
Hiding Cliques for Cryptographic SecurityAri Juels� Marcus PeinadoyAbstractWe demonstrate how a well studied combinatorial optimiza-tion problem may be introduced as a new cryptographicfunction. The problem in question is that of �nding a \large"clique in a random graph. While the largest clique in a ran-dom graph is very likely to be of size about 2 log2 n, it iswidely conjectured that no polynomial-time algorithm existswhich �nds a clique of size � (1 + �) log2 n with signi�cantprobability for any constant � > 0. We present a very sim-ple method of exploiting this conjecture by \hiding" largecliques in random graphs. In particular, we show that ifthe conjecture is true, then when a large clique { of size, say,(1+2�) log2 n { is randomly inserted (\hidden") in a randomgraph, �nding a clique of size � (1 + �) log2 n remains hard.Our result suggests several cryptographic applications, suchas a simple one-way function.1 IntroductionMany hard graph problems involve �nding a subgraph ofan input graph G = (V;E) with a certain property (e.g.,cliques, Hamiltonian cycles). In some cases, it may bedemonstrated that randomly generated input graphs al-most always contain a subgraph with the speci�ed prop-erty, and yet no polynomial-time algorithm is knownwhich �nds such subgraphs with non-negligible proba-bility. This is the case for the clique problem which weconsider in this paper. A clique of size k in a graphG = (V;E) is a complete subgraph on k nodes, i.e., aset of k nodes such that every pair is connected by anedge. The clique problem is that of �nding a clique ofsize k (for some suitably large k) in a graph G. It isconjectured that �nding \large" cliques in a graph Gselected uniformly at random is hard.A number of cryptographic primitives depend onthe availability of \solved" hard random problem in-�RSA Laboratories, 20 Crosby Dr., Bedford, MA 01730,ari@rsa.com. The author performed much of this work atthe University of California at Berkeley under a UC RegentsFellowship and NSF Grant CCR-9505448.yInstitute for Algorithms and Scienti�c Computing, GermanNational Research Center for Information Technology (GMD),53754 Sankt Augustin, Germany, peinado@gmd.de. Supportedin part by DFG grant SFB 408. A portion of this researchwas conducted while the author was visiting the InternationalComputer Science Institute, Berkeley, CA.

stances. Most depend on the assumed hardness of onlytwo problems from number theory: factoring and dis-crete logarithm. The question of whether combinatorialproblems might serve as an alternative has been ad-dressed several times, as in [11, 24]. In this paper wedescribe a straightforward probabilistic method of con-structing a hard instance of the clique problem. Themethod is simple. Our main contribution in this paperis a proof that, under a widely believed conjecture, ourmethod does indeed yield hard problem instances, andcan therefore be used in cryptographic applications.We generate a solved instance of the clique problemas follows. We select a random graph G uniformly atrandom and randomly embed (\hide") in it a cliqueK. In particular, we select k nodes at random fromG (where k is a suitable size, as explained later), andcreate a clique on those nodes, i.e., we complete theinduced subgraph.Even though it is conjectured that �nding \large"cliques in a graph G selected uniformly at random ishard, it is not obvious that the problem remains hardafter a clique is embedded in G. This is because thedistribution of graphs induced by embedding a cliqueis no longer uniform. For example, when k � n1=2+�(n = jV j; � > 0), it is easy to �nd the hidden clique.(See also [1] in this volume.) Our aim is to show thatk can be chosen such that this is not the case. Ourmain result shows for suitable k that �nding the hiddenclique { or any other clique in G with k nodes { is atleast as hard as �nding a clique with k nodes underthe uniform distribution. We believe that this is the�rst rigorously justi�ed application of a graph-basedproblem to cryptography.From an asymptotic point of view, the clique prob-lem on random graphs o�ers only relatively weak secu-rity. Under the commonly used random graph distri-butions each edge exists with probability 1=2, and thesize of the largest clique is less than 2 logn with highprobability. Thus, a clique of size k < 2 logn can befound by exhaustive search, i.e. by considering all setsof k vertices, in time 2O(log2 n). This growth rate is su-perpolynomial in n. However, it is small compared tothe time taken by even the most e�cient attacks onproblems like factoring or discrete logarithm (2�(n�) forsome � > 0).1

2 The relatively low complexity of �nding a largeclique is a consequence of the fact that the size of thelargest clique is only logarithmic in n, which, in turn, isa consequence of the fact that edges exist with constantprobability. Clique sizes (and with them the complexityof the attack just described) will increase if the edgeprobability is increased. Our analysis can be extendedto edge probabilities of 1 � 1=f(n) where f(n) = !(1).Depending on the choice of f(n), cliques will becomeas large as
(n�) (� > 0). We defer a description ofthis analysis to the �nal version and concentrate onthe standard case (constant edge probabilities) in thisextended abstract.The remainder of this abstract is organized intofour sections. In Section 2, we describe results in theliterature relating to the problem of �nding large cliquesin graphs. In Section 3, we describe and prove themain theorem of this paper, stating that large hiddencliques are as hard to �nd as large cliques in graphsgenerated uniformly at random. In Section 4, we discusssome issues surrounding the application of this result tocryptography. We conclude in Section 5 with a briefdiscussion of possible further avenues of research.2 Related Work2.1 Finding large cliquesThe problem of determining the size of the largestclique in a graph is one of Karp's original NP-completeproblems [22]. In recent years, there has been a sequenceof results [3, 4, 6, 7, 5, 21, 20] showing that it is hardto �nd even an approximate solution. Currently, thestrongest results are due to H�astad. Let !(G) denotethe size of the largest clique in G, and let n = jV j.H�astad [21] shows that unless P=NP, no polynomial-time algorithm can �nd a clique whose size is within afactor of n 13�� of !(G) (for any constant � > 0). Underthe assumption NP6= co-R, the result holds even for afactor of n1�� [20].These results apply to the worst case. Crypto-graphic applications, however, depend on the averagecase di�culty of the problem. No comparable hardnessresults are known in the average case. In general, in con-trast to classical (worst case) NP-completeness, only avery small number of problems are known to be average-case complete [25]. Nevertheless, the average-case cliqueproblem has prompted considerable experimental andtheoretical interest. Most of the research in this veinfocuses on the Erd�os-Renyi random graph model Gn;p(0 � p � 1) over graph instances containing n nodes. Agraph G may be drawn from this distribution by insert-

ing each of the �n2� possible edges into G independentlywith probability p. The most frequently considered caseis p = 1=2, i.e., the uniform distribution. For the over-whelming majority of such graphs, the largest clique isof size 2 log2 n�O(log logn) [9]. Smaller cliques exist inabundance: for k = c log2 n, where 0 < c < 2 constant,the expected number of cliques of size k is n
(logn). Itis easy to �nd cliques of size up to log2 n in expectedpolynomial time using a randomized greedy algorithm.The many attempts at designing polynomial-timealgorithms which �nd larger cliques in random graphshave met with no success. It is now widely conjecturedthat for any constant � > 0, there does not exist apolynomial-time algorithm capable of �nding cliques ofsize (1+ �) log2 n with signi�cant probability in randomgraphs. Karp [23] �rst issued the challenge of �ndingsuch an algorithm twenty years ago. Jerrum [17] con-siderably extended this challenge in calling for a ran-domized, polynomial-time algorithm capable of �ndinga clique of size 1:01 log2 n with high probability overrandom graphs containing a clique of size n0:49. In sup-port of the di�culty of �nding such an algorithm, Jer-rum demonstrates the existence of an initial state fromwhich the Metropolis algorithm, a �xed-temperaturevariant of simulated annealing, cannot �nd a clique ofsize (1 + �) log2 n for any constant � > 0 in expectedpolynomial time. He shows, moreover, that this situa-tion holds even when a clique of size as large as n1=2��for constant � > 0 is randomly inserted (\hidden") inrandomly-generated graphs. Similar results have beenshown for randomized versions of the algorithm of Bop-pana and Halld�orsson [27, 28]. Moreover, a number ofexperimental studies seem to con�rm the hardness ofthe problem of �nding large cliques in random graphs.A survey of these may be found in [18].2.2 Embedded graph structuresAn application of the clique problem to cryptographyhas been considered by Ku�cera [24]. He de�nes theconcept of generalized encryption scheme and uses theclique problem (more precisely, the independent setproblem) to implement it. The graphs are randomgraphs from Gn;p with one embedded clique of sizek = n� (0 < � < 1=2). Ku�cera does not give a rigorousproof of the security of his scheme.Broder et al. [11] investigate a similar idea for adi�erent problem: Hamiltonian Cycle. They embeda Hamiltonian cycle into Gn;p (for appropriate p) anddescribe an algorithm which �nds the embedded cyclein polynomial time, thus showing that their scheme isinappropriate for cryptographic purposes. HamiltonianCycle, however, can be solved in linear time on average[16]. In contrast, no average-case polynomial-time

3algorithm is known for the clique problem.Input distributions involving embedded (or hidden)structures have been considered in di�erent contexts fora variety of problems [12, 10, 8, 13, 13, 19, 29, 30].3 Notation and Proof3.1 NotationRecall that our aim is to show that �nding a \large"clique in a random graph into which a large cliquehas been embedded is as hard as �nding a \large"clique in a random graph. Let p denote the uniformdistribution Gn;1=2 over graphs with n nodes. Let p0kdenote the distribution obtained as follows: select agraph G = (V;E) from p, and then form a clique onk nodes selected uniformly at random from V . We referto a clique formed in this manner as a hidden clique.We shall show that when k � (2 � �) log2 n for anyconstant � > 0, �nding a large clique in p0k is as hardas �nding one in p. More precisely, we shall show thatif there exists an algorithm A which �nds a clique ofsize (1 + �) log2 n in p0k with probability 1q(n) , for somepolynomial q(n), then the same algorithm can �nd aclique of size (1+�) log2 n in p with probability 1q0(n) forsome polynomial q0(n). We will use the notation polyas an abbreviation for the phrase `some polynomial inn'.3.2 Sketch of proofGiven a graph G, let Ck(G) denote the number ofdistinct (but possibly overlapping) cliques of size k in aspeci�c graph instance G. If G is generated at randomfrom distribution p, Ck = Ck(G) is a random variable.Let Ek = ECk denote its expectation, i.e. the expectednumber of k cliques in G.Our proof will begin by demonstrating that whenCk(G) is close to Ek, the probability of graph G inthe distribution p0k will be close to that in p. In otherwords, when the number of cliques in a graph G is closeto the expected number Ek, the process of plantinga clique of size (2 � �) log2 n in a random graph willyield G with probability similar to that of the process ofsimply generating a random graph. We shall then showthat the variance of Ck is low. This will imply twothings: �rst, that most graphs G are \good", i.e., formost graphs, p0k(G)=p(G) is less than a relatively smallpolynomial; second, that \bad" graphs, i.e., those forwhich p0k(G)=p(G) is large, will occupy a small fraction� of p0k. In fact, we will be able to make this fraction� arbitrarily small. Therefore, an algorithm A whichsuccessfully locates a large clique in a (1poly)-fraction ofgraphs in p0k must be locating such cliques in a set Mof good graphs such that p0k(M) = 1poly � � = 1poly .

Since graphs in M are good, p0k(M) = 1poly will implyp(M) = 1poly . Thus, A will successfully locate a largeclique in a (1poly)-fraction of graphs in p, the uniformdistribution over graphs.3.3 Proof of main theoremLemma 3.1. p0k(G) = Ck(G)Ek p(G)Proof. Selecting a graph from p0k may be viewed as theprocess of selecting a graph G0 from p and then plantinga clique on a set K of k nodes chosen uniformly atrandom. In order for the resulting graph to be identicaltoG, it must be that the nodesK form a clique inG. Anappropriate set K will thus be chosen with probabilityCk(G)=�nk�. It must also happen that the edges in G0which lie outside of K correspond exactly to those in G.More precisely, for all edges e not strictly contained inK, we require e 2 G0 () e 2 G. This will occur withprobability 2�(n2)+(k2). Thus,p0k(G) = Ck(G)�nk� 2�(n2)+(k2):(3.1)The expected number of cliques in p is easily seento be �nk�=2(k2). The de�nition of p implies that p(G) =2�(n2) for any graph instance G. Combining these twofacts with (3.1) yields the lemma. 2Lemma 3.1 states that when the number of cliquesin a graph instance G is close to its expectation overp, then p0k(G) � p(G). Our goal now is to show thatfor most graphs G, p0k(G) is only a polynomial factorlarger than p(G). For this we need to show that Ckis concentrated tightly around its mean Ek. We shallaccomplish this by showing that the variance of Ck issmall.Lemma 3.2. Let k = (2 � �) log2 n for some constant� > 0. Then Var[Ck] < n6E2k :Proof. We employ the method of [9], Chapter XI, andconsider pairs of cliques in G. This gives usE[C2k] = kXi=0 �nk��ki��n� kk � i�2�2(k2)+(i2) ;(3.2)

4and thus,E[C2k]E2[Ck] = kXi=0 �nk��1�ki��n� kk � i�2(i2) :(3.3)Let us denote the ith term in the above sum by fi.Clearly f0 < 1. By employing the well-known bounds�nk� � (nek)k and �nk� � (nk)k, we obtain for i > 0 theinequalityfi � �kei �i�kn�k�(n � k)ek � i �k�i 2(i2) :(3.4)Algebraic manipulation shows that the above is equalto �k2i �i� (n� k)kk � i �k�i ekn�k2(i2) ;which is less than� kk � i�k�i ek�k2n �i 2 i22 :(3.5)Let us �rst consider the quantity (kk�i)k�i. This isequal to (1 + ik�i)k�i � ei. Since i � k = (2 � �) log2 nfor some constant � > 0, it follows that (kk�i)k�i =n2 log2 e < n2:9. Similarly, it is also the case thatek < n2:9.Now let us consider the quantity � = (k2n)i2 i22 .Clearly, log2 � = �i log2 n + i2=2 + 2i log2 k. Sincek = O(logn), it follows that log2 � < 0 if i < 2 log2 n.Since i � k = (2 � �) log2 n for some constant � > 0,it follows that � < 1 for all values of i. Tying togetherall of the above, we see that fi < n5:8 for all i, andtherefore kXi=0 fi = E[C2k]E2[Ck] < n6(3.6)for su�ciently large n. 2Remark: The bound on the variance is far fromtight. A more detailed analysis shows that Var[Ck] �clog2 nE2k for some c such that 0 < c < 1, which dependsonly on k. This bound can be used to obtain a `moree�cient' version of Theorem 3.1. We omit furtherdetails in this extended abstract.From the above lemma, it follows by Chebyshev'sinequality that \bad" graphs, i.e., those graphs G suchthat Ck(G) � Ek, constitute a small fraction of p. Aswe see in the next lemma, when k = (2 � �) log2 n for

some constant � > 0, such graphs also occupy a smallfraction of p0k.De�ne the set Z of bad graphs to include thosegraphs G such that Ck(G) > n2hEk for some constanth > 0. In other words, letZ = f G j Ck(G) > n2hEk g :Lemma 3.3. p0k(Z) = O(n�h+6)Proof. We shall determine the probability p0k(Z) of theset of bad graphs by partitioning it into disjoint sets Zjwhose probability is more easily estimated. LetZj = f G j njhEk < Ck(G) � n(j+1)hEk g :Clearly, Z = S1j=2Zj . By Lemma 3.2 (or eq. 3.6) andChebyshev's inequality, p(Zj) < n�2jh+6. By Lemma3.1 then, p0k(Zj) < n(j+1)h� 1n2jh�6� :(3.7)Since Z = S1j=2Zj , it follows thatp0k(Z) = 1Xj=2 p0k(Zj)< 1Xj=2 n(j+1)hn2jh�6= 1Xj=2n�jh+h+6= n�h+6 1Xj=0 n�jh= n�h+6O(1)= O(n�h+6) ;which proves the lemma. 2By making the constant h large enough { in otherwords, by making the graphs in Z su�ciently \bad" {we may make the set Z arbitrarily small. By making Zsmall, we ensure that an algorithmA which successfully�nds cliques in p0k does so principally on good graphs.These graphs will constitute a (1poly)-fraction of graphsin p, implying that A successfully �nds cliques in p withprobability 1poly .Theorem 3.1. Suppose that k � (2��) log2 n for some� > 0. Suppose then that there exists a deterministic,

5polynomial-time algorithm A which �nds a k-clique ingraphs drawn from p0k with probability 1q(n) , for somepolynomial q(n). Then there exists a polynomial q0(n)such that A �nds a k-clique in graphs drawn from p withprobability 1q0(n) .Proof. Suppose 1q(n) =
(n�j) for some constant j. LetZ be the set of graphs such that Ck(G) > (n2(j+6+�))Ekfor some � > 0. By Lemma 3.3, p0k(Z) = O(n�j��). LetQ denote the set of graphs G not in Z on which A�nds a k-clique. Clearly, p0k(Q) =
(n�j) � p0k(Z) =
(n�j) � O(n�j��) =
(n�j). Therefore, by Lemma3.1, p(Q) =
(n�j)(n�2(j+6+�)) =
(n�3j�12�2�). Thisproves the theorem. 2Remarks.Observe that this theorem may be extended in asuitable fashion to randomized algorithms A. In partic-ular, if A is a randomized algorithm which �nds cliquesin p0k with probability 1poly in expected polynomial time,then A also �nds cliques in p with probability 1poly inexpected polynomial time.The theorem also applies for random graphs gen-erated with di�erent edge densities, i.e., graphs drawnfrom Gn;p for constant p. In general, the size of thelarge clique in a graph drawn from Gn;p will be of sizeabout 2 log1=p n.Finally, Theorem 3.1 holds also for distributionspck, where a graph from pck is generated by randomlyinserting any constant number of cliques K1;K2; : : : ;Kcof size k in a random graph. In other words, it is possibleto hide at least a constant number of large cliques in arandom graph.4 Cryptographic ApplicationsAssuming the conjectured hardness of �nding largecliques in random graphs, Theorem 3.1 states that whena clique K of su�ciently large size { say, 3=2 log2 n {is randomly inserted into a random graph G, yieldinggraph G0, �nding any large clique in G0 is still hard.This result suggests several cryptographic applications.A new one-way function: A one-way function is,informally, a function which is easy to compute on allelements in its domain, but with high probability hardto invert on a randomly selected element in its range[26]. Theorem 4 shows that these criteria are met bya one-way function f which simply hides a clique in agraph. More formally, the function f may be de�ned asfollows: f : G � K ! G, where G is the set of graphs onn nodes, and K is the collection of all sets of k vertices

(subsets of f1; : : : ; ng); f(G;K) is the graph G alteredso that the subgraph induced by K is complete.A zero-knowledge proof of knowledge: Infor-mally, a zero-knowledge proof of knowledge [15, 14] is aprotocol by which a party A holding a secret s demon-strates its possession of s to some party B in such a waythat B learns nothing about s. A computational zero-knowledge proof is one in which learning informationabout s is computationally intractable. (As opposed toa perfect zero-knowledge proof, in which s is concealedin an information theoretically secure fashion.)Suppose Alice generates a random graph G andrandomly plants a clique K of size k = 3=2 log2 n in it.After sending the resulting graph, G0 to Bob, Alice mayprove knowledge of K in computational zero knowledgeby use of the following protocol (repeated suitably manytimes): (1) Alice applies a random permutation � to thegraph G0, yielding graph G00. She sends commitments ofthe edges of G00 to Bob; (2) Bob
ips a coin, and sendsthe result (heads or tails) to Alice; (3) If heads, Alicesends Bob decommitments of all of the edges in G00,along with the permutation �. If tails, Alice decommitsthe edges corresponding to the clique K in G00 (i.e.,those in �(K)); (4) If heads, Bob accepts the proof ifthe decommitment of G00 corresponds to �(G0). If tails,Bob accepts the proof if the decommitted edges form aclique of size k. Otherwise, Bob rejects the proof.Hierarchical key creation: As mentioned above,our main theorem holds for any constant number ofcliques. In other words, it is possible to have a set ofmultiple cliques K1;K2; : : : ;Kc hidden in a single graphG0. If we regard the cliques fKig as private keys, andG0 as a public key, this suggests the ability to createprivate keys \hierarchically".Suppose that G is the random graph into which aclique K of suitable size is hidden, and G0 = (V;E0)is the graph resulting from this implantation. A partywith knowledge of G is likely to be able to extract K.In particular, the set E0 � E will contain half of theedges of K on average; with this information, K canbe easily determined with high probability. Consider,therefore, the following protocol. Party P1 generates arandom graph G and randomly inserts into it a cliqueK1, yielding graph G1. Party P1 then passes G1 toP2, who randomly inserts a clique K2, yielding G2.This process is continued through to party Pc, whothen publishes the public key Gc. Observe that in asuitably formulated system, P1 can use its knowledge ofG1 to extract the private keys of P2; P3; : : :Pc (althoughit should be observed that P1 cannot determine whichkey belongs to which party). Parties P2; P3; : : : ; Pc,however, cannot extract the private key of P1. Ingeneral, party Pi can extract the private keys of all

6parties Pj for j > i, while the reverse would require theability to �nd a large clique, and is therefore presumedinfeasible.5 Further researchWe have shown how hidden cliques provide an elemen-tary means of creating cryptographically secure prim-itives. Many possible extensions to the work in thispaper suggest themselves. It would be desirable, forinstance, to strengthen Theorem 3.1 so that the resultholds when more than a constant number of cliques, orwhen cliques of a size greater than 2 log2 n are hidden.Does the security improve for non-constant edge prob-abilities (e.g. 1� n�� for 0 < � < 1)? As a graph-basedcryptographic tool, hidden cliques have some unusualproperties, such as the ability to create private keys hi-erarchically. A good practical application of such prop-erties would be interesting. Similarly interesting wouldbe the creation of a public key cryptosystem based oncliques. Whether clique-based cryptographic primitivescan be made e�cient and practical remains an openquestion.References[1] N. Alon, M. Krivelevich, and B. Sudakov. Finding alarge hidden clique in a random graph. In Proc. ofthe 9th Annual ACM-SIAM Symposium on DiscreteAlgorithms, 1998.[2] N. Alon and J. Spencer. The Probabilistic Method.Wiley, 1992.[3] S. Arora, C. Lund, R. Motwani, M. Sudan, andM. Szegedy. Proof veri�cation and hardness of approx-imation problems. In Proceedings 33rd IEEE Sympo-sium on the Foundations of Computer Science, pages14{23, Los Angeles, CA, 1992. IEEE Computer Soci-ety.[4] S. Arora and S. Safra. Approximating clique is NP-complete. In Proceedings 33rd IEEE Symposium onthe Foundations of Computer Science, 1992.[5] M. Bellare, O. Goldreich, and M. Sudan. Free bits,PCPs and non-approximability { towards tight results.In Proceedings of the 36th Annual Symposium on Foun-dations of Computer Science, pages 422{431, 1995.[6] M. Bellare, S. Goldwasser, C. Lund, and A. Russel.E�cient probabilistically checkable proofs and applica-tions to approximation. In Proceedings of the 25th An-nual ACM Symposium on Theory of Computing, 1993.[7] M. Bellare and M. Sudan. Improved non-approximability results. In Proceedings of the 26thACM Symposium on the Theory of Computing, pages184{193, Montreal, 1994. ACM Press.[8] A. Blum and J. Spencer. Coloring random and semi-random k-colorable graphs. Journal of Algorithms,19(2):204{234, 1995.

[9] B. Bollob�as. Random Graphs. Academic Press, 1985.[10] R. Boppana. Eigenvalues and graph bisection: Anaverage-case analysis. In Proceedings of the 28th An-nual Symposium on Foundations of Computer Science,pages 280{285, 1987.[11] A. Z. Broder, A. M. Frieze, and E. Shamir. Findinghidden hamiltonian cycles. In Proceedings of the 23rdAnnual ACM Symposium on the Theory of Computing,pages 182{189, 1991.[12] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser.Graph bisection algorithms with good average-casebehavior. Combinatorica, 6, 1986.[13] M. E. Dyer and A. Frieze. Fast algorithms for somerandom NP-hard problems. Journal of Algorithms,10:451{489, 1989.[14] O. Goldreich, S. Micali, and A. Wigderson. Proofs thatyield nothing but their validity and a methodology ofcryptographic protocol design. In Proceedings of the27th Annual Symposium on Foundations of ComputerScience, pages 174{187. IEEE, 1986.[15] S. Goldwasser, S. Micali, and C. Racko�. The knowl-edge complexity of interactive proof systems. In Pro-ceedings of the 17th Annual ACM Symposium on theTheory of Computing, pages 291{304, 1985.[16] Y. Gurevich and S. Shelah. Expected computationtime for Hamiltonian path problem. SIAM Journal onComputing, 16(3):486{502, 1987.[17] M. Jerrum. Large cliques elude the Metropolis pro-cess. Random Structures and Algorithms, 3(4):347{360, 1992.[18] D. S. Johnson and M. Trick, editors. Cliques, Color-ing, and Satis�ability: Second DIMACS Implementa-tion Challenge. American Mathematical Society, 1996.DIMACS Series in Discrete Mathematics and Theoret-ical Computer Science.[19] A. Juels. Topics in Black-box Combinatorial Optimiza-tion. PhD thesis, University of California, Berkeley,1996.[20] J. H�astad. Clique is hard to approximate withinn1��. In Proceedings of the 37th Annual Symposiumon Foundations of Computer Science, pages 627{636,1996.[21] J. H�astad. Testing of the long code and hardness forclique. In Proceedings of the 28th ACM Symposium onthe Theory of Computing, pages 11{19. ACM Press,1996.[22] R. M. Karp. Reducibility among combinatorial prob-lems. In R. E. Miller and J. W. Thatcher, editors,Complexity of Computer Computations, pages 85{103.Plenum Press, 1972.[23] R. M. Karp. Probabilistic analysis of some combinato-rial search problems. In J. F. Traub, editor, Algorithmsand Complexity: New Directions and Recent Results.Academic Press, 1976.[24] L. Ku�cera. A generalized encryption scheme basedon random graphs. In Graph-Theoretic Concepts inComputer Science, WG'91, Lecture Notes in ComputerScience 570, pages 180{186. Springer-Verlag, 1991.

7[25] L. A. Levin. Average-case complete problems. SIAMJournal on Computing, 15:285{286, 1986.[26] M. Luby. Pseudorandomness and Cryptographic Appli-cations. Princeton University Press, 1996.[27] M. Peinado. Hard graphs for the randomized Boppana-Halld�orsson algorithm for maxclique. Nordic Journalof Computing, 1:493{515, 1994. Preliminary versionin Proceedings of the 4th Scandinavian Workshop onAlgorithm Theory, �Arhus, Denmark. pages 278{289.Springer-Verlag, 1994.[28] M. Peinado. Improved lower bounds for the ran-domized Boppana-Halld�orsson algorithm for MAX-CLIQUE. In Proceedings of the First Annual Comput-ing and Combinatorics Conference. Springer-Verlag,1995.[29] J. S. Turner. On the probable performance of heuris-tics for bandwidth minimization. SIAM Journal onComputing, 15(2):561{580, 1986.[30] R. Venkatesan and L. Levin. Random instances of agraph coloring problem are hard. In Proceedings ofthe 20th Annual ACM Symposium on the Theory ofComputing, pages 217{222, 1988.

