Analyzing the Benefits of Domain Knowledge in
Substructure Discovery *

Surnjani Djoko, Diane J. Cook and Lawrence B. Holder
University of Texas at Arlington
Department of Computer Science and Engineering
Box 19015, Arlington, TX 76019
djoko@cse.uta.edu, cook@cse.uta.edu, holder@Qcse.uta.edu

Abstract

Discovering repetitive, interesting, and functional substructures in a structural
database improves the ability to interpret and compress the data. However, scientists
working with a database in their area of expertise often search for a predetermined
type of structure, or for structures exhibiting characteristics specific to the domain.
This paper presents methods for guiding the discovery process with domain-specific
knowledge. In this paper, the SUBDUE discovery system is used to evaluate the bene-
fits of using domain knowledge. The domain knowledge is incorporated into SUBDUE
following a single general methodology to guide the discovery process. Results show
using domain-specific knowledge improves the search for substructures which are useful
to the domain, and leads to greater compression of the data. To illustrate these bene-
fits, examples and experiments from the domain of computer programming, computer
aided design circuit, and a series of artificially-generated domains are presented.

Keywords: data mining, minimum description length principle, data compression, inexact
graph match, domain knowledge

1 Introduction

With the increasing amount and complexity of today’s data, there is an urgent need to ac-
celerate the discovery of information and the generation of knowledge from large databases.
To date, the SUBDUE system has been used to discover interesting and repetitive substruc-
tures in structural data [CH94]. The substructures are evaluated both by a set of domain
independent heuristics and by the substructures’ ability to describe and compress the orig-
inal data set based on the minimum description length (MDL) principle [Ris89]. Once the

*Supported by NASA grant NAS5-32337.

substructures are discovered, they are used to simplify the data by replacing instances of
the substructure with a pointer to the substructure definition. The discovered substructures
allow abstraction over detailed structure in the original data. Iteration of the substructure
discovery and replacement process constructs a hierarchical description of the structured
data in terms of the discovered substructures. This hierarchy provides varying levels of
interpretation that can be accessed based on the goals of the data analysis.

Although the MDL principle is useful for discovering substructures that maximize com-
pression of the data, scientists often employ knowledge or assumptions of a specific domain to
the discovery process. Domain independent heuristics and discovery techniques are valuable
in that the discovery of unexpected substructures is not blocked. However, the discovered
substructures might not be useful to the user. On the other hand, using domain specific
knowledge can assist the discovery process by focusing search and can also help make the
discovered substructures more meaningful to the user.

This paper focuses on methods of realizing the benefits of domain dependent discovery
approaches by adding domain specific knowledge to a domain independent discovery system.
Secondly, this paper explicitly evaluates the benefits and costs of utilizing domain-specific
information. In particular, the performance of the SUBDUE system is measured with and
without domain-specific knowledge along the performance dimensions of compression, time to
discover substructures, and interestingness of the discovered substructures. These methods
are generally applicable to most structural data, such as computer-aided design (CAD)
circuit data, computer programs, chemical compound data, and image data.

2 Adding domain knowledge to the SUBDUE system

We now present several types of domain knowledge that are used in the discovery process,
explain how they bias discovery of certain types of substructures, and detail how the knowl-
edge is added to the SUBDUE system. Although the minimum description length principle
still drives the discovery process, domain knowledge is used to input a bias toward certain
types of substructures. The intuition behind this approach is that experts often have a pref-
erence for particular types of discoveries. Domain knowledge can be used to isolate those
aspects of substructures they do understand, and to help constrain the discovery process.

2.1 Model/Structure knowledge

Model/Structure knowledge provides to the discovery system specific types of structures
that are likely to exist in the database and are of particular interest to a scientist using
the system. The input structures are organized in a hierarchy. Leaves in the hierarchy
represent primitive (nondecomposable) structures which are basic elements of the domain,
and inner nodes represent nonprimitive structures. Nonprimitive structures consist of a
conglomeration of primitive vertices and/or lower-level nonprimitive vertices. The hierarchy
for a particular domain is supplied by a domain expert. The structures in the hierarchy and
their functionalities are well known in the context of that domain.

In the programming domain, for example, special symbols are represented by primitive
vertices, and functional subroutines (e.g., swap, sort, increment) are represented by non-

primitive vertices. In the CAD circuit domain, the basic components of a circuit (e.g.,
resistor, transistor) are represented by primitive vertices, and functional subcircuits such as
operational amplifier, filter, etc. are represented by non primitive vertices. This indexed
hierarchical representation allows examining of the structural knowledge at various level of
abstraction, focusing the search and reducing the search space.

2.1.1 Using structure knowledge to guide the discovery

The modified version of SUBDUE can be biased to look for structures of the type specified
in the model/structure hierarchy. The model/structure pointed to by the matched model
vertex is selected as a candidate model to be matched with the input substructure. Each
iteration through the process selects a substructure from the input graph which has the best
match to the selected model according to its ability to compress the entire input graph.
Selected substructures are incrementally expanded as possible candidates for the next iter-
ation. The process searches for the best substructure until all possible substructures have
been considered or until a substructure has been found that matches the selected model.

The compressed graph is encoded as described elsewhere [CH94]. After a substructure
is discovered, each instance of the discovered substructure is encoded as an index to the
corresponding substructure or model definition. The discovered substructure is represented
using 1(.S) bits which is the number of bits needed to encode the model index, and the graph
after the substructure replacement is represented in I(G|S) bits. SUBDUE searches for the
substructure S in graph G minimizing 1(S) + I(G|S).

2.1.2 Combining substructure discovery with and without model knowledge

In order not to overly bias the discovery process toward certain types of substructure based
on the model/structure knowledge, the discovery process can combine the discovery with-
out using model/structure knowledge with the discovery process using structure knowledge.
Using domain-independent and domain-dependent knowledge together may be more use-
ful than using either type of approach in isolation. In particular, using domain-dependent
knowledge alone may block the discovery of unexpected substructures. However, domain-
dependent knowledge can assist the discovery process by focusing search and ensuring that
the discovered substructure is meaningful to the user.

In each iteration of the algorithm, the SUBDUE system discovers at most two best sub-
structures, one based on no model knowledge and the other based on model knowledge.
These substructures are used to compress the input graph. SUBDUE selects the compressed
which requires the smallest description length as the input graph for the next iteration of
the discovery process. The compressed graph which has not been selected is added to the
list of unprocessed graphs. If after further iterations, SUBDUE obtains a compressed graph
whose amount of compression is smaller than any compressed graph in the list of unprocessed
graphs, this compressed graph is put on the list of unprocessed graphs. SUBDUE resumes the
discovery process using the compressed graph from the list of unprocessed graphs which has
the maximum amount of compression. This process is repeated until the list of unprocessed
graphs is exhausted. The MDL principle is used as a compression measure for both using
the model knowledge and without using the model-based discovery.

2.2 Graph match rules

At the heart of the SUBDUE system lies an inexact graph match algorithm that finds instances
of a substructure definition. The graph match is used to identify isomorphic substructures
in the input graph. Many of those substructures could show up in a slightly different form
throughout the data. These differences may be due to noise and distortion, or may illustrate
slight differences between instances of the same general class of structure. Each distortion of a
graph is assigned a cost. A distortion is described in terms of basic transformations performed
by the graph match such as deletion, insertion and substitution of vertices and edges. Given
gl and ¢2, and a set of distortion costs, the actual computation of matchcost(gl, g2) can be
performed using a tree search procedure. As long as matchcost(gl, g2) does not exceed the
threshold set by the user, the two graphs g1 and g2 are considered to be isomorphic.

By using graph match rules, each transformation is assigned a cost based on the domain
of usage. Consider an example in the programming domain. We allow a vertex representing a
variable to be substituted by another variable vertex, and do not allow a vertex representing
an operator which is a special symbol, a reserved word, or a function call, to be substituted
by another vertex. These rules can then be represented as the following:

IF (programming domain) and (substitute variable vertex) THEN graph match cost = 0.0;

IF (domain = programming) and (substitute operator vertex) THEN graph match cost = 2.0;

Graph match rules allow a specification of the amount of acceptable generality between
a substructure definition and its instances or between a model definition and its instances in
the domain graph.

2.3 Feature knowledge

Domain-specific rules can be used to generate new features describing the data. Because
we know that different domains will have features not explicitly represented in the original
database which can be extracted to provide more understanding toward the domain, we in-
corporate domain feature knowledge into the system to automatically generate these domain
features. The generated features should be considered of great value in understanding the
domain. Feature knowledge captures the relations among the substructures in the domain,
generates important features of the input graph to provide helpful information, and provides
a step towards understanding of the input graph.

Consider an example in the programming domain. Feature knowledge specifies how to
generate a loop feature whenever repetitive subcodes/substructures appear consecutively in
a program and replace the substructures with the loop structure, rendering the program’s
meaning clearer; to perform substitution of variable definitions, enabling the system to ex-
tract formulae. The results appear to be an effective aid to graph understanding. Feature
generation is supplied as a preprocessing step to the discovery system.

3 Evaluation of knowledge in SUBDUE’s discovery

In this section, we evaluate the benefits and costs of utilizing domain specific information
in performing substructure discovery. We will measure the performance of SUBDUE with
and without domain-specific information when applied to databases in the programming,

sorted = 0; /* bubble sort */
while(sorted == 0)
sorted = 1;
for(j =0;7 < listsize —1;j + +)
if(list[j] > list]j + 1])
temp = list[j]; list[j] = list[j + 1]; list[j + 1] = temp; sorted = 0;
for(gap = n/2;gap > 0; gap = gap/2) /* shell sort */
for(i =gap;i <nji++)
for(j =1i—gap;j >= 0&&vlj] > v[j + gapl; j = j — gap)
temp = v[j]; v[j] = v[j + gapl; v[j + gap] = temp;
for(i=mn;i>0;i——) /* bubble sort operates here as a type of selection sort */
for(j=2j>=1i55++)
if(alj =11 > alj)
t=alj — 1] alj — 1] = aljl; alj] = &

Figure 1: A sample program of three different sort procedures.

computer aided design and artificial domains. The goals of our substructure discovery system
are to efficiently find substructures that can reduce the amount of information needed to
describe the data, and to find substructures that are considered interesting and useful for
the given domain.

To evaluate SUBDUE in a programming and CAD circuit domain, we compare SUBDUE’s
discovered substructures to human ratings. If the domain-dependent approach has some
validity, SUBDUE should prefer the substructures which were rated higher by humans.

The discovered substructures are evaluated in three ways, 1) without using the domain
knowledge, 2) using the graph match rules and 3) using a combination of model/structure
knowledge and graph match rules. The performance of the system is measured along three
dimensions: 1) the total description length!, 2) the number of search nodes expanded by SuB-
DUE before the substructures are discovered, and 3) the interestingness of the substructure
as measured by human experts. The interestingness of SUBDUE’s discovered substructures
are rated by a group of 8 domain experts on a scale of 1 to 5, where 1 means least preferred
and 5 means most preferred. We then compute the average and the standard deviation of
the ratings of each discovered substructure. The number of instances in the database of the
discovered substructure is also listed.

3.1 Evaluation of the substructures in the programming domain

The discovery of familiar structures in a program can help a programmer to understand the
function and modularity of the code. Automating this discovery process will facilitate many
tasks that require program understanding, e.g., maintenance, translation, and debugging.
In order to determine the value of substructures discovered by SUBDUE, we concatenate
three different sort routines into one program (see Figure 1), and transform it into a graph
representation which is independent of the source language.

!Total description length is the description length of the discovered substructure plus the description
length of the compressed input graph using the discovered substructure.

Table 1: Program Discovered substructures.

The description length of the sample program in Figure 1 is 2598.99 (in bits). Table
1 shows three discovered substructures of the sample program with their total description
length, number of nodes expanded for the graph match, number of instances found, and
the average and standard deviation of the human rating. The substructure with no domain
knowledge has the highest total description length, and the lowest human rating. Although
the substructure found using the graph match rules alone has the lowest total description
length, it does not yield a good human rating. On the other hand, the “simple swap”
substructure found using both model knowledge and graph match rules has a total description
length lower than the substructure with no domain knowledge and received the highest
human rating.

3.2 Evaluation of the substructures in the CAD circuit domain

As a result of increased complexity of design and changes in the technologies of implementa-
tion of integrated electronic circuitry, the discovery of familiar structures in complex circuitry
can help a designer to understand the layout, and to identify common reusable parts in the
circuitry.

We evaluate SUBDUE by using CAD circuit data representing a sixth-order bandpass
"leapfrog” ladder [Bru80]. The circuit is made up of a chain of somewhat similar structures
(see Figure 2). We transform the circuit into a graph representation in which the component
units appear as vertices and the current flows appear as edges. The description length of the
circuit in Figure 2 is 3139.05 (in bits). The numbers in circles shown in Figure 3 represent
the iteration in which the substructure is discovered.

Figure 2: Bandpass "leapfrog” :

sixth-order.

1sage of Dizcoversd Substnwcnres Total Mumber | Human Mumber of
Comain Dezcripion | of Modes | Rating listances
Knowlzdge Lenpgh Expanded| Average

Cim G [Scandard

Deviation]

170.1% 71370 | 3.8[1.3) 9

9974 146422 LT 1] 3

1751.3 143173 27[1.8] f

raph
hratch
mibea

152360 3035 27 [0.9] 3

147247 P r k] 41.4] g
mode| [L
knowiedge @ I
and
mlgaﬂm _%L’:b

. L
= 1070 53 12060 4211 4
n S
= 575 T3 4213 p

Figure 3:

CAD circuit — Discovered substructures.

When the model knowledge and graph match rules are used, nine instances of operational
amplifier circuits are quickly selected. We also tested SUBDUE’s ability to find a hierarchy of
substructures. The substructures discovered by SUBDUE for the second iteration represent
four instances of inverting integrator circuits which are made up of operational amplifier
circuits. For the third iteration, SUBDUE discovered two instances of inverting amplifier
circuits which are also made up of operational amplifiers. All of these substructures receive
very high human rating, and have a tremendous reduction in the amount of total description
length. On the other hand, the substructures with graph match rules has lesser compression
than the substructures with no domain knowledge, and both of them receive low human
rating.

The result also shows that for about the same size of substructures, the nodes expanded
for discovery with the domain knowledge is lesser than the nodes expanded for discovery
with no domain knowledge.

3.3 Evaluation of the substructures in the artificial domain

While we have shown results of evaluations in two domains, we now examine whether such
domain knowledge is useful in general. We would like to evaluate whether domain knowledge
can improve SUBDUE’s average case performance in artificially-controlled graphs. To test
this performance, an artificial substructure is created and is embedded in larger graphs of
three varying sizes. The graphs vary in terms of graph size and amount of deviation in the
substructure instances, but are constant with respect to the percentage of the graph that
is covered by substructure instances. For each deviation value, we run each of the graphs
until no more compression can be achieved with the following four cases: a) no domain
knowledge, b) graph match rules, ¢) combined model knowledge and graph match rules,
and d) combination of a & ¢. We then measure the compression, the number of nodes
expanded, and the number of embedded instances found for the all iterations. The effects of
the varying deviation values are measured against the average compression value of the four
cases mentioned above (Figure 4) and the average number of nodes expanded (Figure 4). As
the deviation is increased, the compression of all four cases decreases as expected. Although
case a has slightly better compression than case c, it is not capable of finding specific relevant
substructures. On the other hand, case ¢ has the least compression, and is capable of finding
the embedded substructure. Case b has the highest compression, but it does not perform well
for finding the embedded substructure. The last case is case d, which performs well in both
compression and finding the embedded substructures. Hence, the combination of discovery
with and without domain knowledge performs the best as the deviation is increased.

Figure 4 shows that as the deviation is increased, the number of nodes expanded for
case ¢ remain about the same, because the same substructures (of the same size) are found
consistently. However, since case d combines both case a and c, and finds varies sizes of
substructures, it expands the most number of nodes. As case a and b discover smaller
substructures as the deviation is increased, they expand lesser number of nodes.

Second, we again embedded an artificial substructure into larger graphs of three varying
sizes. Each of the graphs varies in the size, and the amount of the input graph covered by the
embedded substructure. For each coverage value, we test the same four cases. The effect of
the varying coverage values are measured against the average number of embedded instances

08 — O A R
% —{]- == b g T e
05 . — - -0 ol eveedge b grap o ce e
\ * — %= - d combiaon o b o
04 . \E =
; : \ u._‘_.
H m,
! "a
E 08 L\ T
oo [
N
01 N
A

Figure 4: Affect of deviation on compression and number of nodes expanded.

— o ey e g
—{=} - - b g e ks
5 M — & -c ookl oowladye b graps o sl

- — = O i el o L
E 4 r,..; 5
P - =
i e f
¥ 3 w g d
{ A7 SN
% i " - ; -
] / \ /
F 0 —e £ = d o
-1

Q 02 04 0.6 0.8 1

Coverigm

Figure 5: Coverage versus number of instances found.

found (Figure 5). As the coverage is increased, cases ¢ and d find increasing number of
embedded instances. Case b find only slightly increasing number of instances. On the other
hand, case a does not find any instances.

4 Conclusions

SUBDUE is a system devised for experimenting with automated discovery by using domain
knowledge. This approach requires that the domain knowledge be as generic as possible and
can be reused over a class of similar applications.

Few current discovery systems integrate domain knowledge seamlessly into the discovery
process. This paper describes methods for integrating domain independent and domain de-
pendent substructure discovery based on the minimum description length principle. These

methods are generally applicable to most structural data, such as computer aided design
(CAD) circuit data, computer programs, chemical compound data, image data. This in-
tegration improves SUBDUE’s ability to both compress the input graph and discover sub-
structures relevant to the domain of study. The result also shows that the number of nodes
expanded in each iteration of the graph match procedure depends on the amount of domain
knowledge usage and the size of the substructure found.

Our future work will evaluate the benefits of domain knowledge applied to NASA image
data, where the domain knowledge can be obtained from experts in the field of the analysis.
Furthermore, since many rules about a domain are incomplete, and uncertainty can arise
because of incompleteness and incorrectness in the domain expert’s understanding of the
properties of the environment, the inclusion of uncertain knowledge will be pursued.

References

[Bru80] L. T. Bruton. RC-active circuits. Prentice-Hall, 1980.

[CH94] D. J. Cook and L. B. Holder. Substructure discovery using minimum description
length and background knowledge. Journal of Artificial Intelligence Research, 1:231—
255, 1994.

[Ris89] J. Rissanen. Stochastic Complezity in Statistical Inquiry. World Scientific Publishing
Company, 1989.

10

