
Analyzing the Bene�ts of Domain Knowledge inSubstru
ture Dis
overy �Surnjani Djoko, Diane J. Cook and Lawren
e B. HolderUniversity of Texas at ArlingtonDepartment of Computer S
ien
e and EngineeringBox 19015, Arlington, TX 76019djoko�
se.uta.edu, 
ook�
se.uta.edu, holder�
se.uta.eduAbstra
tDis
overing repetitive, interesting, and fun
tional substru
tures in a stru
turaldatabase improves the ability to interpret and 
ompress the data. However, s
ientistsworking with a database in their area of expertise often sear
h for a predeterminedtype of stru
ture, or for stru
tures exhibiting 
hara
teristi
s spe
i�
 to the domain.This paper presents methods for guiding the dis
overy pro
ess with domain-spe
i�
knowledge. In this paper, the Subdue dis
overy system is used to evaluate the bene-�ts of using domain knowledge. The domain knowledge is in
orporated into Subduefollowing a single general methodology to guide the dis
overy pro
ess. Results showusing domain-spe
i�
 knowledge improves the sear
h for substru
tures whi
h are usefulto the domain, and leads to greater 
ompression of the data. To illustrate these bene-�ts, examples and experiments from the domain of 
omputer programming, 
omputeraided design 
ir
uit, and a series of arti�
ially-generated domains are presented.
Keywords: data mining, minimum des
ription length prin
iple, data 
ompression, inexa
tgraph mat
h, domain knowledge1 Introdu
tionWith the in
reasing amount and 
omplexity of today's data, there is an urgent need to a
-
elerate the dis
overy of information and the generation of knowledge from large databases.To date, the Subdue system has been used to dis
over interesting and repetitive substru
-tures in stru
tural data [CH94℄. The substru
tures are evaluated both by a set of domainindependent heuristi
s and by the substru
tures' ability to des
ribe and 
ompress the orig-inal data set based on the minimum des
ription length (MDL) prin
iple [Ris89℄. On
e the�Supported by NASA grant NAS5-32337. 1



substru
tures are dis
overed, they are used to simplify the data by repla
ing instan
es ofthe substru
ture with a pointer to the substru
ture de�nition. The dis
overed substru
turesallow abstra
tion over detailed stru
ture in the original data. Iteration of the substru
turedis
overy and repla
ement pro
ess 
onstru
ts a hierar
hi
al des
ription of the stru
tureddata in terms of the dis
overed substru
tures. This hierar
hy provides varying levels ofinterpretation that 
an be a

essed based on the goals of the data analysis.Although the MDL prin
iple is useful for dis
overing substru
tures that maximize 
om-pression of the data, s
ientists often employ knowledge or assumptions of a spe
i�
 domain tothe dis
overy pro
ess. Domain independent heuristi
s and dis
overy te
hniques are valuablein that the dis
overy of unexpe
ted substru
tures is not blo
ked. However, the dis
overedsubstru
tures might not be useful to the user. On the other hand, using domain spe
i�
knowledge 
an assist the dis
overy pro
ess by fo
using sear
h and 
an also help make thedis
overed substru
tures more meaningful to the user.This paper fo
uses on methods of realizing the bene�ts of domain dependent dis
overyapproa
hes by adding domain spe
i�
 knowledge to a domain independent dis
overy system.Se
ondly, this paper expli
itly evaluates the bene�ts and 
osts of utilizing domain-spe
i�
information. In parti
ular, the performan
e of the Subdue system is measured with andwithout domain-spe
i�
 knowledge along the performan
e dimensions of 
ompression, time todis
over substru
tures, and interestingness of the dis
overed substru
tures. These methodsare generally appli
able to most stru
tural data, su
h as 
omputer-aided design (CAD)
ir
uit data, 
omputer programs, 
hemi
al 
ompound data, and image data.2 Adding domain knowledge to the SUBDUE systemWe now present several types of domain knowledge that are used in the dis
overy pro
ess,explain how they bias dis
overy of 
ertain types of substru
tures, and detail how the knowl-edge is added to the Subdue system. Although the minimum des
ription length prin
iplestill drives the dis
overy pro
ess, domain knowledge is used to input a bias toward 
ertaintypes of substru
tures. The intuition behind this approa
h is that experts often have a pref-eren
e for parti
ular types of dis
overies. Domain knowledge 
an be used to isolate thoseaspe
ts of substru
tures they do understand, and to help 
onstrain the dis
overy pro
ess.2.1 Model/Stru
ture knowledgeModel/Stru
ture knowledge provides to the dis
overy system spe
i�
 types of stru
turesthat are likely to exist in the database and are of parti
ular interest to a s
ientist usingthe system. The input stru
tures are organized in a hierar
hy. Leaves in the hierar
hyrepresent primitive (nonde
omposable) stru
tures whi
h are basi
 elements of the domain,and inner nodes represent nonprimitive stru
tures. Nonprimitive stru
tures 
onsist of a
onglomeration of primitive verti
es and/or lower-level nonprimitive verti
es. The hierar
hyfor a parti
ular domain is supplied by a domain expert. The stru
tures in the hierar
hy andtheir fun
tionalities are well known in the 
ontext of that domain.In the programming domain, for example, spe
ial symbols are represented by primitiveverti
es, and fun
tional subroutines (e.g., swap, sort, in
rement) are represented by non-2



primitive verti
es. In the CAD 
ir
uit domain, the basi
 
omponents of a 
ir
uit (e.g.,resistor, transistor) are represented by primitive verti
es, and fun
tional sub
ir
uits su
h asoperational ampli�er, �lter, et
. are represented by non primitive verti
es. This indexedhierar
hi
al representation allows examining of the stru
tural knowledge at various level ofabstra
tion, fo
using the sear
h and redu
ing the sear
h spa
e.2.1.1 Using stru
ture knowledge to guide the dis
overyThe modi�ed version of Subdue 
an be biased to look for stru
tures of the type spe
i�edin the model/stru
ture hierar
hy. The model/stru
ture pointed to by the mat
hed modelvertex is sele
ted as a 
andidate model to be mat
hed with the input substru
ture. Ea
hiteration through the pro
ess sele
ts a substru
ture from the input graph whi
h has the bestmat
h to the sele
ted model a

ording to its ability to 
ompress the entire input graph.Sele
ted substru
tures are in
rementally expanded as possible 
andidates for the next iter-ation. The pro
ess sear
hes for the best substru
ture until all possible substru
tures havebeen 
onsidered or until a substru
ture has been found that mat
hes the sele
ted model.The 
ompressed graph is en
oded as des
ribed elsewhere [CH94℄. After a substru
tureis dis
overed, ea
h instan
e of the dis
overed substru
ture is en
oded as an index to the
orresponding substru
ture or model de�nition. The dis
overed substru
ture is representedusing I(S) bits whi
h is the number of bits needed to en
ode the model index, and the graphafter the substru
ture repla
ement is represented in I(GjS) bits. Subdue sear
hes for thesubstru
ture S in graph G minimizing I(S) + I(GjS).2.1.2 Combining substru
ture dis
overy with and without model knowledgeIn order not to overly bias the dis
overy pro
ess toward 
ertain types of substru
ture basedon the model/stru
ture knowledge, the dis
overy pro
ess 
an 
ombine the dis
overy with-out using model/stru
ture knowledge with the dis
overy pro
ess using stru
ture knowledge.Using domain-independent and domain-dependent knowledge together may be more use-ful than using either type of approa
h in isolation. In parti
ular, using domain-dependentknowledge alone may blo
k the dis
overy of unexpe
ted substru
tures. However, domain-dependent knowledge 
an assist the dis
overy pro
ess by fo
using sear
h and ensuring thatthe dis
overed substru
ture is meaningful to the user.In ea
h iteration of the algorithm, the Subdue system dis
overs at most two best sub-stru
tures, one based on no model knowledge and the other based on model knowledge.These substru
tures are used to 
ompress the input graph. Subdue sele
ts the 
ompressedwhi
h requires the smallest des
ription length as the input graph for the next iteration ofthe dis
overy pro
ess. The 
ompressed graph whi
h has not been sele
ted is added to thelist of unpro
essed graphs. If after further iterations, Subdue obtains a 
ompressed graphwhose amount of 
ompression is smaller than any 
ompressed graph in the list of unpro
essedgraphs, this 
ompressed graph is put on the list of unpro
essed graphs. Subdue resumes thedis
overy pro
ess using the 
ompressed graph from the list of unpro
essed graphs whi
h hasthe maximum amount of 
ompression. This pro
ess is repeated until the list of unpro
essedgraphs is exhausted. The MDL prin
iple is used as a 
ompression measure for both usingthe model knowledge and without using the model-based dis
overy.3



2.2 Graph mat
h rulesAt the heart of the Subdue system lies an inexa
t graph mat
h algorithm that �nds instan
esof a substru
ture de�nition. The graph mat
h is used to identify isomorphi
 substru
turesin the input graph. Many of those substru
tures 
ould show up in a slightly di�erent formthroughout the data. These di�eren
es may be due to noise and distortion, or may illustrateslight di�eren
es between instan
es of the same general 
lass of stru
ture. Ea
h distortion of agraph is assigned a 
ost. A distortion is des
ribed in terms of basi
 transformations performedby the graph mat
h su
h as deletion, insertion and substitution of verti
es and edges. Giveng1 and g2, and a set of distortion 
osts, the a
tual 
omputation of mat
h
ost(g1; g2) 
an beperformed using a tree sear
h pro
edure. As long as mat
h
ost(g1; g2) does not ex
eed thethreshold set by the user, the two graphs g1 and g2 are 
onsidered to be isomorphi
.By using graph mat
h rules, ea
h transformation is assigned a 
ost based on the domainof usage. Consider an example in the programming domain. We allow a vertex representing avariable to be substituted by another variable vertex, and do not allow a vertex representingan operator whi
h is a spe
ial symbol, a reserved word, or a fun
tion 
all, to be substitutedby another vertex. These rules 
an then be represented as the following:IF (programming domain) and (substitute variable vertex) THEN graph mat
h 
ost = 0.0;IF (domain = programming) and (substitute operator vertex) THEN graph mat
h 
ost = 2.0;Graph mat
h rules allow a spe
i�
ation of the amount of a

eptable generality betweena substru
ture de�nition and its instan
es or between a model de�nition and its instan
es inthe domain graph.2.3 Feature knowledgeDomain-spe
i�
 rules 
an be used to generate new features des
ribing the data. Be
ausewe know that di�erent domains will have features not expli
itly represented in the originaldatabase whi
h 
an be extra
ted to provide more understanding toward the domain, we in-
orporate domain feature knowledge into the system to automati
ally generate these domainfeatures. The generated features should be 
onsidered of great value in understanding thedomain. Feature knowledge 
aptures the relations among the substru
tures in the domain,generates important features of the input graph to provide helpful information, and providesa step towards understanding of the input graph.Consider an example in the programming domain. Feature knowledge spe
i�es how togenerate a loop feature whenever repetitive sub
odes/substru
tures appear 
onse
utively ina program and repla
e the substru
tures with the loop stru
ture, rendering the program'smeaning 
learer; to perform substitution of variable de�nitions, enabling the system to ex-tra
t formulae. The results appear to be an e�e
tive aid to graph understanding. Featuregeneration is supplied as a prepro
essing step to the dis
overy system.3 Evaluation of knowledge in SUBDUE's dis
overyIn this se
tion, we evaluate the bene�ts and 
osts of utilizing domain spe
i�
 informationin performing substru
ture dis
overy. We will measure the performan
e of Subdue withand without domain-spe
i�
 information when applied to databases in the programming,4



sorted = 0; /* bubble sort */while(sorted == 0)sorted = 1;for(j = 0; j < listsize� 1; j ++)if(list[j℄ > list[j + 1℄)temp = list[j℄; list[j℄ = list[j + 1℄; list[j + 1℄ = temp; sorted = 0;for(gap = n=2; gap > 0; gap = gap=2) /* shell sort */for(i = gap; i < n; i++)for(j = i� gap; j >= 0&&v[j℄ > v[j + gap℄; j = j � gap)temp = v[j℄; v[j℄ = v[j + gap℄; v[j + gap℄ = temp;for(i = n; i > 0; i��) /* bubble sort operates here as a type of sele
tion sort */for(j = 2; j >= i; j ++)if(a[j � 1℄ > a[j℄)t = a[j � 1℄; a[j � 1℄ = a[j℄; a[j℄ = t;Figure 1: A sample program of three di�erent sort pro
edures.
omputer aided design and arti�
ial domains. The goals of our substru
ture dis
overy systemare to eÆ
iently �nd substru
tures that 
an redu
e the amount of information needed todes
ribe the data, and to �nd substru
tures that are 
onsidered interesting and useful forthe given domain.To evaluate Subdue in a programming and CAD 
ir
uit domain, we 
ompare Subdue'sdis
overed substru
tures to human ratings. If the domain-dependent approa
h has somevalidity, Subdue should prefer the substru
tures whi
h were rated higher by humans.The dis
overed substru
tures are evaluated in three ways, 1) without using the domainknowledge, 2) using the graph mat
h rules and 3) using a 
ombination of model/stru
tureknowledge and graph mat
h rules. The performan
e of the system is measured along threedimensions: 1) the total des
ription length1, 2) the number of sear
h nodes expanded by Sub-due before the substru
tures are dis
overed, and 3) the interestingness of the substru
tureas measured by human experts. The interestingness of Subdue's dis
overed substru
turesare rated by a group of 8 domain experts on a s
ale of 1 to 5, where 1 means least preferredand 5 means most preferred. We then 
ompute the average and the standard deviation ofthe ratings of ea
h dis
overed substru
ture. The number of instan
es in the database of thedis
overed substru
ture is also listed.3.1 Evaluation of the substru
tures in the programming domainThe dis
overy of familiar stru
tures in a program 
an help a programmer to understand thefun
tion and modularity of the 
ode. Automating this dis
overy pro
ess will fa
ilitate manytasks that require program understanding, e.g., maintenan
e, translation, and debugging.In order to determine the value of substru
tures dis
overed by Subdue, we 
on
atenatethree di�erent sort routines into one program (see Figure 1), and transform it into a graphrepresentation whi
h is independent of the sour
e language.1Total des
ription length is the des
ription length of the dis
overed substru
ture plus the des
riptionlength of the 
ompressed input graph using the dis
overed substru
ture.5



Table 1: Program { Dis
overed substru
tures.The des
ription length of the sample program in Figure 1 is 2598.99 (in bits). Table1 shows three dis
overed substru
tures of the sample program with their total des
riptionlength, number of nodes expanded for the graph mat
h, number of instan
es found, andthe average and standard deviation of the human rating. The substru
ture with no domainknowledge has the highest total des
ription length, and the lowest human rating. Althoughthe substru
ture found using the graph mat
h rules alone has the lowest total des
riptionlength, it does not yield a good human rating. On the other hand, the \simple swap"substru
ture found using both model knowledge and graph mat
h rules has a total des
riptionlength lower than the substru
ture with no domain knowledge and re
eived the highesthuman rating.3.2 Evaluation of the substru
tures in the CAD 
ir
uit domainAs a result of in
reased 
omplexity of design and 
hanges in the te
hnologies of implementa-tion of integrated ele
troni
 
ir
uitry, the dis
overy of familiar stru
tures in 
omplex 
ir
uitry
an help a designer to understand the layout, and to identify 
ommon reusable parts in the
ir
uitry.We evaluate Subdue by using CAD 
ir
uit data representing a sixth-order bandpass"leapfrog" ladder [Bru80℄. The 
ir
uit is made up of a 
hain of somewhat similar stru
tures(see Figure 2). We transform the 
ir
uit into a graph representation in whi
h the 
omponentunits appear as verti
es and the 
urrent 
ows appear as edges. The des
ription length of the
ir
uit in Figure 2 is 3139.05 (in bits). The numbers in 
ir
les shown in Figure 3 representthe iteration in whi
h the substru
ture is dis
overed.6



Figure 2: Bandpass "leapfrog" : sixth-order.

Figure 3: CAD 
ir
uit { Dis
overed substru
tures.7



When the model knowledge and graph mat
h rules are used, nine instan
es of operationalampli�er 
ir
uits are qui
kly sele
ted. We also tested Subdue's ability to �nd a hierar
hy ofsubstru
tures. The substru
tures dis
overed by Subdue for the se
ond iteration representfour instan
es of inverting integrator 
ir
uits whi
h are made up of operational ampli�er
ir
uits. For the third iteration, Subdue dis
overed two instan
es of inverting ampli�er
ir
uits whi
h are also made up of operational ampli�ers. All of these substru
tures re
eivevery high human rating, and have a tremendous redu
tion in the amount of total des
riptionlength. On the other hand, the substru
tures with graph mat
h rules has lesser 
ompressionthan the substru
tures with no domain knowledge, and both of them re
eive low humanrating.The result also shows that for about the same size of substru
tures, the nodes expandedfor dis
overy with the domain knowledge is lesser than the nodes expanded for dis
overywith no domain knowledge.3.3 Evaluation of the substru
tures in the arti�
ial domainWhile we have shown results of evaluations in two domains, we now examine whether su
hdomain knowledge is useful in general. We would like to evaluate whether domain knowledge
an improve Subdue's average 
ase performan
e in arti�
ially-
ontrolled graphs. To testthis performan
e, an arti�
ial substru
ture is 
reated and is embedded in larger graphs ofthree varying sizes. The graphs vary in terms of graph size and amount of deviation in thesubstru
ture instan
es, but are 
onstant with respe
t to the per
entage of the graph thatis 
overed by substru
ture instan
es. For ea
h deviation value, we run ea
h of the graphsuntil no more 
ompression 
an be a
hieved with the following four 
ases: a) no domainknowledge, b) graph mat
h rules, 
) 
ombined model knowledge and graph mat
h rules,and d) 
ombination of a & 
. We then measure the 
ompression, the number of nodesexpanded, and the number of embedded instan
es found for the all iterations. The e�e
ts ofthe varying deviation values are measured against the average 
ompression value of the four
ases mentioned above (Figure 4) and the average number of nodes expanded (Figure 4). Asthe deviation is in
reased, the 
ompression of all four 
ases de
reases as expe
ted. Although
ase a has slightly better 
ompression than 
ase 
, it is not 
apable of �nding spe
i�
 relevantsubstru
tures. On the other hand, 
ase 
 has the least 
ompression, and is 
apable of �ndingthe embedded substru
ture. Case b has the highest 
ompression, but it does not perform wellfor �nding the embedded substru
ture. The last 
ase is 
ase d, whi
h performs well in both
ompression and �nding the embedded substru
tures. Hen
e, the 
ombination of dis
overywith and without domain knowledge performs the best as the deviation is in
reased.Figure 4 shows that as the deviation is in
reased, the number of nodes expanded for
ase 
 remain about the same, be
ause the same substru
tures (of the same size) are found
onsistently. However, sin
e 
ase d 
ombines both 
ase a and 
, and �nds varies sizes ofsubstru
tures, it expands the most number of nodes. As 
ase a and b dis
over smallersubstru
tures as the deviation is in
reased, they expand lesser number of nodes.Se
ond, we again embedded an arti�
ial substru
ture into larger graphs of three varyingsizes. Ea
h of the graphs varies in the size, and the amount of the input graph 
overed by theembedded substru
ture. For ea
h 
overage value, we test the same four 
ases. The e�e
t ofthe varying 
overage values are measured against the average number of embedded instan
es8



Figure 4: A�e
t of deviation on 
ompression and number of nodes expanded.

Figure 5: Coverage versus number of instan
es found.found (Figure 5). As the 
overage is in
reased, 
ases 
 and d �nd in
reasing number ofembedded instan
es. Case b �nd only slightly in
reasing number of instan
es. On the otherhand, 
ase a does not �nd any instan
es.4 Con
lusionsSubdue is a system devised for experimenting with automated dis
overy by using domainknowledge. This approa
h requires that the domain knowledge be as generi
 as possible and
an be reused over a 
lass of similar appli
ations.Few 
urrent dis
overy systems integrate domain knowledge seamlessly into the dis
overypro
ess. This paper des
ribes methods for integrating domain independent and domain de-pendent substru
ture dis
overy based on the minimum des
ription length prin
iple. These9



methods are generally appli
able to most stru
tural data, su
h as 
omputer aided design(CAD) 
ir
uit data, 
omputer programs, 
hemi
al 
ompound data, image data. This in-tegration improves Subdue's ability to both 
ompress the input graph and dis
over sub-stru
tures relevant to the domain of study. The result also shows that the number of nodesexpanded in ea
h iteration of the graph mat
h pro
edure depends on the amount of domainknowledge usage and the size of the substru
ture found.Our future work will evaluate the bene�ts of domain knowledge applied to NASA imagedata, where the domain knowledge 
an be obtained from experts in the �eld of the analysis.Furthermore, sin
e many rules about a domain are in
omplete, and un
ertainty 
an arisebe
ause of in
ompleteness and in
orre
tness in the domain expert's understanding of theproperties of the environment, the in
lusion of un
ertain knowledge will be pursued.Referen
es[Bru80℄ L. T. Bruton. RC-a
tive 
ir
uits. Prenti
e-Hall, 1980.[CH94℄ D. J. Cook and L. B. Holder. Substru
ture dis
overy using minimum des
riptionlength and ba
kground knowledge. Journal of Arti�
ial Intelligen
e Resear
h, 1:231{255, 1994.[Ris89℄ J. Rissanen. Sto
hasti
 Complexity in Statisti
al Inquiry. World S
ienti�
 PublishingCompany, 1989.

10


