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Abstract

Recently, similarity queries on feature vectors have been
widely used to perform content-based retrieval of images. To
apply this technique to large databases, it is required to de-
velop multidimensional index structures supporting nearest
neighbor queries efficiently. The SS-tree had been proposed
for this purpose and is known to outperform other index
structures such as the R*-tree and the K-D-B-tree. One
of its most important features is that it employs bounding
spheres rather than bounding rectangles for the shape of re-
gions. However, we demonstrate in this paper that bounding
spheres occupy much larger volume than bounding rectan-
gles with high-dimensional data and that this reduces search
efficiency. To overcome this drawback, we propose a new
index structure called the SR-tree (Sphere/Rectangle-tree)
which integrates bounding spheres and bounding rectan-
gles. A region of the SR-tree is specified by the intersec-
tion of a bounding sphere and a bounding rectangle. In-
corporating bounding rectangles permits neighborhoods to
be partitioned into smaller regions than the SS-tree and im-
proves the disjointness among regions. This enhances the
performance on nearest neighbor queries especially for high-
dimensional and non-uniform data which can be practical
in actual image/video similarity indexing. We include the
performance test results that verify this advantage of the
SR-tree and show that the SR-tree outperforms both the
SS-tree and the R*-tree.

1 Introduction

Recently, similarity queries on feature vectors have been
widely used to perform the content-based retrieval of images
[1]. To apply this technique to large databases, it is required
to develop multidimensional index structures efficiently sup-
porting nearest neighbor queries. For example, the Infor-
media project [2], a digital video library project at Carnegie
Mellon University, is working to incorporate the content-
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based retrieval capability into its digital video library and
expecting the development of an index structure efficient
for similarity queries on ten or more dimensional feature
vectors. A feature vector is extracted from image charac-
teristics, e.g., hue, saturation, intensity, texture, etc., and
stored in a database along with images. Similarity queries
are performed by conducting nearest neighbor queries in the
feature vector space. A set of the images similar to a par-
ticular image can be retrieved by searching feature vectors
close to that of the given image.

The SS-tree [3] had been proposed for this purpose and is
known to outperform other index structures such as the R*-
tree [4] and the K-D-B-tree [5] in high-dimensional nearest
neighbor queries. One of its most important features is that
it employs bounding spheres rather than bounding rectan-
gles for the shape of regions. The center of a sphere is the
centroid of underlying points and the SS-tree divides points
into isotropic neighborhoods by utilizing centroids in the
tree construction algorithm. However, we demonstrate in
this paper that bounding spheres occupy much larger volume
than bounding rectangles with high-dimensional data and
that this reduces search efficiency. To overcome this draw-
back, we propose a new index structure called the SR-tree
(Sphere/Rectangle-tree) which integrates bounding spheres
and bounding rectangles.

The approach of the SR-tree is a kind of region shape re-
finement which can be found in the P-tree [6] and in the re-
gion approximation method of the spatial join algorithm [7].
The former employs multiple bounding rectangles with dif-
ferent orientations and composes polyhedra regions by their
intersection. The resultant polyhedra region is smaller than
a single bounding rectangle and achieves better selectivity
in the search. The latter exploits the use of convex hulls, el-
lipses, circles, etc., to achieve more accurate approximation
of spatial objects than using minimum bounding rectangles.

The distinctive feature of the SR-tree is that it speci-
fies a region by the intersection of a bounding sphere and a
bounding rectangle. The introduction of bounding rectan-
gles permits neighborhoods to be partitioned into smaller re-
gions than the SS-tree and improves the disjointness among
regions. This enhances the performance on nearest neigh-
bor queries especially for high-dimensional and non-uniform
data which can be practical in actual image/video similarity
indexing. We include the performance test results to verify
this advantage of the SR-tree and show that the SR-tree
outperforms both the SS-tree and the R*-tree.

This paper is organized as follows. Section 2 describes
related work. Section 3 compares bounding spheres with
bounding rectangles by showing the result of performance
tests and discussing their properties. In Section 4, we present
the new index structure, SR-tree, and evaluate its perfor-
mance in Section 5. Section 6 contains conclusions.



Figure 1: The R*-tree structure
2 Related Work

2.1 The K-D-B-Tree

The K-D-B-tree [5] is an index structure for multidimen-
sional point data. It is a height-balanced tree similar to
the BT -tree and its tree structure is constructed by divid-
ing the search space into subregions with coordinate planes
recursively. Nodes and leaves correspond to subregions and
a disk block is allocated for each of them. The distinctive
characteristics of the K-D-B-tree is the disjointness among
subregions on the same tree level. This makes the search
path of a point query to be a single branch from the root
to a leaf. Therefore, the search time of a point query is
definitely logarithmic to the size of a data set.

However, the forced splits, i.e., the propagation of splits
from a node to its descendants, are required to keep the
disjointness among sibling regions. A forced split occurs
when a region of an intermediate node is divided crossing its
child regions. It can cause the creation of empty or nearly
empty leaves and nodes. Therefore, the K-D-B-tree cannot
ensure the minimum storage utilization. This reduces the
performance of the K-D-B-tree on range queries and nearest
neighbor queries.

2.2 The R*-Tree

The R*-tree [4], the most successful variant of the R-tree [§],
is a multidimensional index structure for rectangle data. Tt is
a height-balanced tree corresponding to a hierarchy of nested
rectangles. Nodes and leaves correspond to rectangles in the
hierarchy and a disk block is allocated for each of them. The
rectangle of a node is determined by the minimum bounding
rectangle of those of its children. The rectangle of a leaf is
determined by the minimum bounding rectangle of the data
entries contained in that leaf. Therefore, the rectangle of the
root node corresponds to the minimum bounding rectangle
of the whole data entries, while the rectangle of an interme-
diate node corresponds to the minimum bounding rectangle
of the data entries contained in its lower leaves.

The R*-tree improves the performance of the R-tree by
modifying the insertion and the split algorithm and by in-
troducing the forced reinsertion mechanism. Although the
R-tree and the R*-tree is originally designed for rectangles,
it can be used solely for points (Figure 1) and known to
be effective also as a point access method [4]. The R-tree
and the R*-tree are different from the K-D-B-tree in the fol-
lowing respects: (1) the regions associated with the nodes
and the leaves are determined by bounding rectangles rather
than disjoint subregions and (2) the regions of the R-tree
and the R*-tree are allowed to overlap each other. Because
sibling regions can overlap each other, the search time of a
point query depends to the amount of overlap and is not
determined by the height of the tree. On the other hand,
the R-tree and the R*-tree can ensure the minimum storage
utilization, because they require no forced split.

Figure 2: The SS-tree structure

2.3 The SS-Tree

The SS-tree [3] is an index structure designed for similarity
indexing of multidimensional point data. It is an improve-
ment of the R*-tree and enhances the performance of nearest
neighbor queries by modifying the following respects.

Firstly, it employs bounding spheres rather than bound-
ing rectangles for the region shape (Figure 2). The center
of a sphere is the centroid of underlying points and the SS-
tree permits to divide points into isotropic neighborhoods
by utilizing centroids in the tree construction algorithms,
i.e., the insertion algorithm and the split algorithm. On
the insertion of a point, the insertion algorithm determines
the most suitable subtree to accommodate the new entry
by choosing a subtree whose centroid is the nearest to the
new entry. When a node or a leaf is full, the split algo-
rithm calculates its coordinate variance on each dimension
from the centroids of its children and chooses the dimension
with the highest variance for splitting it. These algorithms
divide points into isotropic neighborhoods and enhance the
performance on nearest neighbor queries. Another advan-
tage of using bounding spheres for the region shape is that
it only requires nearly half storage compared to bounding
rectangles. Since a sphere is determined by the center and
the radius, it can be represented with as many parameters
as the dimensionality plus one. Omn the other hand, the
number of parameters required for a rectangle is the double
of the dimensionality, because a rectangle is determined by
the lower and the upper bound of every dimension. This
advantage permits almost doubling the fanout of nodes and
reduces the height of trees.

Secondly, the SS-tree modifies the forced reinsertion mech-
anism of the R*-tree. When a node or a leaf is full, the R*-
tree reinserts a portion of its entries rather than splits it,
unless reinsertion has been made on the same tree level. On
the other hand, the SS-tree reinserts entries unless reinser-
tion has been made at the same node or leaf. This promotes
the dynamic reorganization of the tree structure.

2.4 The VAMSplit R-Tree

The VAMSplit R-tree [9] is an optimized R-tree, i.e., it is
constructed in the top-down manner with a given data set.
The tree construction algorithm of the VAMSplit R-tree is
based on that of the k-d tree [10], a main memory index
structure for multidimensional points. The VAMSplit R-tree
constructs a tree structure by partitioning points recursively
with a coordinate plane which is orthogonal to the dimension
with the highest variance. This split algorithm has been
used by the optimized k-d trees [11]. The VAMSplit R-tree
applies this algorithm to the R-tree and refines the way of
selecting a split point to guarantee the minimum number of
disk blocks to be used. According to the result reported in
[9], the VAMSplit R-tree outperforms both the R*-tree and



the SS-tree.

2.5 The TV-Tree

The T'V-tree [12] improves the performance of the R*-tree
for high-dimensional feature vectors by employing the reduc-
tion of dimensionality and the shift (telescoping) of active
dimensions. Dimensionality is reduced by ordering dimen-
sions based on their importance and by activating only a
few of more important dimensions for indexing. The shift
of active dimensions occurs when feature vectors in a sub-
tree have the same coordinate on the most important ac-
tive dimension. Then, that dimension is made inactive and
the less important dimension is newly activated for index-
ing. This approach is effective for such feature vectors that
satisfies the following conditions: (1) dimensions can be or-
dered by their significance and (2) there exist such feature
vectors that allow the shift of active dimensions. As men-
tioned in [3], the second condition does not always hold for
real-valued feature vectors because their coordinates usually
have wide diversity. If the second condition does not hold,
the effectiveness of the TV-tree results in only the reduc-
tion of dimensions which can be commonly applied to other
index structures. Thus, the effectiveness of the TV-tree is
dependent to applications.

2.6 The X-Tree

The X-tree [13] is a variant of the R*-tree and improves
the performance of the R*-tree by employing the overlap-
free split and the supernode mechanism. The overlap-free
split enables the search space to be divided into disjoint re-
gions like the K-D-B-tree and improves the performance of
point queries. A supernode is an oversized node which is
arranged to circumvent the overlap among nodes and en-
hances the I/O throughput for reading and writing nodes.
These approaches are not incompatible with the SR-tree.
The effectiveness of these methods for the SR-tree is an open
question.

3 Bounding Rectangles vs. Bounding Spheres

3.1 Performance Test

We evaluated the performance of the multidimensional in-
dex structures, the K-D-B-tree, the R*-tree, the SS-tree,
and the VAMSplit R-tree, to clarify their advantages and
disadvantages.

The following two data sets were used for the perfor-
mance test:

(1) uniform data set

(2) real data set

Each data set consists of 16 dimensional points. The
uniform data set is a synthetic data set which consists of
the points distributed uniformly in the range [0, 1) on each
dimension. The real data set consists of the real feature vec-
tors of images which are 16-element histograms computed
over a quantized version of the color space.

We constructed indices for these data sets and measured
the CPU time and the number of disk reads on nearest neigh-
bor queries. We employed the nearest neighbor search algo-
rithm presented in [14]. A query is to find the nearest 21
points relative to a particular point in the data set. The
result was evaluated as the average of 1,000 random trials.

Table 1: The maximum number of entries in a node and in

a leaf
Index Node Leaf
K-D-B-tree 30 10
R*-tree 31 10
VAMSplit R-tree 31 10
SS-tree 56 12
SR-tree 20 12

Table 2: Tree heights (uniform data set)

Index Data set size (x 1000)

10 20 30 40 50 60 70 80 90 100
K-D-B-tree 4 4 4 4 4 4 5 5 5 5
R*-tree 4 4 4 4 4 4 4 4 4 4
VAMSplit R-tree| 4 4 4 4 5 5 5 5 5 5
SS-tree 3 3 4 4 4 4 4 4 4 4
SR-tree 4 4 4 4 5 5 5 5 5 5

Table 3: Tree heights (real data set)

Index Data set size (x 1000)

2 4 6 810 12 14 16 18 20
K-D-B-tree 3 4 4 4 4 4 4 4 4 4
R*-tree 3 3 4 4 4 4 4 4 4 4
VAMSplit R-tree| 3 4 4 4 4 4 4 4 4 4
SS-tree 3 3 3 3 3 3 3 3 3 3
SR-tree 3 4 4 4 4 4 4 4 4 4

All tests are computed on a Sun Microsystems work-
station, SPARCstation-20 (CPU: HyperSPARC 125 MHz,
main memory: 224 Mbytes, OS: Solaris 2.4). All programs
are implemented in C++". The size of nodes and leaves is
set to 8192 bytes to meet with the disk block size of the op-
erating system. The size of the data area associated to each
leaf entry is 512 bytes. The maximum number of entries in
a node and in a leaf are shown in Table 1. Following the
suggestion of the R*-tree [4] and the SS-tree [3], the mini-
mum utilization parameter of each block is set to 40% for all
of the index structures and the reinsert fraction parameter
of the R*-tree and the SS-tree is set to 30%. The heights of
the constructed trees are shown in Table 2 and 3. For K-D-
B-trees, we employed the split algorithm of the R*-tree [15],
which is an extension of the K-D-B-tree to spatial objects,
instead of the algorithm presented in [10], because the cyclic
choice of splitting dimensions presented in [10] is likely to
cause forced splits as reported in [16].

The results for the uniform and the real data set are
shown in Figure 3 and 4 respectively. In these figures, the
graph (a) shows the CPU time and the graph (b) shows the
number of disk reads. The horizontal axis indicates the size
of the data set. The size varies from 10,000 to 100,000 for
the uniform data set and from 2,000 to 20,000 for the real
data set.

These results show that the VAMSplit R-tree outper-
forms the other index structures. However, the comparison
between the VAMSplit R-tree and the other index struc-
tures is not necessarily fair, because the VAMSplit R-tree is
an optimized index structure taking advantage of full knowl-
edge of the data set while the others are designed to be fully
dynamic [9]. Among the dynamic index structures, the SS-
tree exhibits the best performance and performs much better
than the R*-tree and the K-D-B-tree. This supports the re-
sults reported in [3] and the superiority of the SS-tree to the
R*-tree is confirmed.

*The C++ library of the SR-tree is available with the C and the
C++ language interface. Please, contact the authors to try the SR-
tree.
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Figure 4: Performance of K-D-B-trees, R*-trees, SS-trees, and VAMSplit R-trees (real data set)

3.2 Properties of Bounding Rectangles

The significant feature of the test results in Section 3.1 is
the superiority of the SS-tree to the R*-tree and the K-D-
B-tree. The SS-tree performs much better than both the
R*-tree and the K-D-B-tree especially for the real data set.
The SS-tree is about four times faster than the R*-tree.

This superiority can be explained by the following prop-
erties of the SS-tree and the R*-tree:

e The SS-tree divides points into isotropic neighborhoods
by utilizing bounding spheres.

e The R*-tree divides points into small regions by uti-
lizing bounding rectangles.

To verify these properties, we measured the volumes and
the diameters of the leaf-level regions of the SS-trees and
the R*-trees constructed for the uniform data set in Section
3.1. Here, the diameter of a region means the diameter
of a bounding sphere for the SS-tree and the diagonal of a
bounding rectangle for the R*-tree. The results are shown in
Figure 5. Figure 5-(a) and 5-(b) graph the average volume
and the average diameter respectively.

These results show that the average volume of bounding
rectangles is much smaller than that of bounding spheres.

The former is about 2% of the latter. By contrast, the av-
erage diameter of bounding rectangles is much longer than
that of bounding spheres. The former is about 2.5, while
the latter is about 1.5. Thus, the SS-tree divides points into
short-diameter regions, while the R*-tree divides points into
small-volume regions. This is why the SS-tree outperforms
the R*-tree. Since the diameter of regions has more influence
on the performance of nearest neighbor queries than their
volumes, the SS-tree, whose average diameter is smaller than
that of the R*-tree, exhibits better performance on nearest
neighbor queries.

It may seem strange that a region with a smaller volume
has a much longer diameter. However, it is possible for a
rectangle in high-dimensional space, because the difference
between its edge length and its diagonal length grows as the
number of dimensions increases. For example, the diago-
nal length of a D-dimensional unit cube is v/D though its
edge length is just one, e.g., v/2 for a 2-dimensional unit
square and 4 for a 16-dimensional unit hypercube. There-
fore, a bounding rectangle does not necessarily have a short
diameter even if its volume is small.

With the above measurement and the consideration, we
can conclude that the reason of the superiority of the SS-
tree is the shortness of region diameters and that a bounding
rectangle of the R*-tree suffers from the difference between
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its edge length and its diagonal length in high-dimensional
space.

3.3 Properties of Bounding Spheres

The SS-tree outperforms the R*-tree by employing a bound-
ing sphere whose center is the centroid of underlying points.
However, as shown in Figure 5-(a), the bounding spheres of
the SS-tree occupy much larger volume than the bounding
rectangles of the R*-tree. Regions with larger volume tend
to produce more overlap among themselves. This reduces
the search efficiency of range queries and nearest neighbor
queries. Thus, bounding spheres are not necessarily superior
to bounding rectangles in every respect. They are disadvan-
tageous in terms of volume.

To clarify this property, we measured the average volume
of the leaf-level regions of SS-trees when they are determined
by bounding rectangles instead of bounding spheres. The re-
sult of the SS-trees constructed for the uniform data set in
Section 3.1 is shown in Figure 6. The horizontal axis indi-
cates the size of the data set and the vertical axis indicates
the average volume of the bounding spheres and the bound-
ing rectangles. The average volumes of the leaf-level regions

of the R*-trees are also plotted for comparison. These re-
sults show that the average volume of the bounding rectan-
gles of the SS-tree leaves is much smaller than that of the
bounding spheres. When the data set size is 100,000, the
average volume of the bounding rectangles of the SS-tree
leaves is about 1/900 of that of the bounding spheres and
about 1/18 of the bounding rectangles of the R*-tree leaves.
This means that the average volume of the leaf-level regions
of the SS-trees will be about 1/900 if the regions are deter-
mined by bounding rectangles instead of bounding spheres.

3.4 Discussions

According to the performance test and the measurement
above, the properties of bounding rectangles and bounding
spheres are summarized as follows:

e Bounding rectangles permit to divide points into small-
volume regions. However, they have much longer di-
ameters than bounding spheres, because of the differ-
ent behavior of their edge length and their diagonal
length especially in high-dimensional space.

e Bounding spheres permit to divide points into short-
diameter regions. However, they tend to have larger
volumes than bounding rectangles.

Thus, bounding rectangles and bounding spheres have
both merits and demerits. Bounding rectangles are advan-
tageous in terms of volume. On the other hand, bounding
spheres are advantageous in terms of diameter. For nearest
neighbor queries, bounding spheres are more advantageous
than bounding rectangles, because the lengths of region di-
ameters have more influence to the performance on nearest
neighbor queries than the volumes of regions. However, the
most desirable property is to divide points into regions both
with small volumes and with short diameters.

Based on these consideration, we come to think of the
combined use of a bounding rectangle and a bounding sphere.
Because their properties are complementary to each other,
their intersection seems to permit dividing points into re-
gions with small volumes and short diameters. To realize
this idea, we developed the SR-tree (Sphere/Rectangle-tree)
presented in the next section. The effectiveness of this com-
bination will be disclosed in the rest of this paper.
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4 The SR-Tree

4.1 Index Structure

The structure of the SR-tree is based on that of the R-tree
[8], in common with the R*-tree [4] and the SS-tree [3], and
corresponds to the nested hierarchy of regions as shown in
Figure 7. However, the distinctive feature of the SR-tree is
that it specifies a region by the intersection of the bounding
sphere and the bounding rectangle of underlying points as
shown in Figure 8.
A leaf of the SR-tree has the following structure:

L : (Ei,...,FEy) (mr <n< M)
E; : (p, data).

A leaf L consists of entries F1,...,E, (mr < n < Mp)
where my and Mj; are the minimum and the maximum
number of entries in a leaf. Each entry contains a point
p and its attribute data. This structure is the same with
that of the SS-tree.

A node of the SR-tree has the following structure:

N:(Cl,...,Cn) (mNSTLSMN)
C; : (S, R,w, child_pointer).

A node N consists of entries C1,...,Cn (my < n < My)
where my and My are the minimum and the maximum
number of entries in a node. Each entry corresponds to a
child of the node and consists of the following four compo-
nents: a bounding sphere S, a bounding rectangle R, the
number of points w, and a pointer to the child child_pointer.
The way to compute S and R is explained in the next sec-
tion. The variable w is the total number of points contained
in the subtree whose top is the child pointed by child_pointer.
The difference of this structure to that of the SS-tree is the
introduction of the bounding rectangle R. On the other
hand, the difference of this structure to that of the R*-tree
is the introduction of the bounding sphere S and the number
of points w.

4.2 Insertion

The insertion algorithm of the SR-tree is based on that of
the SS-tree. We applied the centroid-based algorithm of the
SS-tree to the SR-tree, because its effectiveness for nearest
neighbor queries is confirmed through our performance test
as shown in Section 3.1. Since the algorithm of the SS-
tree can be understood by referring to the papers of the
SS-tree [3] and its predecessors, i.e., the R-tree [8] and the
R*-tree [4], we only mention its outline and the difference
between the algorithm of the SS-tree and that of the SR-
tree. The insertion algorithm of the SS-tree determines the
most suitable subtree to accommodate the new entry by
choosing a subtree whose centroid is the nearest to the new
entry. When a node or a leaf is full, the SS-tree reinserts a
portion of its entries rather than splits it unless reinsertion
has been made at the same node or leaf. Otherwise, the
split algorithm calculates its coordinate variance on each
dimension from the centroids of its children and chooses the
dimension with the highest variance for splitting it.

The insertion algorithm of the SR-tree differs from that
of the SS-tree in the way of updating regions on the insertion
of a new entry. The SR-tree needs to update both bound-
ing spheres and bounding rectangles, while the SS-tree only
needs to update bounding spheres. The way of updating
bounding rectangles is the same with that of the R-tree
and the R*-tree. However, the way of updating bound-
ing spheres is different from that of the SS-tree. Because
a region of the SR-tree is the intersection of a bounding
rectangle and a bounding sphere, the SR-tree determines
the bounding sphere of a parent node by utilizing both the
bounding spheres and the bounding rectangles of its children
as follows:

(1) The center of a bounding sphere, @ (z1,...,Z:,...,ZD),
is computed as follows:

ch.l’i XC’k.w
==L (1<i<D),

i Cr.w
k=1

where k& (1 < k < n) is an index to the children C1,
..y Cny 1 (1 <4< D) is an index to the dimensions,
C'.z; denotes the i-th coordinate of the center of the
child C%, and C%.w denotes the number of points con-
tained in the subtree whose top is the child Cj. This
definition is the same with that of the SS-tree.

(2) The radius of a bounding sphere, 7, is computed as

follows:
r = min (ds,d,),
ds = max (||& — Cr.z|| + Ck.r),
1<k<n
d. = max (MAXDIST(z,Cy.R)),
1<k<n

where k (1 < k < n) is an index to the children C1,
ceey Cpy i (1 <4 < D) is an index to dimensions,
Cr.x and Cj.r denote the center and the radius of the
bounding sphere of the child Ck, and C,.R denotes
the bounding rectangle of the child Cj;. The function
MAXDIST(p,R) computes the maximum distance
from a point p to a rectangle R and is defined as fol-
lows:
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MAXDIST(p, R) = max(||p — q||)-
geR

This can be computed easily by pursuing such a vertex
of the rectangle R that is the farthest from the point

p-

In the above definition, ds denotes the maximum distance
from the center of a parent node to the bounding spheres
of its children, and d, denotes the maximum distance from
the center of a parent node to the bounding rectangles of
its children. Although the SS-tree determines the radius r
by ds, the SR-tree determines the radius r by choosing the
smaller one between ds and d,.. This permits the radius
of the SR-tree to be smaller than that of the SS-tree and
reduces the overlap of bounding spheres.

4.3 Deletion

In common with the R*-tree and the SS-tree, the deletion
algorithm of the SR-tree is the same with that of the R-
tree [8]. When the deletion of an entry causes no under-
utilization of any leaf or node, the entry is simply removed
from the tree. Otherwise, the under-utilized leaf or node is
removed from the tree and orphaned entries are reinserted
to the tree.

4.4 Nearest Neighbor Search

In common with the R*-tree and the SS-tree, the nearest
neighbor search of the SR-tree is performed by applying the
algorithm presented in [14]. This algorithm finds a number
of points nearest to some given point. It is a depth-first
search and consists of two stages. Firstly, it collects the
given number of points to make a candidate set. Secondly,
it revises the candidate set with visiting every leaf whose
region overlaps the range of the candidate set. It terminates
when there are no more leaves to visit and the final candidate
set is the search result. The tree is traversed in order of
the distance from the search point to each region. At every
visited node, the distance from the search point to the region
of each child is computed and the closer child is visited prior
to the farther ones.

Although the traversal algorithm is common to the R*-
tree, the SS-tree, and the SR-tree, the SR-tree differs from

30 T

20 | s ,

15

Number of Disk Accesses

0 L L L L
0 20000 40000 60000 80000 100000
Data Set Size

(b) Number of disk accesses

SS-trees, and SR-trees (uniform data set)

both the R*-tree and the SS-tree in the way of computing the
distance from a search point to each region. Because a region
of the SR-tree is the intersection of a bounding sphere and
a bounding rectangle, the minimum distance from a search
point to a region is defined as the longer one between the
minimum distance to its bounding sphere and the minimum
distance to its bounding rectangle. Therefore, the minimum
distance from a search point p to the region of a child CY,
which is denoted by d, is computed as follows:

d = max(ds,d,),
ds = max(0, ||p— Cr.z|| — Cr.1),
d, = MINDIST(p,Cy.R),

where ).z and Cf.r denote the center and the radius of
the bounding sphere of the child C}, and C%.R denotes the
bounding rectangle of Cj. The function MINDIST (p, R)
computes the minimum distance from a point p to a rect-
angle R and is defined as follows:

MINDIST (p,R) = min (|lp — q|)-
geR

The algorithm of computing this function is presented in
[14].

In the above definition, ds denotes the minimum distance
from the search point p to the bounding sphere of the child
Ck, and d, denotes the minimum distance to the bounding
rectangle of the child C%. While the R*-tree determines the
minimum distance d by d, and the SS-tree by d,, the SR-tree
determines the minimum distance d by choosing the longer
one between ds and d,.. This provides the better estimation
of the distance from the search point p to the nearest point in
a region and enhances the performance of nearest neighbor
searching.

5 Evaluation of the SR-tree

5.1 Performance Test

‘We measured the performance of the SR-tree under the same
conditions with the test in Section 3.1. The maximum num-
ber of entries in a node and in a leaf are shown in Table 1
and the heights of trees are shown in Table 2 and 3. Figure 9
shows the average cost of inserting a new entry into SR-trees,
SS-trees, and R*-trees for the uniform data set. Figure 9-(a)
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and 9-(b) show, respectively, the CPU time and the num-
ber of disk accesses, i.e., the total number of disk reads and
disk writes. The SR-tree and the SS-tree require less CPU
time than the R*-tree, because the centroid-based insertion
algorithm of the SS-tree requires significantly less CPU time
than the algorithm of the R*-tree [3]. The SR-tree requires
more CPU time and more disk accesses than the SS-tree,
because the SR-tree contains not only bounding spheres but
also bounding rectangles.

Although the SR-tree requires more creation cost than
the SS-tree, it enhances the query performance remarkably.
Figure 10 and 11 show the results of the SR-tree for the
uniform and the real data set respectively. The results of
the SS-tree and the VAMSplit R-tree, which are already
shown in Section 3.1, are also plotted for comparison. They
clearly depict that the SR-tree outperforms the SS-tree for
both data sets. For the uniform and the real data set, the
SR-tree reduces the CPU time to 91% and 67% of the SS-
tree and the number of disk reads to 93% and 68% of the
SS-tree respectively. In comparison with the VAMSplit R-
tree, the VAMSplit R-tree outperforms the SR-tree for the
uniform data set. However, the SR-tree slightly outperforms
the VAMSplit R-tree for the real data set. It is remarkable
that the SR-tree exhibits the comparable performance to the
VAMSplit R-tree, considering that the SR-tree is a dynamic

index structure while the VAMSplit R-tree is a static, i.e.,
optimized, index structure.

5.2 The Advantage of the SR-tree

The SR-tree outperforms the SS-tree by dividing points into
regions with both small volumes and short diameters. To
clarify this advantage of the SR-tree, we measured the vol-
umes and the diameters of the leaf-level regions of the SR-
trees constructed for the performance test in Section 5.1.
The results for the uniform and the real data set are shown
in Figure 12 and 13. Figure 12-(a) and 13-(a) graph the
average volume of the leaf-level regions, while Figure 12-(b)
and 13-(b) graph the average diameter of the leaf-level re-
gions. The results of the R*-tree and the SS-tree are also
plotted for comparison.

For the SR-trees, the precise volume and the precise di-
ameter are not measured, because it is quite difficult to com-
pute them for the intersection of a sphere and a rectangle.
Instead, we measured the volumes and the diameters of their
bounding spheres and bounding rectangles. These measure-
ments indicate the upper limit of the real volume and the
real diameter, because a region, which is the intersection
of its bounding sphere and its bounding rectangle, has a
smaller volume and a shorter diameter than its bounding
sphere and its bounding rectangle. Therefore, the real av-
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erage volume of the leaf-level regions of the SR-tree is not
larger than the average volume of their bounding rectangles
which is marked by X in Figure 12-(a) and 13-(a), and the
real average diameter of the leaf-level regions of the SR-tree
is not longer than the average diameter of their bounding
spheres which is marked by O in Figure 12-(b) and 13-(b).
These results exhibit the following characteristics:

(1) Figure 12-(a) and 13-(a) show that the leaf-level re-
gions of the SR-tree have smaller volumes than those
of the R*-tree and the SS-tree on average. They are
about 1/1000 of those of the SS-tree for the uniform
data set and about 1/10° of those of the SS-tree for
the real data set.

(2) Figure 12-(b) and 13-(b) show that the leaf-level re-
gions of the SR-tree have as short diameters as those
of the SS-tree.

These characteristics verify that the SR-tree divides points
into regions with both smaller volumes and shorter diame-
ters. Moreover, their volumes are even smaller than those of
the R*-tree. This improves the disjointness among regions
and enhances the performance on nearest neighbor queries
as shown in Section 5.1.

5.3 The Fanout Problem

It had been pointed out that the fanout, i.e., the maximum
number of branches in an intermediate node, decreases in
the higher dimensionality, because the size of a node entry
grows as dimensionality increases [3]. Since a node entry of
the SR-tree contains both a bounding sphere and a bounding
rectangle, its size is three times larger than that of the SS-
tree and one-and-a-half of that of the R*-tree. Therefore,
the fanout of the SR-tree is one third of the SS-tree and
two thirds of the R*-tree. The reduction of the fanout may
require more nodes to be read on queries and possibly cause
the reduction of the query performance.

To analyze this problem, we measured the number of
node-level reads and leaf-level reads separately. Figure 14
shows the results for the real data set. The SR-tree incurs
more node-level reads than the SS-tree. However, the total
number of disk reads of the SR-tree is smaller than that of
the SS-tree, because the SR-tree saves leaf-level reads more
than the increase of node-level reads. Thus, the SR-tree
reduces the number of disk reads, even though it suffers
from the fanout problem.
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5.4 Evaluation on Dimensionality and Distribution

To investigate the characteristics of the SR-tree, we mea-
sured the performance of the SR-tree with varying the di-
mensionality and the distribution of data.

First, we measured the performance of the SR-tree for
the uniform data set with varying its dimensionality from
1 to 64. The data set size is fixed to 100,000 for every di-
mensionality. Figure 15-(a) and 15-(b) show the CPU time
and the number of disk reads respectively. Figure 16 shows
the proportion of accessed leaves, and Figure 17 shows the
minimum, the average, and the maximum of the distances
between the points within the uniform data set. For all
figures, the horizontal axis indicates dimensionality. These
results show that the uniform data set is unsuitable for eval-
uating index structures on nearest neighbor queries in high
dimensionality, because the uniform data set is too hard for
the touchstone. As shown in Figure 16, the proportion of ac-
cessed leaves reaches 100% in 32 and 64 dimensions for both
the SR-tree and the SS-tree. This means that these indices
completely failed to divide points into neighborhoods and
are forced to access all leaves. This failure derives from the
distribution of the distances between the points within the
uniform data set. As shown in Figure 17, the minimum of
the distances grows drastically as dimensionality increases
and the ratio of the minimum to the maximum increases
up to 24% in 16 dimensions, 40% in 32 dimensions, and
53% in 64 dimensions. This means that the variation in
the distances reduces as dimensionality increases and that
each point contained in the uniform data set has similar dis-
tances to the others in high dimensionality. This property of
the uniform data set makes it essentially difficult to divide
points into neighborhoods. Thus, the uniform data set is un-
suitable for evaluating the performance of index structures
on nearest neighbor queries in high dimensionality.

Therefore, we devised another data set, i.e., the cluster
data set. We designed this data set to be more practical in
high dimensionality than the uniform data set. This data
set consists of multiple clusters and each cluster contains a
fixed number of points within a sphere. Therefore, the total
number of points is the number of clusters multiplied by the
number of cluster elements. The location and the radius of
each cluster is chosen randomly within the unit cube and the
location of each point is chosen by generating a point on the
sphere surface uniformly and then shifting it along radius
randomly. We measured the performance of the SR-tree for
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the cluster data set in which the number of clusters is 100
and the number of cluster elements is 1000. The results
are shown in Figure 18. Figure 18-(a) and 18-(b) show the
CPU time and the number of disk reads respectively. These
results show that the SR-tree is effective from the lower di-
mensionality to the higher dimensionality and improves the
performance about 100% compared to the SS-tree.

Secondly, we measured the performance of the SR-tree
with varying the distribution of data. To produce various
distributions, we varied the number of clusters from 1 to
100,000 for the cluster data set with fixing the dimension-
ality to 16. The total number of points is fixed to 100,000.
Therefore, the number of points in a cluster is 100,000 di-
vided by the number of clusters. For the cluster data set,
varying the number of clusters corresponds to varying its
uniformity. When the number of clusters is 1, points are dis-
tributed in a single sphere. When the number of clusters is
greater than 1 and less than 100,000, points are distributed
in multiple spheres located within the unit cube. When
the number of clusters is 100,000, points are uniformly dis-
tributed within the unit cube. The results are shown in
Figure 19. Figure 19-(a) shows the CPU time and Figure
19-(b) shows the number of disk reads. The horizontal axis
indicates the number of clusters. These results show that
the SR-tree improves the performance more when the data
set is less uniform. For example, the SR-tree improves the
SS-tree by 42% when the number of clusters is 1, 88% when
the number of clusters is 100, and 36% when the number
of clusters is 100,000. This property is consistent with the
result of Section 5.1 where the SR-tree exhibits more per-
formance improvement for the real data set than for the
uniform data set. These results imply that the SR-tree is
more effective for less uniform data sets.

6 Conclusions

In this paper, a new multidimensional index structure called
the SR-tree is proposed for high-dimensional nearest neigh-
bor queries. The distinctive feature of the SR-tree is the
combined utilization of bounding spheres and bounding rect-
angles. The performance test of the R*-tree and the SS-tree
revealed that bounding spheres permit to divide points into
regions with short diameters and that bounding rectangles
permit to divide points into regions with small volumes. Al-
though the SS-tree outperforms the R*-tree by taking ad-
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vantage of bounding spheres, we demonstrated that bound-
ing spheres occupy larger volumes than bounding rectangles
on average and that this may reduce the disjointness among
regions. The SR-tree permits to divide points into regions
with both small volumes and short diameters by specifying
a region with the intersection of its bounding sphere and its
bounding rectangle. This improves the disjointness among
regions and enhances the performance on nearest neighbor
queries. The performance test verifies that the SR-tree di-
vides points into regions with both small volumes and small
diameters and shows that the SR-tree outperforms the SS-
tree and the R*-tree. The performance evaluation tests show
that the SR-tree is especially effective for high-dimensional
and non-uniform data sets which can be practical in actual
image/video similarity indexing. Although the creation cost
of the SR-tree is higher than that of the SS-tree, the per-
formance enhancement by the SR-tree would be advanta-
geous to the applications which require such an index struc-
ture that are efficient for high-dimensional nearest neighbor
queries.

Acknowledgments

The authors would like to express their gratitude to the
staff of the Informedia project, a digital video library project

Figure 17:

11

5 T

Maximum ——
Average -+~
Minimum -8--

Distance between Points

0 & M- L L L

1 2 4 8 16 32 64
Dimensionality

The maximum, the average, and the minimum
of the distances between the points contained in
the uniform data set

at Carnegie Mellon University, for providing them with the
data set of real feature vectors. The authors also would like
to express their gratitude to Prof Takeo Kanade, Director
of the Robotics Institute, Carnegie Mellon University, and
JSPS (Japan Society for the Promotion of Science) for giving
us the chance to start this research.

References

[1] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q.
Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D.
Petkovic, D. Steele, and P. Yanker, “Query by Image
and Video Content: the QBIC System,” IEEE Com-
puter, Vol.28, No.9, pp.23-32, Sep. 1995.

[2] H. D. Wactlar, T. Kanade, M. A. Smith, and S. M.
Stevens, “Intelligent Access to Digital Video: Informe-
dia Project,” IEEE Computer, Vol.29, No.5, pp.46-52,
May 1996.

[3] D. A. White and R. Jain, “Similarity Indexing with the
SS-tree,” Proc. of the 12th Int. Conf. on Data Engineer-
ing, New Orleans, USA, pp.516-523, Feb. 1996.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.
Seeger, “The R*-tree: an Efficient and Robust Access



[10]

SS-Tree +—
SR-Tree —+- |

-

CPU Time (sec)

0.1

0.01 . . . . .
1 2 4 8 16 32 64
Dimensionality

(a) CPU time

10000 T

1000

Number of Disk Reads

100

10

SS-Tree +—
SR-Tree —+-

1 . . . . .
1 2 4 8 16 32 64
Dimensionality

(b) Number of disk reads

Figure 18: Performance of SR-trees and SS-trees with varying dimensionality(cluster data set)

50 T
SS-Tree +—
SR-Tree —+-

CPU time (sec)

1 L L L L
10000 100000

100 1000
Number of Clusters

(a) CPU time

30000 T

10000 —

Number of Disk Reads

3000

1000 - N ,

300 L L L
1

SS-Tree o—
SR-Tree —+-

L
10 100 1000 10000
Number of Clusters

(b) Number of disk reads

100000

Figure 19: Performance of SR-trees and SS-trees with varying the distribution(cluster data set)

Method for Points and Rectangles,” Proc. ACM SIG-
MOD, Atlantic City, USA, pp.322-331, May 1990.

J. T. Robinson, “The K-D-B-tree: a Search Structure
for Large Multidimensional Dynamic Indexes,” Proc.

ACM SIGMOD, Ann Arbor, USA, pp.10-18, Apr. 1981.

H. V. Jagadish, “Spatial Search with Polyhedra,” Proc.
of the 6th Int. Conf. on Data Engineering, Los Angeles,
USA, pp.311-319, Feb. 1990.

T. Brinkhoff, H.-P. Kriegel, R. Schneider, B. Seeger,
“Multi-Step Processing of Spatial Joins,” Proc. ACM
SIGMOD, Minneapolis, USA, pp.197-208, May 1994.

A. Guttman, “R-trees: a Dynamic Index Structure
for Spatial Searching,” Proc. ACM SIGMOD, Boston,
USA, pp.47-57, Jun. 1984.

D. A. White and R. Jain, “Similarity Indexing: Al-
gorithms and Performance,” Proc. SPIE Vol.2670, San
Diego, USA, pp.62-73, Jan. 1996.

J. L. Bentley, “Multidimensional Binary Search Trees
Used for Associative Searching,” Comm. of the ACM,
Vol.18, No.9, pp.509-517, Sep. 1975.

12

[11]

[12]

[13]

[14]

[15]

[16]

R. Sproull, “Refinements to Nearest-Neighbor Search-
ing in k-Dimensional Trees,” Algorithmica, Vol.6, No.4,
pp-H79-589, 1991.

K.-I. Lin, H. V. Jagadish, and C. Faloutsos, “The TV-
tree: An Index Structure for High-Dimensional Data,”

VLDB Journal, Vol. 3, No. 4, pp.517-542, 1994.

S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The X-
tree: An Index Structure for High-Dimensional Data,”
Proc. of the 22nd VLDB Conf.; Bombay, India, pp.28—
39, Sep. 1996.

N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest
Neighbor Queries,” Proc. ACM SIGMOD, San Jose,
USA, pp.71-79, May 1995.

T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R*-
tree: a Dynamic Index for Multi-Dimensional Objects,”
Proc. of the 13th VLDB Conf., Brighton, England,
pp.507-518, Sep. 1987.

D. Greene, “An Implementation and Performance
Analysis of Spatial Data Access Methods,” Proc. of the
5th Int. Conf. on Data Engineering, Los Angeles, USA,
pp.606-615, Feb. 1989.



