A Finitary Version of the Calculus of
Partial Inductive Definitions

SICS Research Report R92°08

Lars-Henrik Eriksson
Swedish Institute of Computer Science (SICS)
Box 1263
S-164 28 KISTA, SWEDEN
e-mail: Ihe@sics.se

ABSTRACT

The theory of partial inductive definitions is a mathematical formalism which has proved to be
useful in a number of different applications. The fundamentals of the theory is shortly
described. Partial inductive definitions and their associated calculi are essentially infinitary. To
implement them on a computer, they must be given a formal finitary representation. We preser
such a finitary representation, and prove its soundness. The finitary representation is given in
form with and without variables. Without variables, derivations are unchanging entities. With
variables, derivations can contain logical variables that can become bound by a bindinc
environment that is extended as the derivation is constructed. The variant with variables is
essentially a generalization of the pure GCLA programming language.

ACKNOWLEDGEMENTS

The author wishes to thank his colleagues at the Swedish Institute of Computer Science for the
suggestions and for providing a stimulating research environment. In particular, | want to thank
the people of the GCLA project for provoking me to develop many of the results presented
here, as well as Philipp Hanschke (of DFKI, Kaiserslautern) who read a draft version of the
article and suggested several improvements.

*) Also published in: Lars-Henrik Eriksson, Lars Hallnds and Peter Schroeder-Heister (eds.),
ELP '91, Proceedings of the Second Workshop on Extensions of Logic Programming held a
SICS, Stockholm, Sweden, January 19%Eture Notes in Atrtificial Intelligence, Springer-
Verlag, 1992.

1. INTRODUCTION

The theory of partial inductive definitions is a mathematical formalism developed by Lars
Hallnas [7,11]. It has proved to be useful in a number of different applications, both theoretical
and practical. So far, the theory has been used for such diverse things as knowledg
representation and reasoning [2,10,15,24], logic programming [4,5,13,14,18], functional
programming [3,12], general logic [6,7], program verification [7], recursion theory [8] and

typing non-normalizable terms of the lambda calculus [9]. Some of these application areas hav
been subject to extensive investigations, while in other only exploratory work has been done.

A "partial inductive definition" is similar in form and concept to an ordinary inductive definition
[1], but is extended by permitting definitions depending on hypotheses, e.g.

X - Y is atrue proposition if Y is a true proposition under the assumption that X is one

While any set that can be expressed using a partial inductive definition can also be expressed |
an ordinary one (trivially, by listing all members), the expressive power of a partial inductive
definition is much greater.

Every partial inductive definition defines a particular sequent calculus used to infer whether ar
object belongs to the defined set. The exact form of the inference rules depend in a natural we
of the particular partial inductive definitions.

A problem with the partial inductive definitions and their associated calculi, as defined by
Hallnas, is that they are purely mathematical objects. In particular, they are in general infinite.
To use a mathematical formalism on a computer, or even for a human to deal with it in ar
efficient way, it must be possible to capture the infinities in a finite representation. In [11] and
other original work on the subject there is no mention of how this could be done. Also, the
meaning of the concept of "proof" in infinitary deductive systems is unclear.

Hallnés and Schroeder-Heister [13,14] developed a formal base for logic programming, base:
on partial inductive definitions. This work was the foundation for the programming language
GCLA [4,5], and thus a kind of finitary representation. However, the connection between the
system of Hallnds and Schroeder-Heister and pure partial inductive definitions was never mad
explicit. Also, their system could not handle partial inductive definitions with infinite
conditions. In [7] this author, and in [15] Hanschke, present partial ad-hoc solutions to these
problems. The work presented in the present article is a further development and formalisatiol
of the approach from [7].

We will present a finitary representation and its corresponding finitary sequent calculi, show the
correspondence with the infinitary partial inductive definition and prove that the finitary calculus
is sound. By soundness we mean that any derivation in the finitary calculus faithfully represent:
some derivation of the infinitary calculus.

With a finitary representation we can, of course, only represent countably many partial
inductive definitions and derivations. Since there are uncountably many of both kinds, it will be
impossible to represent every definition or derivation. We will not attempt a formal

characterisation of precisely which objects we can represent. Intuitively, we can represent thos
definitions and derivations which can be generated by uniform replacement of quantified
variables by elements of some set.

To permit our finitary system to be used as a suitable base for the construction of proofs in th
calculi of partial inductive definitions, we further introduce logical variables in proofs. As in a
logic programming language, logical variables can be bound to terms as the proof constructiol
progresses. Indeed, our finitary calculus with variables is an extension of the system of Halln&
and Schroeder-Heister used as the foundation for the GCLA language. We will give a natura
interpretation to the occurrence of variables in derivations, and show that binding a variable is i
meaningful operation, given our interpretation.

2. PARTIAL INDUCTIVE DEFINITIONS

The theory of partial inductive definitions is given a short presentation. The intention of this
presentation is to provide a reference for the rest of the paper. The motivation and intuitior
behind partial inductive definitions will not be described, the interested reader is referred to [7]
and [11].

The precise definition of partial inductive definitions and the notation used varies considerably
between different articles on the subject, although all are essentially equivalent. This is partly
due to the evolving of the theory, partly for technical reasons in computer implementations. The
concepts and notation used here for the pure theory will be the ones currently used at th
University of Gothenburg. The concepts and notation used for the finitary version will be the
more computer-oriented ones used at SICS.

Assume that there is a universe, U, of objects which weataths. We define the set of
conditions (over U), denoted Cond(U), to be all of the following:

A (The universal condition)

[(The empty condition)

a for every atom aU

C)io where every Cis a condition (over U)
Cc-C where C and Care conditions (over U)

The notation (g5, should be understood as the set of abuch that(ill. Note that the (i,
-conditions can be infinite collections, if the index set | is infinite.

If a is an atom in U and A is a condition (over U), theidefinitional) clause (over U) has
the form

a=A
A partial inductive definition (over U) is a set of clauses (over U). Definitions will be

denoted by D (possibly indexed or annotated). Note that a partial inductive definition can
comprise an infinite number of clauses.

Thedomain of a definition, denote@om(D), is defined a®om(D) = {a | (a=A)0 D}.

Thedefiniens of an atom, denoteti(a) is defined as
D(a) ={A| (a=A)JD} when all Dom(D)
D(a) = {1} otherwise

The interpretation of a definition is given by the "D-consequence” relgiion, is a relation
between finite sets of conditions and conditions. When it is clear from the context which
definition is intended, the index will be dropped. Expressions of the Fori@ will be called
sequents, as usual. In every case, the assumgdtiagman unordered finite set of conditions. A
sequent such ds,C - C' has the sef [1{C} as its assumptions set. Note that in this case C
may occur i, i.e. the union is not disjoint.

The setDef(D) defined by a partial inductive inductive D, is the set of atomSWh| -, a}.

- is defined to be the smallest relation satisfying all the following properties:

MNa-a (axiom;
ro-c @)
r-A ")
{r-c ol -0)
r- (Ci) il
! ©)
M(Cioi - C
rc-c --)
r-c-cC
r-c rc-c (=)
rc-.c-c
T-A Adpa) (-D)
M-a

{r.A-c|AIna)
MNa-cC

(D -)

The use of a set expression as premise should be taken to mean that the premises of the rule
the elements of the set expression.

EXAMPLE 2.1
Let D be the definition comprising the clauses a=b, a=¢} bad c=d. Then we have
Def(D)={a,b}. ®

The properties of can be taken as the inference rules of a formal system, called ¢hlus

of the particular partial inductive definition. In the calculus, it will be convenient to regard the
assumptions as unordered sequences instead of sets. We will then have to include tt
contraction rule

rcc-c
rc-c

(contraction

It is sometimes convenient to also include the weakening rule. We can see from the rules abo\
that adding extra assumptions to all sequents in a subderivation never invalidates that derivatiol
The extra assumptions are simply addel &nd play no part in the rules. Thus the weakening
rule does not add any more power to the system, but can be included or excluded at will.

r-c. (weakening
rc-c

The infinitary nature of this calculus can be seen in rt(leand B, which can both take an
infinite number of premises, provided the set | is infinite. In earlier formulations of partial
inductive definitions, the set of assumptions could also be infinite, as the right-hand side of ¢
clause could be an infinite set of conditions. Therlle would then bring the infinite number

of conditions into the assumption of a sequent. In the present version, all sets of conditions ar
encapsulated in the () construction, so it is sufficient to have finite sets as assumptions.

From the formulation of the rules, we can see thhas the same properties ag)(§,, for any
C;. Also 0 has the same properties as any undefined atom. Thus, we do not actuafiyaneled
[J, they could be removed without changing the properties or expressiveness of the system.

3. FINITARY PARTIAL INDUCTIVE DEFINITIONS

As we could see in the previous section, there are two main reasons for the infinitary nature c
partial inductive definitions - that a definition could comprise an infinite number of clauses and
that the (Q;, -conditions could be infinite collections. To avoid this, we will define finite
representations of the concepts from section 2 and define a finitary calculus that will let us
derive that a particular sequent- C holds, only in those cases where the corresponding
represented sequent holds according to the rules in section 2. Any represented concept can
mapped to the corresponding pure concept. We will use fi¢note this mapping.

We assume there is some set@fms. To avoid restricting the applicability of the finitary
calculus, we will make very few assumptions about terms. Essentially, we only assume tha
terms can contain variables that can be replaced by other terms, that equality is decidable, ai

that axiom 3.3 below holds. These very general requirements permit different kinds of terms
such as first-order terms, higher-order terms, various equality theories etc.

Unless we say otherwise, the examples of this article will use ordinary first-order terms or
higher-order terms of the simply typed lambda calculus, with two terms being equal if they, or
their apn-normal forms, are identical. Actually, in applications of the finitary system, we are

only interested in these kinds of terms. However, as the presentation could be extended wit
little complication to include much more general term theories, it seemed reasonable to do this.

To represent the universe U, we will take the set of variable-free terms. We assume that th
mapping [] from variable-free terms to atoms is given. The mapping will not be defined for
terms with variables. It must hold that [x]=[\] x=y, i.e. [] must be injective.

We divide the set of variables into two classes, the clagamdmeters, and the class of
ordinary variables. Ordinary variables will be denoted by X, Y, Z,... Parameters will be
denoted by X, Y*, Z*,... As usual, the particular name of a variable or parameter should not
matter.

The special significance of parameters will be formally explained below. Intuitively, parameters
occurring in sequents can be seen as variables that are implicitly universally quantified on the
meta level - a dual to ordinary variables that can be seen as being implicitly existentially
guantified on the meta level. For historical reasons, parameters are sometimes called "starre
variables". Parameters having a special role in induction schemas will be icallexion
parameters, see section 4.

Any bound variables will be part of the internal structure of terms and are not considered here
except that it is assumed that the usual precautions are taken to avoid capture of free variabl
when a variable is replaced with a term.

In the sequel, the ternvdriable" will always refer to ordinary variables. All definitions and
concepts regarding variables should be assumed to be defined in the analogous way fc
parameters also.

Terms not containing any variables will be caligdund. A term not containing parameters is
calledsimple. Note that a ground term may contain parameters and that a simple term may
contain variables.

With any variable, we associaterange, which is the set of ground simple terms that are
intended to potentially be substituted for it. The range will be dene#€x). The extended

range is the largest set of terms which has the range as the set of its ground and simpl
instances, i.eRAN(X) = {t|toOran(X), t is ground and simple}. We can see that the
extended range is closed under substitution, i.e. for any substiytibtlJ R AA(x) then
ttOdRan(x). In a typed system, the extended range of a variable could be a set of terms with th
same type. Parameters are given ranges in the analogous way. In our examples, we wi
generally let it be clear from the context what the ranges of variables and parameters are.

Apart from terms, we will use a few special expressions, finitary conditions and finitary
sequents. These will be defined below. Finitary conditions, finitary sequents, terms, or sets an
sequences of these will together be calledgupt essions.

The notation E(X) is used to make explicit the occurrence of the variable X in the expression E
E(t) will denote the expression obtained by replacing all occurrences of X in E by t. Note that it
is permissible to write E(X), even if E does not contain X.

A substitution is a set of variable-term pairs, as usual, where every term must be in the range
of the corresponding variable. Substitutions will be denotad ... A particular substitution is
written as {X/t;,...,X/t,}. We will assume that a substitution never contains an identical pair,
X/IX, for some X. In the same way,p@arameter substitution is a set of parameter-term
pairs. Parameter substitutions will be denai&d™,... We will not use any particular symbol

to denote a substitution that can substitute both variables and parameters. Any such substitutic
must be written as an explicit composition of variable and parameter substitutioos;-e.g.

In the usual way, applying a substitution to a term involves simultaneously replacing the
variables of every variable-term pair with the corresponding term. The result of applying a
substitution to an special expression is the same expression with the substitution applied to a
component terms. Composition of substitutions will be done in the usual way.

We call the set of all variables occurring in the variable part of the variable-term pairs of a
substitution thelomain of that substitution. Formallypoaio)={X | (X/t) Oa}, is the domain

of the substitutiomw. Informally, the domain can be said to be the set of variables "affected" by
the substitution.

We will denote the set of variablescurring in (the normal form of) an expression E by
VaR(E). Formally,”a®(E) = {X | @ E{X/t} ZE}. The set of variables occurring in a variable
(parameter) substitutioa, are the variables than can be introduced by an application of the
substitution. Formally3’a®(o) = O{ vaR(t) | (X/t)Uc}. PARM(E) andParm(o) are defined
similarly.

We may also speak of the restriction of a composite variable-parameter substtuititn
variables (or parameters). By this we meaw)\? where 7 is the set of all variables
(parameters).

EXAMPLE 3.1
Let E=p(X Ax.X(Y)) ando={Y/f(Z)}. Then VaR(E)={Y}, PARM(E)={X*}, DoM(0)={Y},
VaR(0)={Z} and PagjM(o)=0. ®

A ground (simple) substitution will be a substitution where all terms are ground (simple).
o is agrounding (simplifying) substitution for an expression E, if & is a ground
(simple) expression. Theestriction of a substitutioro to an expression E, writtesE, is a
substitution, such that &E(0\E), but X=X(\E), for every variable X V42%(E). A
substitutiono is nonredundant for E, if 0=0\E, i.e. if X=Xt, for every variable XI72R%(E).
These concepts are also defined for parameter substitutions in the obvious way.

We have the following important lemma:

LEMMA 3.2 Substitution equality lemma

o=t iff X =Xt for all variables X

PROOF

Follows immediately from the definition of substitutions. ®

AXIOM 3.3 Substitution equality axiom

ao=at iff for all variables X112%(a), Xo=XT.

NOTE

This axiom is a property that must hold for any term theory used with the finitary system.
Given the definition of substitutions, this property is clearly true for the usual term theories
such as first order terms or lambda terms. As an alternative to this axiom, it would possible tc
take as axioms more primitive properties, namely as the existence of a computable normal forr
of every term and that structural induction can be done over terms. From these more primitive
properties, the statement of the present axiom could be obtained as a lemma. ®

Substitutions may be composed in the usual way. As usual, a substitutibess gener al
than a substitution, writteno<rt iff [L: o=tv. The same holds for parameter substitutions.

EXAMPLE 34
Let o={X/f(A)}, t={X/f(3)} and v={X/f(A), Y/a}. Then t<0, u<0, but neither<v, noru<rt.

We will need a way to compare sets of instances of expressions. We sageh&tisl ess
general than the set T, writtensS, iff O0sOOS XOT [b s=w. Intuitively, this means that the

set of variable instances of S is a subset of the set of (variable) instances of T. Without loss ¢
generality, we can assume thatis nonredundant for t. The sets S and T egeally
general, written ST, iff S<T and KS. Note that if S and T are ground, these concepts are
exactly subset and equality, respectively. We definand(T for parameter instances in the
analogous way.

EXAMPLE 3.5
Let R={p(2,2), p(X,X)}, S={p(X,Y)} and T={p(1,1), p(X,X)}. Then we have S and
ROT. ®

It is easy to show the following lemma.

LEMMA 3.6

1) If SOT and TV, then SV, likewise SHT and THV, then $HV.

2) If SO0T, then BOTO, provided that Pom(0)1VaR(6)) n (VaR(S)IVaR(T))=0,
likewise if SHT, then ®FTOY provided that
(DOM(BD O PARM(BD) N (PARM(S)D PARM(T))=0

3) If SOT, then VUTOC, provided that’a®(08) n (VaR(S)JVaR(T))=0, likewise
if SCHT, then ®HTO, provided thatPaRM(0) N (PARM(S)] PARM(T))=0]

PROOF
The first part follows easily from the definitions [@Bnd<.

To prove the second part, we show thatdiT Sthen $<T6. By analogy, this implies that if
T<S, then B<S6. Together the we establish that ifll§ then ®T6. The proof for[Fis
done in the same way.

Assume that ST, and that Pom(0)0 YaR(0))n Yag(T)=0. By the definition of<,
OsOS 0T [s=w, so for a particular s, we have s=for some t ana. From this we get
sO=tuB. Lett=(VO)\74R(t). For each XI74R(t), Xub=X1=X01, since XIJ74AR(t) implies
XODoMm(6). For each XOPagm(t), X' vb=X"=X"01. By the substitution equality axiom,
we get 00=tO1. Together with 8=tu0, we get 8=t6t. By the definition ok, this implies that
SO<T6.

The proof of the third part is very similar to that of the second part. Again we show th&t if S
then ®TO with the result foe and[(F being obtained through analogy.

Assume that 8T, and that Y2%(0Y)n Ya2K(T)=0. By the definition of <,
OsOS 0T [b s=w, so for a particular s, we have s=for some t an@. From this we get
sBt=tuBl Let t=(008D\124R(t). Clearly, for each XI9a%(t), XuBe X1=X0, and for each
X*OParM(t), X vBLEX"BL=X"0Lt. The last step of the equality is true sifice and thus
X*BLY has no variables in common with T, and thus also not with t, sii€e By the
substitution equality axiom, we get&=tbtt. Together with 8=tuB- we get 8-=tBLt. By
the definition ofg, this implies that &<T6C. ®

We will define acomplete set of unifiers (CSU) [16] of a and b to be a set of
substitutionsy, such that

. Do ao=bo (every member ok is a unifier)

. Oo (ao=bo - [tJX 0<1) (any unifier is less general than some member of a CSU)

CSU’s are not unique. In the sequel we will usually write a CSU of a anél(a,83. Herex

should be understood as a choice function, selecting an arbitrary CSU of a and b. However, fc
every particular context (e.g. inference rule instance) éqatb) must denotes the same
arbitrary CSU.

We will also impose some minimality conditions on all CSUs in this paper:
. Do o=00 (every member ok is idempotent
. UoUX o is nonredundant for a and b

It would be desirable to have additional minimality properties of CSUs, e.g. that for different
0,10Z, neithero<t nort<o. As noted by Huet [17], this is not always possible.

The idempotency condition is not strictly a minimality condition, and it is not always required of
unifiers in the literature. However, a strong case can be made for this requirement [19,23], an
in the present context it simplifies several proofs. It it easy to show that idempotent unifiers
always exist. Clearly, if a unifieo of a and b is not idempotent, it must be the case that
DoM(o)n YAR(0)20. Let V=DoM(o)n YAR(0). Definet={{v/x ,} | vOlV}, where the

different x, are distinct variables not occurring roam(o)d V4R(0). Then 6T)\DoMm(o) will
be a unifier of a and b, amoMm((oT)\Doa(0)) n VaR((cT)\DoM(0))=0], so it is idempotent.

NOTE 3.7

Since the names of variables and parameters have no significance, variables and parameters t
are ing, but not in a or b, can be renamed arbitrarily. In particular, for any variable X, such that
XOvaR(a) and XI11aR(b), we can always assume thdi ®a®(o). Likewise for parameters.

It is interesting to note that ¥ and® are two CSU’s of a and b and we tak® be a formal
relation (i.e. we care only about the formula defirifigot about its intended meaning), tien
0. This fact could be used as the basis for an alternative definition of CSU’s.

We define gparameter-CSU (CSU") in the analogue manner, usually denoting a C&la
and b byX*(a,b).

EXAMPLE 3.8
Let s=p(X) and t=p(f(Y)), then {{X/f(Y)}} is a CSU of s and t, while {{X/f(3), Y/3}},
{X/(X), YIX}}, and {{X/f(Y), Z/1}} are not.

Let s=F(X") and t=f(a). A CSUof sand tis

{F *IAx.f(a)}, {F’/f, X*/a}, {F*/Ax.x, X*/f(a)}}. ®
We define thefinitary) conditions to be all of the following:

t where tis any term

C..C,,...,C, where every Cis a condition. Bl.

coc where C and Care conditions

Mx C(x) where C is a condition containing the variable x. (x is bounid)oy

Parentheses will be used around the second form when necesg@xy..CC, C will be
taken as (¢C,,...,C,)0O C.

The M-construction is intended to represent the collection of all conditions obtained by
substitutions for x. The intentions of the other conditions are obvious. Formally, the mapping
[]is defined on conditions other than terms as:

[C1.Co,....Cl = ([Ci])ilj{l n}
[COC]=[C]-[C]

[Mx CX)] = ([CODranx)

Note that we have no finitary conditions that represent the two condiarsd [J of the
infinitary calculus. As we remarked at the end of the previous section, these conditions are
superfluous so we do not lose in expressiveness by not being able to represent them.

A clause is an expression of the form

HO B

where thehead H is a term and thbody B is a condition. Neither of these may contain
parameters. The body may also be empty, which should be interpreted as the condition (), i.¢
the empty sequence of conditions.

Intuitively, free variables in a clause are universally quantified. Each clause represents the unio
of its ground instances. Formally the mapping [] is defined on clauses as:

[HO B]={Ho]=[Bao]|ois agrounding simple substitution of H}
Without loss of generality, we can assume thabove is nonredundant for H and B.

NOTE 3.9

From this definition, we can see that variable renamingslih B, do not affect the value of

[H O B]. In the sequel, we will assume that each time a clause is used, the variables in the
clause can be renamed as required to avoid conflicts with other variables, i.e. whenever
definition P (or its parameter transforr Psee below) is used, the variables (parameters) can
be renamed arbitrarily to fulfil any necessary conditions.

A finitary partial inductive definition is a finite set of clauses. The mapping [], on a
definition D, is defined simply as the union of the mappings of the clauses, i.e.

oj= L1 [c]

COD

Theparameter transform of a clause is obtained by replacing each free variable in the clause
with a unique parameter. Tiparameter transform P, of a finitary definition P, is obtained
by taking the parameter transform of every clause in P.

EXAMPLE 3.10

In many of the examples in this article, we will use the following finitary partial inductive
definition, FOL, intended to model the semantics of the logical connectives of first order logic
with equality. The constructionlx p(x) should be seen as syntactic sugaring for the term
O(Ax.p(x)), similarly for[1 The variables of the definition range over formulae, represented
terms (not terms of the finitary theory of partial inductive definitions) or functions from
represented terms to formulae, as appropriate.

A=A [

ABO AB
ABLO A

ABO B

A-B0O (AOB)
-A [0 (AO false)
X AX) O A(X)
Ox A(x) O Tx A(x)

The term "false" must not be defined by any clause.
The parameter transform of the last clauséxsA™(x) O IMx A*(x). The mapping of the same
clause, [Ix A(x) O Mx A(x)] is a set of clauses:

allf;={f 1(ty), f1(t2), fa(ts),...}
a!”z:{f o(ty), fo(ta), folts), ...}

where the fform an enumeration of the mappings of all functions in the restricted range of A,
the t form an enumeration of the mappings of the represented terms, and eaishtladf
mapping of Ix A(x), for each function in the restricted range of A. ®

Thedefiniens of a term, denoted(a) is defined as
7(a) = {Bo | a=Hb, (HO B) O P}

Thedefining clauses of a term, denoted(a) is defined as
@) = {(HoO Bo) |o0%(a,H), (HO B) O P}

The parameter definiens (D) anddefining parameter clauses (") are defined
analogously, using parameter substitutions and the parameter transform of the program.

EXAMPLE 3.11
With the definition FOL above, we have(allb)={(a,b)}, »(allb)={a,b} and
C (ab)={albO a, d b b}.

If we instead take the following definition:

P(A, A) DO ¢
p(a, b)d ¢

we will haved* (p(X,Y*))={q} and ¢ (p(X,Y*))={p(X, X)O q, p(a, b)J q}. ®

The setDeA(D) defined by a finitary partial inductive inductive definition D, is the set of
ground simple terms {t4 t}, where-y is derivability in the variable-free finitary calculus
described in the next section.

4. A FINITARY CALCULUS

How do we avoid the infinitary character of the calculus of section 2? As we remarked at the
end, the rules() and D- could have an infinite number of premises. This would happen in the
first case if the index set | of (%, was infinite, in the second case if there was an infinite
number of clauses defining a. In the finitary representation of clauses given in the previous
section, infinite index sets could arise only in connection withtle@nstruct, infinite sets of
clauses could arise only if a finitary clause contained free variables. In each case the infinite s¢
is generated uniformly by substituting ground simple terms for variables. Since the different
premises differ only in the substituted term, the infinite set of premises can be represented by
premise where the infinite set can be generated uniformly by some substitution. In our finitary
calculus, parameters are used for this purpose. A sequent containing parameters, actual
represent the set of its simple instances.

Formally, [] is defined on sequents as:
[F-C]={[To"] - [Cc"]| 0" is a ground simplifying substitution 6fand C}

There will actually be two versions of the finitary calculus, a variable-free calculus where no
variables are permitted in a derivation, and a calculus with variables. The two calculi will use
the same inference rules, but will be used for slightly different purposes. The variable-free
calculus will be the "proper" finitary calculus where every derivation is the representation of a
derivation in the infinitary calculus. Note that the mapping of finitary sequents to infinitary
sequents is only defined in the variable-free case. For this reason, a derivation in the calculL
with variables does not, in general, represent an infinitary derivation. The advantage with
having variables in a derivation is that the variables can be used as placeholders fo
undetermined terms. By substituting ground terms for every variables, a derivation with
variables can be instantiated into a "proper" derivation.

Soundness properties with respect to the infinitary calculus will only be shown for the variable-
free finitary calculus. The soundness of the calculus with variables will be shown relative to the
variable-free calculus.

We will now present a set of inference rules for the two finitary calculi of partial inductive
definitions. In the case of the variable-free calculus, it should be assumed that all expression
(except clauses) are ground, that parameter substitutions are ground and that variabl
substitutions are grounding for all expressions they are applied to. Again, the use of a se
expression as premise should be taken to mean that the premises of the rule are the elements
the set expression.

MNa-a (axiom;
- C(X") (-M)
I -Mx C(x)

where XOPagM(T), X" OPagRM(C),
and RAA(X) = RAAN(X™). X* must not be an induction parameter.

r,Ct-C
r,Mx C(x)- C

(m-)

where t is some arbitrary term faN(X).
In section 8, we will return to the question of how to choose the term t.

[-C, r-c..-r-c,
r _(C11C21 e ,Cn)

(-0)

rG-cC©

i<n (0 -)
[(C1,Cz,-..,Cn) - C

L’C (-0)

r-coc
r-c rc-c (@9

rcoc'-c
T-B0 (HOB)OP, a=ho (-D)
M-a

[ro*,B0" - Co* | 0" 0% (a,H), (H] B)OP'|
Mna-C

(D -)

where eaclx{a,H) isfinite.

C' (@) CHc (ad), for all ¢.

PARM(P) n PARM(T ,a- C)=[]

PARM(P") must not contain any induction parameters.

Recall that Pdenotes the parameter transform of the definition P. In the variable-free calculus,
the condition that™(a)p [F ¢ (ad), for all , will be trivially satisfied. In section 8 we will
return to the question of verifying this condition. For an example of the necessity of the
condition, see example 7.2.

rcc-c

(contraction
rc-c
r-c. (weakening
rc-c

In the infinitary calculus, weakening was an optional rule. In the presence of the induction
schema below, that is not the case here.

The- N and D- rules have side conditions to prevent key parametersfi®y(P") in the D

- rule and X in the- M rule) from occurring both in the premises and conclusion of the same
rule instance. It might seem that this condition is too permissive and that stronger requirement
should be made to ensure the uniqueness of these parameters over larger parts of the derivati
However, the definition of the mapping of a finitary sequent to a set of infinitary sequents
shows that the significance of a particular parameter is local to the sequent in which it occurs
Thus there is no problem with the same parameter reoccurring at arbitrary places in the
derivation as long as the present side conditions are fulfilled.

The use of unifiers in the Prule needs some motivation. Suppose a definition includes the
clause A=A1. Consider the sequentXY™*, Y*=Z" - X*=Z". What premises are needed if we
want to derive this sequent using the Bule on X=Y*? According to the interpretation of
finitary sequents, this sequent maps to an infinite set of infinitary sequents, generated by al
possible ground simple instantiations of the three parameters. Call this set of infinitary sequent
S. Let x be the mapping of some instantiation bKd y the mapping of some instantiation of

Y*. We can see that all the infinitary sequents in S withwill be false by absurdity, since the

"=" relation only holds between equal terms. In other words, to derive the sequent above, i
suffices with a premise that maps to that subset of S where x=y. Only those cases have to |
derived, the other ones hold by absurdity. We can see thal% X*=Z" is a possible
sequent.

Now, consider the finitary rule for B. Since there is only one clause defining "=", there
should be one premise for each element of some CSU=0f"Xand A=A" — the latter being

the head of the parameter transform of the clause. Cleafl{X{AY*/Z"*} is such a CSU.
Using this CSU we arrive at exactly the premiseX" - X*=Z". Example 4.2 presents a
derivation that includes precisely this step.

To simplify the presentation of a derivation, we will frequently apply theof)the-() rules
without explicit mention whenever a sequence condition appears. E.g. if the definition contains
a clause

@ b,c
we will write:
Fr-b r-c (-D)
M-a
rather than:
r-b r-c
- b9 0
M-a

We sometimes want a derivation of a sequent with a sequence (&) in the antecedent,
from a sequent with the individual conditiong, C,C,, in the antecedent. Such a derivation can
be constructed simply from a series of (ule instances, and a series of contractions, e.g.

Mab-C
r(a,b),b- C Eg 3
r.(a,b),(a,b)- C (contraction)
MN@b)-C

Again to simplify the presentation of a derivation, we will abuse the calculus by writing a single
() - step, with all of G,...,G, in the antecedent of the premise, e.g.

MNab-C
r(ab)-C

(0 -)

EXAMPLE 4.1
A sample derivation, given the definition FOL of example 3.10:

" m — (Axiom) —————— (Axiom)
q(X"), p(X’) -q(X’) p(X)-p(X)(D_)
p(X"), p(X)0 q(X) - q(X) (P-)
p(X"), p(X") - q(X) - q(X") M-
p(X"), Mx p(x)-q(x)- q(X") P-)

p(X"), Ox(p(x)- q(x))- q(X") M-
Mx p(x), Ox(p(x) ~q(x)) - q(X") P-)
Ox p(x), Ox(p(X) ~q(x)) - a(X") " M

[x p(x), Ox(p(X)- q(x))- Nx q(x) P)

Cx p(x), Ox(p(X)- q(x))- Ux g(x) P-)

Cx p(x)EOX(p(X)- q(x))- Ux g(x) C0)
- Ox p()EOX(p(X)-q(x)J Dx q(x) , P)
- Ox p()EOx(p(X)-q(x))- Ox q(X)

®

EXAMPLE 4.2
Given the definition FOL, the following derivation shows that equality so defined is transitive.

(Axiom)
(P-)
(P-)
-0)
(-P)
(-1)
(-P)
(-1)
(-P)
(-1)
(-P)

* * *

Y'=Z"-Y'=Z
X*'=Y", Y'=Z" -X"=Z"
X'=y'oy'=z" -X"=7"
-X'=y'Qy'=z'0 X*=7"
-X'=Y'QYy'=z"' - X*'=7"
-Mz X'=Y'OY =z X"=z

-0z(X'=Y"0OY "=z~ X"=2)
-Ny0z(X =yly=z - X"=2)
-OyOz(X =yOy=z - X"=2)
-MxOy0z(x=ylly=z - x=2)
-Ox0Oydz(x=yly=z - Xx=2)

The following derivation step illustrates clearly how the premises of theul® corresponds to
the elements of a CSU (see example 3.8). Since the assumpti¢A’is=Ka), there will be a

premise for each unifier of'FA”™) and f(a). By keeping*Fand A in the conclusion, we can
see what effect the various unifiers have on these parameters.

- (Wx.f(a),X") - (fa) - (x.xf@)
F (X")=f(a) - (F,X")

(D-)
®

It should be noted that the decidability of the iile (and consequently the finitaryness of the
calculus) depends on the possibility of finding finite CSU’s of two terms or showing that none
exist. This is not possible in general, e.g. for higher order terms [16]. However, this is a
problem mainly when a given derivation is to be checked for correctness. If we check eact
inference step when the derivation is constructed and only admit steps that have been positive
shown to be correct, the calculus is useful even if unification is not decidable. Conversely, there
can be an undecidability problem in showing thatiheule isnotapplicable.

In the infinitary calculus, there was a clear duality betweerBhand D- rules. This duality
appears lost here. However, in the variable-free calculus;,hrele can be expressed in a
more complicated, but equivalent, way that uncovers the duality.

First note that since in this case we deal with the variable-free calCudunsl a are ground so
'=Io and a=a, for everyo. Thus a=Hk is equivalent to@=Hao, which means that should
be a unifier of a and H. Then there is a C&(4,H), of a and H that contaims To construct
such a CSU, take any CSU of a and H andattit. Sinceo will be groundingo=00, soo

is a valid member of a CSU, i.e. the resulting set will be a possjalel). In other words, the
conditions a=l¢ andoJZ(a,H) are equivalent. We can now give Hierule an alternative
formulation that clearly shows the duality .

T'o-Bo gOs(a,H), (HI B)OP
M-a

where every element B(a,H) is grounding for B.

The finitary calculus also has two inference rules that have no counterparts in the infinitary
calculus: specialisation and induction. When manipulating derivations, and in connection with
induction, we will need the specialisation rule:

E'ic* (specialisatior
No -Co

where»oM(c*) does not contain any induction parameters.

Without loss of generality, we can assume thatis nonredundant fofF, C and C. The
intuition behind this rule is that if we have shown that some sequent is derivable, then any
(parameter) instance of it is also derivable.

The introduction of parameters enabled us to give a finitary formulation of inferences with
infinite number of premises (infinite width). It did not, however, solve the problem of arbitrary
long inference chains (infinite height).

To address this issue, we include an induction schema. Induction is expressed as an "imprope
inference rule, taking entire derivations as premises instead of sequents. The premis
derivations are hypothetical derivations, in the same sense as hypothetical derivations in natur.
deduction. Each such derivation has one or more hypothetical sequents. Those sequents may
used in the derivation without being proved. Every hypothetical derivation corresponds to a
induction step. The base case(s) of an induction are degenerate hypothetical derivations witho
any hypotheses.

The induction schema expresses induction over a set of ground simple terms. This set must |
defined by a finitary definition that maps to an infinitary definition that is an ordinary inductive
definition, i.e. the arrow condition must not be used. We call this definition T, i.e. the set is
Def(T). Strictly speaking, th€l-condition should not be permitted in T either, as it generally
maps to an infinite condition in the infinitary calculus, which is not permitted in an ordinary
inductive definition. For our purposes, however, this is still permissible as long as induction is
not done over the rangesldfbound variables of T.

The induction schema will have the following form:
fis© | as)

\ S(;H) (HO B)DT*\

. (induction
S(XY)

where for every H an@BL)] ran(X")=DeAT), PARM(H)n PARM(S)=, and
PARM(H) N PARM(BO=0.

Each premise is a hypothetical derivation. The inner set expression gives the set of hypothetici
sequents for each derivation. The expressigindenotes some set bypothetical terms of

the clause body B. This is the set of constituent terms of B, with each variable boufid by a
operator replaced by some parameter not occurring elsewhere in B. Ditieréiffer only in

the names of parameters. Note tiBiiwill always be a finite set. The parameters of each clause
will be theinduction parameters of the hypothetical derivation corresponding to that clause
and all of its subderivations. Those parameters will not be considered as induction parameters
the derivatiorcontainingthe induction schema. Note that the parameters introduced by replacing
M-bound variables of B are alsot considered as induction parameters.

Formally, [Bls defined as

(=t where tis a term.
[T;,C,,...,CEOC,O
Mx C(X)EFIC(X")O where X is a unique parameter.

EXAMPLE 4.3
Let the set of lists be defined by the inductive definition LIST:

nil O
ULO L

Add to the definition FOL the definition of the append relation for lists:

append(nil, X,X)O
append(X.A,B,X.C)d append(A,B,C)

where the variables ranges over lists, ia@(X)=ran(A)=ran(B)=ran(C)=def(LIST).

The following derivation shows that for all x, append(x,nil,x) holds:

(Hypothesis)
(-P)

(Induction)

P -append(L,nil,L")
-append(nil,nil,nil) -append(U.L",nil,U".L")

-append(X,nil,X") n

-Mx append(x,nil,x) _p

-0Ox append(x,nil,x)

®

In this derivation U and L' are induction parameters of the hypothetical derivation of the
second premise of the induction rule.

The induction schema can also be used for case analysis, as the following example shows:

EXAMPLE 4.4
Given the definition FOL, we show that a list, defined as above, must be either empty or not

empty. ran(X)=def(LIST).

P_
U".L"=nil -0 ((_D))
-U*.L"=nil0 O
—— (-P) ——— (-P)
-nil=nil -P) -~ U .L"=nil -P)
-nil=nil O~ nil=nil -U*.L =nil0~U".L" =nil .
TRV —" (Induction)
- =1 g 1 =Nni
(-

-Mx x=nild~x=nil
-Ox(x=nilJ=x=nil)

-P)

5. SOUNDNESS OF THE VARIABLE-FREE FINITARY
CALCULUS

In this section we will show the soundness of the variable-free finitary calculus with respect to
the infinitary calculus. Given a derivation in the variable-free finitary calculus of the form

Sy S

soundness amounts to showing the existence of a derivation in the infinitary calculus
(Sy] - [Snl
S',
for every SJ[S]. This is shown by induction over the structure of the finitary derivation.

An application of an inference rule in the finitary calculus has the following general fa@): (n

S-S
S

The conclusion S maps to a set of infinitary conclusions, [S], and the premises map to a set ¢
infinitary premises[1[S,]. To prove the soundness of the particular inference rule, we must
show that for every application of a finitary inference rule, each sequent in [S] can be derivec
from a subset of the premisesii}S,], by an application of some rules from the infinitary
calculus.

A particular application of an inference rule with n=0 will give a base case in the induction.
With n>0 it will give an induction step.

The reason for taking a subsetdfS,] is that although all premises should be needed to derive
all conclusions in [S], the derivation of a particular conclusion will not in general need every
available premise. Ideally, every premiself5,], should be necessary for the derivation of
some sequent in [S], otherwise the finitary rule will have premises that are, in a sense
redundant. To ascertain this, however, additional side conditions will have to be introduced in
the formulation of the finitary rules. We have chosen to give a simpler formulation of the rules
and accept that redundancies may occur.

EXAMPLE 5.1
Consider the following step of the finitary calculus:
p(X*) -q (I—I _)
Mx px)-q

The conclusion maps to the infinitary sequent ([pi)l)x)- 9. According to the rules of the
infinitary calculus, thdl - rule requires one premise, [p(h]g for some [ran(X) to get the
conclusion. However, the mapping of the premise of the finitary step above is the set of
infinitary sequents { ([p()])> g | »ran(x)}. Thus the premise of the finitary step is redundant.
The redundancy could have been avoided by introducing side condifibafinle. Since that

rule is still sound, we have chosen to accept the redundancy. ®

We will not attempt to extend the mapping [] to provide a translation from finitary to infinitary
derivations. Although possible in principle, in the case of therDle, this will be quite
complicated. Instead we will be satisfied with the soundness condition, which guarantees tht
existence of such a translated derivation.

Consider again the finitary rule application above. Suppose that the corresponding infinitary
inference rule application has the form
s

01|

g

for some I. For each rule, we must show that for evélf §, the infinitary rule instance is
correct, anddS'; O O[S,]. Recall that for a sequent S, [S] = €Y | o" is a ground
simplifying substitution for S}. In other words,=<§Sc"], for some suclo”. Without loss of
generality, we can assume tltis nonredundant for S. For brevity, we will not explicitly
mention the conditions aoi" below.

We will give individual proofs for each rule below. For each rule, the form of the rule and the

corresponding instance of an infinitary rule for an arbit@rywill be shown. In most cases it

will be clear that the infinitary rule instance has a proper form, otherwise this will be proven. It

will also be shown that the set of infinitary rule premises is indeed a subset of the set of
infinitary sequents corresponding to the finitary rule premises.

Axiom
r,a-a ro’l| ao*] - [ao”]

as there are no premises, correctness is immediate.

_() -
r-c,.--r-c, {ro'l-[col|ig..n)
\

[-(Cy,...,Cn) ro'|-(cio’ Dm

3

From the definition of [], it is clear thatl(p*] - [C,c"])O[I - C], for every 1J{1,...,n}.
Thus {[F¢*] - [C;c*] | iID{1,...,n}} O O[T - Gl

0O-
rc-c ro’l/cio’] - [co’]

M(Cpe'C) - C ro’l(cio" ko, ny - [Ca”l

for some i. From the definition of [], it is clear thak ¢['], [C;0"] - [Co™])O[I", G - C], for
every i{1,...,n}.
_|:| -

rc-c ro*l[co’]- o

r-coc ro*] - [Co |./co’]

From the definition of [], it is clear thatl{p”], [Co™] - [C'c"]) O, C- C].

a -

r-c r,c-c [FO*J - {C'o*} [Fo*},[c"o*} - [co*]
rcoc -c ro‘l/co’|-|C'o"] - [co’]

From the definition of [], it is clear thatl(p*] - [C'c"]) [l - C] and that ([¢*],[C"c"] -
[Co*][I, C" - C].

- |'| =
r-cx) {rol-[cio]| iorane)

I -Mx C(x) [FO*} '((Kc(i)o*})iljran(x)

For each of the infinitary premise$,d*] - [C(i))o"], let ;"={X"/i}. Since X" does not occur
inl orC, [o"]-[C()o"] =[TT"a"] - [C(X")1;"0"]. Clearly,T;" 0" is a ground simplifying
substitution forl” - C(X"), sincec” is a ground simplifying substitution for bofthand C, and
T;" is simple. By the definition of [], [[t;" 0] - [C(X")1;" o*])O[- C(X")]. Set inclusion
follows.

rl -
r,C@)-C e’ [cra’] - {C'T*O*}
r.Nx C(x)- C ra'l(C)o* horangy - o]

for some HRAA(x). Let t° be an arbitrary parameter substitution simplifying and
nonredundant for all parameters in t that do not occlir id or C. Then C(fJ*c” is an ground
simple term[=I't" and C= C't", so the premises of the infinitary rule have the proper form.
Clearly, (IF't*o”], [C(D)Tt"0"] - [C't*c”])O[I, C(t)- C]. Set inclusion follows.

-D -
r-Bs |Io'|-Boo’
r-a {Fo*} - lao”]

where (HJ B)OP, o grounds B, and a=t{ thus [@"]=[Hoo"]. By the definition of [],
(Ht]=[Bt])O[P], for all grounding and simple. Clearlycc™ is a grounding and simple
substitution for H and B, thus (Fb*]=[Boc”*])J[P], so ([a@*]=[Boc*])T[P] and
[Boc*]OD(ac™), showing that the infinitary rule has the proper form. Clearlyo{] -
[Boo™])T[I - Ba]. Set inclusion follows.

D -

r BT - CU |T'03 (a,H), (H] B)OP' | (ro’lA-[co’l| AD2{ ac”)

ra-cC ro*|a0’] - [Co’]

...where eachzHa,H) is ground and finite. Take an arbitraryl®([ac*]). Using the
definitions of » and [], we get ([@']=A) O[P], i.e. ([ao"]=A) J[K], for some clause KP.
Thus there exist some’' HB' and a nonredundant grounding simpler H' and B, such that
(H'O B")=K and ([Hp]=[B'p])=([ac*]=A). Since the parameter transform of K is simply a
renaming of variables to parameters, there are H, B and a nonredundant ground singdlifying

for H and B, such that (H B)=K* and ([Ho*]=[Bp*])=([ac*]=A). From this we get
(HO B)OP", [Hp*]=[ac"] and [Bp"]=A.

Consider thap” is nonredundant for H and B. Since H and B may have no parameters in
common withl", a or C, we havE=Ip”, a=" and C=@". Sincep” is simplifying, we have
Hp*=Hp*c" and B*=Bp*c”. By the definition of [], W*=ac™, thus Hb"c"=ap*c”, sop”c”

is a unifier of andH. By the definition of a CSU there is ar”0X"(a,H), such that
p'c"=1"v", for somev”.

Now T, H and B fulfil the condition in the set constructor of the premise of the finitary rule. To
establish set inclusion, we must show tha&to([],A - [Co™])O[lt*,BT" - Ct*]. By the
equalities in the previous paragraphs, this can be rewritten, firsT @ d[], [Bp* o”] -
[Cp*c*]) [T",BT" - Ct7], then to ([T"v*], [BT"L*] - [CT*v*]) [T*,BT" - Ct*]. Sincec”

is ground and simplifying foF and C, ang” is ground and simplifying for By*c"=t"v" is
ground and simplifying fofl", B and C. Thu®” is ground and simplifying forl[t*,Bt" -

Ct*]. By the definition of [], this proves the membership.

Contraction
rcc-c ro*l[co’]co’]- [Co’]
rc-c ro*l[co’] - |Co’

From the definition of [], it is clear thatl(f*], [Co"], [Co”] - [C'a*])O[l, C, C - C]].
Weakening
r-c ro’l- co’]
rc-c [rel/co’]- co”

From the definition of [], it is clear that[(§*] - [C'c"]) [T - C].

Specialisation
r-c rve’]-[cro] (specialisatior
r" -cr’

This rule does not get translated into any inference rule of the infinitary calculus, as the mappin(
of the conclusion is already a subset of the mapping of the premise. From the definition of [],
it is clear that ([t"c”] - [Ct"c™)OI[T - C].

Induction will be covered in the next section.

6. SOUNDNESS OF INDUCTION

The induction schema will be motivated differently from the proper inference rules. Instead of
providing a corresponding finitary inference step, we will show that the induction schema
guarantees the existence of a finitary derivation without the induction, for each term in the se
over which induction is done. The new derivation may itself contain other inductions, but they
can all be removed in the same manner. As in the previous section, we are only interested in tt
variable-free finitary calculus.

To show soundness of induction, we need the following lemma:

LEMMA 6.1 Induction instantiation lemma
Given a derivation in the finitary calculus of the sequent S from the seqyentsg

St S
S

and a ground parameter substitutioh,such that the the membersadam(t*) andPagRM(tD
are all induction parameters of the derivation. Then there is a derivation

* *

Sit RN |
St
PROOF

We will show this by constructing the new derivation inductively. Consider the last step of the
derivation. Assume that there is a translation of the derivations of each of the premises of the
step. The translation of the entire derivation will be a translation of the final step, with all the
translated premise derivations above. Possibly the translation of the final step will have fewel
premises than the original step. The superfluous premise derivations will then simply be
omitted.

We will give a translation of the final step, divided into cases depending on the rule that step is
an instance of. First note that applying the substitufido the premises and conclusion of an
inference step does not change the structure of that step. For the inference rules whos
correctness depends solely on the structure of the premises and conclusions-(@xjom,

-0 , O -, contraction and weakening), i.e. those without side conditions, the translation is
obtained simply by applying® to the conclusion and all premises. The other rules will be
treated individually.

For each of the remaining inference rules, the result of applying the premises and
conclusion will be shown as an inference step. This step will not have the form of a correct
inference rule instance. We will show in each case either that the step can be put in the form of
correct rule instance (i.e. that the premises and conclusions are equal to premises ar
conclusions of the correct form), or we will provide as an explicit translation a correct
subderivation of one or more inference steps, with the same premises (or a subset) and the sa
conclusion.

r* - coxX)r
rt -(Mx cool”

Since x is a bound variablel1k C(x))t"=Mx Ct*(x). As X' must not be an induction
parameter, X=X"1*. Thus we have C({1"= Cr"(X"1*) = Ct"(X"). Applying these
equalities, we get our translation

rt* - Cr'(X")

rt* -Mx Ct'(x)

which is a correct instance of tHa rule. SincePa®M(1") contains only induction parameters,
PARM(I'T") andPagRM(Ct*) contain no non-induction parameters other than thosaim (")
and 2ARM(C). By the side condition on the original inference stepl]Xagm(I') and
X*OPARM(C), Thus XOPARM('T°) and X OPaRM(Ct"), satisfying the side condition on
the translation.

rl -
r,cityt -Ct
r,(Mx cel” - CT°

Now, C(tx*= Ct*(tt") and, since x is a bound variablElx C(x))t*= Mx Ct*(x). Applying
these equalities, we get our translation
r’,Cr(tt)-Ct
r",Ax Ct'(x) - Ct

which is a correct instance of thié - rule. Since BRAN(X) - tT"0RAN(X), the range
condition is fulfilled.
_D -

[T -BoT. (4O B)OP, a=s

M’ -ar

From a=Ho, we get @' =Hot1". Leta'=(aT")\DoM(0). SincePARM(H)=PaRM(B)=0, we
have Hot*=Ho’ andBot*=Ba’. Applying these equalities, we get our translation

rt" - Bo’ A
L TP% (o B)OP, a'=Ho'
' -ar

which is a correct instance of thB rule.

D -
{FO*T*,BO*T* - Co'T | 0*0Z (a,H), (HO B)DP*}
r,a’” - Ct

The translation will be the derivation
fl'o*T*,Bo*T* -Co't

\ rt'p",Bp - Ct'p’
r“,at" - Ct

003 (ar*,H), (HO B)DP*\

/

where eacho” is defined to be some memberXi{a,H), such thato*v*=1"p", for somev*.
SinceX*(a,H) is a CSU, this is well-defined it*p” is a unifier of a and H. It is clear from this
definition that ifa” is well-defined, each premise of the translation is also a premise of the
original instantiated step above.

The last step clearly has the form of an instance of theule. We must show that the side
conditions are fulfilled. First, we must hag@{M(P*)n PagRM(I't*,at* - Ct*)=0. By the
conditions of the induction instantiation lemmaz®M(t*) may contain only induction
parameters. Since the condition of the original rafER2(P") may not contain induction
parametersPARM(P")n ra®M(1*)=0. By the condition on the original rule, we know that
PARM(P) n PARM(I" ,a- C)=0J, thus the condition is satisfied. The condition thanfay
contain no induction parameters carries over from the original step. Since we are dealing witt
the variable-free calculus here, the side conditiondiatD¢ [F ¢ (attd), for all ¢, is trivially
satisfied.

Strictly speaking, we should also show thdts finite. Since the translation will always have a
finite number of premises - which is what really matters for the finitaryness - we dispense with
showing this condition.

We must also show that the step inside the set constructor is an instance of the specialisatic
rule. Take som@" and H1 B, and consider the correspondifg”p*,Bp" - Ct*p”. Since
p*0x*(at*,H), a*p"=Hp”*. By the condition on the original step, there are no induction
parameters inPARM(H) or PaRM(B), so we get H=H' and B=R". Using this, we get
atr'p"=Ht"p", i.e.T"p" is a unifier of a and H. This means tiwtis well-defined. Note that
sincead” is a member of a CSU c*=0"0". Now, T"p*=0*v'=0"c"v'=0"1"p". Applying

these equalities to the step inside the set constructor, we obtain

re"t",Bo’t" - Ca't’

* __ % *

ro't'p’,Bo"t'p’ - Ca't'p
which is indeed an instance of the specialisation rule.
Specialisation

rt*-cr
re"t" -Co’'t’

Let p*=(c”"1")\D0oM(c"). Let X* be an induction parameter. Since there are no induction
parameters inDoM(c*) — and thus not imoM(p*) either, we have Xo*1*) = X'1" =
X*(1"p"). Let Y be an non-induction parameter. SirbeM(t*) contains only induction

parameters, we have'6"1) = Y*'p* = Y*(1"p"). By the substitution equality lemma, we get
o"T'=1"p". Applying this equality to the step above, we get

[t -cr
Ft'p"-Ct'p’

which is a correct instance of the specialisation rule.

I nduction
[iscx 1B A
: (HO B)OT
| ser |
S(XHT"

The translation will be the derivation

fist© s A
: (HO B)OT
| sem f

ST(Y")
S(XHT"

where Y is an arbitrary non-induction parameter such thai®agM(S) and YOPARM(T").

The first step is clearly an instance of the induction schema. Since the parameega/f)
andParM([BL) are not induction parameters of the derivation being translated (possibly they
are induction parameters of the hypothetical derivations occurring as premises to the inductiol
schema), we have H=H1 and C=Q", for every H and C[BO Thus
S(H*=St*(H1")=St"(H) and S(C)*=St”"(Ct")=St"(C), so the hypothetical derivations of

our translation are the translations of the hypothetical derivations of the original induction.

To show that the last step is an instance of the specialisation rufes{&t*/X*1*}. Since Y
is not an induction parameter, we have=Y*t*. Since YO2a8M(S) and YO2ARM(T*), we
have S=%U and §"=St"cl. Now, S*(Y")=St*(Y*1")=S(Y")1" and
S(XHT'=St"(X*1)=St*(Y*0")=St"0"(Y*"0")=St" 0" (Y*170")=S(Y")1"c". Applying these
equalities to the last step, we obtain
S(YH)T
S(Y)t'o"

which is an instance of the specialisation rule.

END OF PROOF. ®

Consider again the inference schema for induction:
[is© 1 @)

| |
\ S(_H) (HO B)OT f

- (induction
S(X7)

To establish the soundness of this schema, we must show that it implies the derivability of al
the infinitary sequents in [S(X. Note that

s = O [s)]

tOran(X)

so if we can show that there exists a finitary derivation without induction of each S(t), where
tODeAT), we are done. We will inductively construct a derivation of S(t) for all ground terms t,
such thaty t and?2aRa(t) contains only induction parameters. By the definitiorDef{T),
tLDeAT) iff -1 t for simple ground t, so it would be enough for us to only consider simple
ground terms. That would not give us sufficiently strong induction hypotheses to carry out the
construction, however, so will will consider general ground terms.

Consider the derivation ef t, where t is some ground term. According to the restrictions on
T, there is no induction in this derivation. Clearly then, the last inference step must be ar
instance of theD rule with some grounding and (HO B")OT, such that t=Hv. Call the
premise of this rule;; C. Due to the restrictions on T, if C is not again a term, it must be a
sequence of conditions orf&condition. In the latter cases, th@ or -I' rule must be used.
Repeating this argument, we find that the derivatiory of must have the form

Thoe T
_T' t
where the;tare precisely the terms iB'oLl

Now, instead of the claus€®B' of T and the variable substitutian) consider the parameter
transform, H1 B, of H B'. Since the parameter transform is simply a renaming of variables
to parameters, there is a nonredundant ground simplifgihdor H and B, such that
Ho* = Ho and B"= B'c. Take the hypothetical derivation of the induction schema,
corresponding to H B. We will have t=H"*. Without loss of generality, we can assume that
¢” is nonredundant for H B. Since PAR%M(HUO B) contains only induction parameters, so
will DoM(c™). SincePaRM(t) contains only induction parameters, so WwHlRM(c”*), and the
induction instantiation lemma is applicable. Applyiogto the hypothetical derivation, we
obtain part of a derivation of S(t):

S(t) - S(h)
S(t)

where the S(} are precisely the sequents of {S(@QUB'clj. Repeating this argument
inductively, we obtain derivations of each;B®utting these derivations together, we obtain a
complete derivation of S(t), without the induction. As the derivatio dhas a finite number

of steps, this procedure will terminate.

EXAMPLE 6.2

Consider the derivation of example 4.3. Taking t above to be a.b.nil, we will show that a
derivation of append(a.b.nil,nil,a.b.nil) can be obtained by substituting in the hypothetical
derivations of the induction. The parameter transform, LI8Tthe definition of lists is :

nil O
U .L* O L*

We show- st a.b.nil using the following derivation:

— (-P)
- (-P)
-b.nil
o7

The first step uses the first clause of the definition, with the corresponding parameter
substitutiona® beingd. The middle step uses the second clause of the definition, with the
parameter substitution” being {U'/b, L*/nil}.The last step again uses the second clause of the
definition, with the parameter substitutioA being {U'/a, L"/b.nil}.

The hypothetical derivations of example 4.3 were
-P) and - apper:d(lz,ml,L*) *
- append(nil,nil,nil) -append(U.L",nil,U".L")

(-P)

Applying each of the"s to the hypothetical derivation corresponding to the clause in question,
we obtain the following three derivations

: - append(nil,nil,nil) _p - append(b.nil,nil,b.nil)
- append(nil,nil,nil) - append(b.nil,nil,b.nil) —append(a.b.niI,niI,a.b.niIS

It is easy to see that they can be combined to give a derivation of append(a.b.nil,nil,a.b.nil), a
required. ®

We have proved that there exists a finitary derivation of S(t), where the final induction schema
has been removed, however the hypothetical derivations of that induction may themselve:
contain inductions which will have been incorporated in the constructed derivation. Each of
these inductions may be removed in the same manner, but we need some proof that th
procedure terminates.

We will define thedepth of nested inductions as follows. For a derivation, the depth of
nested inductions is the maximum of the depth of nested inductions of any inductions in tha
derivation. For an induction schema instance, the depth of nested inductions is one more the
the maximum depth of nested inductions of its hypothetical derivations.

Since the constructed derivation of S(t) is finitary, it contains a finite number of inductions.

Each of these must have a depth of nested inductions that is less than the original induction. E
repeating the procedure above a finite number of times, these inductions can also be removin
possibly leaving inductions with still lower depth. Eventually the depth of nested inductions

will be reduced to zero, meaning that no inductions remain. This completes the proof of the
soundness of induction.

7. SOUNDNESS OF THE FINITARY CALCULUS WITH
VARIABLES

So far, we have concerned ourselves only with complete, unchanging, derivations. However
the most common applications of formal proof systems in computer science deal with the
construction of derivations. From a completely manual proof editing system, to a fully
automatic theorem prover such as a Prolog implementation, the main concern is incrementall
adding steps to a derivation.

Such proof constructions are usually done in a goal-directed fashion, starting with the sequer
to be proved and applying inference rules in reverse until a complete proof has been founc
When using the rules in this way, decisions must sometimes be made on which particular ruls
instance to use. This is most clear with fhe rule, where thél-bound variable is replaced

with some arbitrary term. It does not matter tofherule which term is chosen, but for steps
being made later, a particular choice of term may be essential. The same situation may arise wi
the-D rule. The usual solution to this problem is to introduce placeholders, logical variables
that are introduced instead of the arbitrary term and later substituted for the appropriate term &
required.

For this purpose, we have the version of the finitary calculus where variables are permitted ir
derivations. Each such variable will represent an undetermined term and can be substituted (i
the entire derivation) for some nonvariable term when necessary for the application of ar
inference rule.

A derivation with variables should be regarded as representing a set of potential derivations ii
the variable-free (and thus the infinitary) calculus. This should be constrasted to the use o
parameters, which are intended to represent a setudl - not potential - derivations. If every

variable in the derivation is substituted by a ground term, only one potential derivation remains.

For the calculus with variables to be meaningfaktantiation, i.e. the application of a

variable substitution, must be a sound operation. Soundness in this context means that the res
of applying a variable substitution to a derivation must result in another correct derivation.
Putting it another way, the set of derivations must be closed under instantiation. It turns out tha

we cannot permit arbitrary substitutions, but a simple restriction must be applied. After defining
this restriction, we prove that the set of derivations are closed under instantiation.

We call an inference step such that a parametenc€urs in some premise, but not in the
conclusion, aneliminating step for X*. An instance of the specialisation rule is also
considered an eliminating step for every parametapdn(c), wherectis the specialising
substitution. If a variable Y occurs in the conclusion of a step eliminating X said to
predate X*. Consider a substitutio® If, for any Y, there is some ™ XI?a8M(Y 8) such that
X* is predated by Y, we say th@tis aninadmissible instantiation, otherwise® is
admissible.

EXAMPLE 7.1
Consider the derivation

q(Y,B) -p(X)* M-
Mb a(v.b)-p(X) "
Mb q(Y,b)-Mx p(x)

Here Y predates X but B does not predat€ XThe substitution {B/X} is admissible, while
the substitution {Y/X} is inadmissible. ®

EXAMPLE 7.2
The following example shows why the admissibility condition is important. Consider again the
definition FOL and the derivation

-X=Y"

Ty Xy |)

ey P

-IxOy x=y

If we applied the substitution {X/¥} to this derivation, the first sequent would become
-Y*=Y*, which would hold by theD rule using the clause defining equality. However, this
would produce an invalid derivation, since the side condition orlthetep that ¥ must not
occur in the conclusion of the step would no longer be fulfilled (which is fortunate, since the
conclusion of the derivation is wrong!). Since X predatés that substitution would be
inadmissible and the incorrect derivation could not be obtained. ®

In section 8, we will discuss the question of how to compute admissible substitutions.
As instantiation of variables is a similar operation to the instantiation of parameters, done in the
proof of the parameter instantiation lemma, this proof will have a similar structure as the proof

of that lemma.

Given a derivation in the finite calculus with variables of the sequent S from the sequents

Sp S

STRPRIH
E
and a substitutior@. If 8 is an admissible instantiation, then there is a derivation
S0 - S0
se
with the same steps as the original one. We will prove this by showing, for each inference rule
either that a rule instance remains correct when variables are substituted, or at least that tt

conclusion of the step remains derivable from the premises of the step using some sma
derivation.

For the inference rules whose correctness depends solely on the structure of the premises a
conclusions (axioms() () -, -0 , O -, contraction and weakening), i.e. those without side
conditions, is is obvious that the instantiated step will be correct. For each of the remaining
inference rules, the result of applyifgo the premises and conclusion will be shown as an
inference step. This step will not be in the form of an inference rule of the finitary calculus. We
will show in each case either that the step can be put in the form of a correct rule instance (i.¢
that the premises and conclusions are equal to premises and conclusions of the correct form)
we will provide as an explicit translation a correct subderivation of one or more inference steps
with the same premises (or a subset) and the same conclusion.

|| -
re - c(x")e
re-(nMx cx)e

Since x is a bound variabld]x C(x))0=Nx CO(x). As X' is a parameter, %xX*0. Thus we
have C(X)6= CO(X"0) = CO(X"). Applying these equalities, we get

e - Co(Xx")
e -Mx CH(x)

which is a correct instance of thEl rule. According to the side condition on the original
inference step, XJ2ARM(I") and X OPakM(C). Sinceb is an admissible substitution, it
follows that X OPagm(I0) and X OPagM(CO), fulfilling the side condition of the
instantiated inference step.

|_| -
re,C(1)-C'o
re,(Mx c(x)e - Co

Now, C(tP= CO(t8) and, since x is a bound variablBlx(C(x))0=Ix CO(x). Applying these
equalities, we get

re,Co(te) - Co
re,Mnx Co(x) - CO

which is a correct instance of thé - rule. Since IRAN(X) - tOORAN(X), the range
condition is fulfilled.
_D -

[6-Bo8 (4o B)OP, a=tb

re-ab

From a=Hb, we get 8=Ho0. Using this as the side condition of the step
[8-Bo® (1o B)OP, #H=Hao
re-a
we see that it is a correct instance ofbeaule.

D -

[ro"6,80°0 - Ca™0 | 0”03 (a,H), (HJ B)OP')

re,a0 - Co

The translation will be the derivation
fro*e,Bo*G -Co’0

\ Fep*,Bp” - COp”
6,a0 - CO

p’ 02 (a8,H), (HO B)DP*\

/

where the Bandc” of every premise are as defined below, and the inner inference is
specialisation.

The last step clearly has the form of an instance of theule. We must show that the side
conditions are fulfilled. First, we must show thARM(P*)n PARM(I 6,80 - CO)=01. Since

by the condition on the original rul@agm(P*)n rarM(I" ,a- C)=0, it suffices to show that
PARM(P) n PARM(0)=0. As 0 is an admissible substitutio®aRM(P*)n PARM(6) can not
contain any parameters that are among the parameters of some premise, but not already
PARM(I, a- C). ShouldPaRM(P*)n PARM(B) contain any parameter irf Ehat is not in a
premise, that parameter could simply be renamed to Bvoid the conflict. The condition that
P*may contain no induction parameters carries over from the original step.

From the side condition that (a)p [" (ad), for all ¢, we have, in particulag”™(a)0t (-
C'(ab1). Note that the particular parameters occurring”i(a)e and " (ab) depend on the
parameters in P As the parameters i Ban be renamed arbitrarily, we can choose them so
that lemma 3.6 is applicable. Then, frafifa)p (- " (ad), with the presen), we getc (a)ot

[F ¢*(aB)t. By combining[Itrelations, we get”(aB)t [F ¢"(abt), for all T, which is the
remaining side condition for the last step.

Strictly speaking, we should also show tpéats finite. Since the translation will always have a
finite number of premises - which is what really matters for the finitaryness - we dispense with
showing this condition.

Having confirmed the side conditions of the last step, we must show that the step inside the st
constructor is an instance of the specialisation rule. From the condifm@ [¢"(af), for all
0, we obtainc*(a)p =U ¢*(ab). Applying the definitions of* and¢", we get

O(HO B)OP" Op* 0% (a8,H) C(H'D B')OP" To™ 0% (a,H) V" (HO B)p"=(H'0 B')o™Ov*

For every premise of the last step of the translation, we haueB)HPY and ap"J>Haf,H).
Thus we find that there are somée [(HB')JP- andcxHa,H'), i.e. there is a corresponding
premise of the original step. Furthermore, there is som€ such that
(HO B)pt=(H'0 B")atBu. Splitting this equality in two, we getd4=H'ctBuU and
Bpt=B'cBut FrompHIzHab,H) ando"J>Ha,H'), we have @pt=Hp and @=H'cC.
From the latter equality, we can conclude-&=H'ctBu-. Combining these equalities, we
obtain ®pt=actBull If we could also show thdtBpt=I ctBu and @p=CcBut then
applying the latter three equalities and the equal@y=B’'cBul above to the inner inference
steps of the translation we would get

ro"6,Bo"6-Cao’'0
ro*"ev',Bo"6v" - Ca™ov”

which is indeed an instance of the specialisation rule. So, we have to shoWwghkeiotour

and Mp=CotButl By the substitution equality axiom, these equalities would follo®pif

and ctBut were equal on the variables and parameterf aind C. Now, again by the
substitution equality axiom, we already know tb@lf ando™Bu are equal on the variables and
parameters of a. By the side conditions above, we knowv thatl C can have no parameters in
common with P. Thus we only need to consider parameters and variables that are neither in ¢
nor P. We will start with the variable case:

Suppose X is a variable neither iff Bthis is trivial) nor a. We immediately have
XaotBu=X0ul so it suffices to show pL=X0uE Again using the substitution equality
axiom, this holds if Xpt=X*"ut for all X"O2agrM(X6). We will return to this below. Note
that sinced is admissible, XOPARM(P").

Suppose that Xis a parameter neither in" Por a. We have p=X"pt. Sincec” is
nonredundant for a and 'Hand every parameter in'Hs also in P, we have
X*olButEX"BuEX Ll so it suffices to show X=XV

Both the variable and parameter cases require that we showX uC The only restriction
on X' common to both cases is thattragm(P"), except for this X can be an arbitrary
parameter. We will have two cases, namely tHalXaga(ab) and X OPagM(ab).

First, assume that XIPaKkM(ab), then there is somelY’a®(a), such that XOPaRM(Y 6).

By the equality @pt=actBul above, and the substitution equality axiom, we have
Y 0pt=Y olBul Furthermore, ¥BLL=YBUE so YBpL=YBOUL. Again by the substitution
equality axiom, this implies that"g-=X"uC, completing the proof of the first case.

Secondly, assume that"X?agM(aB). Sincept is nonredundant foréaand H, we have
X*pt=X". By the definition of<*, ulis nonredundant forGaand (HJ B)otB. If we could
show that XOPagrm((HO B)otB), we would have ¥ t=X*. Combining these equalities, we
would obtain XpteX*ut

We will show XO?PagmM((HO B)obB) by contradiction. Assume that
X*OPaRM((HO B)ot®). Then there must be some' YPagxmM(HO B), such that
X*OPagM(Y *oB). Since XOPARM(P") implies X OPagM(HO B), X" and Y must be
different, consequently it must be the case thai ¥oa(cD. Now, we must have one, or
both, of the following situations:

(1) X'Oearm(Y*ob
(2) For some Y194%(Y*cD), X*OPARM(Y 6)

In the first situation, since” belongs to a CSUof a and M by note 3.7 we can assume that
all parameters Z1ragm(cD) that are different from the parameters of andde also different
from any other given parameter. In particular we can assume fi¥ad*Xleading to a
contradiction.

In the second situation, sinc& belongs to a CSUof a and M by note 3.7 we can assume
that if Y is different from the variables of a and Hhen it is also different from any other given
variable. In particular we can assume that?Yoa(6). But in that case, we could not have
X*Oearm(Y 8), so the only remaining possibility (since id ground) is that YI7/a%(a).
Thus we would have XIPagM(aB), but this contradicts the main assumption of the second
case above.

We have shown that assuming XeagrM((HO B)otB) leads to a contradiction, so
X*OParM((HO B)otB) must hold, completing the second case and the proof for thelb.

Specialisation
re -ce
rc"@-Cco’o

Define p*=(c"0)\DoM(cD). Let X be some variable inak(I")0v4%K(C). Since?d is
admissible, no parameter imaRM(X0), can be eliminated in the original step. Using the
definition of an eliminating step, we find that! is nonredundant for parameters being
eliminated. Thus we have@X6acl consequently B=X0pL Sincec” is a parameter
substitution, we have X6 = X0 = X0p*. Let Y* be some parameter. Sin@es a variable
substitution, we have "6"6 = Y*p* = Y*0p". By the substitution equality axiom, we have
Fro*0=rep* and @"6=COp. Applying this equality to the step above, we get

re-cCe
rep” - Cop”

which is a correct instance of the specialisation rule.

I nduction

[iscp|cus) A
: (HO B)OT /

\ S(H)G

S(X")8

We have S(X)0=S0(X"0)=S0(X") Since H andBare ground by definition, we have H8H
and C=@®, for every H and d[B0O Thus S(Hp=SO6(HBO)=S6(H) and
S(CP=SB(CO)=SB(C), applying these equalities, we get:

[isecc) | g A
; (HO B)OT f

| so

SB(XY)

which is indeed an instance of the induction schema .

8. PROCEDURAL ASPECTS OF THE CALCULUS WITH
VARIABLES

As the calculus with variables is intended to facilitate the construction of proofs, it is intimately
connected with operational aspects such as proof construction. We will define operational rule:
suitable for constructing a derivation is the most general fashion. Together with a searct
strategy, these operational rules can be used to define a proof procedure for the finitar
calculus. We will not present any particular techniques for implementing these rules.

It should be noted that results presented in this section are essentially generalisations to tt
finitary calculus of previous work on logic programming languages based on partial inductive
definitions [4,5,13,14,18]. While adaptions of these results to our finitary calculus have made
and included for completeness, it would go outside the scope of the present work to find
completely new results about the operational aspects. Unfortunately, this means that som
aspects (particularly that of computing a-sufficient substitutions below) will have to be left to

future work.

Let us consider the general way of developing - manually or automatically - a proof in a goal-
directed fashion. We will start will the sequent (goal) to be proved. Some inference rule is ther
chosen to derive that sequent. We must chose what particular instance of that inference rule
use, and possibly instantiate the derivation to make the chosen rule applicable. In general, tr
inference rule has a number of premise sequents (subgoals) that must in their turn be prove
This procedure is repeated with one of the premises, until a derivation without premises is

found. The proof is then completed. Thus at any stage, the proof under development will
consist of a derivation with the sequent to be proved as endsequent, and some number
unproved premises.

Formalising slightly, we can break down the procedure into a number of steps:

1) Choose one of the subgoals.

2) Choose an inference rule for proving the subgoal.

3) Choose the particular term the inference rule will operate on.

4) Apply a variable substitution to the derivation to make the rule applicable.
5) Choose the patrticular instance of the inference rule.

6) Add the new inference step to the derivation.

7) Repeat.

Steps 1 - 3 are essentially search problems. The choices made in these steps are determinec
the search strategy of an automatic theorem prover system, or the intuition of the user in case
manual proof development. Although the problem of automatic theorem proving in the theory of
partial inductive definitions is certainly an interesting one, we will not investigate it in the
present article.

Steps 4 - 5 are partly search problems. If, for instance theule was chosen and several
clauses are applicable, it is a search problem which of these to choose. However, some of tt
choices of steps 4 - 5 can be made in a most general manner, in other cases we can show t
some choices are definitely not general and need not be considered. For each inference rule, \
will define an operational rule, that will perform steps 4 - 6.

Each operational rule will consist of four parts, the conclusion of the rule, the premises, any
side conditions, and the substituti®nto be applied to the entire derivation. If the conclusion

of an operational rule instance is a subgoal of the derivation being developed and the sid
conditions are fulfilled, the rule is applied by instantiating the derivation using the substitution
and adding the basic inference rule corresponding to the operational rule with the giver
premises. For each operational rule, we must show its correctness, i.e. that the inference st
added in this way is a valid inference step.

A requirement common to all operational rules is that the substiitoust be admissible. We
will return to the question of how to ensure this.

In many of the operational rules we make use of the definition P, or its parameter trarisform P
In order to satisfy the assumptions of notes 3.9, each time P)(@ #sed, all variables (or
parameters) must be renamed to be different from all other variable (or parameter) names ust¢
so far in the derivation construction process. Likewise, in order to satisfy the assumptions o
note 3.7, every time a CSU(of two terms is constructed, all variables and parameters in that
CSU(), that do not already occur in the two terms being unified, must be different from all
variables and parameters used so far in the derivation construction process. (Strictly speakin
the way notes 3.7 and 3.9 are used, it suffices if new parameters are different from all inductiol
parameters at the particular point of the derivation, and from all parameters in the conclusion o
the derivation step being introduced.)

Considering the inference rules, we can see that the applicability of-th¢] , and-() rules
depend only on the structure of the conclusion. If steps 1 - 3 above choose one of these rule
with a sequent of the correct form, that rule will be immediately applicable without any further
choices and without having to make any instantiation of the proof. Neither do these rules hav
any side conditions that have to be verified. Recall that instantiating a proof eliminates potentia
derivations, so we do not want to make any unnecessary instantiations. For the,rthe ()
situation is similar. A choice has to be made as to which term in the sequence to use, howevt
this is again a search problem. For these four rules, then, the operational rule will be the sarr
as the basic inference rule with an empty substitution

The contraction rule is necessary in some derivations, but should not be used freely. As is th
case with using contraction in theorem proving for logic, the present contraction rule should be
used in a controlled way together with certain other rufes,(d -, () - and D-). The best

way of handling contraction would be to combine it with those rules. How this is done,
however, is a nontrivial strategy problem that we will not consider here. Instead we will have
the operational contraction rule as a separate rule. Just as for the rules considered in tt
previous paragraph, the operational rule for contraction will be the same as the basic inferenc
rule with an empty substitution.

The weakening and specialisation rules are only necessary in conjunction with induction
hypotheses. For this purpose, we define a special "hypothesis" operational rule. Shoulc
operational rules for pure weakening or specialisation be required, they are simple to define.

The remaining inference steps will be treated individually. We will state the operational rule and
verify that it is correct. By "the derivation”, we will mean the derivation developed so far when
the operational rule is applied.

Axiom
Ma-b 00Z(a,b) (axiom’

By applying®6 to the derivation, the sequent will get the fdrfhab - bb. Since 8=h0, this is

a correct instance of the axiom rule. Here there is a choice as to which particular unifier of the
CSU to take a®. However, there is clearly no need to consider unifiers other than those of
some arbitrary CSU of a and b.

_|'| -
r-C(X")
M -Mx C(x)

6=0 (-n)

where X is an arbitrary parameter that does not occur anywhere
in the derivation or the program
and RAN(X) = RAN(X™).

This choice of X clearly satisfies all side conditions of tHe rule.

n -

r,C(X)-C
r,Nx C(x)- C

6=0 (rn-)

where X is an arbitrary variable that does not occur anywhere in the
derivation

and RAN(X)=RAN(X).

This choice of X clearly satisfies all side conditions of[therule. The basic rule permits an
arbitrary term in the range of x, instead of X. However, as X can be instantiated to an arbitrary
term later in the procedure, choosing a variable is the most general choice.

-D -

re-Be 800 (a,H), for some (H B)LP (-D)
-a

After applying the substitution, the conclusion will have the fofin @0. This sequent clearly
fulfils the side condition of the basic rule if we take thef the side condition to be the current

8, asBll2(a,H) implies 8=HO. The requirement that eveBj1>(a,H) is nonredundant for a

and H means that no variables except those in a and H are instantiated. In particular, n
variables in B will be instantiated unless they are already in H. In the formulation of the basic
-D rule, the substitutiow could instantiate such variables also. As these variables can be
instantiated in later steps, if need be, not instantiating them here, is the most general choice.

When using this rule, we must still choose the particular clause to apply if more than one is
possible, and the particular unifier from the CSU. However, we have clearly no need to
consider unifiers other than those of an arbitrary CSU of a and H.

D -
[reo”,Bo" - COG™ | 0”03 (a8,H), (HD) B)OIP')
MNna-c=C

0 given below (D -)

0 will be computed by an algorithm producing a-sufficient substitutions (defined later in this
section). This will ensure that the side condition i) (- (aB¢), for all ¢, is fulfilled,

as that is precisely the requirement on a-sufficient substitutions. After applying the substitution,
the conclusion will have the foring,ad - CO. Thus the step will be a correct instance of the
basic D- rule.

The precautions described above to satisfy the assumptions of note 3.9 will also ensure tF
validity of the side conditions thata®M(P")n PARM(I" ,a0 - C)=00 and thatPa®M(P") must

not contain any induction parameters. Since we are dealing with an operational rule here, we d
not need to verify the side condition that e&clfad,H) is finite. If somezHaf,H) was
infinite, computation of the premises of the rule would not terminate, so an incorrect derivation
would never be constructed!

Hypothesis

i =0 (specialisatior
e (weakening

The hypothesis rule is only used in conjunction with induction and adds one specialisation anc
one weakening step (both possibly trivial) to the derivation. An induction hypotfies@

and a parameter substitutioi should be chosen such tiastdrr, C=Caot, andpom(cD

does not contain any induction parameters. SiriceC' is an induction hypothesis, this step
does not introduce any premises that need to be proved.

I nduction
[is© 1)

| |
\ S(_H) (HO BT f

0=0 (induction

S(X)

The the definition Tto do induction over, and the induction parametér,skiould be chosen
such that the side conditiomn(X"*)=2ef(T) is fulfilled. The precautions described above to
satisfy the assumptions of note 3.9 will also ensure that these remaining side conditions
PARM(H) N PARM(S)=1 andPaRM(H) n rARM([BD=L1, for every H andB[] hold.

EXAMPLE 8.1
We construct a derivation of the sequéht p(x) - p(c). In the first step, thB - rule is
applied, giving:
p(X) -p(c)
Mx p(x) -p(c)
In the next step, the axiom rule is applied. A unifying substitution of p(X) and p(c) is {X/c},
giving:

—— (Axiom)
P -P)

Mx p(x) -p(c)

EXAMPLE 8.2
Given the following definition of the append relation:

append(nil,X,X)
append(X.A,B,X.C)J append(A,B,C)

we construct a derivation of the sequenappend(a.b.nil,c.nil,L), expressing the statement
that some L is result of appending together the lists a.b.nil and c.nil. During construction of the
proof, L will be instantiated to some term with this property. In the first step;,0hele is
applied, with the substitution {X/a, A/b.nil, B/c.nil, L/a.C} giving:

-append(b.nil,c.nil,C) _p
—append(a.b.niI,c.niI,a.CS

In the next step, theD rule is again applied. To satisfy the requirements of note 3.9, the
variables in the definition will be renamed by addirigaéier their names. The substitution will
be {X'/b, A'/nil, B'/c.nil, C/b.C} giving:

-append(nil,c.nil,C") -P)
-append(b.nil,c.nil,b.C") -P)
-append(a.b.nil,c.nil,a.b.C’

In the next and final step, thB rule is again applied. To satisfy the requirements of note 3.9,
the variables in the definition will be renamed by addifigatier their names. The substitution
will be {X'/c.nil, C/c.nil} giving:

—— (-P)
-append(nil,c.nil,c.nil) _p
-append(b.nil,c.nil,b.c.nil)

—append(a.b.niI,c.niI,a.b.c.niIS

A-sufficient substitutions

The operational D rule presents a particular problem, in that a substit@iomust be chosen,
such that the side conditiari(af)¢ [F ¢*(aBd) holds. We have the following definition:

DEFINITION 8.3 (a-sufficient substitutions)
A variable substitutio® is calleda-sufficient iff ¢"(aB)¢ [F " (abd) holds. ®

The requirement of a-sufficiency is to ensure that an instance of theul2 remains valid

even after variables occurring in the rule instance have been instantiated. Computing an ¢
sufficient substitution is a formidable problem. In fact, there is the double problem of finding an
efficient algorithm to enumerate a-sufficient substitutions, while avoiding redundant ones. An
a-sufficient substitution can be "redundant” in approximately the same sense that a unifier it
"not most general” . Suppose that using the two a-sufficient substitétiansl0” gives D-

rule instances with the sets of premisearl 3, respectively. If &*S", 8" can be considered
redundant in relation t@'. Intuitively, this means that usif®j we have to prove both the same
premises as if we u€®, and also additional ones.

Hallnds and Schroeder-Heister [14] introduced the concept of a-sufficient substitutions in
connection with a much restricted finitary calculus with inference rules similar to ours (see
section 9). Their formulation of a-sufficient substitutions is different from ours, but it is not
difficult to show that for finitary definitions and derivations that can be expressed in both our
finitary calculus and the one from their work, the two formulations coincide. Algorithms to

compute a-sufficient substitutions are given in [14] and in [18]. As of this writing, our work
has not progressed far enough to give an algorithm for the computation of a-sufficient
substitutions in the more general case of our finitary calculus. We will just note that such an
algorithm could probably be developed using the algorithms from [14] or [18] as a starting
point.

There are, however, some special cases which obviously satisfies the requirement of an «
sufficient substitution. In particular, every substitution that is grounding for a will be an a-
sufficient substitution, since in that case applying the substit@itigii have no effect.

EXAMPLE 8.4
Given the following definition of th& relation on natural numbers

0<X0U
s(X)<ss(Y)O X<Y

we construct a derivation of the sequerd(0)< X [0 [, expressing the statement that some X

is not greater than or equal to one. During construction of the proof, X will be instantiated to
some number with this property. We assume that all variables range over the natural numbel
expressed using the constant 0 (zero) and the successor function s. In the first steputbe

is applied, giving:

s(OX -0
——— (-0

-s(0xX0O O t0)

In the next step, the B rule is applied. Some s@X-sufficient substitution must be
computed. It is easy to see that {X/0} is such a substitution, as applying it £Xstlises
that term to be ground. As the Drule will have no premises with this substitution, the
derivation is completed with X being instantiated to 0.

(P-)

s(0)<0-0 0)

“s(0x00 O

Ensuring admissibility

The substitution® being computed by the operational rules are used to instantiate the entire
derivation, which requires them to be admissible. Since edésycomputed as a unifier, it
should be most convenient to include this check in the unification algorithm. The obvious way
of ensuring that ever@ is admissible would be to maintain the predating relation between
variables and parameters. Whenever an attempt is made to construct a binding {X/t}, a chec
could be made to see if X predates any parameter of t. In that case, the binding would b
inadmissible. The problem with this approach is that the relation needs to be updated whenevt
a variable is bound, since this may cause new variables to predate some parameter.

EXAMPLE 85

Suppose that X predates, Dut Y does not. Now, if f(Y) is substituted for X, then Y will also
predate Z. If a predating relation is kept, when binding X to f(Y), the relation should be
updated so that Y predates the same parameters as does X (in addition to any variables that
predated initially). ®

Maintaining explicit predating relations in this way is cumbersome and not very elegant.
However, we can do better. The admissibility problem is closely related to a problem occurring
in logic program execution when explicit quantifiers are present. Consider how a Prolog
extension with explicit quantification would attempt to execute the [@gaX=y. Since free
variables in goals are existentially quantified, this goal is equivalent to the forixiljax=y.

In our calculus, as we saw in example 7.2, the admissibility condition prevents this formula
from being proven.

The languag@Prolog [22] would solve this goal by generating the geal X=f(X), where f

is a Skolem function. Clearly, this equality cannot be solved. The langyd486]l-developed

from AProlog, takes a different approach.would first generate the new goal X=c, where c

is a new constant. Normally, the goal X=c could be solved by binding X to c. In this case,
however, that would be unsound. The unification algorithm,afkintains its soundness by
using information about quantifier ordering to prevent such unsound bindings from being
made.

It is easy to see that the universal quantification of y inside the scope of the existential
quantification of x is completely analogous to the predating of the paraniebgrtife variable

X, in example 7.2. In general, the relation "the variable y is universally quantified inside the
scope of the existentially quantified variable x" corresponds exactly to the relation "X predates
Y™, In [21], Miller describes a generalisation of the method used ,hytd_do general
unification of arbitrary higher-order terms with these constraints. This method could be used in
our calculus, provided that the term theory used is the same as that iA{&tin§ witha3n-
convertibility as equality.)

9. RELATED WORK

As mentioned in the introduction, there are two main alternative finite formulations of the theory
of partial inductive definitions. The most important one is the work by Hallnas and Schroeder-
Heister [13,14]. Although there is no formal connection between that work and the theory of
partial inductive definitions there is an obvious relation and it is clear that the system D(P) of
Hallnds and Schroeder-Heister is a essentially a true subset of our finitary calculus with
variables, using a first-order term theory with identity as equality. Likewise, their system LD(P)
is - apart from some superficial differences in organising the derivation and the instantiating
substitution - essentially a true subset of our procedural system from section 8. The GCLA
programming language [4,5] is a computer implementation of the system LD(P).

The important difference between D(P) / LD(P) and our systems is the lack of parameters an
the consequent lack of everything that depends on parameters. In particular, there is n
induction and ndl-condition. The lack of parameters implies that the le is formulated
without the parameter transformi.RAlso, the D- rule cannot be used with clauses where the

body contains a variable that does not occur in the head, as such variables would unavoidab
require a parameter in the premise corresponding to that clause.

In [15], Hanschke presents another limited finitary calculus. That system is similar to the D(P) /
LD(P) systems, extended withand[conditions, ouf1 condition, and with a new condition
using az-operator -x C(x). There is nell rule in Hanschke’s system, and asftherule

does not require parameters, that extension is straightforward. The intentiorzafdhdition

is to go around the restriction shared with D(P) / LD(P) that clauses used witainot have

a variable in the body that does not also occur in the head. If all such variables are bound usir
the Z-operator, the clause can be used with therllle. TheZz-conditions will then appear in

the premise of that rule. In a seng&epecomes the dual dl1. To handlex-conditions,
Hanschke defines&- rule. A sound formulation of such a rule would be

rCcx)-cC
,>x C(x)- C

(Z-)

Where XOPARM(I), X*OPARM(C) and XOPagRM(C')

As his system does not have parameters, a Skolem constant is used instead of the pdrameter
In the general case this leads to inconsistencies (a Skolem constant cannot be substituted 1
something else in the Prule, as a parameter can), but in the particular case for which his
system is used, his formulation is acceptable. (The actual rule given in [15] contains an implicit
contraction, but that is a trivial difference.)

10. REFERENCES

[1] Aczel, PeterAn Introduction to Inductive Definitionsn: Handbook of Mathematical
Logic (Barwise, J., ed.), North-Holland, Amsterdam 1977.

[2] Aronsson, Martin STRIPS-Like Planning Using GCLBICS research report R89009,
Swedish Institute of Computer Science, 1989.

[3] Aronsson, Martin, A Definitional Approach to the Combination of Functional and
Relational ProgrammingSICS research report R91:10, Swedish Institute of Computer
Science, 1991.

[4] Aronsson, M., Eriksson, L.-H., Garedal, A., Hallnds, L. and Olin,T Pe
Programming Language GCLA - A Definitional Approach to Logic ProgramniNegv
Generation Computing, vol. 7 no. 4 (1990), pp. 381-404.

[5] Aronsson, M., Eriksson L.-H., Hallnas, L. and Kreuger, R..Survey of GCLA: A
Definitional Approach to Logic Programmintn: P. Schroeder-Heister (edExtensions
of Logic Programming Springer Lecture Notes in Computer Science 475, 1991

[6] Eriksson, Lars-HenrikPi Users Manual (Preliminary)nternal note, Swedish Institute
of Computer Science, 1991.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Eriksson, Lars-Henrik and Hallnas, Lais,Programming Calculus Based on Partial
Inductive Definitions SICS research report R88013, Swedish Institute of Computer
Science, 1988.

Fredholm, DanielOn Function Definitions, ILicentiate thesis, Department of Computer
Sciences, Chalmers University of Technology, Gothenburg, 1990.

Fredholm, Daniel and Serafimovski, SvetozRartial Inductive Definitions as Type-
Systems forA-Terms to appear in BIT, (also published in Dybjer et.al. (eds),
Proceedings on the Workshop on Programming Lagigort PMG-R54, Department of
Computer Sciences, Chalmers University of Technology, Gothenburg, 1989).

Hallnds, LarsA Note on Non-Monotonic Reasonimg. Brown, F.M. (ed.The Frame
Problem in Artificial Intelligence Proceedings of the 1987 Workshop, Morgan
Kaufmann, Los Altos, 1987.

Halln&s, LarsPartial Inductive DefinitionsTheoretical Computer Science, vol. 87, no. 1
(1991).

Halln&s, Lars and Nordstrom, Bengt,Definitional View of Functional Programming

In: Dybjer et.al. (eds.),Proceedings on the Workshop on Programming Lagiport
PMG-R54, Department of Computer Sciences, Chalmers University of Technology,
Gothenburg, 1989

Hallnas, Lars and Schroeder-Heister, PefeRroof-Theoretical Approach to Logic
Programming, Part,|Journal of Logic and Computation, vol. 1, no. 2 (1990).

Hallnas, Lars and Schroeder-Heister, PefeRroof-Theoretical Approach to Logic
Programming, Part Il Journal of Logic and Computation, vol. 1, no. 5 (1991).

Hanschke, PhilippTerminological Reasoning and Partial Inductive Definitiptigs
volume.

Huet, G.P.,A Unification Algorithm for Typed-calculus Theoretical Computer
Science, 1 (1975), pp. 27-57.

Huet, G.P.Unification en théorie des typeSéminaire IRIA Théorie des Automates, des
languages et de la programmation, 1973.

Kreuger, PerGCLA 1l - A Definitional Approach to Contrathis volume.
Lassez, J.-L., Maher, M.J. and Marriott, K.@nification RevisitedIn: Minker, J.

(ed.),Foundations of Deductive Databases and Logic ProgramnMioggan Kaufmann,
Los Altos, 1988.

[20]

[21]

[22]

[23]

[24]

Miller, Dale, A Logic Programming Language with Lambda-Abstraction, Function
Variables, and Simple Unificatipdournal of Logic and Computation vol.1, no. 4
(1991).

Miller, Dale, Unification Under a Mixed Prefixto appear in Journal of Symbolic
Computation. Also published as report MS-CIS-91-81, Dept. of Computer and
Information Science, University of Pennsylvania, 1991.

Nadathur, Gopalan and Miller, Dal&n Overview ofAProlog, Fifth International
Conference of Logic Programming, MIT Press, pp 810-827.

Palamidessi, Catuscialgebraic Properties of Idempotent Substitutiohschnical report
TR-33/89, Dipartimento di informatica, Universita di Pisa, 1989.

Palmkvist, Johanimplementation of a Planning System Using GC8ICS technical
report T89018, Swedish Institute of Computer Science, 1989.

