ≤,
∀s∈S ∃t∈T ∃υ s=tυ, so for a particular s, we have s=tυ, for some t and υ. From this we get
sθ=tυθ. Let τ=(υθ)\VAR(t).  For each X∈VAR(t), Xυθ=Xτ=Xθτ, since X∈VAR(t) implies
X∉DOM(θ).  For each X*∈PARM(t), X*υθ=X*=X*θτ. By the substitution equality axiom,
we get tυθ=tθτ. Together with sθ=tυθ, we get  sθ=tθτ. By the definition of ≤, this implies that
Sθ≤Tθ.

The proof of the third part is very similar to that of the second part. Again we show that if S≤T,
then Sθ∗≤Tθ∗ with the result for ≥ and ≅∗ being obtained through analogy.

Assume that S≤T, and that VA R (θ ∗ )∩ VA R (T )=∅ . By the definition of ≤,
∀s∈S ∃t∈T ∃υ s=tυ, so for a particular s, we have s=tυ, for some t and υ. From this we get
sθ∗=tυθ∗. Let τ=(υθ∗)\VAR(t).  Clearly, for each X∈VAR(t), Xυθ∗= Xτ=Xθ∗τ, and for each
X *∈PARM(t), X*υθ∗=X*θ∗=X*θ∗τ. The last step of the equality is true since θ∗, and thus
X * θ∗, has no variables in common with T, and thus also not with t, since t∈T. By the
substitution equality axiom, we get tυθ∗=tθ∗τ. Together with sθ∗=tυθ∗, we get  sθ∗=tθ∗τ. By
the definition of ≤, this implies that Sθ∗≤Tθ∗.    ®

We will define a complete set of unifiers (CSU) [16] of a and b to be a set of
substitutions, Σ, such that
• ∀σ∈Σ aσ=bσ (every member of Σ is a unifier)
• ∀σ (aσ=bσ → ∃τ∈Σ σ≤τ) (any unifier is less general than some member of a CSU)

CSU´s are not unique. In the sequel we will usually write a CSU of a and b as Σ(a,b). Here Σ
should be understood as a choice function, selecting an arbitrary CSU of a and b. However, for
every particular context (e.g. inference rule instance) each Σ(a,b) must denotes the same
arbitrary  CSU.

We will also impose some minimality conditions on all CSUs in this paper:
• ∀σ∈Σ σ=σσ (every member of Σ is idempotent)
• ∀σ∈Σ σ is nonredundant for a and b

It would be desirable to have additional minimality properties of CSUs, e.g. that for different
σ,τ∈Σ, neither σ≤τ nor τ≤σ. As noted by Huet [17], this is not always possible.

The idempotency condition is not strictly a minimality condition, and it is not always required of
unifiers in the literature. However, a strong case can be made for this requirement [19,23], and
in the present context it simplifies several proofs. It it easy to show that idempotent unifiers
always exist. Clearly, if a unifier σ of a and b is not idempotent, it must be the case that
DOM(σ)∩VAR(σ)≠∅. Let V=DOM(σ)∩VAR(σ). Define τ={{v/x v} | v∈V}, where the



different xv are distinct variables not occurring in DOM(σ)∪VAR(σ). Then (στ)\DOM(σ) will
be a unifier of a and b, and DOM((στ)\DOM(σ))∩VAR((στ)\DOM(σ))=∅, so it is idempotent.

NOTE 3.7
Since the names of variables and parameters have no significance, variables and parameters that
are in σ, but not in a or b, can be renamed arbitrarily. In particular, for any variable X, such that
X∉VAR(a) and X∉VAR(b), we can always assume that X∉VAR(σ). Likewise for parameters.

It is interesting to note that if Σ and Φ are two CSU´s of a and b and we take ≅ to be a formal
relation (i.e. we care only about the formula defining ≅, not about its intended meaning), then Σ
≅ Φ. This fact could be used as the basis for an alternative definition of CSU´s.

We define a parameter-CSU (CSU*) in the analogue manner, usually denoting a CSU*  of a
and b by Σ*(a,b).

EXAMPLE 3.8
Let s=p(X) and t=p(f(Y)), then {{X/f(Y)}} is a CSU of s and t, while {{X/f(3), Y/3}},
{{X/f(X), Y/X}}, and {{X/f(Y), Z/1}} are not.

Let s=F*(X*) and t=f(a). A CSU* of s and t is
{{F * /λx.f(a)}, {F * /f, X* /a}, {F* /λx.x, X* /f(a)}}. ®

We define the (finitary) conditions to be all of the following:
t where t is any term
C1,C2,…,Cn where every Ci is a condition. n≥1.
C⇒C′ where C and C′ are conditions
Πx C(x) where C is a condition containing the variable x. (x is bound by Π)

Parentheses will be used around the second form when necessary. C1,C2,…,Cn⇒C will be
taken as (C1,C2,…,Cn)⇒C.

The Π-construction is intended to represent the collection of all conditions obtained by
substitutions for x. The intentions of the other conditions are obvious. Formally, the mapping
[ ] is defined on conditions other than terms as:

[C1,C2,…,Cn] = ([Ci]) i∈{1,...,n}
[C⇒C′] = [C]→[C′]
[Πx C(x)] = ([C(t)])t∈ran(x)

Note that we have no finitary conditions that represent the two conditions ^ and ⊥ of the
infinitary calculus. As we remarked at the end of the previous section, these conditions are
superfluous so we do not lose in expressiveness by not being able to represent them.

A clause is an expression of the form

H ⇐ B



where the head H is a term and the body B is a condition. Neither of these may contain
parameters. The body may also be empty, which should be interpreted as the condition (), i.e.
the empty sequence of conditions.

Intuitively, free variables in a clause are universally quantified. Each clause represents the union
of its ground instances. Formally the mapping [ ] is defined on clauses as:

[H ⇐ B] = {[H σ] = [Bσ] | σ is a grounding simple substitution of H}

Without loss of generality, we can assume that σ above is nonredundant for H and B.

NOTE 3.9
From this definition, we can see that variable renamings in H ⇐ B, do not affect  the value of
[H ⇐ B]. In the sequel, we will assume that each time a clause is used, the variables in the
clause can be renamed as required to avoid conflicts with other variables, i.e. whenever a
definition P (or its parameter transform P* - see below) is used, the variables (parameters) can
be renamed arbitrarily to fulfil any  necessary conditions. ®

A finitary partial inductive definition is a finite set of clauses. The mapping [ ], on a
definition D, is defined simply as the union of the mappings of the clauses, i.e.

D  = C∪
C∈D

The parameter transform of a clause is obtained by replacing each free variable in the clause
with a unique parameter. The parameter transform P* , of a finitary definition P, is obtained
by taking the parameter transform of every clause in P.

EXAMPLE 3.10
In many of the examples in this article, we will use the following finitary partial inductive
definition, FOL, intended to model the semantics of the logical connectives of first order logic
with equality. The construction ∀x p(x)  should be seen as syntactic sugaring for the term
∀(λx.p(x)), similarly for ∃. The variables of the definition range over formulae,  represented
terms (not terms of the finitary theory of partial inductive definitions) or functions from
represented terms to formulae, as appropriate.

A=A ⇐
A∧B ⇐ A,B
A∨B ⇐ A
A∨B ⇐ B
A→B ⇐ (A⇒B)
¬A ⇐ (A⇒ false)
∃x A(x) ⇐ A(X)
∀x A(x) ⇐ Πx A(x)

The term "false" must not be defined by any clause.
The parameter transform of the last clause is ∀x A*(x) ⇐ Πx A*(x). The mapping of the same
clause, [∀x A(x) ⇐ Πx A(x)] is a set of clauses:



allf1={f 1(t1), f1(t2), f1(t3),…}
allf2={f 2(t1), f2(t2), f2(t3),…}
  :

where the fi form an enumeration of the mappings of all functions in the restricted range of A,
the ti form an enumeration of the mappings of the represented terms, and each allfi is the
mapping of ∀x A(x), for each function in the restricted range of A. ®

The definiens of a term, denoted D(a) is defined as
D(a) = {Bσ | a=Hσ, (H⇐B) ∈ P}

The defining clauses of a term, denoted C(a) is defined as
C(a) = {(Hσ⇐ Bσ)  | σ∈Σ(a,H), (H ⇐ B) ∈ P}

The parameter definiens (D * ) and defining parameter clauses (C* ) are defined
analogously, using parameter substitutions and the parameter transform of the program.

EXAMPLE 3.11
With the definition FOL above, we have D (a∧ b)={(a,b)}, D (a∨ b)={a,b} and
C*(a∨b)={a∨b⇐a, a∨b⇐b}.

If we instead take the following definition:

p(A, A) ⇐ q
p(a, b) ⇐ q

we will have D*(p(X,Y*))={q} and C*(p(X,Y*))={p(X, X)⇐q, p(a, b)⇐q}. ®

The set Def(D) defined by a finitary partial inductive inductive definition D, is the set of
ground simple terms {t | -D t}, where -D is derivability in the variable-free finitary calculus
described in the next section.

4 . A FINITARY CALCULUS

How do we avoid the infinitary character of the calculus of section 2? As we remarked at the
end, the rules -() and D - could have an infinite number of premises. This would happen in the
first case if the index set I of  (Ci)i∈I was infinite, in the second case if there was an infinite
number of clauses defining a. In the finitary representation of clauses given in the previous
section, infinite index sets could arise only in connection with the Π construct, infinite sets of
clauses could arise only if a finitary clause contained free variables. In each case the infinite set
is generated uniformly by substituting ground simple terms for variables. Since the different
premises differ only in the substituted term, the infinite set of premises can be represented by a
premise where the infinite set can be generated uniformly by some substitution. In our finitary
calculus, parameters are used for this purpose. A sequent containing parameters, actually
represent the set of its simple instances.



Formally, [ ] is defined on sequents as:

[Γ - C] = {[Γσ*] - [Cσ*] | σ* is a ground simplifying substitution of Γ and C}

There will actually be two versions of the finitary calculus, a variable-free calculus where no
variables are permitted in a derivation, and a calculus with variables. The two calculi will use
the same inference rules, but will be used for slightly different purposes. The variable-free
calculus will be the "proper" finitary calculus where every derivation is the representation of a
derivation in the infinitary calculus. Note that the mapping of finitary sequents to infinitary
sequents is only defined in the variable-free case. For this reason, a derivation in the calculus
with variables does not, in general, represent an infinitary derivation. The advantage with
having variables in a derivation is that the variables can be used as placeholders for
undetermined terms. By substituting ground terms for every variables, a derivation with
variables can be instantiated into a "proper" derivation.

Soundness properties with respect to the infinitary calculus will only be shown for the variable-
free finitary calculus. The soundness of the calculus with variables will be shown relative to the
variable-free calculus.

We will now present a set of inference rules for the two finitary calculi of partial inductive
definitions. In the case of the variable-free calculus, it should be assumed that all expressions
(except clauses) are ground, that parameter substitutions are ground and that variable
substitutions are grounding for all expressions they are applied to. Again, the use of a set
expression as premise should be taken to mean that the premises of the rule are the elements of
the set expression.

Γ,a - a (axiom)

Γ - C(X*)

Γ -Πx C(x)
(-Π)

where X*∉PARM(Γ), X*∉PARM(C),
and RAN(x) = RAN(X*). X* must not be an induction parameter.

Γ,C(t) - C′

Γ,Πx C(x) - C′
(Π -)

where t is some arbitrary term in RAN(x).

In section 8, we will return to the question of how to choose the term t.

Γ - C1    Γ - C2    Γ - Cn

Γ -(C1,C2,…,Cn)
(-())



        
Γ,Ci - C

Γ,(C1,C2,…,Cn) - C
   i≤n (() -)

Γ,C - C′

Γ - C⇒C′
(-⇒ )

Γ - C′    Γ,C″ - C

Γ,C′⇒C″ - C
(⇒-)

                                  Γ - Bσ
Γ - a

   (H⇐B)∈P, a=Hσ (-D)

Γσ* ,Bσ*  - Cσ*  | σ*∈Σ*
(a,H), (H⇐B)∈P*

Γ,a - C
(D -)

where each Σ∗(a,H) is finite.
C*(a)ϕ ≅∗ C*(aϕ), for all ϕ.
PARM(P*)∩PARM(Γ,a - C)=∅
PARM(P*) must not contain any induction parameters.

Recall that P* denotes the parameter transform of the definition P. In the variable-free calculus,
the condition that C*(a)ϕ ≅∗ C*(aϕ), for all ϕ, will be trivially satisfied. In section 8 we will
return to the question of verifying this condition. For an example of the necessity of the
condition, see example 7.2.

Γ,C,C - C′

Γ,C - C′
(contraction)

Γ - C′

Γ,C - C′
(weakening)

In the infinitary calculus, weakening was an optional rule. In the presence of the induction
schema below, that is not the case here.

The - Π and D - rules have side conditions to prevent key parameters (i.e. PARM(P*) in the D
- rule and X*  in the - Π rule) from occurring both in the premises and conclusion of the same
rule instance. It might seem that this condition is too permissive and that stronger requirements
should be made to ensure the uniqueness of these parameters over larger parts of the derivation.
However, the definition of the mapping of a finitary sequent to a set of infinitary sequents
shows that the significance of a particular parameter is local to the sequent in which it occurs.
Thus there is no problem with the same parameter reoccurring at arbitrary places in the
derivation as long as the present side conditions are fulfilled.



The use of unifiers in the D - rule needs some motivation. Suppose a definition includes the
clause A=A⇐. Consider the sequent X*=Y*, Y*=Z* - X*=Z*. What premises are needed if we
want to derive this sequent using the D - rule on X*=Y*? According to the interpretation of
finitary sequents, this sequent maps to an infinite set of infinitary sequents, generated by all
possible ground simple instantiations of the three parameters. Call this set of infinitary sequents
S. Let x be the mapping of some instantiation of X* and y the mapping of some instantiation of
Y*. We can see that all the infinitary sequents in S with x≠y will be false by absurdity, since the
"=" relation only holds between equal terms. In other words, to derive the sequent above, it
suffices with a premise that maps to that subset of S where x=y. Only those cases have to be
derived, the other ones hold by absurdity. We can see that X*=Z*  - X*=Z*  is a possible
sequent.

Now, consider the finitary rule for D -. Since there is only one clause defining "=", there
should be one premise for each element of some CSU of X*=Y*  and A*=A*  – the latter being
the head of the parameter transform of the clause. Clearly {A* /X* , Y* /Z* } is such a CSU.
Using this CSU we arrive at exactly the premise X*=Z*  - X*=Z* . Example 4.2 presents a
derivation that includes precisely this step.

To simplify the presentation of a derivation, we will frequently apply the () - or the -() rules
without explicit mention whenever a sequence condition appears. E.g. if the definition contains
a clause

                                a ⇐ b,c
we will write:

Γ - b    Γ - c
Γ - a

(-D)

rather than:
Γ - b    Γ - c

Γ - (b,c)

Γ - a

(-())
(-D)

We sometimes want a derivation of a sequent with a sequence (C1,…,Cn) in the antecedent,
from a sequent with the individual conditions C1,…,Cn in the antecedent. Such a derivation can
be constructed simply from a series of () - rule instances, and a series of contractions, e.g.

Γ,a,b - C

Γ,(a,b),b - C

Γ,(a,b),(a,b) - C

Γ,(a,b) - C

(() -)
(() -)

(contraction)

Again to simplify the presentation of a derivation, we will abuse the calculus by writing a single
() - step, with all of C1,…,Cn in the antecedent of the premise, e.g.

Γ,a,b - C

Γ,(a,b) - C
(() -)



EXAMPLE 4.1
A sample derivation, given the definition FOL of example 3.10:

- ∀x p(x)∧∀x(p(x)→q(x))→∀x q(x)
 (- P)

- ∀x p(x)∧∀x(p(x)→q(x))⇒∀x q(x)
 (- ⇒

∀x p(x)∧∀x(p(x)→q(x)) - ∀x q(x)
 (P -

∀x p(x), ∀x(p(x)→q(x)) - ∀x q(x)
 (- P)

∀x p(x), ∀x(p(x)→q(x)) - Πx q(x)
 (- Π

∀x p(x), ∀x(p(x)→q(x)) - q(X*)
 (P - )

Πx p(x), ∀x(p(x)→q(x)) - q(X*)
 (Π - )

p(X* ), ∀x(p(x)→q(x)) - q(X* )
 (P - )

p(X* ), Πx p(x)→q(x) - q(X* )
 (Π - )

p(X* ), p(X* )→q(X*) - q(X* )
 (P - )

p(X* ), p(X* )⇒q(X*) - q(X* )
 (⇒ - )

q(X* ), p(X* ) - q(X* )
 (Axiom)

p(X* ) - p(X* )
 (Axiom)

)

)

)

®

EXAMPLE 4.2
Given the definition FOL, the following derivation shows that equality so defined is transitive.

-∀x∀y∀z(x=y∧y=z→x=z)
 (-P)

-Πx∀y∀z(x=y∧y=z→x=z)
 (-Π)

-∀y∀z(X*=y∧y=z→X*=z)
 (-P)

-Πy∀z(X*=y∧y=z→X*=z)
 (-Π)

-∀z(X*=Y*∧Y*=z→X*=z)
 (-P)

-Πz X*=Y*∧Y*=z→X*=z
 (-Π)

-X*=Y*∧Y*=Z*→X*=Z*
 (-P)

-X*=Y*∧Y*=Z*⇒X*=Z*
 (-⇒)

X*=Y*∧Y*=Z*  -X*=Z*
 (P -)

X *=Y* , Y*=Z*  -X *=Z*
 (P -)

Y*=Z*  -Y*=Z*
 (Axiom)

The following derivation step illustrates clearly how the premises of the D - rule corresponds to
the elements of a CSU (see example 3.8). Since the assumption is F*(A*)=f(a), there will be a
premise for each unifier of F*(A*) and f(a). By keeping F*  and A*  in the conclusion, we can
see what effect the various unifiers have on these parameters.



- (λx.f(a),X* )    - (f,a)    - (λx.x,f(a))

F* (X * )=f(a) - (F* ,X* )
(D -)

®

It should be noted that the decidability of the D - rule (and consequently the finitaryness of the
calculus) depends on the possibility of finding finite CSU´s of two terms or showing that none
exist. This is not possible in general, e.g. for higher order terms [16]. However, this is a
problem mainly when a given derivation is to be checked for correctness. If we check each
inference step when the derivation is constructed and only admit steps that have been positively
shown to be correct, the calculus is useful even if unification is not decidable. Conversely, there
can be an undecidability problem in showing that the -D rule is not applicable.

In the infinitary calculus, there was a clear duality between the -D and D - rules. This duality
appears lost here. However, in the variable-free calculus, the -D rule can be expressed in a
more complicated, but equivalent, way that uncovers the duality.

First note that since in this case we deal with the variable-free calculus, Γ and a are ground so
Γ=Γσ and a=aσ, for every σ. Thus a=Hσ  is equivalent to aσ=Hσ, which means that σ should
be a unifier of a and H. Then there is a CSU, Σ(a,H), of a and H that contains σ. To construct
such a CSU, take any CSU of a and H and add σ to it. Since σ will be grounding, σ=σσ, so σ
is a valid member of a CSU, i.e. the resulting set will be a possible Σ(a,H). In other words, the
conditions a=Hσ and σ∈Σ(a,H) are equivalent. We can now give the -D rule an alternative
formulation that clearly shows the duality .

                                  Γσ - Bσ
Γ - a

   σ∈Σ(a,H), (H⇐B)∈P

where every element in Σ(a,H) is grounding for B.

The finitary calculus also has two inference rules that have no counterparts in the infinitary
calculus: specialisation and induction. When manipulating derivations, and in connection with
induction, we will need the specialisation rule:

Γ - C
Γσ*  - Cσ*

(specialisation)

where DOM(σ*) does not contain any induction parameters.

Without loss of generality, we can assume that σ*  is nonredundant for Γ, C and C′. The
intuition behind this rule is that if we have shown that some sequent is derivable, then any
(parameter) instance of it is also derivable.

The introduction of parameters enabled us to give a finitary formulation of inferences with
infinite number of premises (infinite width). It did not, however, solve the problem of arbitrary
long inference chains (infinite height).



To address this issue, we include an induction schema. Induction is expressed as an "improper"
inference rule, taking entire derivations as premises instead of sequents. The premise
derivations are hypothetical derivations, in the same sense as hypothetical derivations in natural
deduction. Each such derivation has one or more hypothetical sequents. Those sequents may be
used in the derivation without being proved. Every hypothetical derivation corresponds to a
induction step. The base case(s) of an induction are degenerate hypothetical derivations without
any hypotheses.

The induction schema expresses induction over a set of ground simple terms. This set must be
defined by a finitary definition that maps to an infinitary definition that is an ordinary inductive
definition, i.e. the arrow condition must not be used. We call this definition T, i.e. the set is
Def(T). Strictly speaking, the Π-condition should not be permitted in T either, as it generally
maps to an infinite condition in the infinitary calculus, which is not permitted in an ordinary
inductive definition. For our purposes, however, this is still permissible as long as induction is
not done over the ranges of Π-bound variables of T.

The induction schema will have the following form:

S(C) | C∈ B

S(H)
    (H⇐B)∈T*

S(X*)
(induction)

where for every H and 〈B〉, ran(X*)=Def(T), PARM(H)∩PARM(S)=∅, and
 PARM(H)∩PARM(〈B〉)=∅.

Each premise is a hypothetical derivation. The inner set expression gives the set of hypothetical
sequents for each derivation. The expression 〈B〉 denotes some set of hypothetical terms of
the clause body B. This is the set of constituent terms of B, with each variable bound by a Π-
operator replaced by some parameter not occurring elsewhere in B. Different 〈B〉 differ only in
the names of parameters. Note that 〈B〉 will always be a finite set. The parameters of each clause
will be the induction parameters of the hypothetical derivation corresponding to that clause
and all of its subderivations. Those parameters will not be considered as induction parameters in
the derivation containing the induction schema. Note that the parameters introduced by replacing
Π-bound variables of B are also not considered as induction parameters.

Formally, 〈B〉 is defined as
〈t〉=t where t is a term.
〈C1,C2,…,Cn〉=∪〈Ci〉
〈Πx C(x)〉=〈C(X*)〉 where X* is a unique parameter.

EXAMPLE 4.3
Let the set of lists be defined by the inductive definition LIST:

nil ⇐
U.L ⇐ L



Add to the definition FOL the definition of the append relation for lists:

append(nil,X,X) ⇐
append(X.A,B,X.C) ⇐ append(A,B,C)

where the variables ranges over lists, i.e. ran(X)=ran(A)=ran(B)=ran(C)=def(LIST).

The following derivation shows that for all x, append(x,nil,x) holds:

-∀x append(x,nil,x)
 (-P)

-Πx append(x,nil,x)
 (-Π)

-append(X* ,nil,X* )
 (Induction)

-append(nil,nil,nil)
 (-P)

-append(U* .L* ,nil,U* .L* )
 (-P)

-append(L* ,nil,L*)
 (Hypothesis)

®

In this derivation U*  and L*  are induction parameters of the hypothetical derivation of the
second premise of the induction rule.

The induction schema can also be used for case analysis, as the following example shows:

EXAMPLE 4.4
Given the definition FOL, we show that a list, defined as above, must be either empty or not
empty. ran(x)=def(LIST).

-∀x(x=nil∨¬x=nil)
 (-P)

-Πx x=nil∨¬x=nil
 (-Π)

-X*=nil∨¬X*=nil
 (Induction)

-nil=nil∨¬nil=nil
 (-P)

-nil=nil
 (-P)

-U* .L*=nil∨¬U* .L*=nil
 (-P)

-¬U* .L*=nil
 (-P)

-U* .L*=nil⇒⊥
 (-⇒)

U* .L*=nil -⊥
 (P -)

®

5 . SOUNDNESS OF THE VARIABLE-FREE FINITARY
CALCULUS

In this section we will show the soundness of the variable-free finitary calculus with respect to
the infinitary calculus. Given a derivation in the variable-free finitary calculus of the form

S1    Sn

S



soundness amounts to showing the existence of a derivation in the infinitary calculus

S1     Sn

S′

for every S′∈[S]. This is shown by induction over the structure of the finitary derivation.

An application of an inference rule in the finitary calculus has the following general form: (n≥0)

S1  Sn

S

The conclusion S maps to a set of infinitary conclusions, [S], and the premises map to a set of
infinitary premises, ∪[Sk]. To prove the soundness of the particular inference rule, we must
show that for every application of a finitary inference rule, each sequent in [S] can be derived
from a subset of the premises in ∪[Sk], by an application of some rules from the infinitary
calculus.

A particular application of an inference rule with n=0 will give a base case in the induction.
With n>0 it will give an induction step.

The reason for taking a subset of ∪[Sk] is that although all premises should be needed to derive
all conclusions in [S], the derivation of a particular conclusion will not in general need every
available premise. Ideally, every premise in ∪[Sk], should be necessary for the derivation of
some sequent in [S], otherwise the finitary rule will have premises that are, in a sense,
redundant. To ascertain this, however, additional side conditions will have to be introduced in
the formulation of the finitary rules. We have chosen to give a simpler formulation of the rules
and accept that redundancies may occur.

EXAMPLE 5.1
Consider the following step of the finitary calculus:

p(X* ) - q

Πx p(x) - q
(Π -)

The conclusion maps to the infinitary sequent ([p(i)])i∈ran(x)- q. According to the rules of the
infinitary calculus, the Π - rule requires one premise, [p(i)] - q for some i∈ran(x) to get the
conclusion. However, the mapping of the premise of the finitary step above is the set of
infinitary sequents { ([p(i)]) - q | i∈ran(x)}. Thus the premise of the finitary step is redundant.
The redundancy could have been avoided by introducing side condition in Π - rule. Since that
rule is still sound, we have chosen to accept the redundancy. ®

We will not attempt to extend the mapping [ ] to provide a translation from finitary to infinitary
derivations. Although possible in principle, in the case of the D - rule, this will be quite
complicated. Instead we will be satisfied with the soundness condition, which guarantees the
existence of such a translated derivation.



Consider again the finitary rule application above. Suppose that the corresponding infinitary
inference rule application has the form

Si
′ | i∈I

S′

for some I. For each rule, we must show that for every S′∈[S], the infinitary rule instance is
correct, and ∪S′i ⊆  ∪ [Sk]. Recall that for a sequent S, [S] = {[Sσ* ] | σ*  is a ground
simplifying substitution for S}. In other words, S′=[Sσ* ], for some such σ* . Without loss of
generality, we can assume that σ*  is nonredundant for S. For brevity, we will not explicitly
mention the conditions on σ* below.

We will give individual proofs for each rule below. For each rule, the form of the rule and the
corresponding instance of an infinitary rule for an arbitrary σ*, will be shown. In most cases it
will be clear that the infinitary rule instance has a proper form, otherwise this will be proven. It
will also be shown that the set of infinitary rule premises is indeed a subset of the set of
infinitary sequents corresponding to the finitary rule premises.

Axiom
Γ, a - a Γσ* ,  aσ*  -  aσ*

as there are no premises, correctness is immediate.

- ( )
Γ - C1    Γ - Cn

Γ -(C1,…,Cn)

Γσ*  - Ciσ*  | i∈ 1 , , n  

Γσ*  - Ciσ*
i∈ 1 , , n

From the definition of [ ], it is clear that ([Γσ* ] - [Ciσ* ])∈[Γ - Ci], for every i∈{1,…,n}.
Thus {[Γσ* ] - [Ciσ* ] | i∈{1,…,n}} ⊆ ∪[Γ - Ci].

( ) -
Γ,Ci - C

Γ,(C1,…,Cn) - C

Γσ* , Ciσ*  - Cσ*

Γσ* , Ciσ*
i∈ 1 , , n  -  Cσ*

 

for some i. From the definition of [ ], it is clear that ([Γσ* ], [Ciσ* ] - [Cσ* ])∈[Γ, Ci - C], for
every i∈{1,…,n}.

-⇒
Γ,C - C′

Γ - C⇒C′

Γσ* , Cσ*  - C′σ*

Γσ*  -  Cσ* → C′σ*

From the definition of [ ], it is clear that ([Γσ* ], [Cσ* ] - [C′σ* ])∈[Γ, C - C′].

⇒ -



Γ - C′    Γ,C″ - C

Γ,C′⇒C″ - C

Γσ*  - C′σ*     Γσ* , C″σ*  - Cσ*

Γσ* , C′σ* → C″σ*  -  Cσ*

From the definition of [ ], it is clear that ([Γσ* ] - [C′σ* ])∈[Γ - C′] and that ([Γσ* ],[C″σ* ] -
[Cσ* ])∈[Γ, C″ - C].

-Π
Γ - C(X*)

Γ -Πx C(x)

Γσ*  - C(i)σ*  | i∈ran(x)

Γσ*  -(( C(i)σ*
i∈ran(x)

For each of the infinitary premises, [Γσ* ] - [C(i)σ* ], let τi
*={X * /i}. Since X*  does not occur

in Γ or C,  [Γσ* ] - [C(i)σ* ] = [Γτi
*σ* ] - [C(X*)τi

*σ* ]. Clearly, τi
* σ*  is a ground simplifying

substitution for Γ - C(X*), since σ* is a ground simplifying substitution for both Γ and C, and
τi

*  is simple. By the definition of [ ], ([Γτi
* σ*] - [C(X*)τi

* σ* ])∈[Γ - C(X*)]. Set inclusion
follows.

Π -
Γ,C(t) - C′

Γ,Πx C(x) - C′

Γτ*σ* , C(t)τ*σ*  - C′τ*σ*

Γσ* , C(i)σ*
i∈ran(x) - C′σ*

for some t∈RAN (x). Let τ*  be an arbitrary parameter substitution simplifying and
nonredundant for all parameters in t that do not occur in Γ, C or C′. Then C(t)τ*σ* is an ground
simple term, Γ=Γτ*  and C′= C′τ* , so the premises of the infinitary rule have the proper form.
Clearly, ([Γτ*σ* ], [C(t)τ*σ* ] - [C′τ*σ* ])∈[Γ, C(t) - C′].  Set inclusion follows.

 -D

Γ - Bσ
Γ - a

Γσ*  - Bσσ*

Γσ*  -  aσ*

where (H⇐Β)∈P, σ grounds B, and a=Hσ, thus [aσ* ]=[Hσσ* ]. By the definition of [ ],
([Hτ]=[Bτ])∈[P], for all grounding and simple τ. Clearly σσ*  is a grounding and simple
substitution for H and B, thus ([Hσσ * ]=[B σσ * ])∈ [P], so ([aσ * ]=[B σσ * ])∈ [P] and
[Bσσ* ]∈D(aσ* ), showing that the infinitary rule has the proper form. Clearly ([Γσ* ] -
[Bσσ* ])∈[Γ - Bσ]. Set inclusion follows.

D  -
Γτ* ,Bτ*  - Cτ*  | τ*∈Σ*

(a,H), (H⇐B)∈P*

Γ,a - C

Γσ* ,A - Cσ*  | A∈D aσ*

Γσ* , aσ*  -  Cσ*

...where each Σ∗(a,H) is ground and finite. Take an arbitrary A∈D([aσ* ]). Using the
definitions of D and [ ], we get ([aσ* ]=A)∈[P], i.e. ([aσ* ]=A)∈[K], for some clause K∈P.
Thus there exist some H′, B′ and a nonredundant grounding simple ρ for H′ and B′, such that
(H′⇐B′)=K and ([H′ρ]=[B ′ρ])=([aσ* ]=A).  Since the parameter transform of K is simply a
renaming of variables to parameters, there are H, B and a nonredundant ground simplifying ρ*



for H and B, such that (H⇐B)=K*  and ([Hρ* ]=[B ρ* ])=([aσ* ]=A). From this we get
(H⇐B)∈P* , [Hρ* ]=[aσ* ] and [Bρ* ]=A.

Consider that ρ*  is nonredundant for H and B. Since H and B may have no parameters in
common with Γ, a or C, we have Γ=Γρ* , a=aρ*  and C=Cρ* . Since ρ*  is simplifying, we have
Hρ*=Hρ*σ*  and Bρ*=Bρ*σ* . By the definition of [ ], Hρ*=aσ* , thus Hρ*σ*=aρ*σ* , so ρ*σ*

is a unifier of a and H. By the definition of a CSU* , there is a τ* ∈Σ * (a,H), such that
ρ*σ*=τ*υ* , for some υ* .

Now τ*, H and B fulfil the condition in the set constructor of the premise of the finitary rule. To
establish set inclusion, we must show that ([Γσ* ],A - [Cσ* ])∈[Γτ* ,Bτ*  - Cτ* ]. By the
equalities in the previous paragraphs, this can be rewritten, first to ([Γρ* σ* ], [Bρ* σ* ] -
[Cρ*σ* ])∈[Γτ* ,Bτ*  - Cτ* ], then to ([Γτ*υ* ], [Bτ*υ* ] - [Cτ*υ* ])∈[Γτ* ,Bτ*  - Cτ* ]. Since σ*

is ground and simplifying for Γ and C, and ρ*  is ground and simplifying for B, ρ*σ*=τ*υ*  is
ground and simplifying for Γ, B and C. Thus υ*  is ground and simplifying for [Γτ* ,Bτ*  -
Cτ*]. By the definition of [ ], this proves the membership.

Contraction
Γ,C,C - C′

Γ,C - C′

Γσ* , Cσ* , Cσ*  - C′σ*

Γσ* , Cσ*  -  C′σ*

From the definition of [ ], it is clear that ([Γσ* ], [Cσ* ], [Cσ* ] - [C′σ* ])∈[Γ, C, C - C′].

Weakening

Γ - C′

Γ,C - C′

Γσ*  - C′σ*

Γσ* , Cσ*  -  C′σ*

From the definition of [ ], it is clear that ([Γσ* ] - [C′σ* ])∈[Γ - C′].

Specialisation
Γ - C

Γτ*  - Cτ*
Γτ*σ*  - Cτ*σ* (specialisation)

This rule does not get translated into any inference rule of the infinitary calculus, as the mapping
of the conclusion is already a subset of the mapping of the premise. From the definition of [ ],
it is clear that ([Γτ*σ* ] - [Cτ*σ*  ])∈[Γ - C].

Induction will be covered in the next section.



6 . SOUNDNESS OF INDUCTION

The induction schema will be motivated differently from the proper inference rules. Instead of
providing a corresponding finitary inference step, we will show that the induction schema
guarantees the existence of a finitary derivation without the induction, for each term in the set
over which induction is done. The new derivation may itself contain other inductions, but they
can all be removed in the same manner. As in the previous section, we are only interested in the
variable-free finitary calculus.

To show soundness of induction, we need the following lemma:

LEMMA 6.1  Induction instantiation lemma
Given a derivation in the finitary calculus of the sequent S from the sequents S1,…, Sn

S1    Sn

S

and a ground parameter substitution, τ*, such that the the members of DOM(τ*) and PARM(τ∗)
are all  induction parameters of the derivation. Then there is a derivation

S1τ*     Snτ*

Sτ*

PROOF
We will show this by constructing the new derivation inductively. Consider the last step of the
derivation. Assume that there is a translation of the derivations of each of the premises of that
step. The translation of the entire derivation will be a translation of the final step, with all the
translated premise derivations above. Possibly the translation of the final step will have fewer
premises than the original step. The superfluous premise derivations will then simply be
omitted.

We will give a translation of the final step, divided into cases depending on the rule that step is
an instance of. First note that applying the substitution τ* to the premises and conclusion of an
inference step does not change the structure of that step. For the inference rules whose
correctness depends solely on the structure of the premises and conclusions (axiom, -() () -,
-⇒ , ⇒-, contraction and weakening), i.e. those without side conditions, the translation is
obtained simply by applying τ*  to the conclusion and all premises. The other rules will be
treated individually.

For each of the remaining inference rules, the result of applying τ*  to the premises and
conclusion will be shown as an inference step. This step will not have the form of a correct
inference rule instance. We will show in each case either that the step can be put in the form of a
correct rule instance (i.e. that the premises and conclusions are equal to premises and
conclusions of the correct form), or we will provide as an explicit translation a correct
subderivation of one or more inference steps, with the same premises (or a subset) and the same
conclusion.



-Π
Γτ*  - C(X*)τ*

Γτ* - Πx C(x) τ*

Since x is a bound variable, (Πx C(x))τ* = Πx Cτ* (x). As X*  must not be an induction
parameter, X* =X * τ* . Thus we have C(X* )τ* = Cτ* (X * τ* ) = Cτ* (X * ). Applying these
equalities, we get our translation

Γτ*  - Cτ*(X*)

Γτ*  -Πx Cτ*(x)

which is a correct instance of the -Π rule. Since PARM(τ*) contains only induction parameters,
PARM(Γτ*) and PARM(Cτ*) contain no non-induction parameters other than those in PARM(Γ)
and PARM(C). By the side condition on the original inference step, X* ∉PARM(Γ) and
X*∉PARM(C), Thus X*∉PARM(Γτ*) and X*∉PARM(Cτ*), satisfying the side condition on
the translation.

Π -
Γτ* ,C(t)τ*  - C′τ*

Γτ*, Πx C(x) τ*  - C′τ*

Now,  C(t)τ*= Cτ*(tτ*) and, since x is a bound variable, (Πx C(x))τ*= Πx Cτ*(x). Applying
these equalities, we get our translation

Γτ* ,Cτ* (tτ* ) - C′τ*

Γτ* ,Πx Cτ*(x) - C′τ*

which is a correct instance of the Π - rule. Since t∈RAN(x) →  tτ* ∈RAN(x), the range
condition is fulfilled.

-D
Γτ*  - Bστ*

Γτ*  - aτ*
   (H⇐B)∈P, a=Hσ

From a=Hσ, we get aτ*=Hστ* . Let σ′=(στ* )\DOM(σ). Since PARM(H)=PARM(B)=∅, we
have Hστ*=Hσ′ and Bστ*=Bσ′. Applying these equalities, we get our translation

Γτ*  - Bσ′

Γτ*  - aτ*
   (H⇐B)∈P, aτ*=Hσ′

which is a correct instance of the -D rule.

D -
Γσ*τ* ,Bσ*τ*  - Cσ*τ*  | σ*∈Σ*

(a,H), (H⇐B)∈P*

Γτ* ,aτ*  - Cτ*



The translation will be the derivation

Γσ*τ* ,Bσ*τ*  - Cσ*τ*

Γτ* ρ* ,Bρ*  - Cτ*ρ*
   ρ*∈Σ*

(aτ* ,H), (H⇐B)∈P*

Γτ* ,aτ*  - Cτ*

where each  σ*  is defined to be some member of Σ*(a,H), such that  σ*ν*= τ*ρ* , for some ν* .
Since Σ*(a,H) is a CSU*, this is well-defined if τ*ρ* is a unifier of a and H. It is clear from this
definition that if σ*  is well-defined, each premise of the translation is also a premise of the
original instantiated step above.

The last step clearly has the form of an instance of the D - rule. We must show that the side
conditions are fulfilled. First, we must have PARM(P* )∩PARM(Γτ* ,aτ*  - Cτ* )=∅. By the
conditions of the induction instantiation lemma, PARM(τ* ) may contain only induction
parameters. Since the condition of the original rule PARM(P* ) may not contain induction
parameters, PARM(P*)∩PARM(τ*)=∅. By the condition on the original rule, we know that
PARM(P* )∩PARM(Γ,a - C)=∅, thus the condition is satisfied. The condition that P*  may
contain no induction parameters carries over from the original step. Since we are dealing with
the variable-free calculus here, the side condition that C*(aτ∗)ϕ ≅∗ C*(aτ∗ϕ), for all ϕ, is trivially
satisfied.

Strictly speaking, we should also show that ρ∗ is finite. Since the translation will always have a
finite number of premises - which is what really matters for the finitaryness - we dispense with
showing this condition.

We must also show that the step inside the set constructor is an instance of the specialisation
rule. Take some ρ*  and H⇐B, and consider the corresponding Γτ*ρ* ,Bρ*  - Cτ*ρ* . Since
ρ* ∈Σ* (aτ* ,H), aτ* ρ*=Hρ* . By the condition on the original step, there are no induction
parameters in PARM(H) or PARM(B), so we get H=Hτ*  and B=Bτ* . Using this, we get
aτ*ρ*=Hτ*ρ* , i.e. τ*ρ*  is a unifier of a and H. This means that σ*  is well-defined. Note that
since σ*  is a member of a CSU*  , σ*= σ*σ* . Now, τ*ρ*= σ*ν*= σ*σ*ν*= σ*τ*ρ* . Applying
these equalities to the step inside the set constructor, we obtain

Γσ*τ* ,Bσ*τ*  - Cσ*τ*

Γσ*τ*ρ* ,Bσ*τ*ρ*  - Cσ*τ*ρ*
 

which is indeed an instance of the specialisation rule.

Specialisation
Γτ*  - Cτ*

Γσ*τ*  - Cσ*τ*

Let ρ*=(σ*τ* )\DOM(σ* ). Let X*  be an induction parameter. Since there are no induction
parameters in DOM(σ* ) – and thus not in DOM(ρ* ) either, we have X* (σ* τ* ) = X* τ*  =
X * (τ*ρ* ). Let Y*  be an non-induction parameter. Since DOM(τ* ) contains only induction



parameters, we have Y*(σ*τ*) = Y*ρ*  = Y*(τ*ρ*). By the substitution equality lemma, we get
σ*τ*=τ*ρ*. Applying this equality to the step above, we get

Γτ*  - Cτ*

Γτ* ρ*  - Cτ*ρ*

which is a correct instance of the specialisation rule.

Induction
S(C)τ* | C∈ B

S(H)τ*
    (H⇐B)∈T*

S(X*)τ*

The translation will be the derivation

Sτ*(C) | C∈ B

Sτ*(H)
    (H⇐B)∈T*

Sτ*(Y*)

S(X*)τ*

where Y* is an arbitrary non-induction parameter such that Y*∉PARM(S) and Y*∉PARM(τ*).
The first step is clearly an instance of the induction schema. Since the parameters of PARM(H)
and PARM(〈B〉) are not induction parameters of the derivation being translated (possibly they
are induction parameters of the hypothetical derivations occurring as premises to the induction
schema), we have H=Hτ *  and C=Cτ * , for every H and C∈ 〈 B 〉 . Thus
S(H)τ*=Sτ* (Hτ* )=Sτ* (H) and S(C)τ*=Sτ* (Cτ* )=Sτ* (C), so the hypothetical derivations of
our translation are the translations of the hypothetical derivations of the original induction.

To show that the last step is an instance of the specialisation rule, let σ∗={Y */X*τ*}. Since Y*

is not an induction parameter, we have Y*= Y*τ*. Since Y*∉PARM(S) and Y*∉PARM(τ*), we
have S=Sσ ∗  and Sτ * = Sτ * σ ∗ . Now, Sτ * ( Y * ) = Sτ * ( Y * τ * ) = S ( Y * ) τ *  and
S(X* )τ*=Sτ* (X*τ* )=Sτ* (Y*σ* )=Sτ*σ* (Y*σ* )=Sτ*σ* (Y*τ*σ* )=S(Y* )τ*σ* . Applying these
equalities to the last step, we obtain

S(Y*)τ*

S(Y*)τ*σ*

which is an instance of the specialisation rule.

END OF PROOF. ®



Consider again the inference schema for induction:

S(C) | C∈ B

S(H)
    (H⇐B)∈T*

S(X*)
(induction)

To establish the soundness of this schema, we must show that it implies the derivability of all
the infinitary sequents in [S(X*)]. Note that

S(X*)  = [S(t)]∪
t∈ran(X*)

so if we can show that there exists a finitary derivation without induction of each S(t), where
t∈Def(T), we are done. We will inductively construct a derivation of S(t) for all ground terms t,
such that -T t and PARM(t) contains only induction parameters. By the definition of Def(T),
t∈Def(T) iff -T t for simple ground t, so it would be enough for us to only consider simple
ground terms. That would not give us sufficiently strong induction hypotheses to carry out the
construction, however, so will will consider general ground terms.

Consider the derivation of -T t, where t is some ground term. According to the restrictions on
T, there is no induction in this derivation. Clearly then, the last inference step must be an
instance of the -D rule with some grounding σ and (H′⇐B′)∈T, such that t=H′σ. Call the
premise of this rule, -T C. Due to the restrictions on T, if C is not again a term, it must be a
sequence of conditions or a Π-condition. In the latter cases, the -() or -Π rule must be used.
Repeating this argument, we find that the derivation of -T t, must have the form

             
-T t1    -T tn

-T t

where the ti are precisely the terms in 〈B′σ〉.

Now, instead of the clause H′⇐B′ of T and the variable substitution σ, consider the parameter
transform, H⇐B, of H′⇐B′. Since the parameter transform is simply a renaming of variables
to parameters, there is a nonredundant ground simplifying σ*  for H and B, such that
Hσ*  = H′σ and Bσ* = B′σ. Take the hypothetical derivation of the induction schema,
corresponding to H⇐B. We will have t=Hσ* . Without loss of generality, we can assume that
σ*  is nonredundant for H⇐B. Since  PARM(H⇐B) contains only induction parameters, so
will DOM(σ*). Since PARM(t) contains only induction parameters, so will PARM(σ*), and the
induction instantiation lemma is applicable. Applying σ*  to the hypothetical derivation, we
obtain part of a derivation of S(t):

S(t1)  S(tn)

S(t)



where the S(ti) are precisely the sequents of {S(C) | C∈〈B′σ〉}. Repeating this argument
inductively, we obtain derivations of each S(ti). Putting these derivations together, we obtain a
complete derivation of S(t), without the induction. As the derivation of -T t has a finite number
of steps, this procedure will terminate.

EXAMPLE 6.2
Consider the derivation of example 4.3. Taking t above to be a.b.nil, we will show that a
derivation of append(a.b.nil,nil,a.b.nil) can be obtained by substituting in the hypothetical
derivations of the induction. The parameter transform, LIST*, of the definition of lists is :

nil ⇐
U* .L*  ⇐ L*

We show -LIST a.b.nil using the following derivation:

-a.b.nil
 (-P)

-b.nil
 (-P)

-nil
 (-P)

The first step uses the first clause of the definition, with the corresponding parameter
substitution σ∗ being ∅. The middle step uses the second clause of the definition, with the
parameter substitution σ∗ being {U*/b, L*/nil}.The last step again uses the second clause of the
definition, with the parameter substitution σ∗ being {U*/a, L*/b.nil}.

The hypothetical derivations of example 4.3 were

- append(nil,nil,nil)
 (- P)

- append(U* .L* ,nil,U* .L* )
 (- P)

- append(L* ,nil,L* )
and

Applying each of the σ∗´s to the hypothetical derivation corresponding to the clause in question,
we obtain the following three derivations

- append(nil,nil,nil)
 (- P)

- append(b.nil,nil,b.nil)
 (- P)

- append(nil,nil,nil)

- append(a.b.nil,nil,a.b.nil)
 (- P)

- append(b.nil,nil,b.nil)

It is easy to see that they can be combined to give a derivation of append(a.b.nil,nil,a.b.nil), as
required.  ®

We have proved that there exists a finitary derivation of S(t), where the final induction schema
has been removed, however the hypothetical derivations of that induction may themselves
contain inductions which will have been incorporated in the constructed derivation. Each of
these inductions may be removed in the same manner, but we need some proof that this
procedure terminates.



We will define the depth of nested inductions as follows. For a derivation, the depth of
nested inductions is the maximum of the depth of nested inductions of any inductions in that
derivation. For an induction schema instance, the depth of nested inductions is one more than
the maximum depth of nested inductions of its hypothetical derivations.

Since the constructed derivation of S(t) is finitary, it contains a finite number of inductions.
Each of these must have a depth of nested inductions that is less than the original induction. By
repeating the procedure above a finite number of times, these inductions can also be removing,
possibly leaving inductions with still lower depth. Eventually the depth of nested inductions
will be reduced to zero, meaning that no inductions remain. This completes the proof of the
soundness of induction.

7 . SOUNDNESS OF THE FINITARY CALCULUS WITH
VARIABLES

So far, we have concerned ourselves only with complete, unchanging, derivations. However,
the most common applications of formal proof systems in computer science deal with the
construction of derivations. From a completely manual proof editing system, to a fully
automatic theorem prover such as a Prolog implementation, the main concern is incrementally
adding steps to a derivation.

Such proof constructions are usually done in a goal-directed fashion, starting with the sequent
to be proved and applying inference rules in reverse until a complete proof has been found.
When using the rules in this way, decisions must sometimes be made on which particular rule
instance to use. This is most clear with the Π - rule, where the Π-bound variable is replaced
with some arbitrary term. It does not matter to the Π - rule which term is chosen, but for steps
being made later, a particular choice of term may be essential. The same situation may arise with
the -D rule. The usual solution to this problem is to introduce placeholders, logical variables
that are introduced instead of the arbitrary term and later substituted for the appropriate term as
required.

For this purpose, we have the version of the finitary calculus where variables are permitted in
derivations. Each such variable will represent an undetermined term and can be substituted (in
the entire derivation) for some nonvariable term when necessary for the application of an
inference rule.

A derivation with variables should be regarded as representing a set of potential derivations in
the variable-free (and thus the infinitary) calculus. This should be constrasted to the use of
parameters, which are intended to represent a set of actual - not potential - derivations. If every
variable in the derivation is substituted by a ground term, only one potential derivation remains.

For the calculus with variables to be meaningful, instantiation, i.e. the application of a
variable substitution, must be a sound operation. Soundness in this context means that the result
of applying a variable substitution to a derivation must result in another correct derivation.
Putting it another way, the set of derivations must be closed under instantiation. It turns out that



we cannot permit arbitrary substitutions, but a simple restriction must be applied. After defining
this restriction, we prove that the set of derivations are closed under instantiation.

We call an inference step such that a parameter X*  occurs in some premise, but not in the
conclusion, an eliminating step for X* . An instance of the specialisation rule is also
considered an eliminating step for every parameter in DOM(σ∗), where σ∗ is the specialising
substitution. If a variable Y occurs in the conclusion of a step eliminating X* , Y is said to
predate X* . Consider a substitution θ. If, for any Y, there is some X*∈PARM(Yθ) such that
X *  is predated by Y, we say that θ is an inadmissible instantiation, otherwise θ is
admissible.

EXAMPLE 7.1
Consider the derivation

Πb q(Y,b) -Πx p(x)
 (-Π)

Πb q(Y,b) -p(X*)
 (Π -)

q(Y,B) -p(X* )

Here Y predates X* , but B does not predate X* . The substitution {B/X*} is admissible, while
the substitution {Y/X*} is inadmissible. ®

EXAMPLE 7.2
The following example shows why the admissibility condition is important. Consider again the
definition FOL and the derivation

-∃x∀y x=y
 (-P)

-∀y X=y
 (-P)

-Πy X=y
 (-Π)

-X=Y *

If we applied the substitution {X/Y* } to this derivation, the first sequent would become
-Y*=Y* , which would hold by the -D rule using the clause defining equality. However, this
would produce an invalid derivation, since the side condition on the -Π step that Y*  must not
occur in the conclusion of the step would no longer be fulfilled (which is fortunate, since the
conclusion of the derivation is wrong!). Since X predates Y* , that substitution would be
inadmissible and the incorrect derivation could not be obtained. ®

In section 8, we will discuss the question of how to compute admissible substitutions.

As instantiation of variables is a similar operation to the instantiation of parameters, done in the
proof of the parameter instantiation lemma, this proof will have a similar structure as the proof
of that lemma.

Given a derivation in the finite calculus with variables of the sequent S from the sequents
S1,…, Sn



S1    Sn

S

and a substitution, θ. If θ is an admissible instantiation, then there is a derivation

S1θ    Snθ

Sθ

with the same steps as the original one. We will prove this by showing, for each inference rule,
either that a rule instance remains correct when variables are substituted, or at least that the
conclusion of the step remains derivable from the premises of the step using some small
derivation.

For the inference rules whose correctness depends solely on the structure of the premises and
conclusions (axiom, -() () -, -⇒ , ⇒-, contraction and weakening), i.e. those without side
conditions, is is obvious that the instantiated step will be correct. For each of the remaining
inference rules, the result of applying θ to the premises and conclusion will be shown as an
inference step. This step will not be in the form of an inference rule of the finitary calculus. We
will show in each case either that the step can be put in the form of a correct rule instance (i.e.
that the premises and conclusions are equal to premises and conclusions of the correct form) or
we will provide as an explicit translation a correct subderivation of one or more inference steps,
with the same premises (or a subset) and the same conclusion.

-Π
Γθ - C(X* )θ

Γθ - Πx C(x) θ

Since x is a bound variable, (Πx C(x))θ= Πx Cθ(x). As X*  is a parameter, X*=X*θ. Thus we
have C(X*)θ= Cθ(X*θ) = Cθ(X*). Applying these equalities, we get

Γθ - Cθ(X* )

Γθ -Πx Cθ(x)

which is a correct instance of the -Π rule. According to the side condition on the original
inference step, X*∉PARM(Γ) and X*∉PARM(C). Since θ is an admissible substitution, it
follows that X* ∉PARM(Γθ) and X* ∉PARM(Cθ), fulfilling the side condition of the
instantiated inference step.

Π -
Γθ,C(t)θ - C′θ

Γθ, Πx C(x) θ - C′θ

Now,  C(t)θ= Cθ(tθ) and, since x is a bound variable, (Πx C(x))θ=Πx Cθ(x). Applying these
equalities, we get



Γθ,Cθ(tθ) - C′θ

Γθ,Πx Cθ(x) - C′θ

which is a correct instance of the Π  - rule. Since t∈RAN(x) →  tθ∈RAN(x), the range
condition is fulfilled.

-D
Γθ - Bσθ
Γθ - aθ

   (H⇐B)∈P, a=Hσ

From a=Hσ, we get aθ=Hσθ. Using this as the side condition of the step

Γθ - Bσθ
Γθ - aθ

   (H⇐B)∈P, aθ=Hσθ

we see that it is a correct instance of the -D rule.

D -
Γσ*θ,Bσ*θ - Cσ*θ | σ*∈Σ*

(a,H), (H⇐B)∈P*

Γθ,aθ - Cθ

The translation will be the derivation

Γσ*θ,Bσ*θ - Cσ*θ
Γθρ* ,Bρ*  - Cθρ*

   ρ*∈Σ*
(aθ,H), (H⇐B)∈P*

Γθ,aθ - Cθ

where the B′ and σ*  of every premise are as defined below, and the inner inference is
specialisation.

The last step clearly has the form of an instance of the D - rule. We must show that the side
conditions are fulfilled. First, we must show that PARM(P*)∩PARM(Γθ,aθ - Cθ)=∅. Since
by the condition on the original rule, PARM(P*)∩PARM(Γ,a - C)=∅, it suffices to show that
PARM(P*)∩PARM(θ)=∅. As θ is an admissible substitution, PARM(P*)∩PARM(θ) can not
contain any parameters that are among the parameters of some premise, but not already in
PARM(Γ, a - C). Should PARM(P* )∩PARM(θ) contain any parameter in P*  that is not in a
premise, that parameter could simply be renamed in P* to avoid the conflict. The condition that
P* may  contain no induction parameters carries over from the original step.

From the side condition that C* (a)ϕ ≅∗ C* (aϕ), for all ϕ, we have, in particular C* (a)θτ ≅∗

C* (aθτ). Note that the particular parameters occurring in C* (a)θ and C* (aθ) depend on the
parameters in P* . As the parameters in P*  can be renamed arbitrarily, we can choose them so
that lemma 3.6 is applicable. Then, from C*(a)ϕ ≅∗ C*(aϕ), with the present θ, we get C*(a)θτ
≅∗ C* (aθ)τ. By combining ≅∗-relations, we get C* (aθ)τ ≅∗ C* (aθτ), for all τ, which is the
remaining side condition for the last step.



Strictly speaking, we should also show that ρ∗ is finite. Since the translation will always have a
finite number of premises - which is what really matters for the finitaryness - we dispense with
showing this condition.

Having confirmed the side conditions of the last step, we must show that the step inside the set
constructor is an instance of the specialisation rule. From the condition C*(a)θ ≅∗ C*(aθ), for all
θ, we obtain C*(a)θ ≥∗ C*(aθ). Applying the definitions of ≥* and C*, we get

∀(H⇐B)∈P*  ∀ρ*∈Σ*
(aθ,H) ∃(H′⇐B′)∈P*  ∃σ*∈Σ*

(a,H′) ∃ν*  (H⇐B)ρ*=(H′⇐B′)σ*θν*  

For every premise of the last step of the translation, we have (H⇐B)∈P∗ and a ρ∗∈Σ∗(aθ,H).
Thus we find that there are some (H′⇐B′)∈P∗ and σ∗∈Σ∗(a,H′), i.e. there is a corresponding
premise of the original step. Furthermore, there is some υ ∗  such that
(H⇐ B)ρ∗=(H′⇐B ′)σ∗θυ∗. Splitting this equality in two, we get Hρ∗=H′σ∗θυ∗ and
Bρ∗=B′σ∗θυ∗. From ρ∗∈Σ∗(aθ,H) and σ∗∈Σ∗(a,H′), we have aθρ∗=Hρ∗ and aσ∗=H′σ∗.
From the latter equality, we can conclude aσ∗θυ∗=H′σ∗θυ∗. Combining these equalities, we
obtain aθρ∗=aσ∗θυ∗. If we could also show that Γθρ∗=Γσ∗θυ∗ and Cθρ∗=Cσ∗θυ∗, then
applying the latter three equalities and the equality Bρ∗=B′σ∗θυ∗ above to the inner inference
steps of the translation we would get

Γσ*θ,Bσ*θ - Cσ*θ
Γσ*θν* ,Bσ*θν*  - Cσ*θν*

 

which is indeed an instance of the specialisation rule. So, we have to show that Γθρ∗=Γσ∗θυ∗

and Cθρ∗=Cσ∗θυ∗. By the substitution equality axiom, these equalities would follow if θρ∗

and σ∗θυ∗ were equal on the variables and parameters of Γ and C. Now, again by the
substitution equality axiom, we already know that θρ∗ and σ∗θυ∗ are equal on the variables and
parameters of a. By the side conditions above, we know that Γ and C can have no parameters in
common with P*. Thus we only need to consider parameters and variables that are neither in a
nor P*. We will start with the variable case:

Suppose X is a variable neither in P*  (this is trivial) nor a. We immediately have
Xσ∗θυ∗=Xθυ∗, so it suffices to show Xθρ∗=Xθυ∗. Again using the substitution equality
axiom, this holds if X*ρ∗=X*υ∗, for all X*∈PARM(Xθ). We will return to this below. Note
that since θ is admissible, X*∉PARM(P*).

Suppose that X*  is a parameter neither in P*  nor a. We have X* θρ∗=X * ρ∗. Since σ*  is
nonredundant for a and H′ and every parameter in H′ is also in P* , we have
X*σ∗θυ∗=X*θυ∗=X*υ∗, so it suffices to show X*ρ∗=X*υ∗.

Both the variable and parameter cases require that we show X*ρ∗=X*υ∗. The only restriction
on X*  common to both cases is that X*∉PARM(P* ), except for this X*  can be an arbitrary
parameter. We will have two cases, namely that X*∈PARM(aθ) and X*∉PARM(aθ).



First, assume that X*∈PARM(aθ), then there is some Y∈VAR(a), such that X*∈PARM(Yθ).
By the equality aθρ∗=aσ∗θυ∗ above, and the substitution equality axiom, we have
Yθρ∗=Yσ∗θυ∗. Furthermore, Yσ∗θυ∗=Yθυ∗, so Yθρ∗=Yθυ∗. Again by the substitution
equality axiom, this implies that X*ρ∗=X*υ∗, completing the proof of the first case.

Secondly, assume that X*∉PARM(aθ). Since ρ∗ is nonredundant for aθ and H, we have
X *ρ∗=X* . By the definition of ≤* , υ∗ is nonredundant  for aθ and (H⇐B)σ∗θ. If we could
show that X*∉PARM((H⇐B)σ∗θ), we would have X*υ∗=X* . Combining these equalities, we
would obtain X*ρ∗=X*υ∗.

We will show X* ∉ P A R M ( ( H ⇐ B ) σ ∗ θ ) by contradiction. Assume that
X * ∈PARM ((H⇐ B)σ ∗θ). Then there must be some Y* ∈PARM (H⇐ B), such that
X *∈PARM(Y*σ∗θ). Since X*∉PARM(P* ) implies X*∉PARM(H⇐B),  X*  and Y*  must be
different, consequently it must be the case that Y*∈DOM(σ∗). Now, we must have one, or
both, of the following situations:

(1) X*∈PARM(Y*σ∗)
(2) For some Y∈VAR(Y*σ∗), X*∈PARM(Yθ)

In the first situation, since σ∗ belongs to a CSU*  of a and H′, by note 3.7 we can assume that
all parameters Z*∈PARM(σ∗) that are different from the parameters of  and H′ are also different
from any other given parameter. In particular we can assume that X* ≠Z* , leading to a
contradiction.

In the second situation, since σ∗ belongs to a CSU*  of a and H′, by note 3.7 we can assume
that if Y is different from the variables of a and H′, then it is also different from any other given
variable. In particular we can assume that Y∉DOM(θ). But in that case, we could not have
X *∈PARM(Yθ), so the only remaining possibility (since H′ is ground) is that Y∈VAR(a).
Thus we would have X*∈PARM(aθ), but this contradicts the main assumption of the second
case above.

We have shown that assuming X* ∈PARM((H⇐ B)σ∗θ) leads to a contradiction, so
X*∉PARM((H⇐B)σ∗θ) must hold, completing the second case and the proof for the D - rule.

Specialisation
Γθ - Cθ

Γσ* θ - Cσ*θ

Define ρ* =(σ* θ)\DOM(σ∗). Let X be some variable in  VAR(Γ)∪VAR(C). Since θ is
admissible, no parameter in PARM(Xθ), can be eliminated in the original step. Using the
definition of an eliminating step, we find that σ∗ is nonredundant for parameters being
eliminated. Thus we have Xθ=Xθσ∗, consequently Xθ=Xθρ∗. Since σ*  is a  parameter
substitution, we have Xσ*θ = X*θ = Xθρ* . Let Y*  be some parameter. Since θ is a variable
substitution, we have Y*σ*θ = Y*ρ*  = Y*θρ* . By the substitution equality axiom, we have
Γσ*θ=Γθρ* and  Cσ*θ=Cθρ. Applying this equality to the step above, we get



Γθ - Cθ
Γθρ*  - Cθρ*

which is a correct instance of the specialisation rule.

Induction
S(C)θ | C∈ B

S(H)θ
    (H⇐B)∈T*

S(X* )θ

We have S(X*)θ=Sθ(X*θ)=Sθ(X*) Since H and 〈B〉 are ground by definition, we have H=Hθ
and C=Cθ , for every H and C∈ 〈 B 〉 . Thus S(H)θ = Sθ ( H θ ) = Sθ (H) and
S(C)θ=Sθ(Cθ)=Sθ(C), applying these equalities, we get:

Sθ(C) | C∈ B

Sθ(H)

    (H⇐B)∈T*

Sθ(X* )

which is indeed an instance of the induction schema .

8 . PROCEDURAL ASPECTS OF THE CALCULUS WITH
VARIABLES

As the calculus with variables is intended to facilitate the construction of proofs, it is intimately
connected with operational aspects such as proof construction. We will define operational rules
suitable for constructing a derivation is the most general fashion. Together with a search
strategy, these operational rules can be used to define a proof procedure for the finitary
calculus. We will not present any particular techniques for implementing these rules.

It should be noted that results presented in this section are essentially generalisations to the
finitary calculus of previous work on logic programming languages based on partial inductive
definitions [4,5,13,14,18]. While adaptions of these results to our finitary calculus have made
and included for completeness, it would go outside the scope of the present work to find
completely new results about the operational aspects. Unfortunately, this means that some
aspects (particularly that of computing a-sufficient substitutions below) will have to be left to
future work.

Let us consider the general way of developing - manually or automatically - a proof in a goal-
directed fashion. We will start will the sequent (goal) to be proved. Some inference rule is then
chosen to derive that sequent. We must chose what particular instance of that inference rule to
use, and possibly instantiate the derivation to make the chosen rule applicable. In general, the
inference rule has a number of premise sequents (subgoals) that must in their turn be proved.
This procedure is repeated with one of the premises, until a derivation without premises is



found. The proof is then completed. Thus at any stage, the proof under development will
consist of a derivation with the sequent to be proved as endsequent, and some number of
unproved premises.

Formalising slightly, we can break down the procedure into a number of steps:

1) Choose one of the subgoals.
2) Choose an inference rule for proving the subgoal.
3) Choose the particular term the inference rule will operate on.
4) Apply a variable substitution to the derivation to make the rule applicable.
5) Choose the particular instance of the inference rule.
6) Add the new inference step to the derivation.
7) Repeat.

Steps  1 - 3 are essentially search problems. The choices made in these steps are determined by
the search strategy of an automatic theorem prover system, or the intuition of the user in case of
manual proof development. Although the problem of automatic theorem proving in the theory of
partial inductive definitions is certainly an interesting one, we will not investigate it in the
present article.

Steps 4 - 5 are partly search problems. If, for instance the D - rule was chosen and several
clauses are applicable, it is a search problem which of these to choose. However, some of the
choices of steps 4 - 5 can be made in a most general manner, in other cases we can show that
some choices are definitely not general and need not be considered. For each inference rule, we
will define an operational rule, that will perform steps 4 - 6.

Each operational rule will consist of four parts, the conclusion of the rule, the premises, any
side conditions, and the substitution, θ, to be applied to the entire derivation. If the conclusion
of an operational rule instance is a subgoal of the derivation being developed and the side
conditions are fulfilled, the rule is applied by instantiating the derivation using the substitution
and adding the basic inference rule corresponding to the operational rule with the given
premises. For each operational rule, we must  show its correctness, i.e. that the inference step
added in this way is a valid inference step.

A requirement common to all operational rules is that the substitution θ must be admissible. We
will return to the question of how to ensure this.

In many of the operational rules we make use of the definition P, or its parameter transform P*.
In order to satisfy the assumptions of notes 3.9, each time P (or P*) is used, all variables (or
parameters) must be renamed to be different from all other variable (or parameter) names used
so far in the derivation construction process. Likewise, in order to satisfy the assumptions of
note 3.7, every time a CSU(*) of two terms is constructed, all variables and parameters in that
CSU(*), that do not already occur in the two terms being unified, must be different from all
variables and parameters used so far in the derivation construction process. (Strictly speaking,
the way notes 3.7 and 3.9 are used, it suffices if new parameters are different from all induction
parameters at the particular point of the derivation, and from all parameters in the conclusion of
the derivation step being introduced.)



Considering the inference rules, we can see that the applicability of the ⇒-, -⇒, and -() rules
depend only on the structure of the conclusion. If steps 1 - 3 above choose one of these rules
with a sequent of the correct form, that rule will be immediately applicable without any further
choices and without having to make any instantiation of the proof. Neither do these rules have
any side conditions that have to be verified. Recall that instantiating a proof eliminates potential
derivations, so we do not want to make any unnecessary instantiations. For the rule () -, the
situation is similar. A choice has to be made as to which term in the sequence to use, however
this is again a search problem. For these four rules, then, the operational rule will be the same
as the basic inference rule with an empty substitution

The contraction rule is necessary in some derivations, but should not be used freely. As is the
case with using contraction in theorem proving for logic, the present contraction rule should be
used in a controlled way together with certain other rules (Π -, ⇒ -, () - and D -). The best
way of handling contraction would be to combine it with those rules. How this is done,
however, is a nontrivial strategy problem that we will not consider here. Instead we will have
the operational contraction rule as a separate rule. Just as for the rules considered in the
previous paragraph, the operational rule for contraction will be the same as the basic inference
rule with an empty substitution.

The weakening and specialisation rules are only necessary in conjunction with induction
hypotheses. For this purpose, we define a special "hypothesis" operational rule. Should
operational rules for pure weakening or specialisation be required, they are simple to define.

The remaining inference steps will be treated individually. We will state the operational rule and
verify that it is correct. By "the derivation", we will mean the derivation developed so far when
the operational rule is applied.

Axiom
Γ,a - b          θ∈Σ(a,b) (axiom)

By applying θ to the derivation, the sequent will get the form Γθ,aθ - bθ. Since aθ=bθ, this is
a correct instance of the axiom rule. Here there is a choice as to which particular unifier of the
CSU to take as θ. However, there is clearly no need to consider unifiers other than those of
some arbitrary CSU of a and b.

-Π
Γ - C(X*)

Γ -Πx C(x)
          θ=∅ (-Π)

where X* is an arbitrary parameter that does not occur anywhere
in the derivation or the program
and RAN(x) = RAN(X* ).

This choice of X* clearly satisfies all side conditions of the -Π rule.

Π  -



Γ,C(X) - C′

Γ,Πx C(x) - C′
          θ=∅ (Π -)

where X is an arbitrary variable that does not occur anywhere in the
derivation

and RAN(X)=RAN(x).

This choice of X clearly satisfies all side conditions of the Π - rule. The basic rule permits an
arbitrary term in the range of x, instead of X. However, as X can be instantiated to an arbitrary
term later in the procedure, choosing a variable is the most general choice.

-D

                                  Γθ - Bθ
Γ - a

          θ∈Σ(a,H), for some (H⇐B)∈P (-D)

After applying the substitution, the conclusion will have the form Γθ - aθ. This sequent clearly
fulfils the side condition of the basic rule if we take the σ of the side condition to be the current
θ, as θ∈Σ(a,H) implies aθ=Hθ. The requirement that every θ∈Σ(a,H) is nonredundant for a
and H means that  no variables except those in a and H are instantiated. In particular, no
variables in B will be instantiated unless they are already in H. In the formulation of the basic
-D rule, the substitution σ could instantiate such variables also. As these variables can be
instantiated in later steps, if need be, not instantiating them here, is the most general choice.

When using this rule, we must still choose the particular clause to apply if more than one is
possible, and the particular unifier from the CSU. However, we have clearly no need to
consider unifiers other than those of an arbitrary CSU of a and H.

D -
Γθσ* ,Bσ*  - Cθσ*  | σ*∈Σ*

(aθ,H), (H⇐B)∈P*

Γ,a - C
          θ given below (D -)

θ will be computed by an algorithm producing a-sufficient substitutions (defined later in this
section). This will ensure that the side condition that C*(aθ)ϕ ≅∗ C*(aθϕ), for all ϕ, is fulfilled,
as that is precisely the requirement on a-sufficient substitutions. After applying the substitution,
the conclusion will have the form Γθ,aθ - Cθ. Thus the step will be a correct instance of the
basic D - rule.

The precautions described above to satisfy the assumptions of note 3.9 will also ensure the
validity of the side conditions that PARM(P*)∩PARM(Γ,aθ - C)=∅ and that PARM(P*) must
not contain any induction parameters. Since we are dealing with an operational rule here, we do
not need to verify the side condition that each Σ∗(aθ,H) is finite. If some Σ∗(aθ,H) was
infinite, computation of the premises of the rule would not terminate, so an incorrect derivation
would never be constructed!

Hypothesis



Γ ′ - C′

Γ′σ*  - C′σ*

Γ - C

          θ=∅ (specialisation)

(weakening)

The hypothesis rule is only used in conjunction with induction and adds one specialisation and
one weakening step (both possibly trivial) to the derivation. An induction hypothesis Γ′ - C′
and a parameter substitution σ∗ should be chosen such that Γ′σ∗⊆Γ, C=C′σ∗, and DOM(σ∗)
does not contain any induction parameters. Since Γ′ - C′ is an induction hypothesis, this step
does not introduce any premises that need to be proved.

Induction
S(C) | C∈ B

S(H)
    (H⇐B)∈T*

S(X*)
          θ=∅ (induction)

The the definition T* to do induction over, and the induction parameter, X*, should be chosen
such that the side condition  ran(X*)=Def(T) is fulfilled. The precautions described above to
satisfy the assumptions of note 3.9 will also ensure that these remaining side conditions,
PARM(H)∩PARM(S)=∅ and PARM(H)∩PARM(〈B〉)=∅, for every H and 〈B〉, hold.

EXAMPLE 8.1
We construct a derivation of the sequent Πx p(x) - p(c). In the first step, the Π - rule is
applied, giving:

Πx p(x) -p(c)
 (Π -)

p(X) -p(c)

In the next step, the axiom rule is applied. A unifying substitution of p(X) and p(c) is {X/c},
giving:

Πx p(x) -p(c)
 (Π -)

p(c) -p(c)
 (Axiom)

®

EXAMPLE 8.2
Given the following definition of the append relation:

append(nil,X,X) ⇐
append(X.A,B,X.C) ⇐ append(A,B,C)

we construct a derivation of the sequent  - append(a.b.nil,c.nil,L), expressing the statement
that some L is result of appending together the lists a.b.nil and c.nil. During construction of the
proof, L will be instantiated to some term with this property. In the first step, the -D rule is
applied, with the substitution {X/a, A/b.nil, B/c.nil, L/a.C} giving:



-append(a.b.nil,c.nil,a.C)
 (-P)

-append(b.nil,c.nil,C)

In the next step, the -D rule is again applied. To satisfy the requirements of note 3.9, the
variables in the definition will be renamed by adding a ′ after their names. The substitution will
be {X′/b, A′/nil, B′/c.nil, C/b.C′} giving:

-append(a.b.nil,c.nil,a.b.C')
 (-P)

-append(b.nil,c.nil,b.C')
 (-P)

-append(nil,c.nil,C')

In the next and final step, the -D rule is again applied. To satisfy the requirements of note 3.9,
the variables in the definition will be renamed by adding a ″ after their names. The substitution
will be {X ′/c.nil, C′/c.nil} giving:

-append(a.b.nil,c.nil,a.b.c.nil)
 (-P)

-append(b.nil,c.nil,b.c.nil)
 (-P)

-append(nil,c.nil,c.nil)
 (-P)

®

A-sufficient substitutions

The operational D - rule presents a particular problem, in that a substitution θ must be chosen,
such that the side condition C*(aθ)ϕ ≅∗ C*(aθϕ) holds. We have the following definition:

DEFINITION 8.3  (a-sufficient substitutions)
A variable substitution θ is called a-sufficient iff C*(aθ)ϕ ≅∗ C*(aθϕ) holds. ®

The requirement of a-sufficiency is to ensure that an instance of the D l- rule remains valid
even after variables occurring in the rule instance have been instantiated. Computing an a-
sufficient substitution is a formidable problem. In fact, there is the double problem of finding an
efficient algorithm to enumerate  a-sufficient substitutions, while avoiding redundant ones. An
a-sufficient substitution can be "redundant" in approximately the same sense that a unifier is
"not most general" . Suppose that using the two a-sufficient substitutions θ′ and θ″ gives D -
rule instances with the sets of premises S′ and S″, respectively. If S′≤*S″, θ″ can be considered
redundant in relation to θ′. Intuitively, this means that using θ″ we have to prove both the same
premises as if we use θ′, and also additional ones.

Hallnäs and Schroeder-Heister [14] introduced the concept of a-sufficient substitutions in
connection with a much restricted finitary calculus with inference rules similar to ours (see
section 9). Their formulation of a-sufficient substitutions is different from ours, but it is not
difficult to show that for finitary definitions and derivations that can be expressed in both our
finitary calculus and the one from their work, the two formulations coincide. Algorithms to



compute a-sufficient substitutions are given in [14] and in [18]. As of this writing, our work
has not progressed far enough to give an algorithm for the computation of a-sufficient
substitutions in the more general case of our finitary calculus. We will just note that such an
algorithm could probably be developed using the algorithms from [14] or [18] as a starting
point.

There are, however, some special cases which obviously satisfies the requirement of an a-
sufficient substitution. In particular, every substitution that is grounding for a will be an a-
sufficient substitution, since in that case applying the substitution ϕ will have no effect.

EXAMPLE 8.4
Given the following definition of the ≤ relation on natural numbers

0 ≤ X ⇐
s(X) ≤ s(Y) ⇐ X ≤ Y

we construct a derivation of the sequent  - s(0) ≤ X ⇒ ⊥, expressing the statement that some X
is not greater than or equal to one. During construction of the proof, X will be instantiated to
some number with this property. We assume that all variables range over the natural numbers
expressed using the constant 0 (zero) and the successor function s. In the first step, the -⇒ rule
is applied, giving:

-s(0)≤X⇒⊥
 (-⇒)

s(0)≤X -⊥

In the next step, the D - rule is applied. Some s(0)≤X-sufficient substitution must be
computed. It is easy to see that {X/0} is such a substitution, as applying it to s(0)≤X causes
that term to be ground. As the D - rule will have no premises with this substitution, the
derivation is completed with X being instantiated to 0.

-s(0)≤0⇒⊥
 (-⇒)

s(0)<0 -⊥
 (P -)

®

Ensuring admissibility

The substitutions θ being computed by the operational rules are used to instantiate the entire
derivation, which requires them to be admissible. Since every θ is computed as a unifier, it
should be most convenient to include this check in the unification algorithm. The obvious way
of ensuring that every θ is admissible would be to maintain the predating relation between
variables and parameters. Whenever an attempt is made to construct a binding {X/t}, a check
could be made to see if X predates any parameter of t. In that case, the binding would be
inadmissible. The problem with this approach is that the relation needs to be updated whenever
a variable is bound, since this may cause new variables to predate some parameter.

EXAMPLE 8.5



Suppose that X predates Z*, but Y does not. Now, if f(Y) is substituted for X, then Y will also
predate Z* . If a predating relation is kept, when binding X to f(Y), the relation should be
updated so that Y predates the same parameters as does X (in addition to any variables that Y
predated initially). ®

Maintaining explicit predating relations in this way is cumbersome and not very elegant.
However, we can do better. The admissibility problem is closely related to a problem occurring
in logic program execution when explicit quantifiers are present. Consider how a Prolog
extension with explicit quantification would attempt to execute the goal ∀y X=y. Since free
variables in goals are existentially quantified, this goal is equivalent to the formula ∃x∀y x=y.
In our calculus, as we saw in example 7.2, the admissibility condition prevents this formula
from being proven.

The language λProlog [22] would solve this goal by generating the new goal X=f(X), where f
is a Skolem function. Clearly, this equality cannot be solved. The language Lλ [20], developed
from  λProlog, takes a different approach. Lλ would first generate the new goal X=c, where c
is a new constant. Normally, the goal X=c could be solved by binding X to c. In this case,
however, that would be unsound. The unification algorithm of Lλ maintains its soundness by
using information about quantifier ordering to prevent such unsound bindings from being
made.

It is easy to see that the universal quantification of y inside the scope of the existential
quantification of x is completely analogous to the predating of the parameter Y* by the variable
X, in example 7.2. In general, the relation "the variable y is universally quantified inside the
scope of the existentially quantified variable x" corresponds exactly to the relation "X predates
Y * ". In [21], Miller describes a generalisation of the method used by Lλ, to do general
unification of arbitrary higher-order terms with these constraints. This method could be used in
our calculus, provided that the term theory used is the same as that in [21]. (λ-terms with αβη-
convertibility as equality.)

9 . RELATED WORK

As mentioned in the introduction, there are two main alternative finite formulations of the theory
of partial inductive definitions. The most important one is the work by Hallnäs and Schroeder-
Heister [13,14]. Although there is no formal connection between that work and the theory of
partial inductive definitions there is an obvious relation and it is clear that the system D(P) of
Hallnäs and Schroeder-Heister is a essentially a true subset of our finitary calculus with
variables, using a first-order term theory with identity as equality. Likewise, their system LD(P)
is - apart from some superficial differences in organising the derivation and the instantiating
substitution - essentially a true subset of our procedural system from section 8. The GCLA
programming language [4,5] is a computer implementation of the system LD(P).

The important difference between D(P) / LD(P) and our systems is the lack of parameters and
the consequent lack of everything that depends on parameters. In particular, there is no
induction and no Π-condition. The lack of parameters implies that the D - rule is formulated
without the parameter transform P* . Also, the D - rule cannot be used with clauses where the



body contains a variable that does not occur in the head, as such variables would unavoidably
require a parameter in the premise corresponding to that clause.

In [15], Hanschke presents another limited finitary calculus. That system is similar to the D(P) /
LD(P) systems, extended with ^ and ⊥ conditions, our Π condition, and with a new condition
using a Σ-operator - Σx C(x). There is no -Π rule in Hanschke´s system, and as the Π - rule
does not require parameters, that extension is straightforward. The intention of the Σ-condition
is to go around the restriction shared with D(P) / LD(P) that clauses used with D -  cannot have
a variable in the body that does not also occur in the head. If all such variables are bound using
the Σ-operator, the clause can be used with the D - rule. The Σ-conditions will then appear in
the premise of that rule. In a sense, Σ becomes the dual of Π. To handle Σ-conditions,
Hanschke defines a Σ - rule. A sound formulation of such a rule would be

Γ,C(X* ) - C′

Γ,Σx C(x) - C′
(Σ  -)

Where X*∉PARM(Γ), X*∉PARM(C) and X*∉PARM(C′)

As his system does not have parameters, a Skolem constant is used instead of the parameter X*.
In the general case this leads to inconsistencies (a Skolem constant cannot be substituted for
something else in the D - rule, as a parameter can), but in the particular case for which his
system is used, his formulation is acceptable. (The actual rule given in [15] contains an implicit
contraction, but that is a trivial difference.)

10 . REFERENCES

[1] Aczel, Peter, An Introduction to Inductive Definitions, in: Handbook of Mathematical
Logic (Barwise, J., ed.), North-Holland, Amsterdam 1977.

[2] Aronsson, Martin, STRIPS-Like Planning Using GCLA, SICS research report R89009,
Swedish Institute of Computer Science, 1989.

[3] Aronsson, Martin, A Definitional Approach to the Combination of Functional and
Relational Programming, SICS research report R91:10, Swedish Institute of Computer
Science, 1991.

[4] Aronsson, M., Eriksson, L.-H., Gäredal, A., Hallnäs, L. and Olin, P.,T h e
Programming Language GCLA - A Definitional Approach to Logic Programming, New
Generation Computing, vol. 7 no. 4 (1990), pp. 381-404.

[5] Aronsson, M., Eriksson L.-H., Hallnäs, L. and Kreuger, P.,  A Survey of GCLA: A
Definitional Approach to Logic Programming, In: P. Schroeder-Heister (ed.), Extensions
of Logic Programming,  Springer  Lecture Notes in Computer Science 475, 1991

[6] Eriksson, Lars-Henrik, Pi Users Manual (Preliminary), internal note, Swedish Institute
of Computer Science, 1991.



[7] Eriksson, Lars-Henrik and Hallnäs, Lars, A Programming Calculus Based on Partial
Inductive Definitions, SICS research report R88013, Swedish Institute of Computer
Science, 1988.

[8] Fredholm, Daniel, On Function Definitions I, Licentiate thesis, Department of Computer
Sciences, Chalmers University of Technology, Gothenburg, 1990.

[9] Fredholm, Daniel and Serafimovski, Svetozar, Partial Inductive Definitions as Type-
Systems for λ-Terms, to appear in BIT, (also published in Dybjer et.al. (eds),
Proceedings on the Workshop on Programming Logic, report PMG-R54, Department of
Computer Sciences, Chalmers University of Technology, Gothenburg, 1989).

[10] Hallnäs, Lars, A Note on Non-Monotonic Reasoning, In: Brown, F.M. (ed.) The Frame
Problem in Artificial Intelligence, Proceedings of the 1987 Workshop, Morgan
Kaufmann, Los Altos, 1987.

[11] Hallnäs, Lars, Partial Inductive Definitions, Theoretical Computer Science, vol. 87, no. 1
(1991).

[12] Hallnäs, Lars and Nordström, Bengt, A Definitional View of Functional Programming,
In: Dybjer et.al. (eds.),  Proceedings on the Workshop on Programming Logic, report
PMG-R54, Department of Computer Sciences, Chalmers University of Technology,
Gothenburg, 1989

[13] Hallnäs, Lars and Schroeder-Heister, Peter, A Proof-Theoretical Approach to Logic
Programming, Part I, Journal of Logic and Computation, vol. 1, no. 2 (1990).

[14] Hallnäs, Lars and Schroeder-Heister, Peter, A Proof-Theoretical Approach to Logic
Programming, Part II, Journal of Logic and Computation, vol. 1, no. 5 (1991).

[15] Hanschke, Philipp, Terminological Reasoning and Partial Inductive Definitions, this
volume.

[16] Huet, G.P., A Unification Algorithm for Typed λ-calculus, Theoretical Computer
Science, 1 (1975), pp. 27-57.

[17] Huet, G.P., Unification en théorie des types, Séminaire IRIA Théorie des Automates, des
languages et de la programmation, 1973.

[18] Kreuger, Per, GCLA II - A Definitional Approach to Control, this volume.

[19] Lassez, J.-L., Maher, M.J. and Marriott, K.G., Unification Revisited, In: Minker, J.
(ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann,
Los Altos, 1988.



[20] Miller, Dale, A Logic Programming Language with Lambda-Abstraction, Function
Variables, and Simple Unification, Journal of Logic and Computation vol.1, no. 4
(1991).

[21] Miller, Dale, Unification Under a Mixed Prefix, to appear in Journal of Symbolic
Computation. Also published as report MS-CIS-91-81, Dept. of Computer and
Information Science, University of Pennsylvania, 1991.

[22] Nadathur, Gopalan and Miller, Dale, An Overview of λProlog, Fifth International
Conference of Logic Programming, MIT Press, pp 810-827.

[23] Palamidessi, Catuscia, Algebraic Properties of Idempotent Substitutions, Technical report
TR-33/89, Dipartimento di informatica, Università di Pisa, 1989.

[24] Palmkvist, Johan, Implementation of a Planning System Using GCLA, SICS technical
report T89018, Swedish Institute of Computer Science, 1989.


