Effects of long-term administration of vitamin D₃ analogs to mice

E A Smith, E P Frankenburg, S A Goldstein, K Koshizuka¹, E Elstner¹, J Said¹, T Kubota¹, M Uskokovic² and H P Koeffler¹

Orthopedic Research Laboratories, University of Michigan, Ann Arbor, Michigan 48109–0486, USA
¹Departments of Medicine and Pathology, UCLA School of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
²Hoffmann-LaRoche, Nutley, New Jersey 07110, USA

(Requests for offprints should be addressed to H P Koeffler, Cedars-Sinai Medical Center/UCLA, School of Medicine, B208, 8700 Beverly Boulevard, Los Angeles, California 90048, USA)

Abstract

This study explores the effects of chronic administration of vitamin D₃ compounds on several biological functions in mice. Knowledge of long-term tolerability of vitamin D₃ analogs may be of interest in view of their potential clinical utility in the management of various pathologies such as malignancies, immunological disorders and bone diseases. Four unique vitamin D₃ analogs (code names, compounds V, EO, LH and LA) and 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) were administered i.p. for 55 weeks to Balb/c mice. Each analog had previously been shown to have potent in vitro activities. After 55 weeks of administration, the mice had a profound decrease in their serum levels of interleukin-2 (IL-2). Likewise, several analogs depressed serum immunoglobulin G concentrations (compounds LH and LA), but levels of blood lymphocytes and splenic lymphocyte subsets (CD4, CD8 and CD19) were not remarkably depressed. The percent of committed myeloid hematopoietic stem cells was 4– to 5-fold elevated in the bone marrow of the mice that received analogs LH and V; nevertheless, their peripheral blood white and red cell counts and platelets were not significantly different in any of the groups. The mice that received 1,25(OH)₂D₃ had a decrease in bone quantity and quality with a decrease in cross-sectional area and cortical thickness, and a 50% reduction in both stiffness and failure load compared with the control group. In contrast, the cohort that received a fluorinated analog (compound EO) developed bones with significantly larger cross-sectional area and cortical thickness as well as stronger mechanical properties compared with the control group. At the conclusion of the study, body weights were significantly decreased in all experimental mice. Their blood chemistries were normal. Extensive gross and microscopic autopsy analyses of the mice at the conclusion of the study were normal, including those of their kidneys. In conclusion, the vitamin D₃ analogs were fairly well tolerated. They did suppress immunity as measured by serum IL-2 and may provide a means to depress the immune response after organ transplantation and for autoimmune diseases. Use of these analogs prevented the detrimental effects of vitamin D₃ administration on mechanical and geometric properties of bone, while one analog (compound EO) actually enhanced bone properties. These results suggest that long-term clinical trials with the analogs are feasible.

Journal of Endocrinology (2000) 165, 163–172

Introduction

Vitamin D₃ plays a central role in bone and calcium homeostasis by promoting the absorption of calcium from bone. The active hormonal form of vitamin D₃ is 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃; code name, compound C), the circulating level of which is tightly regulated (Haussler et al. 1997). 1,25(OH)₂D₃ also has diverse, non-classical biological effects on normal and malignant tissues in vitro. 1,25(OH)₂D₃ induces differentiation of normal cells including those from hematopoietic, digestive and integumentary systems (Reichel et al. 1989). 1,25(OH)₂D₃ can also inhibit proliferation and induced differentiation of various cancer cells, such as those from breast, ovary, skin, colon, brain and prostate tissue as well as leukemia cells (Campbell & Koeffler 1997, Colston 1997, Gross et al. 1997, Van Leeuwen & Pols 1997). Previous studies have shown that both a genomic and non-genomic pathway are involved in these regulatory actions (Norman 1997). 1,25(OH)₂D₃ binds to nuclear vitamin D₃ receptors (VDR), which attaches to the VDR response elements in the promoter region of target genes (Mangelsdorf et al. 1995, Haussler et al. 1997). Meanwhile, 1,25(OH)₂D₃ exerts rapid effects in a variety of cells, perhaps by changing membrane voltage-gated channels, phospholipase C activity and the sodium/hydrogen antiport (Baran 1994).

The hypercalcemic effect of 1,25(OH)₂D₃ has prevented its broad application as a pharmacological agent. Recently, vitamin D₃ analogs have been developed that
have profound effects on a variety of cells but have less ability to cause hypercalcemia than does 1,25(OH)₂D₃. These analogs can inhibit proliferation and induce differentiation of cancer cells and decrease the development and progression of carcinoma in vivo without causing hypercalcemia (Zhou et al. 1989, 1990, Abe et al. 1991, Jung et al. 1994, Koshizuka et al. 1998, Kubota et al. 1998). These analogs may have utility in a variety of other disease states including psoriasis, immunological abnormalities and bone and endocrine disorders. Therefore, knowing the full scope of side-effects from chronic administration of vitamin D₃ analogs is important before embarking on long-term clinical trials. To our knowledge, this is the first study of the effects of prolonged administration of vitamin D₃ analogs in vivo; four vitamin D₃ analogs and 1,25(OH)₂D₃ were given to mice for 55 weeks. In general, the mice appeared healthy. They did, however, weigh less than their litter male controls, and had a dose-dependent hypercalcemia and a significant depression of serum interleukin-2 (IL-2) levels. Although 1,25(OH)₂D₃ decreased mechanical and structural integrity of bone, fluorine-containing analogs enhanced the strength and size of bone. Taken together, these findings suggest that vitamin D₃ can be chronically administered to individuals.

Materials and Methods

Eight-week-old female Balb/c mice from Jackson Laboratories (Bar Harbor, ME, USA) were maintained in pathogen-free conditions and fed a standard laboratory diet. Animals were weighed every 2 to 3 months. At the end of 55 weeks, the animals were killed by CO₂ asphyxiation in accordance with approved vivaria practices, and autopsies were performed.

Vitamin D₃ analogs

1,25(OH)₂D₃ (code name, compound C); 1,25(OH)₂-16ene-23yne-D₃ (compound V); 1,25(OH)₂-16ene-23yne-26,27-F₆-D₃ (compound EO); 1,25(OH)₂-16ene-23yne-19-nor-26,27-F₆-D₃ (compound LH); 1,25(OH)₂-16,22R,23-triene-D₃ (compound LA) (Fig. 1) were synthesized at Hoffmann-LaRoche, Nutley, NJ, USA. The compounds were dissolved in absolute ethanol at 10⁻³ mol/l and stored in aliquots at −20 °C. At the time of administration, analogs were diluted with PBS.

Treatment protocol and measurement of serum calcium

Mice were divided randomly into six groups of ten mice each and the cohorts received either no treatment (diluent control), or compound C, V, EO, LH or LA. Vitamin D₃ analogs were administered i.p. three times a week (Monday, Wednesday and Friday) at the following doses: compound C, 0·0625 µg/mouse; compound V, 0·25 µg/mouse; compound EO, 0·0125 µg/mouse; compound LH, 0·0125 µg/mouse; compound LA, 0·0125 µg/mouse. The doses were chosen from our previous experience (Pakkala et al. 1995). Serum calcium levels were measured 1 day after administration of vitamin D₃ compounds; blood was collected from the orbital sinus at 6, 16, 20, 27, 31, 37, 43 and 55 weeks of treatment. Serum calcium levels were measured every 6 to 12 weeks by atomic absorption spectrophotometry (Perkin-Elmer 560, Perkin-Elmer, Norwalk, CT, USA).

Immunological tests and analysis of blood chemistries and the hematopoietic system

After 55 weeks of administration of vitamin D₃ analogs, blood was collected from the orbital sinus of each mouse for serum levels of IL-2 and immunoglobulin G (IgG). Serum IL-2 was determined with a Mouse IL-2 Quantikine ELISA Kit (R & D SYSTEMS, Minneapolis, MN, USA) and the optical density was read at 450 nm. Serum IgG was determined with a Mouse IgG RID kit
Flow cytometric analysis of murine lymphocytes

Lymphocyte populations in the spleen of mice were examined by two-color flow cytometric analysis. Cells obtained from vitamin D₃-treated and non-treated mice were stained with the following monoclonal antibodies: CD3, 4 and 8 for T-cells and CD19 for B-cells (PharMingen, San Diego, CA, USA). The ratio of T- to B-cells was defined as CD3/CD19.

Myeloid colony assay

Bone marrow cells were prepared from the femurs of mice by flushing with RPMI 1640 medium (GIBCO Laboratories, Grand Island, NY, USA) supplemented with 10% fetal calf serum (FCS) (GIBCO Laboratories), and single cell suspensions of spleen cells were prepared with the same medium. Mononuclear cells (MNCs) were isolated on Ficoll-Paque (Pharmacia Biotechnology, Uppsala, Sweden) and the colony-forming unit–granulocyte-macrophage (CFU-GM) assay was performed according to a modification of a method described previously (Koeffler et al. 1984). Briefly, the MNCs from bone marrow and spleen from three untreated mice (control group) and treated mice (two to three mice per group) were collected after 55 weeks of treatment with the various vitamin D₃ analogs. The MNCs (5 x 10⁵) were plated in 35-mm culture dishes (Becton Dickinson, Franklin Lakes, NJ, USA) in 1 ml of a mixture containing Iscove’s modified Dulbecco’s medium (GIBCO Laboratories), 0-9% methylcellulose (FLUKA, Buchs, Switzerland), 30% FCS, 10² mol/l 2-mercaptoethanol, 2 mmol/l L-glutamine, 50 U penicillin, 50 µg streptomycin, 50 U recombinant murine IL-3 (Biosource, Camarillo, CA, USA) and 0-5 ng recombinant murine granulocyte–macrophage colony-stimulating factor (GM-CSF) (Biosource). Triplicate dishes for each vitamin D₃ concentration were cultured at 37 °C in 5% CO₂, and colonies containing more than 30 cells were scored on day 10 of culture.

Biomechanical characterization of bone

The mechanical integrity of whole bone specimens is reflective of the quality of the bone tissue, as well as its amount and geometric organization. Analysis of both whole bone mechanical properties and geometry can therefore provide information about the characteristics of bone tissue itself. Rather than making an estimate of stress by dividing the load by cross-sectional area (CSA), we chose to measure structural properties and geometric properties separately. This allows us to test whether any alterations in whole bone properties can be explained by geometry. If in fact changes in whole bone properties are not easily explained by changes in cross-sectional geometry, then the inherent material properties of the bone must be altered. Our methods allow us to reach these conclusions without making the poorly validated assumptions of uniform cross-section with homogeneous, isotropic properties.

The geometry of the right femur from 40 mice was evaluated using a microComputed tomography (µCT) system developed at the University of Michigan. This system provides a complete three-dimensional digitization of structures at a resolution of approximately 30 µm in the x, y and z directions (Kuhn et al. 1990). The specimens were oriented so that the anterior–posterior, medial–lateral and longitudinal axes corresponded with the x-, y- and z-axes respectively. The mid-diaphyseal region, defined as the mid–50% of the length of the bone, was extracted from the total image and the data were thresholded to distinguish between ‘bone’ and ‘non–bone’ voxels. CSA, cortical thickness (CT), and moments of inertia (Iₓx, Iᵧy and J) were determined for each cross-section, and were then averaged along the length of the mid-diaphysis.

Whole bone mechanical properties were determined by testing to failure in four-point bending on an MTS servohydraulic testing machine (Minneapolis, MN, USA) as previously described (Bonadio et al. 1993). Specimens were oriented with their anterior surface facing upward, and the mid-diaphyses were loaded at a constant displacement rate of 0·5 mm/s. Load–displacement data were acquired using Lab View software (National Instruments, Austin, TX, USA), and loads and displacements to yield and failure were directly measured. Stiffness was calculated as the slope of the linear portion of the load–displacement curve. Statistical significance was determined using a one-way ANOVA with Tukey’s post-hoc test for group comparisons (P<0·05 considered significant).

Analysis of organs

At completion of the study, tissues were fixed in 10% buffered formaldehyde after killing, embedded in paraffin blocks, sectioned, stained with hematoxylin and eosin and examined by light microscopy. The lung, heart, liver, kidney, spleen, adipose tissue, sternum and bone marrow were evaluated and compared with diluent-injected control mice.
Statistical analysis

The statistical significance of the differences was analyzed by a non-parametric Mann–Whitney U test.

Results

Calcium levels

An initial 6 week calcium study was performed in order to attempt to find the dose of each of the vitamin D$_3$ compounds that gave an upper range of normal serum calcium level (data not shown). Subsequently, the long-term trial was begun; the doses of compounds C, V, EO, LH and LA were 0·0625, 0·25, 0·0125, 0·0125 and 0·0125 µg/mouse respectively.

Figure 2 shows the serum calcium levels of the mice during their 55 weeks of i.p. administration of the vitamin D$_3$ compounds. Over the first 6 weeks, serum calcium levels of all the groups were within the normal range (normal 8·5–10·5 mg/dl). However, at 16 weeks, all the mice receiving the vitamin D$_3$ compounds developed hypercalcemia. The serum calcium levels of the compound C cohort were extremely high (mean, 15 mg/dl). The dose of each was lowered: compounds C, V, EO, LH and LA were decreased to 0·03125, 0·1875, 0·00625, 0·00625 and 0·009375 µg/mouse respectively. At weeks 20–37, most of the cohorts had serum calcium in the normal range. Near the end of the study, hypercalcemia redeveloped especially in those which received compounds LH and EO. Compound V, which was given at a dose of 0·1875 µg/mouse, was the least calcemic analog.

Immune system

The immunosuppressive effect of 55 weeks of administration of vitamin D$_3$ analogs was evaluated by the measurement of serum IL-2 (Fig. 3), IgG (Fig. 4), sub-populations of splenic T- and B-lymphocytes (Table 1), total peripheral blood lymphocyte counts and examination of the splenic architecture. Serum IL-2 levels of all the treated groups except those which received compound C, were markedly depressed being around 15 pg/ml, which is nearly 15% of the levels present in the control group.

![Figure 2](https://example.com/f2.png)
Figure 2 Serum calcium levels of the Balb/c mice. Serum calcium levels were measured every 6 to 12 weeks by atomic absorption spectrophotometry. Data are expressed as the mean ± S.D. of five to ten mice.

![Figure 3](https://example.com/f3.png)
Figure 3 Effect of long-term administration of vitamin D$_3$ analogs on the levels of serum IL-2. After 1 year of administration of vitamin D$_3$ analogs, blood was collected from orbital sinus and IL-2 levels were measured. Results represent mean ± S.D. of five mice. * and **, significantly different (*P*<0·01) from control and compound C-treated groups respectively, as determined by a Mann–Whitney U test.
Each of these treatment cohorts was statistically different from either the controls (P<0·01) or those that received compound C (P<0·01). The compound C group had a mean serum IL-2 level which was 60% of normal. The level of serum IgG (mean 5·8 mg/ml) in the compound C-treated mice was elevated at 185% of the control group. Compound LH- and LA-treated cohorts had depressed serum IgG levels (mean 1·9 and 1·8 mg/ml respectively), which were about 60% of the control group.

Analysis of T- and B-lymphocyte subsets in the spleen of the various cohorts at the end of the study were not statistically different (Table 1). The mean peripheral blood lymphocyte counts were slightly expanded in the compound C cohort (3443/mm3) and somewhat contracted (2205/mm3, 2597/mm3) in the mice that received compounds V and LA respectively compared with diluent-treated control mice (3175/mm3). The splenic morphology of each of the treatment groups was identical to the diluent-treated controls (data not shown).

Weights
During the study, the mice were weighed every 2 to 3 months; mean body weights of the experimental mice were less than the diluent-treated mice (P<0·05). This decrease ranged from 20% in those that received compound V to 37% in those receiving compound EO (Fig. 5).

Myeloid committed stem cells
Effect of long-term exposure of the mice to the various vitamin D3 analogs on their numbers of committed myeloid stem cells (CFU-GM) was examined at the end of the study. The bone marrow and spleen cells were harvested and MNCs were purified and plated in soft-gel cultures with a maximally stimulating concentration of the hematopoietic growth factor, murine GM-CSF. The number of CFU-GM colonies were enumerated after 12 days of culture, and results were expressed as a percent of myeloid colonies found in diluent-treated mice (Fig. 6). Compound C had no significant effect on the number of CFU-GM from the spleens compared with untreated mice (marrow cells were not tested). In contrast, compounds V, LH and LA enhanced the numbers of CFU-GM within both the spleens (169, 166 and 149%) and the bone marrows (169, 166 and 149%) respectively.

Blood hematopoietic and serum chemistry data
The blood hematopoietic data at the end of the study are presented in Table 2. The white blood cell (WBC) count was a little lower in the groups which received compounds V and LA. Groups that received either compound C or EO had slightly higher levels of red blood cells (RBC), hemoglobins, and hematocrits than did the control groups (Table 2). The platelet numbers were comparable in each group, except they were slightly elevated in the animals receiving compound C.

Table 1 B- and T-lymphocyte populations mean ± s.d. for three mice for each cohort in spleens after 55 weeks of infections of vitamin D3 analogs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Control</th>
<th>C</th>
<th>V</th>
<th>EO</th>
<th>LH</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3 (T cells, %)</td>
<td>30 ± 3·5</td>
<td>26 ± 0·4</td>
<td>27 ± 5·0</td>
<td>28 ± 2·7</td>
<td>32 ± 4·8</td>
<td>34 ± 10·0</td>
</tr>
<tr>
<td>CD4 (% of CD3 cells)</td>
<td>56 ± 3·8</td>
<td>60 ± 1·9</td>
<td>58 ± 2·1</td>
<td>62 ± 0·1</td>
<td>61 ± 6·8</td>
<td>61 ± 3·5</td>
</tr>
<tr>
<td>CD8 (% of CD3 cells)</td>
<td>31 ± 2·9</td>
<td>30 ± 0·5</td>
<td>28 ± 3·0</td>
<td>27 ± 1·0</td>
<td>28 ± 3·9</td>
<td>26 ± 3·2</td>
</tr>
<tr>
<td>CD19 (B cells, %)</td>
<td>60 ± 4·7</td>
<td>66 ± 1·5</td>
<td>63 ± 3·9</td>
<td>59 ± 6·6</td>
<td>55 ± 0·5</td>
<td>56 ± 10·8</td>
</tr>
<tr>
<td>CD4/CD8</td>
<td>1·76</td>
<td>2·04</td>
<td>2·05</td>
<td>2·38</td>
<td>2·17</td>
<td>2·35</td>
</tr>
<tr>
<td>CD3/CD19</td>
<td>0·49</td>
<td>0·40</td>
<td>0·43</td>
<td>0·48</td>
<td>0·58</td>
<td>0·60</td>
</tr>
</tbody>
</table>

CD3, T-lymphocytes; CD4, helper T-lymphocytes; CD8, cytotoxic T-lymphocytes; CD19, B-lymphocytes.

Figure 4 Serum IgG levels of experimental mice. After 1 year of injections as described in Materials and Methods, blood was collected and levels of IgG measured. Results represent mean ± s.d. of five mice per group.
The renal function studies (blood urea nitrogen (BUN) and creatinine) were normal in all the cohorts (Table 3). Likewise, the liver tests (alkaline phosphatase, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), bilirubin and total protein) and the blood electrolytes (Na^+, K^+, Cl^- and HCO_3^-) and blood sugar were also normal. The uric acid in all the treatment groups was statistically ($P<0.015$) higher than the control group (Table 3), but the lactate dehydrogenase was normal in each group.

Histology of various organs

At the end of the study, autopsies of all the mice were performed. No gross abnormalities were observed in any of the mice. Histology of the spleens showed normal lymphoid architecture. Bone marrows had normal cellularity with orderly hematopoietic maturation. Some of the mice treated with various analogs revealed slight lymphocytic infiltrates in the liver and focal mild steatosis. The hearts, lungs and kidneys were normal in all cohorts. In contrast, before beginning the study, during the interval when the dosage of the analogs was being determined, LH was administered at too high a dose (0·05 µg) and the mice developed severe hypercalcemia with resulting nephrocalcinosis. One mouse which received compound EO had one calcified subcutaneous node. All other organs appeared normal in all of the animals (data not shown).

Biomechanical characterization of bone

Results are summarized in Table 4, with statistically significant differences only between control and treatment groups noted. Other differences between the treatment groups also existed. In general, mechanical and geometrical properties of bones from mice treated with either compounds C or EO were significantly different from controls. Groups LA, LH or V were not significantly different from the control group, although a slight trend towards increased cross-sectional geometry was exhibited by the LH group.

Mechanical testing results showed severely diminished mechanical properties of bones from cohort C. This treatment resulted in a 50% reduction in both stiffness and

Figure 5 Body weight of mice receiving vitamin D$_3$ compounds. Animals were weighed every 2 to 3 months. Results represent mean ± s.d. of five to ten mice. * and **, significantly different from the control group at the $P<0.05$ and $P<0.01$ levels respectively, as determined by a Mann–Whitney U test.

Figure 6 In vivo effect of long-term exposure to vitamin D$_3$ analogs on numbers of CFU-GM in murine bone marrow (dense columns) and spleen (light columns). Results are expressed as a mean percent ± s.d. of control CFU-GM (untreated mice). Each point represents a mean of CFU-GM from at least two mice with each experimental point having triplicate dishes. The control plates had 169 ± 25 and 148 ± 47 colonies per 5×10^5 MNCs from the spleen and bone marrow respectively.
Table 2 Serum chemistry data mean ± s.d. for five mice after 55 weeks of injections of vitamin D₃ analogs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Control</th>
<th>C</th>
<th>V</th>
<th>EO</th>
<th>LH</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>142.0 ± 9.49</td>
<td>184.4 ± 26.4</td>
<td>150.8 ± 15.1</td>
<td>160.0 ± 11.4</td>
<td>113.6 ± 5.86</td>
<td>123.2 ± 14.1</td>
</tr>
<tr>
<td>GOT</td>
<td>151.4 ± 31.5</td>
<td>106.3 ± 16.3</td>
<td>154.8 ± 25.7</td>
<td>160.3 ± 32.6</td>
<td>111.6 ± 24.5</td>
<td>163.8 ± 35.2</td>
</tr>
<tr>
<td>GPT</td>
<td>178.2 ± 94.4</td>
<td>ND</td>
<td>113.4 ± 60.1</td>
<td>127.8 ± 68.3</td>
<td>68.8 ± 45.4</td>
<td>181.8 ± 75.2</td>
</tr>
<tr>
<td>BUN</td>
<td>19.1 ± 1.35</td>
<td>20.9 ± 3.06</td>
<td>24.1 ± 0.86</td>
<td>25.7 ± 2.41</td>
<td>19.0 ± 1.36</td>
<td>17.4 ± 0.87</td>
</tr>
<tr>
<td>Cr</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>Glu</td>
<td>131.0 ± 14.3</td>
<td>93.4 ± 11.7</td>
<td>145.0 ± 8.80</td>
<td>94.8 ± 7.95</td>
<td>145.2 ± 23.0</td>
<td>116.6 ± 20.2</td>
</tr>
<tr>
<td>Chol</td>
<td>150.6 ± 13.1</td>
<td>146.4 ± 5.41</td>
<td>136.4 ± 11.9</td>
<td>152.6 ± 14.3</td>
<td>140.2 ± 21.9</td>
<td>118.6 ± 9.7</td>
</tr>
<tr>
<td>TG</td>
<td>113.0 ± 12.2</td>
<td>97.2 ± 21.7</td>
<td>107.8 ± 18.5</td>
<td>112.6 ± 35.4</td>
<td>93.8 ± 34.2</td>
<td>80.4 ± 13.0</td>
</tr>
<tr>
<td>UA</td>
<td>2.44 ± 0.22</td>
<td>4.12 ± 1.00</td>
<td>5.84 ± 1.53</td>
<td>6.12 ± 0.59</td>
<td>5.58 ± 0.72</td>
<td>4.13 ± 0.15</td>
</tr>
<tr>
<td>Bil</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>T-pro</td>
<td>5.92 ± 0.49</td>
<td>5.88 ± 0.45</td>
<td>5.32 ± 0.69</td>
<td>5.54 ± 0.38</td>
<td>5.52 ± 0.33</td>
<td>5.16 ± 0.46</td>
</tr>
</tbody>
</table>

ALP, alkaline phosphatase; T-pro, total protein; Cr, creatinine; Bil, bilirubin; UA, uric acid; Glu, glucose; Chol, cholesterol; TG, triglycerides.

Table 3 Hematopoietic blood values mean ± s.d. for five mice after 55 weeks of injections of vitamin D₃ analogs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Control</th>
<th>C</th>
<th>V</th>
<th>EO</th>
<th>LH</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (10³/mm³)</td>
<td>5.88 ± 1.94</td>
<td>6.26 ± 1.14</td>
<td>4.24 ± 1.76</td>
<td>5.78 ± 0.83</td>
<td>5.90 ± 1.47</td>
<td>4.90 ± 1.34</td>
</tr>
<tr>
<td>RBC (10¹²/mm³)</td>
<td>9.72 ± 1.02</td>
<td>11.4 ± 1.46</td>
<td>9.49 ± 0.96</td>
<td>11.1 ± 0.55</td>
<td>9.39 ± 0.66</td>
<td>9.42 ± 0.60</td>
</tr>
<tr>
<td>Hgb (g/dl)</td>
<td>15.1 ± 1.50</td>
<td>16.7 ± 1.47</td>
<td>14.6 ± 1.29</td>
<td>16.6 ± 0.97</td>
<td>14.6 ± 0.91</td>
<td>14.4 ± 0.72</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>45.7 ± 4.76</td>
<td>50.9 ± 5.39</td>
<td>43.8 ± 4.15</td>
<td>51.1 ± 0.05</td>
<td>43.6 ± 3.05</td>
<td>43.3 ± 2.18</td>
</tr>
<tr>
<td>MCV</td>
<td>47.0 ± 0.13</td>
<td>44.9 ± 1.14</td>
<td>47.2 ± 2.43</td>
<td>46.0 ± 0.69</td>
<td>46.5 ± 0.65</td>
<td>46.0 ± 0.86</td>
</tr>
<tr>
<td>MCH</td>
<td>15.6 ± 0.11</td>
<td>14.7 ± 0.69</td>
<td>15.4 ± 0.43</td>
<td>14.9 ± 0.15</td>
<td>15.6 ± 0.30</td>
<td>15.3 ± 0.57</td>
</tr>
<tr>
<td>MCHC</td>
<td>33.1 ± 0.22</td>
<td>23.8 ± 0.82</td>
<td>33.3 ± 0.25</td>
<td>32.5 ± 0.25</td>
<td>33.6 ± 0.36</td>
<td>33.3 ± 0.68</td>
</tr>
<tr>
<td>Plt (10¹³/mm³)</td>
<td>1127 ± 98.9</td>
<td>1405 ± 92.9</td>
<td>1132 ± 253</td>
<td>1090 ± 78.3</td>
<td>1147 ± 193</td>
<td>1188 ± 76.1</td>
</tr>
</tbody>
</table>

Hgb, hemoglobin; Hct, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; Plt, platelet counts.

Table 4 Effects on mechanical and geometric properties of bone of vitamin D₃ analogs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Control (n=7)</th>
<th>C (n=4)</th>
<th>EO (n=5)</th>
<th>LA (n=8)</th>
<th>LH (n=8)</th>
<th>V (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield load (N)</td>
<td>164.4 ± 3.9</td>
<td>30.2 ± 2.9</td>
<td>37.7 ± 11.4</td>
<td>34.4 ± 8.5</td>
<td>31.3 ± 6.6</td>
<td>30.1 ± 8.3</td>
</tr>
<tr>
<td>Failure load (N)</td>
<td>18.6 ± 2.6</td>
<td>37.4 ± 9.4</td>
<td>48.0 ± 14.3</td>
<td>40.3 ± 7.8</td>
<td>39.2 ± 8.8</td>
<td>37.4 ± 8.6</td>
</tr>
<tr>
<td>Stiffness (N/mm)</td>
<td>136.2 ± 37.0</td>
<td>275.3 ± 72.2</td>
<td>394.5 ± 66.0</td>
<td>321.7 ± 67.6</td>
<td>281.7 ± 58.1</td>
<td>291.4 ± 68.9</td>
</tr>
<tr>
<td>CSA (mm²)</td>
<td>0.917 ± 0.035</td>
<td>1.042 ± 0.112</td>
<td>1.257 ± 0.087</td>
<td>1.017 ± 0.111</td>
<td>1.103 ± 0.083</td>
<td>0.922 ± 0.078</td>
</tr>
<tr>
<td>CT (mm)</td>
<td>0.232 ± 0.007**</td>
<td>0.287 ± 0.020</td>
<td>0.336 ± 0.026*</td>
<td>0.281 ± 0.018</td>
<td>0.309 ± 0.039</td>
<td>0.254 ± 0.013</td>
</tr>
<tr>
<td>Jₜ (mm⁴)</td>
<td>0.300 ± 0.035</td>
<td>0.280 ± 0.054</td>
<td>0.332 ± 0.033</td>
<td>0.268 ± 0.063</td>
<td>0.308 ± 0.036</td>
<td>0.236 ± 0.045</td>
</tr>
<tr>
<td>Jₚ (mm⁴)</td>
<td>0.161 ± 0.017</td>
<td>0.137 ± 0.025</td>
<td>0.120 ± 0.016**</td>
<td>0.139 ± 0.030</td>
<td>0.153 ± 0.016</td>
<td>0.126 ± 0.019</td>
</tr>
<tr>
<td>J (mm⁶)</td>
<td>0.460 ± 0.051</td>
<td>0.417 ± 0.079</td>
<td>0.532 ± 0.048</td>
<td>0.407 ± 0.091</td>
<td>0.460 ± 0.054</td>
<td>0.363 ± 0.063</td>
</tr>
</tbody>
</table>

*p<0.05 vs control; **p<0.01 vs control.

One specimen was excluded from analysis due to errors during testing.

In contrast, specimens from cohort EO exhibited significant increases in both mechanical and geometric properties when compared with the control group. Mechanical testing results showed significant increase in stiffness and trends towards increased yield and failure loads of cohort EO. Mice treated with compound EO also had significantly larger CSA and CT, and a trend towards increased moments of inertia.

www.endocrinology.org
Discussion

This study sought to determine the toxicities of chronic (55 weeks) administration of vitamin D₃ analogs. We attempted to choose doses of these compounds that would result in levels of serum calcium at the high end of the normal range. Because of an initial pilot study as well as a prior short-term investigation, we chose doses that we thought would meet this criterion (Pakkala et al. 1995). At week 6 of vitamin D₃ administration, all the mice were normocalcemic; but at week 16, most had either a high or upper range of normal serum calcium level. The dose of each of the vitamin D₃ analogs was lowered. Analog V (0.1875 µg/mouse) was the least calcemic. A dose of compound C that was almost 6-fold lower than compound V was required to produce the same level of serum calcium. We do not know why analog V has the least potential for hypercalcemia, perhaps the compound is more rapidly metabolized resulting in a shorter half-life. Compounds LH and EO were the most calcemic; both of these analogs have six fluorines on the side-chain, which may slow their metabolism and thus their inactivation.

The vitamin D₃ analogs were tested for their effects on the immune system in vivo. A key element of the immune system is the helper T-cells (CD4-expressing cells). At least three different T-helper cell subsets have been described: Th₀, Th₁, and Th₁₂ cells. Th₀ are the early precursors that differentiate into Th₁ or Th₁₂. Th₁ and Th₁₂ cells are defined by the cytokines that they secrete. For instance, Th₁ cells produce IL-2 and interferon-gamma (IFN-γ) and Th₁₂ cells produce IL-4, -5, -6 and -13 (Mosmann & Coffman 1989, Manetti et al. 1993). The Th₁ cells can help B-cells produce antibodies of the isotype IgG₂a, while Th₁₂ cells can help these cells secrete IgG₁. Adding to the complexity of the function of T-lymphocyte subsets, each can cross-regulate the other. For example, IFN-γ produced by Th₁ cells can down-modulate Th₁₂ cells, and IL-4 and IL-10 produced by Th₁₂ cells can inhibit Th₁ cells (Mosmann 1991). We found that each of the vitamin D₃ analogs profoundly decreased levels of IL-2 in the sera. These effects may be mediated by direct inhibition of IL-2 production by Th₁ cells (Tsoukas et al. 1984, Rigby et al. 1985, Bhal et al. 1986, Mangelsdorf et al. 1995). We previously showed in vitro that 1,25(OH)₂D₃ could inhibit in a dose- and time-dependent manner the production of lymphokines including IL-2, GM-CSF and IFN-γ produced by T-lymphocytes (Reichel et al. 1987, Tobler et al. 1988). This inhibition may occur through several different mechanisms including inhibition of AP-1 complexes (Matsui et al. 1986, Rigby et al. 1987). The decrease in serum IL-2 levels probably did not result from a decrease in CD4 T-lymphocytes in the experimental mice because the percent of these lymphocytes in the spleens of the mice receiving the analogs was normal and the total number of circulating lymphocytes were similar to those in the control mice (Table 1).

The analogs were about 3-fold more potent than 1,25(OH)₂D₃ (compound C) in lowering the serum level of IL-2. Cyclosporin A is a potent inhibitor of T-lymphocytes, used to suppress the immune response in various circumstances such as organ transplantation (Emmel et al. 1989). Several prior studies have suggested that vitamin D₃ analogs may be more active than cyclosporin A in the suppression of production of cytokines in vitro (Koizumi et al. 1985, Gupta et al. 1989). Furthermore, a variety of animal models of autoimmunity have shown the beneficial effects of treatment using 1,25(OH)₂D₃ (Fournier et al. 1990, Lemire & Archer 1991, Lemire et al. 1992, Mathieu et al. 1992, Braisesteau et al. 1993).

The long-term administration of vitamin D₃ analogs had a more subtle action on humoral immunity as measured by IgG. A previous study in vitro demonstrated that 1,25(OH)₂D₃ could decrease synthesis of IgG by B-lymphocytes in vitro (Iho et al. 1986). Other studies have shown that the B-cell suppressive effects could be mediated by inhibition of T-helper cells (Lemire et al. 1985). Paradoxically, we found that levels of serum IgG in the animals receiving 1,25(OH)₂D₃ were elevated (5-77 mg/ml IgG compared with 3-12 mg/ml in the controls). In contrast, levels were diminished in those animals receiving either analog LH or LA (1-9 and 1-8 mg/ml respectively). We are not sure why serum concentrations of IgG were elevated by 1,25(OH)₂D₃ and decreased by analogs LH and LA.

The peripheral blood levels of WBC, RBC and platelets were nearly normal. Surprisingly, the hematopoietic myeloid committed stem cells (CFU-GM) were elevated up to 5-fold in the bone marrows of some of the vitamin D₃ cohorts, especially those receiving analogs LH and V (Fig. 6). We have previously shown that 1,25(OH)₂D₃ could stimulate CFU-GM in vitro (Koeffler et al. 1984), and this enhancement occurred even when the CD34-positive stem cells were purified and directly exposed to 1,25(OH)₂D₃ (Lee et al. 1996). We do not at this time understand why the expansion of the myeloid committed stem cell pool was not reflected in increased levels of peripheral blood neutrophils in the mice receiving the vitamin D₃ analogs.

Chronic hypercalcemia can be associated with calcium deposition in both the kidneys (nephrocalcinosis) and subcutaneous fat. Indeed, animals which in our pilot experiment had severe hypercalcemia (LH group), also had prominent nephrocalcinosis. In contrast, none of the animals which received 1 year of vitamin D₃ analogs developed nephrocalcinosis; and only one mouse in the LH group had a subcutaneous calcium deposit. Furthermore, all the mice had normal serum BUN and creatinine levels, which also reflected the integrity of function of their kidneys. On the other hand, the mice were
underweight compared with the control mice (about 35% lower weight). The cohort V, with the least hypercalcemia, had the greatest mean weight; while the group LH, with the highest serum calcium, had the lowest weights. Hypercalcemia can produce nausea and lack of appetite as well as polydypsia because of dehydration. Therefore, we believe that the lack of weight gain probably reflects a toxicity of low-grade hypercalcemia. We can not, however, rule out the possibility that the vitamin D₃ compounds lowered levels of circulating growth hormone or somatomedins. 1,25(OH)₂D₃ and its metabolites are necessary for calcium homeostasis and therefore bone mineral deposition, primarily because they enhance absorption of calcium and phosphorus in the small intestine. 1,25(OH)₂D₃ has also been shown to directly affect bone cells. The vitamin D₃ metabolite stimulates matrix and alkaline phosphatase synthesis and production of bone specific proteins, specifically osteocalcin in osteoblasts (Lian et al. 1985). It also stimulates both differentiation and fusion of osteoclast progenitor cells and the activity of mature osteoclasts (Roodman et al. 1985). Treatment with vitamin D₃ analogs can therefore affect bone in multiple ways: (i) it can affect the amount of Ca²⁺ available for bone mineralization; (ii) it can affect the activity of cells that synthesize and resorb bone, therefore altering the quality or quantity of bone tissue, which can (iii) induce an adaptive response secondary to change in bone tissue properties. This type of adaptive response would most likely be a change in the amount and/or distribution of bone tissue that would allow the whole bone to better tolerate physiological loading.

Long-term administration of compound C appears to cause a severe decrease in quantity and quality of bone. Both CSA and CT were decreased compared with those in control animals; but surprisingly, Iₓxx was slightly increased (7%). This suggests that although these animals had less bone, they redistributed their bone mass away from the neutral bending axis. Despite this reorganization, and perhaps an attempt at optimization, it still resulted in drastically diminished mechanical properties. These two findings suggest an adaptive response to decreased bone tissue properties that were insufficient to return the whole bone properties to control values. Compound EO caused an opposite effect, as evidenced by the increase in both the amount of bone present and tissue properties of bone. The 43% increase in stiffness and the 25–28% increase in yield and failure loads can only be partially explained by the 19% increase in Iₓxx. Therefore, the animals treated with compound EO appear to have produced more bone that was of greater quality than that made by control animals. The slight increase in geometrical properties exhibited by cohort LH without concomitant increases in mechanical properties suggests that the bone produced by these animals may be inferior, although this alteration did not reach statistical significance.

In summary, our experiments showed that long-term administration of vitamin D₃ analogs is feasible. The mice did weigh less than the controls and monitoring of serum calcium with appropriate modification of dose was necessary. Their peripheral blood hematopoietic parameters and serum chemistries, as well as the microscopic examination of all of their major organs, were fairly normal. The immunosuppressive effects of the vitamin D₃ analogs are worthy of further exploration. The changes in bone suggest that selected vitamin D₃ analogs can enhance bone strength while compound C (1,25(OH)₂D₃) can have the opposite effect. Additional studies may help determine if the finding of this study may be of relevance for the treatment of osteoporosis.

Acknowledgements

We appreciate the excellent secretarial support of Kim Burgin and Marge Goldberg. This manuscript is dedicated to the memory of Marge Goldberg.

References

Gupta S, Fass D, Shimizu M & Vayvugulva B 1989 Potentiation of immunosuppressive effects of cyclosporin A by 1α,25-

Haussler, MR, Haussler CA, Jurutka PW, Thompson PD, Hoeh JC, Rennus LS, Selzner SH & Whittfeld GR 1997 The vitamin D
dormone and its nuclear receptor: molecular actions and disease

Ito S, Takahashi T, Kura F, Sugiyama H & Hoshino T 1986 The
effect of 1,25-dihydroxyvitamin D3 on in vivo immunoglobulin

Jung SJ, Lee YY, Pakkala S, deVos S, Elstner E, Norman AW, Green
J, Uskokovic M & Koehler HP 1994 1,25(OH)2-16-ene-vitamin D3
is a potent anti-leukemic agent with low potential to cause
hypercalcemia. Leukemia Research 18 453–463.

Koizumi T, Nakagawa T, Katakami Y, Mihara Y, Sugiyama H & DeLuca HF 1984 Induction of macrophage differentiation of human normal and leukemic myeloid stem cell by 1,25-dihydroxyvitamin D3 and its

Manetti R, Paronetti V, Guzzi MG, Piccinni M-P, Maggi E, Trinchieri G & Romagnani S 1993 Natural killer cell stimulatory factor (interleukin 12[IL-12]) induces T helper type 1 (Th1)-
specific immune responses and inhibits the development of IL-4

Diabetes 41 1491–1495.

Matsu T, Takahashi R, Nakao Y, Koizumi T, Katakami Y, Mihara
Y, Sugiyama T & Fujita T 1986 1,25-Dihydroxyvitamin D3-
regulated expression of genes involved in human T-lymphocyte

Mosmann TR 1991 Cytokine secretion patterns and crossover of T cell subsets. Immunology Research 10 183–188.

Mosmann TR & Coffman RL 1989 Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional
properties. Annual Review of Immunology 7 145–173.

Norman AW 1997 Rapid biological responses mediated by 1α,25-dihydroxyvitamin D3: a case study of transcalcitriol (rapid

Roodman GD, Ilboston KJ, MacDonald BR, Kuehl TJ & Mundy GR. 1985 1,25(OH)2D3 causes formation of multinucleated cells with osteoclast characteristics in cultures of primate marrow. Proceedings of the National Academy of Sciences of the USA 82 8213–8217.

Tsoukas CD, Prowedini DM & Manolagas SC 1984 Evidence of a vitamin D3 analog, EB1089, on hematopoietic stem cell lines. Leukemia Research 8 1103–1107.

Received 8 March 1999

Revised manuscript received 4 October 1999

Accepted 18 November 1999