Human IgG Antibody Response to Glossina Saliva: An Epidemiologic Marker of Exposure to Glossina Bites

Anne Poinsignon,* Franck Remoue, Marie Rossignol, Sylvie Corneliè, David Courtin, Pascal Grébaut, André Garcia, and François Simondon

Epidémiologie et Prévention, Institut de Recherche pour le Développement, Dakar, Sénégal; Epidémiologie et Prévention, IRD, Montpellier, France; Santé de la mère et de l’enfant en Milieu Tropical, IRD, Paris, France; Interactions Hôtes-Vecuteurs-Parasites dans les Trypanosomoses, IRD, Montpellier, France; Santé de la mère et de l’enfant en Milieu Tropical, IRD, Cotonou, Benin

Abstract. The evaluation of human antibody response specific to arthropod saliva may be a useful marker of exposure to vector-borne disease. Such an immunologic tool, applied to the evaluation of the exposure to Glossina bites, could be integrated in the control of human African trypanosomiasis (HAT). The antibody (IgG) response specific to uninfected Glossina fuscipes fuscipes saliva was evaluated according to the vector exposure and trypanic status in individuals residing in an HAT-endemic area. A high level of anti-saliva IgG antibodies was only detected in exposed individuals, whether infected or not by Trypanosoma brucei gambiense. In addition, the evaluation of specific IgG response represented spatial heterogeneity according to studied sites. These results suggest that the evaluation of anti-saliva IgG could be an indicator of Glossina exposure and thus could be integrated in other available tools to identify populations presenting risks of HAT transmission.

INTRODUCTION

Trypanosoma brucei gambiense, the causative agent of the chronic form of human African trypanosomiasis (HAT), is transmitted by infected Glossina bites during the blood meal. The disease occurs in West and Central Africa, where 60 million individuals are exposed to the Glossina vector. Considered as a neglected disease, many efforts are conducted under WHO recommendations by systematic screening of populations to diagnose infected individuals and to control HAT transmission. These campaigns have shown their potential efficacy in several countries by reducing HAT incidence, such as in the Democratic Republic of Congo (DRC).1 The weak sensibility and specificity of the useful diagnostic tools requires urgent attention to develop new diagnostic tools distinguishing Glossina exposure, early detection of infection, and HAT morbidity stages. The entomological methods are currently the referent methods to evaluate the densities of Glossina population but their major limit is the application to the field conditions as a large scale. The use of a geographical information system seems to be an adequate tool to detect favorable ecologic location for colonization of Glossina vector.2

HAT morbidity results from complex interactions between the parasite, tsetse fly vector, and human host. Salivary proteins of Glossina are injected during the bite to favor the correct blood feeding by using their pharmacologic properties (vasodilatators, anti-platelet aggregation, and blood coagulation inhibitors).3 In addition, some salivary proteins are immunogenic in inducing a specific immune response with the production of antibodies (Ab).4,5 Studies on different vectors (Triatoma, Aedes, Phlebotomus, Anopheles) have suggested that the evaluation of human specific Ab response to saliva and/or to recombinant salivary protein could evaluate the exposure of individuals to vector bites and thus could be an indicator of risk to pathogens transmission.6–9 Few studies have explored the immune properties of Glossina saliva.10,11 Previous study indicated that IgG response to Glossina morsitans saliva and to specific salivary Tsal proteins were detected in exposed and infected Ugandan populations.5,10 Recently, our team highlighted the detection of immunogenic salivary proteins of four Glossina species. In individuals living in the Bandundu area (DRC) endemic for sleeping sickness, we showed that the profile of these immunogenic proteins was dependent to the Glossina species (vector or not) and to the trypanic status of individuals.4 As a next step and to strengthen our hypothesis to elaborate a marker of Glossina exposure based on the saliva immunogenicity, the objective of this study was to evaluate, using enzyme-linked immunosorbent assay (ELISA), the IgG Ab level specific to Glossina fuscipes fuscipes saliva according to the vector exposure and to the trypanic status of individuals.

MATERIALS AND METHODS

Studied population. The study was conducted using sera from individuals living in the HAT-endemic area of Bandundu in the DRC.11 The status of 71 individuals included in the study was defined using serologic, parasitologic, and molecular studies as previously described.11 These results led to defining two groups of exposed individuals (Exp group): 1) the ENI group, which included exposed but uninfected individuals (N = 52; 8–62 years old) and 2) the EI group, which included exposed and infected patients in the first and second stage of the disease (N = 19; 6–59 years old). A negative control (Nexp group) included individuals (N = 37; 21–76 years old) who live in Glossina spp.–free area (personnel from Lapeyronie Hospital, Montpellier, France, and autochthons from Reunion island). The study adhered to the ethical principles defined by the Helsinki Declaration and was reviewed and approved by the local Ethical Committee of the DRC (Public Health Ministry 2001). All individuals enrolled in this study signed an informed consent form.

Saliva collection. Glossina fuscipes fuscipes is the main T. brucei gambiense vector in the Bandundu area. The salivation technique used enabled analysis of biologic material similar to saliva injected in the vertebrate host during natural blood feeding.4 Whole saliva extract (WSE) samples from uninfected male and female G. fuscipes fuscipes bred in an insectarium (Unit Research 177, IRD) were collected, as previ-
ously described. Briefly, the Glossina were enclosed in a tube and placed above a drop of salivation buffer (10 mmol/L HEPES, 150 mmol/L NaCl, and 5 mmol/L EDTA, pH 7.2) on warm slides (37°C). After 10 minutes of salivation, the saliva solution was collected and stored at −80°C before use. The protein concentration of the saliva solution for female sex (150 μg/mL) and for male sex (250 μg/mL) was evaluated by a bicinchoninic acid test (BCA Protein Assay Kit; Pierce, Rockford, IL). Mixed WSE was done by pooling equal quantities of proteins of both sexes.

Evaluation of human IgG Ab levels. An ELISA technique was carried out using WSE from uninfected mixed male and female G. fuscipes fuscipes, and sera were tested for IgG Ab as previously described for Anopheles.5 Maxisorp plates (Nunc, Roskilde, Denmark) were coated with mixed WSE (2 μg/mL) in carbonate/bicarbonate buffer and saturated with blocking buffer (Pierce). Individual sera were incubated (1:120) in phosphate-buffered saline (PBS)-Tween 1%, and IgG detection was performed using a mouse anti-human IgG biotinylated mAb (BD Pharmingen, San Diego, CA). Peroxidase-conjugated streptavidin was added (Amersham, Les Ulis, France), and colorimetric development was carried out using [2,2′-azino-bis (3-ethylbenzthiazoline 6-sulfonic acid) diammonium (ABTS; Sigma, St Louis, MO) in 50 mmol/L citrate buffer (pH 4) containing 0.003% H2O2. Absorbance (OD) was measured at 405 nm. In addition, the absence of significant Ab detection in wells without antigen was verified (ODn). Individual results were expressed as the ΔOD value calculated according to the formula: ΔOD = ODx − ODn, where ODx represented the individuals OD value with antigen wells. A subject was considered as an “immune responder” if its ΔOD was higher than ΔOD mean + (3 × SD) in the unexposed group (Nexp: ΔOD = 0.389).

Statistical analysis. All data were analyzed with the GraphPad Prism software (GraphPad, San Diego, CA). After verifying that values did not assume a Gaussian distribution, the non-parametric Mann-Whitney U test was used for comparison of Ab level between two independent groups and the non-parametric Kruskal-Wallis test for comparison between more than two groups. All differences were considered significant at P < 0.05.

RESULTS AND DISCUSSION

The anti-saliva IgG level was compared between individuals exposed (Exp = ENI + EI groups) or not (Nexp group) to Glossina bites (Figure 1A). Eighty percent of the exposed individuals were “immune responders” for anti-saliva IgG. The diagnostic value of this specific ELISA test presents the following characteristics: sensibility = 80%, specificity = 100%, positive predictive value = 100%, and negative predictive value = 73%.

A high level of specific IgG Abs was observed in exposed individuals (median = 0.827), whereas baseline IgG level was very low in the Nexp group (median = 0.148). The difference in specific IgG response was highly significant between both groups (P < 0.0001). The individuals from the Nexp group, despite living in an area free from Glossina, could be exposed to others hematophagous arthropods (Aedes spp., Culex spp., or Anopheles spp.), especially those from Reunion Island.13 The very low baseline of specific IgG level in the Nexp group could indicate the absence of immune cross-reactivity of salivary proteins between Glossina and others arthropods. Nevertheless, possible cross-reactivity of tsetse saliva with other Brachycera flies, such as tabanids or stable flies, which are more closely related to tsetse than mosquitoes can not be excluded. Altogether, the results suggest that the anti-saliva IgG response could be a selective marker of exposure to Glossina bites. In addition, the level of anti-saliva IgG Ab was compared between the Nexp group and infected (EI group) or uninfected (ENI group) individuals (Figure 1B). The specific IgG response remained significantly higher in the ENI group compared with the Nexp group (P < 0.0001). However, the anti-saliva IgG response was significantly lower in the EI group compared with the ENI group (P = 0.0371). In a sub-analysis according to age (< 35 and > 35 years of age), the difference between the EI and ENI groups was only significant for individuals < 35 years of age (data not shown). Despite several parameters (history of exposure, environmental factors, etc) that could explain this difference, these results
Aedes Glossina anti-saliva IgG response could discriminate the difference of bites sites. This first approach suggests that the evaluation of marker of exposure to individuals according to their dwelling villages with the observed suppression because infected. Moreover, an optimal marker, in terms of specificity to species-specific immunogenic salivary proteins and evaluating species vector of Trypanosoma brucei gambiense and 2) to infected bites.

This study, in complement to previous results identifying species-specific immunogenic salivary proteins and evaluating Ab response to specific recombinant proteins, highlights the potential use of anti-salivary protein Ab response as an immunomalaria indicator of Glossina bite exposure.4,5 This tool could allow the mapping and delimitation of foci where the HAT disease prevails and could be integrated into WHO strategies on HAT control in Africa.

Acknowledgments: The authors gratefully acknowledge the population of the Bandundu area for participation in the study. The authors thank G. Cuny (IRD-UR177) for access to tsetse flies bred in the insectarium and A. M. Dupuy and the occupational health team of Lapeakeyone Hospital (Montpellier, France) for access to negative sera from personnel.

Financial support: Anne Poinsignon is supported by a scholarship provided by the Research Ministry of France; Sylvie Cornelie holds a fellowship from the French “Fonds Inkerman” and the “Fondation Singer Polignac”; and David Courtin holds a fellowship from the French “Fondation des Treilles”. The study in DRC received financial support from “Institut de Médecine et Épidémiologie Africaine” (IMEA) and the “Institut de Recherche pour le Développement.”

Authors’ addresses: Anne Poinsignon, IRD-UR024, Épidémiologie et Prévention, Routes des Pères Maristes, BP 1386, 18524 Dakar, Sénégal, Telephone: 221-849-35-55, Fax: 221-832-43-07, E-mail: anne.poinsignon@ird.fr. Franck Remoue, IRD-UR024, Épidémiologie et Prévention, Routes des Pères Maristes, BP 1386, 18524 Dakar, Sénégal, Telephone: 221-849-35-35, Fax: 221-832-43-07, E-mail: remoue@ird.fr. Marie Rossignon, IRD-UR024, Épidémiologie et Prévention, 91 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France, Telephone: 33-4-67-41-63-32, Fax: 33-4-67-41-63-30, E-mail: senglat@mpl.ird.fr. Sylvie Cornelie, IRD-UR024, Épidémiologie et Prévention, 91 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France, Telephone: 33-4-67-41-61-48, Fax: 33-4-67-41-63-30, E-mail: cornelie@mpl.ird.fr. David Courtin, IRD-UR010, Santé de la mère et de l’enfant en milieu tropical, Faculté de pharmacie, 4 Avenue de l’Observatoire, 75270 Paris, France, Telephone: 33-1-53-73-96-17, Fax: 33-1-53-73-96-17, E-mail: d.courtin@gmail.com. Pascal Grébaut, LRCT IRD/CIRAD, UMR 177, Interactions Hôtes- Vecteurs-Parasites dans les Trypanosomoses, TA 207 G, Campus International de Baillarguet, 34398 Montpellier cedex 5, France, Telephone: 33-4-67-59-39-25, E-mail: pascal.grebaut@ird.fr. André Garcia, IRD-UR010, Santé de la mère et de l’enfant en milieu Tropical, La résidence “Les cocotiers,” 08 BP 841 Cotonou, Bénin, Telephone: 229-21-30-98-21, Fax: 229-21-95-45-14-14, E-mail: andre.garcia@ird.fr. Francois Simondon, IRD-UR024, Épidémiologie et Prévention, 91 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France, Telephone: 33-4-67-41-61-62, Fax: 33-4-67-41-63-30, E-mail: francois.simondon@mpl.ird.fr.

REFERENCES

1. Lutumba P, Robays J, Miaka mia Bilenge C, Mesu VK, Molisho D, Declercq J, Van der Veken W, Meheus F, Jannin J, Boelaert M, 2006. Tsetse fly saliva biases the immune response to Glossina bites and, probably, an indicator of the spatial heterogeneity of exposure. Nevertheless, anti-saliva IgG level remained considerably higher in the infected (EI group) than in the uninfected (Nexp group) individuals (P < 0.0001). This result indicates that the anti-saliva Ab response could be a useful marker of Glossina exposure even if individuals are immunosuppressed because infected.

The anti-saliva IgG response was compared only in ENI individuals according to their dwelling villages with the objective of evaluating the possible spatial heterogeneity of exposure to Glossina bites (Figure 2). The specific IgG Ab levels differed significantly (P = 0.0165) between the two studied sites. This first approach suggests that the evaluation of anti-saliva IgG response could discriminate the difference of Glossina exposure according to studied site, as previously described for Aedes exposure.7 Nevertheless, further studies including entomologic assessments of precise Glossina exposure are necessary to confirm these results according to different levels of exposure.

This study indicated that IgG response to whole saliva could be a potential marker of exposure to Glossina bites and, probably, an indicator of the spatial heterogeneity of exposure. However, an optimal marker, in terms of specificity to Glossina species (i.e., to avoid cross-reactivity with others arthropods) would be obtained by identifying immunogenic salivary proteins specific 1) to Glossina species vector of Trypanosoma brucei gambiense and 2) to infected bites.

This study, in complement to previous results identifying species-specific immunogenic salivary proteins and evaluating Ab response to specific recombinant proteins, highlights the potential use of anti-salivary protein Ab response as an immunoinflammatory indicator of Glossina bite exposure.4,5 This tool could allow the mapping and delimitation of foci where the HAT disease prevails and could be integrated into WHO strategies on HAT control in Africa.

Received September 21, 2007. Accepted for publication December 10, 2007.


