Hiding Cliques for Cryptographic Security

Ari Juels*

Abstract

We demonstrate how a well studied combinatorial optimiza-
tion problem may be introduced as a new cryptographic
function. The problem in question is that of finding a “large”
clique in a random graph. While the largest clique in a ran-
dom graph is very likely to be of size about 2log, n, it is
widely conjectured that no polynomial-time algorithm exists
which finds a clique of size > (1 + €)log, n with significant
probability for any constant € > 0. We present a very sim-
ple method of exploiting this conjecture by “hiding” large
cliques in random graphs. In particular, we show that if
the conjecture is true, then when a large clique — of size, say,
(142€)log, n —is randomly inserted (“hidden”) in a random
graph, finding a clique of size > (1 + €)log, n remains hard.
Our result suggests several cryptographic applications, such
as a simple one-way function.

1 Introduction

Many hard graph problems involve finding a subgraph of
an input graph G = (V, F) with a certain property (e.g.,
cliques, Hamiltonian cycles). In some cases, it may be
demonstrated that randomly generated input graphs al-
most always contain a subgraph with the specified prop-
erty, and yet no polynomial-time algorithm is known
which finds such subgraphs with non-negligible proba-
bility. This 1s the case for the clique problem which we
consider in this paper. A cligue of size k in a graph
G = (V, F) is a complete subgraph on k nodes, i.e., a
set of k nodes such that every pair is connected by an
edge. The clique problem is that of finding a clique of
size k (for some suitably large k) in a graph G. Tt is
conjectured that finding “large” cliques in a graph G
selected uniformly at random is hard.

A number of cryptographic primitives depend on
the availability of “solved” hard random problem in-

~ *RSA Laboratories, 20 Crosby Dr., Bedford, MA 01730,
ari@rsa.com. The author performed much of this work at
the University of California at Berkeley under a UC Regents
Fellowship and NSF Grant CCR-9505448.

tInstitute for Algorithms and Scientific Computing, German
National Research Center for Information Technology (GMD),
53754 Sankt Augustin, Germany, peinado@gmd.de.
in part by DFG grant SFB 408. A portion of this research
was conducted while the author was visiting the International

Supported

Computer Science Institute, Berkeley, CA.

Marcus Peinadot

stances. Most depend on the assumed hardness of only
two problems from number theory: factoring and dis-
crete logarithm. The question of whether combinatorial
problems might serve as an alternative has been ad-
dressed several times, as in [11, 24]. In this paper we
describe a straightforward probabilistic method of con-
structing a hard instance of the clique problem. The
method is simple. Our main contribution in this paper
is a proof that, under a widely believed conjecture, our
method does indeed yield hard problem instances, and
can therefore be used in cryptographic applications.

We generate a solved instance of the clique problem
as follows. We select a random graph G uniformly at
random and randomly embed (“hide”) in it a clique
K. In particular, we select & nodes at random from
G (where k is a suitable size, as explained later), and
create a clique on those nodes, i.e., we complete the
induced subgraph.

Even though it is conjectured that finding “large”
cliques in a graph G selected uniformly at random is
hard, it 1s not obvious that the problem remains hard
after a clique 1s embedded in (. This i1s because the
distribution of graphs induced by embedding a clique
is no longer uniform. For example, when k& > nl/2+e
(n = |V],e > 0), it is easy to find the hidden clique.
(See also [1] in this volume.) Our aim is to show that
k can be chosen such that this is not the case. Our
main result shows for suitable & that finding the hidden
clique — or any other clique in G with k& nodes — is at
least as hard as finding a clique with k& nodes under
the uniform distribution. We believe that this is the
first rigorously justified application of a graph-based
problem to cryptography.

From an asymptotic point of view, the clique prob-
lem on random graphs offers only relatively weak secu-
rity. Under the commonly used random graph distri-
butions each edge exists with probability 1/2, and the
size of the largest clique is less than 2logn with high
probability. Thus, a clique of size & < 2logn can be
found by exhaustive search, i.e. by considering all sets
of k vertices, in time 20(eg”n) Thig growth rate is su-
perpolynomial in n. However, 1t is small compared to
the time taken by even the most efficient attacks on
problems like factoring or discrete logarithm (26(”6) for
some € > 0).

The relatively low complexity of finding a large
clique is a consequence of the fact that the size of the
largest clique is only logarithmic in n, which, in turn, is
a consequence of the fact that edges exist with constant
probability. Clique sizes (and with them the complexity
of the attack just described) will increase if the edge
probability is increased. Qur analysis can be extended
to edge probabilities of 1 — 1/f(n) where f(n) = w(1).
Depending on the choice of f(n), cliques will become
as large as Q(n€) (e > 0). We defer a description of
this analysis to the final version and concentrate on
the standard case (constant edge probabilities) in this
extended abstract.

The remainder of this abstract is organized into
four sections. In Section 2, we describe results in the
literature relating to the problem of finding large cliques
in graphs. In Section 3, we describe and prove the
main theorem of this paper, stating that large hidden
cliques are as hard to find as large cliques in graphs
generated uniformly at random. In Section 4, we discuss
some 1ssues surrounding the application of this result to
cryptography. We conclude in Section 5 with a brief
discussion of possible further avenues of research.

2 Related Work

2.1 Finding large cliques

The problem of determining the size of the largest
clique in a graph is one of Karp’s original NP-complete
problems [22]. In recent years, there has been a sequence
of results [3, 4, 6, 7, 5, 21, 20] showing that it is hard
to find even an approximate solution. Currently, the
strongest results are due to Hastad. Let w(G) denote
the size of the largest clique in G, and let n = |V].
Hastad [21] shows that unless P=NP, no polynomial-
time algorithm can find a clique whose size is within a
factor of n3~% of w(G) (for any constant § > 0). Under
the assumption NP# co-R, the result holds even for a
factor of n!=?% [20].

These results apply to the worst case. Crypto-
graphic applications, however, depend on the average
case difficulty of the problem. No comparable hardness
results are known in the average case. In general, in con-
trast to classical (worst case) NP-completeness, only a
very small number of problems are known to be average-
case complete [25]. Nevertheless, the average-case clique
problem has prompted considerable experimental and
theoretical interest. Most of the research in this vein
focuses on the Erdos-Renyi random graph model G, ,
(0 < p < 1) over graph instances containing n nodes. A
graph G may be drawn from this distribution by insert-

ing each of the (g) possible edges into G independently
with probability p. The most frequently considered case
is p = 1/2, i.e., the uniform distribution. For the over-
whelming majority of such graphs, the largest clique is
of size 2log, n—O(loglogn) [9]. Smaller cliques exist in
abundance: for k = clog, n, where 0 < ¢ < 2 constant,
the expected number of cliques of size k is n®¥1987) Tt
is easy to find cliques of size up to log, n in expected
polynomial time using a randomized greedy algorithm.

The many attempts at designing polynomial-time
algorithms which find larger cliques in random graphs
have met with no success. It is now widely conjectured
that for any constant ¢ > 0, there does not exist a
polynomial-time algorithm capable of finding cliques of
size (1+¢€)log, n with significant probability in random
graphs. Karp [23] first issued the challenge of finding
such an algorithm twenty years ago. Jerrum [17] con-
siderably extended this challenge in calling for a ran-
domized, polynomial-time algorithm capable of finding
a clique of size 1.01log, n with high probability over
random graphs containing a clique of size n%*°. In sup-
port of the difficulty of finding such an algorithm, Jer-
rum demonstrates the existence of an initial state from
which the Metropolis algorithm, a fixed-temperature
variant of simulated annealing, cannot find a clique of
size (1 + €)log, n for any constant ¢ > 0 in expected
polynomial time. He shows, moreover, that this situa-
tion holds even when a clique of size as large as n'/2=%
for constant § > 0 is randomly inserted (“hidden”) in
randomly-generated graphs. Similar results have been
shown for randomized versions of the algorithm of Bop-
pana and Halldérsson [27, 28]. Moreover, a number of
experimental studies seem to confirm the hardness of
the problem of finding large cliques in random graphs.
A survey of these may be found in [18].

2.2 Embedded graph structures

An application of the clique problem to cryptography
has been considered by Kuéera [24]. He defines the
concept of generalized encryption scheme and uses the
clique problem (more precisely, the independent set
problem) to implement it. The graphs are random
graphs from G, , with one embedded clique of size
k=n" (0 < k < 1/2). Kuéera does not give a rigorous
proof of the security of his scheme.

Broder et al. [11] investigate a similar idea for a
different problem: Hamiltonian Cycle. They embed
a Hamiltonian cycle into G, p, (for appropriate p) and
describe an algorithm which finds the embedded cycle
in polynomial time, thus showing that their scheme is
inappropriate for cryptographic purposes. Hamiltonian
Cycle, however, can be solved in linear time on average
[16]. In contrast, no average-case polynomial-time

algorithm is known for the clique problem.
Input distributions involving embedded (or hidden)
structures have been considered in different contexts for

a variety of problems [12, 10, 8, 13, 13, 19, 29, 30].

3 Notation and Proof

3.1
Recall that our aim is to show that finding a “large”
clique in a random graph into which a large clique
has been embedded is as hard as finding a “large”
clique in a random graph. Let p denote the uniform
distribution G, 1,5 over graphs with n nodes. Let pj
denote the distribution obtained as follows: select a
graph G = (V, E) from p, and then form a clique on
k nodes selected uniformly at random from V. We refer
to a clique formed in this manner as a hidden clique.
We shall show that when k& < (2 — é)log, n for any
constant § > 0, finding a large clique in p}, is as hard
as finding one in p. More precisely, we shall show that
if there exists an algorithm A which finds a clique of
size (1 + €)log, n in p), with probability ﬁ, for some
polynomial ¢(n), then the same algorithm can find a

clique of size (1+¢) log, n in p with probability —q,(ln) for

Notation

some polynomial ¢'(n). We will use the notation poly
as an abbreviation for the phrase ‘some polynomial in

n.

3.2 Sketch of proof

Given a graph G, let Ci(G) denote the number of
distinct (but possibly overlapping) cliques of size k in a
specific graph instance G. If GG is generated at random
from distribution p, Cj = C;(G) is a random variable.
Let Ej = EC} denote its expectation, i.e. the expected
number of k cliques in G.

Our proof will begin by demonstrating that when
Cr(G) is close to E}, the probability of graph G in
the distribution pj, will be close to that in p. In other
words, when the number of cliques in a graph G is close
to the expected number FE}, the process of planting
a clique of size (2 — é)log,n in a random graph will
yield GG with probability similar to that of the process of
simply generating a random graph. We shall then show
that the variance of Cj is low. This will imply two
things: first, that most graphs G are “good”, i.e., for
most graphs, p, (G)/p(G) is less than a relatively small
polynomial; second, that “bad” graphs, 1.e., those for
which pl(G)/p(G) is large, will occupy a small fraction
A of pf.. In fact, we will be able to make this fraction
A arbitrarily small. Therefore, an algorithm A which
successfully locates a large clique in a (pol—ly)—fraction of
graphs in p), must be locating such cliques in a set M

of good graphs such that p} (M) = polly - A= polly.

1
poly
Thus, A will successfully locate a large

Since graphs in M are good, p}.(M) = will imply

1
p(M) = poly *
clique in a (ﬁ)—fraction of graphs in p, the uniform
distribution over graphs.

3.3 Proof of main theorem
LEmMmA 3.1.

_ Gx(G)

/
Pk(G) I

p(G)

Proof. Selecting a graph from pf, may be viewed as the
process of selecting a graph G’ from p and then planting
a clique on a set K of k& nodes chosen uniformly at
random. In order for the resulting graph to be identical
to (G, it must be that the nodes K form a clique in G. An
appropriate set K will thus be chosen with probability
C’k(G)/(Z) It must also happen that the edges in G’
which lie outside of K correspond exactly to those in G.
More precisely, for all edges e not strictly contained in
K, we require ¢ € G’ <= ¢ € G. This will occur with

probability 27 (2)+(5), Thus,

Ck G (" k
P%(G) = (T(L>)2 (2)+(2)'
k
The expected number of cliques in p is easily seen
k
to be (Z)/2(2) The definition of p implies that p(G) =
9=(5) for any graph instance GG. Combining these two
facts with (3.1) yields the lemma. a

(3.1)

Lemma 3.1 states that when the number of cliques
in a graph instance G is close to its expectation over
p, then p}(G) = p(G). Our goal now is to show that
for most graphs G, pt(G) is only a polynomial factor
larger than p(G). For this we need to show that Cjy
1s concentrated tightly around its mean E}. We shall
accomplish this by showing that the variance of C} is
small.

LEMMA 3.2. Let k = (2 — 8)log,n for some constant
6> 0. Then
Var[Cy] < n®E7 .

Proof. We employ the method of [9], Chapter XI, and
consider pairs of cliques in . This gives us

(3.2)E[C}] = Zi; (Z) (lj) (72:];)2—2(’5%(;) ,

and thus,
o =2 () (G

Let us denote the 7** term in the above sum by f;.
Clearly fy < 1. By employing the well-known bounds
(7) < (2% and (}) > (%)*, we obtain for i > 0 the
inequality

o s () (&) (822) w0

Algebraic manipulation shows that the above is equal

to

which is less than

k k—ik B2\
—] 27 .
(=) (%)

Let us first consider the quantity (klil)k_l This is
equal to (1 + ﬁ)k_l <e'. Since i < k=(2—6)logyn

for some constant & > 0, it follows that (%)k—l =

(3.5)

n?log2¢ <« p?9% Similarly, it is also the case that
eF < n??,

Now let us consider the quantity 8 = (’%)Qé
Clearly, log, 3 = —ilogyn + i%/2 + 2ilog, k. Since

k = O(logn), it follows that log, 7 < 0 if ¢ < 2log, n.
Since i < k = (2 — §) logyn for some constant § > 0,
it follows that G < 1 for all values of ¢. Tying together
all of the above, we see that f; < n®® for all 4, and
therefore

E[C}] _
3.6 i =
for sufficiently large n. ad

Remark: The bound on the variance is far from
tight. A more detailed analysis shows that Var[Cy] <
clog” " B2 for some ¢ such that 0 < ¢ < 1, which depends
only on k. This bound can be used to obtain a ‘more
efficient” version of Theorem 3.1. We omit further
details in this extended abstract.

From the above lemma, it follows by Chebyshev’s
inequality that “bad” graphs, i.e., those graphs G such
that Ci(G) > Ej, constitute a small fraction of p. As
we see in the next lemma, when k& = (2 — §) log, n for

some constant 6 > 0, such graphs also occupy a small
fraction of pj.

Define the set Z of bad graphs to include those
graphs (& such that Cy(G) > n?* B}, for some constant
h > 0. In other words, let

Z={G|CpG)>n""E} } .

LEMMA 3.3.

Pi(Z) = O(n="*")

Proof. We shall determine the probability p}(Z) of the
set of bad graphs by partitioning it into disjoint sets 7;
whose probability is more easily estimated. Let

Zi ={ G | W Ep < OW(G) < nU+DRE

Clearly, 7 = U;iz Z;. By Lemma 3.2 (or eq. 3.6) and
Chebyshev’s inequality, p(Z;) < n=2"*5 By Lemma
3.1 then,

. 1
(3.7) Pi(Z;) < nl¥DR <n2jh—6) '
Since Z = U;iz Zj, 1t follows that

2 =Y n(Z)

L plitha

<2
ji=2
(o]
— Zn—]h+h+6
ji=2
(o]
— n—h+6 Zn—]h
j=0

= n_h+60(1)
— O(n_h+6) ’

n2ih—6

which proves the lemma. a

By making the constant h large enough — in other
words, by making the graphs in Z sufficiently “bad” —
we may make the set Z arbitrarily small. By making 7
small, we ensure that an algorithm A which successfully
finds cliques in p} does so principally on good graphs.
These graphs will constitute a (ﬁ)—fraction of graphs
in p, implying that A successfully finds cliques in p with

probability polly .

THEOREM 3.1. Suppose that k < (2—6)log, n for some
6 > 0. Suppose then that there exists a deterministic,

polynomial-time algorithm A which finds a k-clique in
graphs drawn from pl, with probability L_ for some

q(n)’
polynomial q(n). Then there exists a polynomial ¢'(n)

such that A finds a k-clique in graphs drawn from p with
probability ﬁ.

Proof. Suppose ﬁ = Q(n~7) for some constant j. Let

7 be the set of graphs such that Cy,(G) > (nz(j+6+5))Ek
for some € > 0. By Lemma 3.3, p},(Z) = O(n™7~¢). Let
) denote the set of graphs G not in Z on which A
finds a k-clique. Clearly, p%(Q) =Q(n7) - p(Z) =
Qn7) —O0(n777¢ = Q(n77). Therefore, by Lemma
3.1, p(Q) = Qn~T)(n=20+6+)) = (=3 =12-2¢) Thig

proves the theorem. a

Remarks.

Observe that this theorem may be extended in a
suitable fashion to randomized algorithms A. In partic-
ular, if A is a randomized algorithm which finds cliques
in pj, with probability ﬁ in expected polynomial time,
1

n
poly

then A also finds cliques in p with probability
expected polynomial time.

The theorem also applies for random graphs gen-
erated with different edge densities,; i.e., graphs drawn
from Gy, , for constant p. In general, the size of the
large clique in a graph drawn from G, , will be of size
about 2log, ,, n.

Finally, Theorem 3.1 holds also for distributions
p;, where a graph from pj is generated by randomly
inserting any constant number of cliques K1, Ko, ..., K,
of size k in arandom graph. In other words, it is possible
to hide at least a constant number of large cliques in a
random graph.

4 Cryptographic Applications

Assuming the conjectured hardness of finding large
cliques in random graphs, Theorem 3.1 states that when
a clique K of sufficiently large size — say, 3/2log,n —
is randomly inserted into a random graph G, yielding
graph G’ finding any large clique in G’ is still hard.
This result suggests several cryptographic applications.

A new one-way function: A one-way function is,
informally, a function which is easy to compute on all
elements in its domain, but with high probability hard
to invert on a randomly selected element in its range
[26]. Theorem 4 shows that these criteria are met by
a one-way function f which simply hides a clique in a
graph. More formally, the function f may be defined as
follows: f:G x K — G, where G is the set of graphs on
n nodes, and K is the collection of all sets of k vertices

(subsets of {1,...,n}); f(G, K) is the graph G altered
so that the subgraph induced by K is complete.

A zero-knowledge proof of knowledge: Infor-
mally, a zero-knowledge proof of knowledge [15, 14] is a
protocol by which a party A holding a secret s demon-
strates its possession of s to some party B in such a way
that B learns nothing about s. A computational zero-
knowledge proof is one in which learning information
about s is computationally intractable. (As opposed to
a perfect zero-knowledge proof, in which s is concealed
in an information theoretically secure fashion.)

Suppose Alice generates a random graph G and
randomly plants a clique K of size k = 3/2log, n in it.
After sending the resulting graph, G’ to Bob, Alice may
prove knowledge of K in computational zero knowledge
by use of the following protocol (repeated suitably many
times): (1) Alice applies a random permutation 7 to the
graph G| yielding graph G"”. She sends commitments of
the edges of G” to Bob; (2) Bob flips a coin, and sends
the result (heads or tails) to Alice; (3) If heads, Alice
sends Bob decommitments of all of the edges in G,
along with the permutation 7. If tails, Alice decommits
the edges corresponding to the clique K in G” (i.e.,
those in w(K)); (4) If heads, Bob accepts the proof if
the decommitment of G corresponds to #(G'). If tails,
Bob accepts the proof if the decommitted edges form a
clique of size k. Otherwise, Bob rejects the proof.

Hierarchical key creation: As mentioned above,
our main theorem holds for any constant number of
cliques. In other words, it is possible to have a set of
multiple cliques K1, K», ..., K. hidden in a single graph
G’. If we regard the cliques {K;} as private keys, and
G’ as a public key, this suggests the ability to create
private keys “hierarchically”.

Suppose that G is the random graph into which a
clique K of suitable size is hidden, and ' = (V, B')
is the graph resulting from this implantation. A party
with knowledge of GG is likely to be able to extract K.
In particular, the set E' — E will contain half of the
edges of K on average; with this information, K can
be easily determined with high probability. Consider,
therefore, the following protocol. Party P, generates a
random graph G and randomly inserts into it a clique
Ky, yielding graph G;. Party P, then passes (7 to
Py, who randomly inserts a clique K, yielding Gs.
This process is continued through to party P., who
then publishes the public key (.. Observe that in a
suitably formulated system, P; can use its knowledge of
(i1 to extract the private keys of Pa, Ps, ... P, (although
1t should be observed that P; cannot determine which
key belongs to which party). Parties Pa, Ps,..., P,
however, cannot extract the private key of P;. In
general, party P; can extract the private keys of all

parties P; for j > ¢, while the reverse would require the
ability to find a large clique, and is therefore presumed
infeasible.

5 Further research

We have shown how hidden cliques provide an elemen-
tary means of creating cryptographically secure prim-
itives. Many possible extensions to the work in this
paper suggest themselves. It would be desirable, for
instance, to strengthen Theorem 3.1 so that the result
holds when more than a constant number of cliques, or
when cliques of a size greater than 2log, n are hidden.
Does the security improve for non-constant edge prob-
abilities (e.g. 1 —n~¢ for 0 < e < 1)7? As a graph-based
cryptographic tool, hidden cliques have some unusual
properties, such as the ability to create private keys hi-
erarchically. A good practical application of such prop-
erties would be interesting. Similarly interesting would
be the creation of a public key cryptosystem based on
cliques. Whether clique-based cryptographic primitives
can be made efficient and practical remains an open
question.

References

[1] N. Alon, M. Krivelevich, and B. Sudakov. Finding a
large hidden clique in a random graph. In Proc. of
the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1998.

[2] N. Alon and J. Spencer.
Wiley, 1992.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan,
M. Szegedy. Proof verification and hardness of approx-
imation problems. In Proceedings 33rd IEFE Sympo-
stum on the Foundations of Computer Science, pages
14-23, Los Angeles, CA, 1992. I[EEE Computer Soci-
ety.

[4] S. Arora and S. Safra. Approximating clique is NP-
complete. In Proceedings 33rd IEFE Symposium on
the Foundations of Computer Science, 1992.

[5] M. Bellare, O. Goldreich, and M. Sudan. Free bits,
PCPs and non-approximability — towards tight results.
In Proceedings of the 36th Annual Symposium on Foun-
dations of Computer Science, pages 422—431, 1995.

[6] M. Bellare, S. Goldwasser, C. Lund, and A. Russel.
Efficient probabilistically checkable proofs and applica-
tions to approximation. In Proceedings of the 25th An-
nual ACM Symposium on Theory of Computing, 1993.

[7] M. Bellare and M. Sudan. Improved mnon-
approximability results. In Proceedings of the 26th
ACM Symposium on the Theory of Computing, pages
184-193, Montreal, 1994. ACM Press.

[8] A. Blum and J. Spencer. Coloring random and semi-
random k-colorable graphs. Journal of Algorithms,
19(2):204-234, 1995.

The Probabilistic Method.

and

[9] B. Bollobds. Random Graphs. Academic Press, 1985.
[10] R. Boppana. Figenvalues and graph bisection: An
average-case analysis. In Proceedings of the 28th An-
nual Symposium on Foundations of Computer Science,
pages 280-285, 1987.

A. 7. Broder, A. M. Frieze, and E. Shamir. Finding
hidden hamiltonian cycles. In Proceedings of the 23rd
Annual ACM Symposium on the Theory of Computing,
pages 182-189, 1991.

T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser.
Graph bisection algorithms with good average-case
behavior. Combinatorica, 6, 1986.

M. E. Dyer and A. Frieze. Fast algorithms for some
random NP-hard problems. Journal of Algorithms,
10:451-489, 1989.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that
yield nothing but their validity and a methodology of
cryptographic protocol design. In Proceedings of the
27th Annual Symposium on Foundations of Computer
Science, pages 174-187. IEEE, 1986.

S. Goldwasser, S. Micali, and C. Rackoff. The knowl-
edge complexity of interactive proof systems. In Pro-
ceedings of the 17th Annual ACM Symposium on the

Theory of Computing, pages 291-304, 1985.

Y. Gurevich and S. Shelah. Expected computation
time for Hamiltonian path problem. SIAM Journal on

Computing, 16(3):486-502, 1987.

M. Jerrum. Large cliques elude the Metropolis pro-
cess. Random Structures and Algorithms, 3(4):347—
360, 1992.

D. S. Johnson and M. Trick, editors. Cliques, Color-
ing, and Satisfiability: Second DIMACS Implementa-
tion Challenge. American Mathematical Society, 1996.
DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science.

A. Juels. Topics in Black-box Combinatorial Optimiza-
tton. PhD thesis, University of California, Berkeley,
1996.

J. Hastad. Clique is hard to approximate within
nl7¢. In Proceedings of the 87th Annual Symposium
on Foundations of Computer Science, pages 627-636,
1996.

J. Hastad. Testing of the long code and hardness for
clique. In Proceedings of the 28th ACM Symposium on
the Theory of Computing, pages 11-19. ACM Press,
1996.

R. M. Karp. Reducibility among combinatorial prob-
In R. E. Miller and J. W. Thatcher, editors,

Complexity of Computer Computations, pages 85-103.
Plenum Press, 1972.

R. M. Karp. Probabilistic analysis of some combinato-
rial search problems. In J. F. Traub, editor, Algorithms
and Complexity: New Directions and Recent Results.
Academic Press, 1976.

L. Kucera. A generalized encryption scheme based
on random graphs. In Graph-Theoretic Concepts in

Computer Science, W(G’91, Lecture Notes in Computer
Science 570, pages 180—186. Springer-Verlag, 1991.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

lems.

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

L. A. Levin. Average-case complete problems. SIAM
Journal on Computing, 15:285-286, 1986.

M. Luby. Pseudorandomness and Cryptographic Appli-
cations. Princeton University Press, 1996.

M. Peinado. Hard graphs for the randomized Boppana-
Halld6rsson algorithm for maxclique. Nordic Journal
of Computing, 1:493-515, 1994. Preliminary version
in Proceedings of the 4th Scandinavian Workshop on
Algorithm Theory, Arhus, Denmark. pages 278-289.
Springer-Verlag, 1994.

M. Peinado. Improved lower bounds for the ran-
domized Boppana-Halldérsson algorithm for MAX-
CLIQUE. In Proceedings of the First Annual Comput-
ing and Combinatorics Conference. Springer-Verlag,
1995.

J. S. Turner. On the probable performance of heuris-
tics for bandwidth minimization. SIAM Journal on
Computing, 15(2):561-580, 1986.

R. Venkatesan and L. Levin. Random instances of a
graph coloring problem are hard. In Proceedings of
the 20th Annual ACM Symposium on the Theory of
Computing, pages 217-222, 1988.

