
Analyzing the Bene�ts of Domain Knowledge inSubstruture Disovery �Surnjani Djoko, Diane J. Cook and Lawrene B. HolderUniversity of Texas at ArlingtonDepartment of Computer Siene and EngineeringBox 19015, Arlington, TX 76019djoko�se.uta.edu, ook�se.uta.edu, holder�se.uta.eduAbstratDisovering repetitive, interesting, and funtional substrutures in a struturaldatabase improves the ability to interpret and ompress the data. However, sientistsworking with a database in their area of expertise often searh for a predeterminedtype of struture, or for strutures exhibiting harateristis spei� to the domain.This paper presents methods for guiding the disovery proess with domain-spei�knowledge. In this paper, the Subdue disovery system is used to evaluate the bene-�ts of using domain knowledge. The domain knowledge is inorporated into Subduefollowing a single general methodology to guide the disovery proess. Results showusing domain-spei� knowledge improves the searh for substrutures whih are usefulto the domain, and leads to greater ompression of the data. To illustrate these bene-�ts, examples and experiments from the domain of omputer programming, omputeraided design iruit, and a series of arti�ially-generated domains are presented.
Keywords: data mining, minimum desription length priniple, data ompression, inexatgraph math, domain knowledge1 IntrodutionWith the inreasing amount and omplexity of today's data, there is an urgent need to a-elerate the disovery of information and the generation of knowledge from large databases.To date, the Subdue system has been used to disover interesting and repetitive substru-tures in strutural data [CH94℄. The substrutures are evaluated both by a set of domainindependent heuristis and by the substrutures' ability to desribe and ompress the orig-inal data set based on the minimum desription length (MDL) priniple [Ris89℄. One the�Supported by NASA grant NAS5-32337. 1



substrutures are disovered, they are used to simplify the data by replaing instanes ofthe substruture with a pointer to the substruture de�nition. The disovered substruturesallow abstration over detailed struture in the original data. Iteration of the substruturedisovery and replaement proess onstruts a hierarhial desription of the strutureddata in terms of the disovered substrutures. This hierarhy provides varying levels ofinterpretation that an be aessed based on the goals of the data analysis.Although the MDL priniple is useful for disovering substrutures that maximize om-pression of the data, sientists often employ knowledge or assumptions of a spei� domain tothe disovery proess. Domain independent heuristis and disovery tehniques are valuablein that the disovery of unexpeted substrutures is not bloked. However, the disoveredsubstrutures might not be useful to the user. On the other hand, using domain spei�knowledge an assist the disovery proess by fousing searh and an also help make thedisovered substrutures more meaningful to the user.This paper fouses on methods of realizing the bene�ts of domain dependent disoveryapproahes by adding domain spei� knowledge to a domain independent disovery system.Seondly, this paper expliitly evaluates the bene�ts and osts of utilizing domain-spei�information. In partiular, the performane of the Subdue system is measured with andwithout domain-spei� knowledge along the performane dimensions of ompression, time todisover substrutures, and interestingness of the disovered substrutures. These methodsare generally appliable to most strutural data, suh as omputer-aided design (CAD)iruit data, omputer programs, hemial ompound data, and image data.2 Adding domain knowledge to the SUBDUE systemWe now present several types of domain knowledge that are used in the disovery proess,explain how they bias disovery of ertain types of substrutures, and detail how the knowl-edge is added to the Subdue system. Although the minimum desription length priniplestill drives the disovery proess, domain knowledge is used to input a bias toward ertaintypes of substrutures. The intuition behind this approah is that experts often have a pref-erene for partiular types of disoveries. Domain knowledge an be used to isolate thoseaspets of substrutures they do understand, and to help onstrain the disovery proess.2.1 Model/Struture knowledgeModel/Struture knowledge provides to the disovery system spei� types of struturesthat are likely to exist in the database and are of partiular interest to a sientist usingthe system. The input strutures are organized in a hierarhy. Leaves in the hierarhyrepresent primitive (nondeomposable) strutures whih are basi elements of the domain,and inner nodes represent nonprimitive strutures. Nonprimitive strutures onsist of aonglomeration of primitive verties and/or lower-level nonprimitive verties. The hierarhyfor a partiular domain is supplied by a domain expert. The strutures in the hierarhy andtheir funtionalities are well known in the ontext of that domain.In the programming domain, for example, speial symbols are represented by primitiveverties, and funtional subroutines (e.g., swap, sort, inrement) are represented by non-2



primitive verties. In the CAD iruit domain, the basi omponents of a iruit (e.g.,resistor, transistor) are represented by primitive verties, and funtional subiruits suh asoperational ampli�er, �lter, et. are represented by non primitive verties. This indexedhierarhial representation allows examining of the strutural knowledge at various level ofabstration, fousing the searh and reduing the searh spae.2.1.1 Using struture knowledge to guide the disoveryThe modi�ed version of Subdue an be biased to look for strutures of the type spei�edin the model/struture hierarhy. The model/struture pointed to by the mathed modelvertex is seleted as a andidate model to be mathed with the input substruture. Eahiteration through the proess selets a substruture from the input graph whih has the bestmath to the seleted model aording to its ability to ompress the entire input graph.Seleted substrutures are inrementally expanded as possible andidates for the next iter-ation. The proess searhes for the best substruture until all possible substrutures havebeen onsidered or until a substruture has been found that mathes the seleted model.The ompressed graph is enoded as desribed elsewhere [CH94℄. After a substrutureis disovered, eah instane of the disovered substruture is enoded as an index to theorresponding substruture or model de�nition. The disovered substruture is representedusing I(S) bits whih is the number of bits needed to enode the model index, and the graphafter the substruture replaement is represented in I(GjS) bits. Subdue searhes for thesubstruture S in graph G minimizing I(S) + I(GjS).2.1.2 Combining substruture disovery with and without model knowledgeIn order not to overly bias the disovery proess toward ertain types of substruture basedon the model/struture knowledge, the disovery proess an ombine the disovery with-out using model/struture knowledge with the disovery proess using struture knowledge.Using domain-independent and domain-dependent knowledge together may be more use-ful than using either type of approah in isolation. In partiular, using domain-dependentknowledge alone may blok the disovery of unexpeted substrutures. However, domain-dependent knowledge an assist the disovery proess by fousing searh and ensuring thatthe disovered substruture is meaningful to the user.In eah iteration of the algorithm, the Subdue system disovers at most two best sub-strutures, one based on no model knowledge and the other based on model knowledge.These substrutures are used to ompress the input graph. Subdue selets the ompressedwhih requires the smallest desription length as the input graph for the next iteration ofthe disovery proess. The ompressed graph whih has not been seleted is added to thelist of unproessed graphs. If after further iterations, Subdue obtains a ompressed graphwhose amount of ompression is smaller than any ompressed graph in the list of unproessedgraphs, this ompressed graph is put on the list of unproessed graphs. Subdue resumes thedisovery proess using the ompressed graph from the list of unproessed graphs whih hasthe maximum amount of ompression. This proess is repeated until the list of unproessedgraphs is exhausted. The MDL priniple is used as a ompression measure for both usingthe model knowledge and without using the model-based disovery.3



2.2 Graph math rulesAt the heart of the Subdue system lies an inexat graph math algorithm that �nds instanesof a substruture de�nition. The graph math is used to identify isomorphi substruturesin the input graph. Many of those substrutures ould show up in a slightly di�erent formthroughout the data. These di�erenes may be due to noise and distortion, or may illustrateslight di�erenes between instanes of the same general lass of struture. Eah distortion of agraph is assigned a ost. A distortion is desribed in terms of basi transformations performedby the graph math suh as deletion, insertion and substitution of verties and edges. Giveng1 and g2, and a set of distortion osts, the atual omputation of mathost(g1; g2) an beperformed using a tree searh proedure. As long as mathost(g1; g2) does not exeed thethreshold set by the user, the two graphs g1 and g2 are onsidered to be isomorphi.By using graph math rules, eah transformation is assigned a ost based on the domainof usage. Consider an example in the programming domain. We allow a vertex representing avariable to be substituted by another variable vertex, and do not allow a vertex representingan operator whih is a speial symbol, a reserved word, or a funtion all, to be substitutedby another vertex. These rules an then be represented as the following:IF (programming domain) and (substitute variable vertex) THEN graph math ost = 0.0;IF (domain = programming) and (substitute operator vertex) THEN graph math ost = 2.0;Graph math rules allow a spei�ation of the amount of aeptable generality betweena substruture de�nition and its instanes or between a model de�nition and its instanes inthe domain graph.2.3 Feature knowledgeDomain-spei� rules an be used to generate new features desribing the data. Beausewe know that di�erent domains will have features not expliitly represented in the originaldatabase whih an be extrated to provide more understanding toward the domain, we in-orporate domain feature knowledge into the system to automatially generate these domainfeatures. The generated features should be onsidered of great value in understanding thedomain. Feature knowledge aptures the relations among the substrutures in the domain,generates important features of the input graph to provide helpful information, and providesa step towards understanding of the input graph.Consider an example in the programming domain. Feature knowledge spei�es how togenerate a loop feature whenever repetitive subodes/substrutures appear onseutively ina program and replae the substrutures with the loop struture, rendering the program'smeaning learer; to perform substitution of variable de�nitions, enabling the system to ex-trat formulae. The results appear to be an e�etive aid to graph understanding. Featuregeneration is supplied as a preproessing step to the disovery system.3 Evaluation of knowledge in SUBDUE's disoveryIn this setion, we evaluate the bene�ts and osts of utilizing domain spei� informationin performing substruture disovery. We will measure the performane of Subdue withand without domain-spei� information when applied to databases in the programming,4



sorted = 0; /* bubble sort */while(sorted == 0)sorted = 1;for(j = 0; j < listsize� 1; j ++)if(list[j℄ > list[j + 1℄)temp = list[j℄; list[j℄ = list[j + 1℄; list[j + 1℄ = temp; sorted = 0;for(gap = n=2; gap > 0; gap = gap=2) /* shell sort */for(i = gap; i < n; i++)for(j = i� gap; j >= 0&&v[j℄ > v[j + gap℄; j = j � gap)temp = v[j℄; v[j℄ = v[j + gap℄; v[j + gap℄ = temp;for(i = n; i > 0; i��) /* bubble sort operates here as a type of seletion sort */for(j = 2; j >= i; j ++)if(a[j � 1℄ > a[j℄)t = a[j � 1℄; a[j � 1℄ = a[j℄; a[j℄ = t;Figure 1: A sample program of three di�erent sort proedures.omputer aided design and arti�ial domains. The goals of our substruture disovery systemare to eÆiently �nd substrutures that an redue the amount of information needed todesribe the data, and to �nd substrutures that are onsidered interesting and useful forthe given domain.To evaluate Subdue in a programming and CAD iruit domain, we ompare Subdue'sdisovered substrutures to human ratings. If the domain-dependent approah has somevalidity, Subdue should prefer the substrutures whih were rated higher by humans.The disovered substrutures are evaluated in three ways, 1) without using the domainknowledge, 2) using the graph math rules and 3) using a ombination of model/strutureknowledge and graph math rules. The performane of the system is measured along threedimensions: 1) the total desription length1, 2) the number of searh nodes expanded by Sub-due before the substrutures are disovered, and 3) the interestingness of the substrutureas measured by human experts. The interestingness of Subdue's disovered substruturesare rated by a group of 8 domain experts on a sale of 1 to 5, where 1 means least preferredand 5 means most preferred. We then ompute the average and the standard deviation ofthe ratings of eah disovered substruture. The number of instanes in the database of thedisovered substruture is also listed.3.1 Evaluation of the substrutures in the programming domainThe disovery of familiar strutures in a program an help a programmer to understand thefuntion and modularity of the ode. Automating this disovery proess will failitate manytasks that require program understanding, e.g., maintenane, translation, and debugging.In order to determine the value of substrutures disovered by Subdue, we onatenatethree di�erent sort routines into one program (see Figure 1), and transform it into a graphrepresentation whih is independent of the soure language.1Total desription length is the desription length of the disovered substruture plus the desriptionlength of the ompressed input graph using the disovered substruture.5



Table 1: Program { Disovered substrutures.The desription length of the sample program in Figure 1 is 2598.99 (in bits). Table1 shows three disovered substrutures of the sample program with their total desriptionlength, number of nodes expanded for the graph math, number of instanes found, andthe average and standard deviation of the human rating. The substruture with no domainknowledge has the highest total desription length, and the lowest human rating. Althoughthe substruture found using the graph math rules alone has the lowest total desriptionlength, it does not yield a good human rating. On the other hand, the \simple swap"substruture found using both model knowledge and graph math rules has a total desriptionlength lower than the substruture with no domain knowledge and reeived the highesthuman rating.3.2 Evaluation of the substrutures in the CAD iruit domainAs a result of inreased omplexity of design and hanges in the tehnologies of implementa-tion of integrated eletroni iruitry, the disovery of familiar strutures in omplex iruitryan help a designer to understand the layout, and to identify ommon reusable parts in theiruitry.We evaluate Subdue by using CAD iruit data representing a sixth-order bandpass"leapfrog" ladder [Bru80℄. The iruit is made up of a hain of somewhat similar strutures(see Figure 2). We transform the iruit into a graph representation in whih the omponentunits appear as verties and the urrent ows appear as edges. The desription length of theiruit in Figure 2 is 3139.05 (in bits). The numbers in irles shown in Figure 3 representthe iteration in whih the substruture is disovered.6



Figure 2: Bandpass "leapfrog" : sixth-order.

Figure 3: CAD iruit { Disovered substrutures.7



When the model knowledge and graph math rules are used, nine instanes of operationalampli�er iruits are quikly seleted. We also tested Subdue's ability to �nd a hierarhy ofsubstrutures. The substrutures disovered by Subdue for the seond iteration representfour instanes of inverting integrator iruits whih are made up of operational ampli�eriruits. For the third iteration, Subdue disovered two instanes of inverting ampli�eriruits whih are also made up of operational ampli�ers. All of these substrutures reeivevery high human rating, and have a tremendous redution in the amount of total desriptionlength. On the other hand, the substrutures with graph math rules has lesser ompressionthan the substrutures with no domain knowledge, and both of them reeive low humanrating.The result also shows that for about the same size of substrutures, the nodes expandedfor disovery with the domain knowledge is lesser than the nodes expanded for disoverywith no domain knowledge.3.3 Evaluation of the substrutures in the arti�ial domainWhile we have shown results of evaluations in two domains, we now examine whether suhdomain knowledge is useful in general. We would like to evaluate whether domain knowledgean improve Subdue's average ase performane in arti�ially-ontrolled graphs. To testthis performane, an arti�ial substruture is reated and is embedded in larger graphs ofthree varying sizes. The graphs vary in terms of graph size and amount of deviation in thesubstruture instanes, but are onstant with respet to the perentage of the graph thatis overed by substruture instanes. For eah deviation value, we run eah of the graphsuntil no more ompression an be ahieved with the following four ases: a) no domainknowledge, b) graph math rules, ) ombined model knowledge and graph math rules,and d) ombination of a & . We then measure the ompression, the number of nodesexpanded, and the number of embedded instanes found for the all iterations. The e�ets ofthe varying deviation values are measured against the average ompression value of the fourases mentioned above (Figure 4) and the average number of nodes expanded (Figure 4). Asthe deviation is inreased, the ompression of all four ases dereases as expeted. Althoughase a has slightly better ompression than ase , it is not apable of �nding spei� relevantsubstrutures. On the other hand, ase  has the least ompression, and is apable of �ndingthe embedded substruture. Case b has the highest ompression, but it does not perform wellfor �nding the embedded substruture. The last ase is ase d, whih performs well in bothompression and �nding the embedded substrutures. Hene, the ombination of disoverywith and without domain knowledge performs the best as the deviation is inreased.Figure 4 shows that as the deviation is inreased, the number of nodes expanded forase  remain about the same, beause the same substrutures (of the same size) are foundonsistently. However, sine ase d ombines both ase a and , and �nds varies sizes ofsubstrutures, it expands the most number of nodes. As ase a and b disover smallersubstrutures as the deviation is inreased, they expand lesser number of nodes.Seond, we again embedded an arti�ial substruture into larger graphs of three varyingsizes. Eah of the graphs varies in the size, and the amount of the input graph overed by theembedded substruture. For eah overage value, we test the same four ases. The e�et ofthe varying overage values are measured against the average number of embedded instanes8



Figure 4: A�et of deviation on ompression and number of nodes expanded.

Figure 5: Coverage versus number of instanes found.found (Figure 5). As the overage is inreased, ases  and d �nd inreasing number ofembedded instanes. Case b �nd only slightly inreasing number of instanes. On the otherhand, ase a does not �nd any instanes.4 ConlusionsSubdue is a system devised for experimenting with automated disovery by using domainknowledge. This approah requires that the domain knowledge be as generi as possible andan be reused over a lass of similar appliations.Few urrent disovery systems integrate domain knowledge seamlessly into the disoveryproess. This paper desribes methods for integrating domain independent and domain de-pendent substruture disovery based on the minimum desription length priniple. These9



methods are generally appliable to most strutural data, suh as omputer aided design(CAD) iruit data, omputer programs, hemial ompound data, image data. This in-tegration improves Subdue's ability to both ompress the input graph and disover sub-strutures relevant to the domain of study. The result also shows that the number of nodesexpanded in eah iteration of the graph math proedure depends on the amount of domainknowledge usage and the size of the substruture found.Our future work will evaluate the bene�ts of domain knowledge applied to NASA imagedata, where the domain knowledge an be obtained from experts in the �eld of the analysis.Furthermore, sine many rules about a domain are inomplete, and unertainty an arisebeause of inompleteness and inorretness in the domain expert's understanding of theproperties of the environment, the inlusion of unertain knowledge will be pursued.Referenes[Bru80℄ L. T. Bruton. RC-ative iruits. Prentie-Hall, 1980.[CH94℄ D. J. Cook and L. B. Holder. Substruture disovery using minimum desriptionlength and bakground knowledge. Journal of Arti�ial Intelligene Researh, 1:231{255, 1994.[Ris89℄ J. Rissanen. Stohasti Complexity in Statistial Inquiry. World Sienti� PublishingCompany, 1989.
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