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Abstract
A central problem in the theory of genetic algorithms is the characterization
of problems that are difficult for GAs to optimize. Many attempts to
characterize such problems focus on the notion of Deception, defined in
terms of the static average fitness of competing schemas. This article
examines the Static Building Block Hypothesis (SBBH), the underlying
assumption used to define Deception. Exploiting contradictions between the
SBBH and the Schema Theorem, we show that Deception is neither
necessary nor sufficient for problems to be difficult for GAs. This article
argues that the characterization of hard problems must take into account the
basic features of genetic algorithms, especially their dynamic, biased
sampling strategy.
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1 INTRODUCTION

Since Holland’s early work on the analysis of genetic algorithms (GAs), the usual
approach has been to focus on the allocation of search effort to subspaces described by
schemas representing hyperplanes of the search space. The Schema Theorem (Holland,

1975) provides a description for the growth rate of schemas that depends on the observed
relative fitness of the schemas represented in the population. Bethke (1981) initiated
work on the formal characterization of problems that might be difficult for GAs to solve,
__________________

* With apologies to Edsger Dijkstra (Dijkstra, 1968).



and presented an analysis of problems in terms of the Walsh transformation of the fitness
function. Goldberg (1987) introduced the notion of Deception in GAs, and defined a

Minimal Deceptive Problem (MDP). Subsequently, Deception has come to be widely
regarded as a central feature in the design of problems that are difficult for GAs (Das and
Whitley, 1991; Homaifar, Qi and Fost, 1991). Goldberg and his colleagues (Goldberg,
Korb, and Deb, 1989) have defined messy GAs (mGAs) specifically to handle Deceptive
problems, and consider the use of Deceptive functions as test functions to be "critical to

understanding the convergence of mGAs, traditional GAs, or any other similarity-based
search technique". The literature on Deception in GAs is growing rapidly (Battle &
Vose, 1991; Davidor, 1990; Deb and Goldberg, 1992; Goldberg 1989a, 1989b, 1989c,
1991, 1992; Goldberg, Deb and Korb, 1990, 1991; Goldberg, Deb and Clark, 1992;
Liepins & Vose, 1990, 1991; Mason, 1991; Whitley, 1991, 1992), so this is clearly a

topic that deserves careful scrutiny.

In previous papers (Grefenstette and Baker, 1989; Grefenstette, 1991) we have raised
some questions about this approach to the analysis of GAs, and others have begun to
express similar concerns (Forrest and Mitchell, 1993). This paper will try to clarify and
expand on the argument that the current definitions of Deception appear to be based on

faulty assumptions about the dynamics of GAs. This paper only addresses definitions of
Deception that are based on the static analysis of hyperplanes. By static analysis, we
mean the analysis based on the average fitness of hyperplanes, when the average is taken
over the entire search space. Our fundamental point is that the dynamic behavior of
genetic algorithms cannot be predicted in general on the basis of the static analysis of

hyperplanes. This paper does not argue against the notion that there are classes of
problems that are "deceptive", in the sense that properties of the response surface lead the
GA away from the optimal regions of the search space. It is clearly important to try to
characterize such problems, but any useful characterization will have to be based on
correct assumptions about genetic algorithms.

The remainder of the paper is organized as follows: Section 2 discusses the Static
Building Block Hypothesis (SBBH) that appears to underlie much of the work on static
hyperplane analysis. Section 3 shows that some functions that are highly Deceptive
according to the SBBH are, in fact, very easy for GAs to optimize. Section 4 shows that
some functions that have no Deception and therefore should be easy, according to the

SBBH, are nearly impossible for GAs to optimize. These counterexamples show that
Deception is neither necessary nor sufficient to make a problem difficult for GAs. More
importantly, the analysis of these results highlights the shortcomings of the static
analysis of hyperplanes. As an aside to our main point, Section 5 shows that, even if the
SBBH were true, many Deceptive functions could be easily solved by simple changes to

the basic GA. Section 6 summarizes the paper.



2 THE STATIC BUILDING BLOCK HYPOTHESIS

The fundamental description of the dynamics of genetic algorithms is the Schema
Theorem (Holland, 1975), which describes the relationship between the expected growth
in a hyperplane from one generation to the next as a function of the hyperplane’s

observed relative fitness:

Schema Theorem.

M (H,t +1) ≥ M(H,t)(
f
_
(t)

f (H,t)_______)(1−pd(H,t))

where M (H,t) is the expected number of samples of a hyperplane H in the population at

time t, f (H,t) / f
_
(t) is the observed relative fitness of H at time t, and pd(H,t) is the

probability that H will be disrupted by the genetic operators such as crossover and
mutation. The Schema Theorem is only directly applicable to a single generational
cycle, but one can get an intuitive feel for the dynamics of GAs by considering what
happens to a hyperplane that consistently has an observed fitness that is higher than the

population average. This case is often described as follows:

"The usual interpretation of [the Schema Theorem] is that subspaces with
higher than average payoffs will be allocated exponentially more trials over
time, while those subspaces with below average payoffs will be allocated
exponentially fewer trials. This assumes that ... the effects of crossover and

mutation are not disruptive." (Spears and De Jong, 1991).

Strictly speaking, the word observed should be inserted before each occurrence of payoff,
but the intended meaning is usually clear and the shorthand phrase is often more
convenient to use. Many even more reckless statements appear in the introductory
sections of many articles on genetic algorithms, for example:

"[The Schema Theorem] says that the number of samples allocated to an
above-average hyperplane H grows exponentially over time." (Grefenstette,
1990)

Sometimes, as in the case above, such generalizations are qualified at some later points
in the article. Using the same form of shorthand, the overall dynamics of GAs are often

expressed in the form of the so-called "Building Block Hypothesis":

"[A] genetic algorithm seek[s] near optimal performance through the
juxtaposition of short, low-order, high performance schemata, or building
blocks." (Goldberg 1989a, p. 41)

The Building Block Hypothesis is a rough but serviceable first explanation of how GAs

operate, and has been used by most of us when explaining GAs to newcomers. There is



usually little harm in informal statements about the dynamics of GAs, but they can lead
to rather more serious misinterpretations if they are taken as the basis for an operational

theory for GAs. This paper will focus on the implications of one operational version of
the Building Block Hypothesis, which we call the:

Static Building Block Hypothesis (SBBH): Given any short, low-order
hyperplane partition, a GA is expected to converge to the hyperplane with
the best static average fitness (the "expected winner").

For example, consider the following 2nd-order hyperplane partition.

f (H)______
Ha: 00###### 1

Hb: 01###### 3
Hc: 10###### 10
Hd: 11###### 7

Here, and throughout this paper, the value f (H) refers to the static average fitness for
schema H, that is, the mean fitness value of every point described by that schema. This

static average is independent of whatever points happen to be in the population at any
time. According to the SBBH, the "expected winner" of the above schema competition
is the hyperplane Hc .

The SBBH implies that functions for which the low-order schemas associated with the
optimum have higher static average fitness than the competing schemas in their

partitions ought to be easy for GAs. For example, suppose the global optimum is 00...0,
and that

f (0#...#) > f (1#...#)
f (00#...#) > f (01#...#)
f (00#...#) > f (10#...#)
f (00#...#) > f (11#...#)

and so on for every hyperplane partition of the search space. According to the SBBH, a

GA should find f simple to optimize. In fact, such functions are commonly called "GA-
easy" (Wilson, 1991).1

Conversely, the SBBH implies that functions for which which the low-order schemas
associated with the optimum have lower static average fitness than the competing
schemas in their partitions ought to be difficult for GAs. For example, suppose the global

optimum is 00...0, and that
__________________

1 We are not asserting that Wilson subscribes to the SBBH.



f (0#...#) < f (1#...#)
f (00#...#) < f (01#...#)

f (00#...#) < f (10#...#)
f (00#...#) < f (11#...#)

and so on. Then this function would be called Deceptive (Goldberg, 1987).

The SBBH appears to underlie much of the recent published work in GA theory,
especially work on Deception. The SBBH itself is rarely cited as an assumption in the

Deception literature. Instead, the Schema Theorem is usually invoked, along with an
informal statement of the building block hypothesis. For example,

"Let’s construct the simplest problem that should cause a GA to diverge
from the global optimum ... To do this, we want to violate the building block
hypothesis in the extreme." (Goldberg introducing the MDP, 1989a)

or

"It follows from the Schema Theorem that the number of instances of a
schema is expected to increase in the next generation if it is of above
average utility and is not disrupted by crossover. Therefore, such schemata
indicate the area within the search space that the GA explores, and hence it

is important that, at some stage, these schema contain the object of search.
Problems for which this is not true are called deceptive." (Liepins and Vose,
1991)

or

"It has been shown that genetic algorithms work well when building blocks,

short, low-order ... schemata with above average fitness values, combine to
form optimal or near-optimal solutions." (Homaifar et. al, 1991)

When such statements are followed by the analysis of static hyperplane averages, as they
are in all the above cases, it seems to be fair to ascribe the SBBH as an implicit
assumption.

While the SBBH is an appealing intuitive explanation for how GAs work, it has never
been explicitly proven, and it does not follow from the Schema Theorem. The Schema
Theorem describes the expected growth of a hyperplane for a single generation based on
its observed average fitness, that is, based on the average fitness of current samples of the
hyperplane in the population. Over a period of generations, the observed average fitness

of a hyperplane does not necessarily reflect the static average fitness of the hyperplane.
The SBBH arises when we ignore the crucial distinction between observed average
fitness and static average fitness. In particular, we get the SBBH if we drop the time

index t from the term f (H,t) / f
_
(t) in the Schema Theorem. The SBBH, then, is merely



an approximation to the dynamics described by the Schema Theorem.

There are many ways in which such an approximation might be expected to diverge from

the dynamics described by the full Schema Theorem. We will examine just two ways in
which the SBBH fails to account for the true dynamics of GAs:

1. Failure to account for collateral convergence.

2. Failure to account for fitness variance within schemas.

The effect of collateral convergence is that, once the population begins to converge, even

a little, it is no longer possible to estimate the static average fitness of schemas using the
information present in the current population. The effect of fitness variance within
schemas is that, in populations of realistic size, the observed fitness of a schema may be
arbitrarily far from the static average fitness, even in the initial population. In the next
two sections, the reasons listed above are used to show why the Static Building Block

Hypothesis, and the accompanying notion of Deception, cannot be used to predict how
difficult a function may or may not be for a GA to optimize.

3 COLLATERAL CONVERGENCE

The primary reason that the SBBH is a poor model of GAs is that, except possibly for the
very first generation, the population contains only a biased sample of representatives

from each schema. This is a normal feature of all GAs, and is true regardless of
population size, but it can yield results that are exactly the opposite of what one might
expect from the SBBH. A simple thought experiment will bring the point home.
Consider the following two first-order schema competitions:

f (H)______
HA: 0#...###... 9
HB: 1#...###... 1

HC : ##...#0#... 6
HD: ##...#1#... 4

Assume that the initial population is selected using a uniform distribution, and that the
population is sufficiently large that, for each schema, the observed fitness at time t  = 0
approximates the schema’s static average fitness. Then, the Schema Theorem predicts

that the expected allocation of trials in the second generation is as follows:



Pop % in H at time t =1______________________
HA: 0#...###... 90
HB: 1#...###... 10

HC: ##...#0#... 60
HD: ##...#1#... 40

Note that the Schema Theorem predicts that the population will begin to converge more
rapidly with respect to the first competition than with respect to the second competition.

Now, can we predict how these two first-order competitions will proceed at time t  = 1?
The answer is no, since we no longer have sufficient information to estimate what the
observed fitnesses of the competing schema might be. The collateral convergence of the
population2 toward HA will bias the samples taken from HC and HD at time t  = 1. For
example, we would expect that 90% the observed representatives of HC would have a 0

in the first position. The static average fitness does not indicate what the observed fitness
of this highly biased sample might be. Taking this collateral convergence into account,
we cannot predict, on the basis of the static average fitness of the low-order hyperplanes,
whether HC will continue to grow more rapidly than HD at time t  = 1. We have even
less reason to predict whether the GA will ultimately converge to HC or HD, and yet this

is what the SBBH claims to do.

To see how collateral convergence can affect the study of Deception, consider the
following problem:

max   f (x 1 , x 2), where 0 ≤ xi  ≤ 1, and 

f (x1 , x2)  =  
B
C
D
 
2(1−x 1)2  + 10x2

2
x1

2  + 10x2
2

   if  x2  ≥ 0.995
if  x 2  < 0.995

Assume that x 1 and x 2 are represented in binary notation on a chromosome of length 20,
using 10 bits for each argument. The optimal solution is (x 1 , x 2) = (0, 1).

Using the terminology in (Whitley, 1991), this problem has a "fully deceptive

subproblem of order-10", meaning that in every schema competition defined over the
first 10 bit positions, the "expected winner" of each such competition is the schema
containing the "deceptive attractor" 1111111111##########, corresponding to the
hyperplane (x 1 , x2) = (1, #). Despite this high level of Deception3 a standard GA4 has
__________________

2 Collateral convergence refers to the phenomenon that the population converges at different rates to two
intersecting hyperplanes, e.g., HA and HC, above.

3 This problem can be made arbitrarily more Deceptive by replicating the gene x 1 in the above example.
4 GENESIS with population size 200, other parameters set to default values.



no trouble finding the global optimum within a few thousand trials in 10 out of 10 runs.
The success of the GA can be predicted by the Schema Theorem, which says that the

second 10 bits will rapidly converge toward the value of x 2  = 1. Once this collateral
convergence occurs, the observed fitness of schemas representing values of x 1 near 0
will change from low to high, and the GA will converge toward the global optimum.

Figure 1 illustrates some of the dynamics of the GA on this problem, averaged over 10
independent runs. The graph show the progress of the competition between the schemas:

H0: 0#...#
H1: 1#...#

by indicating the per cent of the population in H0 . The dotted line indicates the
convergence of the second 10 bits (x 2). Since f (H1) > f (H0), the SBBH predicts
convergence to H1 . For t  < 15, the observed fitnesses of the competing schemas agree

with the SBBH, that is, f (H1 , t) > f (H0 , t), and the allocation of trials to H0 declines
accordingly. By about generation 20, the value of x 2 has largely converged, and the GA
now observes that f (H1 , 20) < f (H0 , 20), thanks to the effects of the second term in the
fitness function. In accordance with the Schema Theorem, and in contradiction to the
SBBH, the allocation of trials shifts to H0 and away from H1 .
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Figure 1: The Schema Theorem in Action.



As this example shows, the ultimate allocation of trials across a given hyperplane
partition can be difficult to predict, precisely because the GA makes its allocation

decisions based upon the current estimate of payoff associated with hyperplanes. These
current estimates are highly influenced by collateral convergence. In general, there is no
simple relationship between the observed payoff f (H,t) at time t and the static average
payoff f (H). This example shows that some highly Deceptive problems are in fact easy
for GAs to optimize. The underlying reason is that the SBBH simply does not model the

dynamic behavior of GAs, as described by the Schema Theorem.

It may be thought that having a large population might allow us to ignore the effects of
collateral convergence, and use the SBBH as a first approximation to the Schema
Theorem. However, the effects of collateral convergence do not really depend on having
a small population size. In fact, the thought experiment at the beginning of this section

can be applied to an infinite population model. To give a practical example, we repeated
the experiment shown in Figure 1, using a population of size 10,000 (instead of 200).
The results are shown in Figure 2.

Per cent
of

Population
In H0

Generations

0

20

40

60

80

100

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

..

..

..
..
...
..
...
...
........

..................................
.....................................................................................................................................................

x2 (x100)

Figure 2: The Schema Theorem in Action with Population Size 10,000

As expected, the convergence is a little slower, since the exponential allocation of trials
implies that the time to converge to high values of x 2 increases with the logarithm of the
population size. Nevertheless, the overall performance profile is very similar to the
small population case. If our analysis of collateral convergence is correct, the results
predicted by the SBBH should not be expected for any size population.



4 LARGE VARIANCE WITHIN SCHEMAS

A second shortcoming of the Static Building Block Hypothesis is that it fails to account
for the variance of fitness within schemas. With a limited population size and large
variance within the schemas, the sampling in the initial, random population will produce

errors in the estimate of each schema’s static average fitness. This schema variance can
lead to results that contradict the SBBH.

To illustrate this, we can define a class of problems that are "easy" in the sense implied
by the SBBH -- they have no Deception -- but are, in fact, nearly impossible for GAs to
optimize. Consider an L-bit space representing the interval [0, 1] in binary encoding.

Let f be defined:

                           f (x)  =  
B
C
D
 
x2
2(L +1)

   otherwise.
if x  = 0

For any schema H such that the optimum is in H (that is, all the defined positions of H

have value 0), f (H) > 2, since the sum of the fitness of the points in H is at least 2(L +1)

and there are at most 2L points in the hyperplane. For any schema H such that the
optimum is not H, f (S) ≤ 1. So in any schema partition, the schema containing the
optimum has the highest static average fitness. That is, there is no Deception at any level
in the function. Such functions are often called "GA-easy" (Liepins and Vose, 1991;

Wilson, 1991).

Suppose we run a standard GA on f with a population of size polynomial in L. If the
optimum is not in the initial population, it will probably never be found. (Of course, it
might be created by a lucky crossover or a very lucky multiple mutation.) Why is this
function hard for GAs? Because the schemas associated with the optimum have

extremely high variance, so the observed average fitness for the hyperplanes never
reflects their static average fitnesses, not even in the initial random population. Of
course, this is a "needle-in-a-haystack" function, so we don’t expect the GA to solve it on
a regular basis. But it does satisfy the commonly used definition of "GA-easy" that
follows from the SBBH, so this example provides a counterexample to the claim that

only Deceptive problems are challenging for GAs (Das and Whitley, 1991).

There has been some recent work that addresses the (static) fitness variance within
schemas (Goldberg and Rudnick, 1988; Rudnick and Goldberg, 1991). This is a step in
the right direction, but it is unlikely that an analysis of the static fitness variance will be
much more helpful than an analysis of the static fitness averages, for the same reasons as

in the previous Section. As the search proceeds, the observed variance associated with
hyperplanes in the population is unlikely to have any correlation with the static variance.



5 AUGMENTED GAs FOR DECEPTIVE PROBLEMS

There is a growing literature on how to make GAs more effective on Deceptive
problems. For example, Liepins and Vose (1991) specify representation transformations
that render Fully Deceptive problems "fully easy". Goldberg at. al (1991) define "messy

GAs" in order to deal with problems of bounded Deception. In this section, we suggest
that, assuming that the SBBH applies to GAs, slight changes to the basic GA would be
sufficient to solve Deceptive problems.

Much of the work on Deception involves functions for which the bit-wise complement of
the global optimum is the Deceptive attractor (Liepins and Vose, 1991; Whitley, 1991).

In fact, arguments have been made that all Fully Deceptive problems have this feature
(Whitley, 1992). For the purpose of this section, let us accept this argument and suppose
that a GA would actually perform according to the SBBH on these fully Deceptive
problems. That is, suppose the GA really does converge to the complement of the global
optimum. Then one algorithm that finds the global optimum in all such problems is

simply:

1. Run a GA until it converges to some string, x

2. Output either x or the complement of x, whichever is better.

At a cost of a single extra evaluation, this algorithm strictly extends the class of
problems that can be optimized by GAs to include all Fully Deceptive problems.

However, perhaps the more usual cases are "partially deceptive" problems, that is,
problems that have a Deceptive component and a non-Deceptive component. Such
problems might be handled by the augmented GA shown in Figure 3. The lines marked
with (*) represent the changes to a standard generational GA. In the augmented version,
we maintain three separate populations of size N, called P, Q and R. During each

generation, we update P according to the original GA, set the members of Q to the
bitwise complement of the corresponding elements of P, and create R by crossing over
randomly selected parents from P and Q.

Consider any problem for which the original GA (i.e., the one without the (*) lines) finds
an acceptable solution in time t, using a population of size N. Then the augmented

algorithm finds a solution that is at least as good as the original GA, using at most time 3t

(assuming that the evaluation time dominates the other operations in the algorithms).
Like the simpler variant, this augmented algorithm solves any fully Deceptive problem
that has the property that the global optimum is the binary complement of the Deceptive
attractor, since as soon as the population P produces a copy of the Deceptive attractor,

the population Q produces a copy of the global optimum.



procedure Augmented GA

begin
t = 0;
initialize P(t);
evaluate structures in P(t);
while termination condition not satisfied do

begin
t = t + 1;
select P(t) from P(t-1);
recombine structures in P(t);

(*) Q(t) = complement(P(t));

(*) form R(t) by recombining parents from P(t) and Q(t);
evaluate structures in P(t);

(*) evaluate structures in Q(t);
(*) evaluate structures in R(t);

output best structure in P(t) ∪ Q(t) ∪ R(t);

end
end.

Figure 3: An Augmented Genetic Algorithm.

By allowing recombination between randomly selected members of populations P and
Q, the SBBH predicts that we could generate optimal solution to partially deceptive
problems as well. For any component that is not deceptive, the elements in P should
converge to the correct component values, according to the SBBH. The deceptive

components should converge to the complement of the optimal component values. Thus
the complements of the deceptive components -- the optimal component values -- will be
stored in population Q. Performing (multi-point) crossover across populations P and Q

should eventually produce the optimal components all along the chromosome in
population R. Thus the augmented GA can produce a final answer that is never worse

than the one produced by the original GA, and it eliminates concern about Deceptive
problems, all at a cost of only tripling the computational time.

One might conclude from this discussion is that Deception, as currently defined, is not a
serious problem for GAs, since it can be handled by small extensions to the original
algorithm. Unfortunately, this discussion is purely academic, since the proposed

"solutions", like the notion of Deception itself, are based on the SBBH, and are therefore
unlikely to provide useful results for real GAs.



6 SUMMARY

This paper criticizes the Static Building Block Hypothesis as a description of the
dynamics of GAs. The SBBH arises by ignoring an important distinction made in the
Schema Theorem, between the observed fitness of a hyperplane and the static fitness of a

hyperplane. We have identified two reasons that cause divergent predictions between
the SBBH and the Schema Theorem:

1. Failure to account for collateral convergence.

2. Failure to account for fitness variance within schemas.

According to the SBBH, Deceptive problems ought to be difficult for GAs to solve, and

"GA-easy" problems ought to be easy for GAs to solve. Taking the above differences
between the Schema Theorem and the SBBH into account, it is easy to demonstrate that:

1. Some highly Deceptive problems are easy for GAs to optimize.

2. Some "GA-easy" problems with no Deception are nearly impossible for
GAs to optimize.

That is, Deception is neither necessary nor sufficient for causing difficulties for GAs. Put
another way, the class of Deceptive functions is neither a subset nor a superset of the
class of functions that are hard for GAs to optimize, as shown in Figure 4. At the very
least, the term Deceptive seems to be poorly chosen. More importantly, our arguments
show that it is in general impossible to predict the dynamic behaviors of GAs on the

basis of the static average fitness of hyperplanes.

Even though the presence or absence of Deception provides no logical implication of
problem difficulty, there may be some correlation between Deception and difficulty for
GAs. Although we have no way at present to measure such a correlation, it is true that
some Deceptive problems are difficult for GAs, and some "GA-Easy" problems are in fact

easy for GAs.5 An interesting problem would be to characterize which Deceptive
problems actually cause difficulties for GAs. An approach to this question might involve
the design of problems that take advantage of the different rates at which collateral
schema competitions converge, as predicted by the Schema Theorem. It seems doubtful
that a successful approach will be based on the SBBH.

One might also argue that the work to date that is based on the SBBH has been a
preliminary exploration of how to analyze simple distributions of fitness, and was always
intended to be replaced by dynamic analysis. In this case, articles using static analysis
should qualify their conclusions accordingly, rather than make what appear to be strong
__________________

5 For example, the Partially Deceptive problem defined in Section 3 can be made difficult for GAs, as well
as Deceptive, if we negate the coefficient on x 2, so that x 2 converges to 0 rather than to 1.
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Figure 4: Deception and Problem Difficulty.

statements about GAs and Deception, for example:

"The use of deceptive functions as test functions is critical to understanding
the convergence of any GAs or other similarity-based search technique ...

Since these functions are maximally misleading, if an algorithm can solve
this class of problem, it can solve anything easier." (Goldberg, Deb, and
Korb, 1990)

"The only challenging problems are deceptive ... Test problems must be
used that involve some degree of deception." (Whitley, 1991)

Such conclusions properly apply only to algorithms that satisfy the SBBH. It is not clear
that there exist any practical algorithms in this class, but in any case the GA is not one of
them.

Some other concerns about the notion of Deception have been raised by others,
including Forrest and Mitchell (1993), and De Jong (1992). In particular, measuring GA

performance by the ability to find the global optimum seems at odds with the emphasis
in (Holland, 1975) on exploiting local information for adaptation. Both De Jong (1975)
and Bethke (1981) have proposed other performance metrics that are more appropriate



for measuring the effectiveness of adaptive search methods.

It goes without saying that the characterization of hard problems should remain a high

priority for the GA research community. However, the characterization must take into
account the basic features of the GA, especially its dynamic, biased sampling strategy.
Our recommendation is that the efforts currently being expended on the static analysis of
functions should be diverted to the dynamic analysis of GAs. It is gratifying to see some
recent efforts in this direction (Bridges and Goldberg, 1991; Liepins and Vose, 1991; Nix

and Vose, 1992). Nevertheless, it is important that articles on GA theory avoid the
implicit assumption of the SBBH. The SBBH is a seductive, but inaccurate, explanation
for the power of the GA that can easily mislead (deceive?) newcomers to the field, as
well as potential users of the technology.
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