
Dynamic Surge Protection: An Approach to Handling
Unexpected Workload Surges With Resource Actions That

Have Lead Times

E. Lassettre, D. W. Coleman, Y. Diao, S. Froehlich, J. L. Hellerstein, L. Hsiung
T. Mummert, M. Raghavachari, G. Parker, L. Russell, M. Surendra, V. Tseng, N. Wadia, P. Ye

IBM Corporation

ABSTRACT
Today’s information technology departments have widely
varying demands for resources due to unexpected surges
in subscriber demands (e.g., a large response to a product
promotion). Further complicating matters is that many re-
source actions done in response to surges (e.g., provision-
ing or de-provisioning an application server) have substan-
tial delays (lead times) between initiating the resource ac-
tion and its taking effect. This paper describes dynamic
surge protection, an approach to handling unexpected work-
load surges in systems that have lead times for resource ac-
tions. Dynamic surge protection incorporates three tech-
nologies: adaptive short-term forecasting, on-line capacity
planning, and configuration management. The paper in-
cludes empirical results from evaluations done on a research
testbed, including favorable comparisons with a threshold-
based heuristic. The results from an extended test also show
that service objectives can be maintained cost-effectively.

General Terms
Adaptive forecasting, time series models, lead times, sub-
scriber surges

1. INTRODUCTION
Today’s information technology (IT) departments are be-
sieged with uncertainty. New applications are deployed,
but their resource demands are unknown. Traditionally,
these situations have been addressed by over-provisioning
IT resources and/or manual resource re-allocations. Unfor-
tunately, these approaches are costly – the former in terms
of equipment, license, etc and the latter in terms of expert
operators. Furthermore, many resource actions involve lead
times, such as server provisioning, which introduces delays
between action initiation and effect. We present an approach
to moderate the effect of unexpected workload surges so as
to preserve a service level objective (SLO) in a cost effective

way while taking resource actions with lead times.

Examples of subscriber overloads abound. On September
11, 2001, the CNN web site was overwhelmed by traffic that
doubled every 7 min to a peak of 20 × normal volume [7].
The Victoria’s Secret web site had a similar experience as
a result of an advertising campaign during the 1999 Super
Bowl [9]. Others have noted that “sites such as Encyclopae-
dia Britannica, egg.com, and H&R Block have suffered mas-
sive overload from subscribers” [16].

Many systems (e.g., [14], [10], [18], [12]) have been developed
to adapt to changes in workload. Sun’s N1 [14] and HP’s
Utility Data Center (UDC) [10] initiatives provide conve-
nient ways for operators to move resources between applica-
tions. Underlying this is the ability to describe logical appli-
cation topologies and the physical configuration. However,
no automation is provided to determine when to move re-
sources between applications. The MVS workload manager
incorporates algorithms for adjusting resource allocations to
achieve SLOs [1]. These algorithms assume that actions take
effect immediately (e.g., changing CPU priorities) and so do
not address actions with substantial lead times. Another rel-
evant technology uses load forecasting together with perfor-
mance estimation to balance file allocation across a network
attached storage system to meet a response time objective
under varying load [8]. The ThinkProvision technology of
Think Dynamics provides automation for model-based op-
timization of dynamic resource provisioning [15], and the
DynamicIT technology of ProvisionSoft uses long-term fore-
casts to anticipate time-of-day effects [13]. An important
difference between the the current work and approaches that
use long-term forecasting is that the latter is appropriate
for workloads with periodic variation. Conversely, it is not
suited for unexpected workload surges, which have no regu-
lar pattern.

As reported in [3], there is considerable benefit in rapidly
adjusting resource allocations to handle variable workload.
This is a challenge if reallocating resources has substantial
lead times. One approach is to reduce the lead times, but
this may be of limited utility. A second incorporates long-
term forecasting to predict workloads and initiate resource
actions sufficiently early to accomodate lead times. How-
ever, long-term forecasters can require substantial data to
learn patterns and thus work poorly for unexpected surges.

Forecaster DecisionCapacity
Planner Logic

Monitoring Provisioner

Servers
Application Database

Server

DEPLOYMENT MANAGER

CONTROLLER

APPLICATION

SLOs

Figure 1: Architectural layers for dynamic surge
protection. The arrows show the control and data
flow.

In line with IBM’s autonomic computing initiative for self-
managing systems [6], we describe a system that has self-
configuring characteristics. Our approach, which we refer
to as dynamic surge protection, employs three technolo-
gies: adaptive short-term forecasting, on-line capacity plan-
ning, and configuration management. The forecasting ap-
proach we use is designed to be responsive to rapid changes,
yet robust. On-line capacity planning determines resources
needed to preserve service levels in a cost effective way (e.g.,
releasing resources when not needed). Configuration man-
agement provides the means for adjusting resources, such
as by tuning, provisioning, and/or workload throttling to
adapt to the rise and decay of unexpected surges.

2. ARCHITECTURE AND ALGORITHMS
The system is structured into three layers as shown in Fig-
ure 1. The Application layer provides the business function.
We use a two-tier web application with one or more appli-
cation servers and a database server. In general, we require
that the application tier scale horizontally (i.e. resources
can be added/removed without system shutdown).

The Deployment Manager provides a generic interface for
monitoring and configuring the application layer. In this
work, transaction rates and response times were monitored.
Configuration management was focused on provisioning (ad-
dition/removal of application servers). The architecture as-
sumes that for each resource type there is a provisioning
function that manages a resource pool that can be shared
among applications. Longer-term configuration management
will also address configuration parameter (e.g., buffer pool
sizes) and admission control adjustment.

The Controller monitors the application layer state and ini-
tiats appropriate actions if a SLO violation is anticipated
or if the SLO can be satisfied in a more cost-effective way.

Figure 1 also depicts the control and data flow for dynamic
surge protection. Workload data from monitoring are input
to the forecaster, which predicts future workload. The ca-
pacity planner takes as input the prediction and SLO to de-
termine the resource requirements (e.g. number of servers).
The decision logic manages the information flow and deter-
mines the resource adjustments (by comparing to the de-
ployment state data). These adjustments are effected by
the provisioner. Note that this flow is straight through (not
iterative) since the required inputs are known at each step.
The system operates based on six time intervals.

1. A measurement interval M chosen based on overhead
and noise vs responsiveness concerns.

2. The control interval P (P ≥ M), between executions
of the control flow in Figure 1.

3. The lead time S, between initiating a resource action
(e.g. add/remove a server) and its completion.

4. The prediction horizon H , should be ≥ S. The trade-
off is that a longer H increases variability (∼

√
H).

5. The overflow interval O, between situations when re-
sources need to be adjusted to avoid SLO violations.
The control engine can respond if O ≥ P + S.

6. The underflow interval (U) between when a SLO can
be met with fewer resources and when the extra are
removed. The control engine can handle U ≥ P + S.

We conclude that H ∼ P + S is reasonable. In our proto-
type (more details below) S is ∼ 30 sec, and we found that
M = P = 10 sec worked well. Incorporating some “safety
margin”, we use H = 60 sec.

The capacity planner provides both performance estimates
and the ability to determine resource requirements given the
workload and the SLO. We used an IBM internal tool [5]
that has been widely used in service engagements over the
last two years. This tool uses analytic queueing approaches
to estimate performance and capacity of a web deployment
based on workload patterns (predefined or modeled by the
user), performance objectives, together with hardware and
software specifications. Other approaches to online capacity
estimation are described in the literature [11].

We use a short term forecaster (or predictor) since our em-
phasis is on managing unexpected surges. The short term
forecaster needs to provide useful information about the
leading edge of the surge. Key to this is the ability to learn
quickly, which is achieved by using short history data, and
not relying on extensive training. In this work, the short
term forecaster typically used 2 min (12 points) of history
to predict 1 min into the future. The short term predictor is
almost “memoryless” – it does not retain knowledge of past
surges. This is important since the occurence of one un-
expected surge (or busy period) is not assumed to provide
information about when to expect the next surge. Analysis
of Web traffic [4] suggests that busy periods are not strongly
auto-correlated with idle periods (time between busy peri-
ods). Within a busy period there can be reasonable auto-
correlation [17], hence non-seasonal ARIMA (autoregressive,
integrated, moving average) models [2] are effective.

0

50

100

150

200

250

300

100 150 200 250 300 350 400 450 500 550 600

 interval

w
o

rk
lo

a
d

actual predicted with adaptive AR order predicted with fixed AR order

Figure 2: Short term forecaster showing the comparison between an actual time series and 1 min (6 interval)
ahead predicted values. Note that spurious predictions (e.g. high flyers) occasionally resulting from the fixed
order model are greatly minimized with the adaptive order model.

Figure 3: Actual and 1 min ahead predicted values of the workload.

An undesirable effect of using a short history for prediction
is increased inaccuracy. Thus, we dynamically adjust the
model order (the number of, AR, or autoregressive terms)
based on the stability of the estimates. The latter is deter-
mined by checking if the poles of the transfer function lie
within the unit circle (a requirement for stability in discrete
time systems). The value of the adaptive model order is
shown in Figure 2. While most of the predictions from a
fixed AR order effectively track the actual time series, there
are occasions when spurious predictions occur. These spu-
rious predictions, which drive unnecessary control actions,
are significantly minimized by adapting the model order.

We note that the short term forecasting we discuss above has
also been used in conjunction with a long term forecaster [8]
which is effective at capturing cyclic variation. Currently,
the training data of the long term forecaster would include
the unexpected surges since doing so simplifies data man-
agement. However, this approach can increase forecast vari-
ability and result in predicting phantom surges.

3. RESULTS
Figure 3-Figure 5 show the results of experiments conducted
on a research testbed. The testbed consists of a workload

driver, multiple application servers running IBM’s Websphere
Application Server (WAS) v5.0, a single database server
running IBM’s DB2 v8.1, and a manager machine that in-
corporates code for the Controller and Deployment Man-
ager. The provisioner leverages WAS 5.0’s cellular cluster
capability and uses its startServer/stopServer commands to
add/remove servers.

The application that we deployed on our two tier system
simulates the supply chain management of a manufacturing
company. Briefly, the application processes injected order
transactions and kicks off manufacturing transactions inter-
nally. The total transaction (business operations) rate is
the sum of the actual order and manufacturing rates, and
is normally (no transaction rollbacks) ∼ 1.75× order injec-
tion rate. The workload driver can vary the order injec-
tion rate, where the inter-arrival time is exponentially dis-
tributed. Large workload surges (e.g. to mimic an influx
of new users) are randomly triggered, and the Controller’s
SLO is to keep response time below 2 sec.

Figure 3 plots the actual (blue or darker line) and predicted
1 min into the future (lighter or green line) business op-
erations per second (BOPS), the metric used to character-

Figure 4: State and number of application servers.

Figure 5: Response time of application.

ize workload. During the non-surge or normal periods (e.g.
8:52–8:59), BOPS has little variation. When a surge be-
gins (e.g., 8:59, 9:11), BOPS increase rapidly to a peak of
120, (∼ 6 × normal). Not surprisingly, predicted BOPS for
the first 60 sec are significantly below actual BOPS since
the prediction is based on non-surge data. Within a few
control intervals into the surge, the prediction accuracy im-
proves considerably. Note that prediction accuracy during
the surge (especially in regions of highest curvature) is not
nearly as good as during the non-surge periods. It is impor-
tant to emphasize that while the forecaster cannot predict
the occurence of the surge, it can quickly recognize the work-
load trend change, and thus provide information on the an-
ticipated evolution of the surge. Also, we reiterate that the
forecaster essentially does not retain any knowledge about
past surges since the history used for prediction (∼ 2 min)
is less than the surge duration.

Figure 4 shows the changes of the state and the number of
application servers in response to the actual and predicted
workload. When a rapid increase in load is detected just
after 9:00, a server is added (the leading dark or blue sec-
tion). This is about 40 sec before a server would have been
added had the decision been based on the actual BBOPS
vs predicted BOPS. A second server is added at 9:01 as
the short-term forecaster anticipates the progression of the
surge. As the surge subsides around 9:04, servers are re-
leased (the trailing red or less dark section). Note that while
the decisions about adding resources is made quite aggres-
sively, the removal of servers is more gradual, due to damp-
ing introduced by the Controller decision logic to minimize
repeated add/remove server operations.

Figure 5 depicts the effect of these actions on response times.
We see an initial bump in response time around 9:00. In
part, this is due to the increased load that cannot be handled
until the server has completed its startup phase. But there is
also some delay introduced by the action of adding a server.
Nonetheless, the SLO is not violated We note that because of
the stochastics of the system, the response times and control
actions responding the different surges are not identical.

Although in Figure 3 we show one type of surge, we have
tested the system with different types of surges (e.g. multi-
peaked, different shapes, etc). For instance the surge shown
in Figure 6 has exponential rise/decay with a plateau in be-
tween vs the half sine wave surge in Figure 3). In an effort
to test the responsiveness of the system, we experimented
with surges (peak = 8 × base) that have different exponen-
tial rise rates (characterized by doubling time). While the
observations are dependent on the specifics of the deploy-
ment, we find that the system can maintain the SLO when
the doubling time is 60 sec, and even at 45 sec, but has trou-
ble keeping up when it is 30 sec. We have also successfully
tested it with larger surges (20 × base @ 60 sec doubling
time, which is similar in relative size to the CNN surge, but
at higher ramp rate [7]).

In addition, to estimate the efficiency of our approach, we
ran a 10 hour marathon with surges (about 60) initiated at
random times (Figure 2 is a part of this run). We then cal-
culate the optimal deployment, which we define as minimum
number of servers required to handle the actual workload at
any time (see [3]), based on a server capacity of 60 BOPS.
The average optimal deployment over the run is 1.61 servers.
Our approach used an average of 1.92 servers, which is only

0

50

100

150

200

250

1042703000 1042703500

tr
an

sa
ct

io
n

 r
at

e
(p

er
 s

ec
) Actual Bus Ops 1 min ahead pred Bus Ops Order Injection

0

1

2

3

4

5

1042703000 1042703500

W

A
S

 S
er

ve
rs

0

2

4

6

8

10

R
es

p
T

im
e

(s
ec

)

#WASActive #WASStarting Resp Time

Normal Operation

surge triggered

Figure 6: Operation of system using dynamic surge protection.

20% more than optimal. Conversely, a static deployment
that can handle all the surges would require 3 servers.

We also note that this approach has been successfully tested
on several different deployments. The results in Figure 6 and
Figure 7 are from different hardware deployments.

For comparison, we explore a threshold-based heuristic (i.e.
no forecasting, no online capacity planning) as an alter-
native to dynamic surge protection. We use the following
threshold-based heuristic:

Increase number of servers by 1 if response time
exceeds SLO and wait 60 sec (sufficient time for
server to be taking load normally) before next
control action is considered.

Figure 7 displays results from this threshold-based approach,
which can be compared to the performance of the dynamic
surge protection approach in Figure 6. It appears that the
heuristic is set too high to accomodate the provisioning lead
time. By the time the heuristic reaction takes effect, re-
sponse times have already grown very large, and BOPS can-
not keep up with the order injection due to transaction roll-
backs. (normally BOPS ∼ 1.75 × order injection). Also,
there needs to be a rule for releasing servers when they are
no longer needed. Choosing a lower thresholds for when to
add (high water mark) and remove (low water mark) servers
could address these concerns. However, response time is of-
ten quite noisy. On another hardware deployment where we
did some characterization of response time variability, we
found that with 3 WAS servers and order injection rate =
70 (which was about the capacity of 2 servers) the response

time ranged from 0.1–0.3 sec. However, on increasing the
rate to 90 (still below capacity for 3 servers – average CPU
idle ∼ 30%) the range increased significantly (0.2–0.9 sec).
Choosing high and low (especially) water marks while try-
ing to avoid the possibility of cycling servers in and out in
this situation can be challenging. More robust high/low wa-
termarks can be based on transaction rate, but that would
involve some form of capacity estimation.

4. CONCLUSIONS
This paper describes dynamic surge protection, a technique
for handling unexpected subscriber surges in systems that
have resource actions with lead times (e.g. provisioning an
application server). Dynamic surge protection incorporates
three technologies. Short-term forecasting provides a way
to anticipate the trajectory of workload demands of a surge.
On-line capacity planning determines the resources required
to maintain a SLO based on the anticipated workload. Con-
figuration management via provisioning (adding/removing
application servers) is how the the onset and subsiding of
unexpected surges is managed.

We have conducted a number of experiments on testbed sys-
tems to gain insight into the characteristics of dynamic surge
protection. Overall, we have found it to be well behaved, and
the performance compares favorably to a threshold-based
heuristic. In addition, the approach is cost effective – in
one extended test, we found that it uses only 20% more re-
sources than a theoretical optimal deployment and 35% less
resources than a static deployment.

Our future work will address handling of multiple workloads,
and resource actions that include tuning and admission con-
trol. We also plan to leverage Grid services.

0

50

100

150

200

250

1042704000 1042704500

tr
an

sa
ct

io
n

 r
at

e
(p

er
 s

ec
)

Actual Bus Ops 1 min ahead pred Bus Ops Order Injection

0

1

2

3

4

5

1042704000 1042704500

W

A
S

 S
er

ve
rs

0

2

4

6

8

10

R
es

p
T

im
e

(s
ec

)

#WASActive #WASStarting Resp Time

Reactive Operation

surge triggered

Figure 7: Operation of system using a threshold-based heuristic.

5. REFERENCES
[1] J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and

D. Dillenberger. Adaptive algorithms for managing a
distributed data processing workload. IBM Systems
Journal, 36(2), 1997.

[2] G. E. P. Box and G. M. Jenkins. Time Series
Analysis: Forecasting and Control. Holden-Day, 1976.

[3] A. Chandra, P. Goyal, and P. Shenoy. Quantifying the
benefits of resource multiplexing in on-demand data
centers. Proceedings of the First ACM Workshop on
Algorithms and Architectures for Self-Managing
Systems - to appear, 2003.

[4] M. E. Crovella. Performance characteristics of the
world wide web. Performance Evaluation, LNCS,
1769, 2000.

[5] IBM. High volume web site performance simulator.
http://www7b.boulder.ibm.com/wsdd/library/
techarticles/hvws/perfsimulator.html, 2002.

[6] IBM. Autonomic computing.
http://www.ibm.com/autonomic, 2003.

[7] Bill Lefebvre. Facing a world crisis. USENIX LISA,
2001.

[8] L. W. Russell S. P. Morgan and E. G. Chron.
Clockwork: A new movement in autonomic systems.
IBM Systems Journal, 42(1), 2003.

[9] Kathleen Ohlson. Victoria’s secret knows ads, not the
web. Computer World, February 1999.

[10] Hewlett Packard. HP utility data center.
http://www.hp.com/go/hpudc, 2003.

[11] M. Goldszmidt D. Palma and B. Sabata. On the
quantification of e-business capacity. Proceedings of the
3rd ACM conference on Electronic Commerce, 2001.

[12] K Appleby S. Fakhouri L. Fong M. K. G. Goldszmidt
S. Krishnakumar D. Pazel J. Pershing and
B. Rochwerger. Oceano–SLA-based management of a
computing utility. Proceedings of the IFIP/IEEE
Symposium on Integrated Network Management, 2001.

[13] ProvisionSoft. ProvisionSoft Home Page.
http://www.provisionsoft.com, 2003.

[14] Sun Micro Systems. Sun N1.
http://wwws.sun.com/software/solutions/n1, 2003.

[15] ThinkDynamics. Thinkdynamics Home Page.
http://www.thinkdynamics.com, 2003.

[16] Zeus. Why web technology is vital to your business.
Computer World, 2003.

[17] M. S. Squillante L. Zhang and D. Y. Yao. Web traffic
modeling and web server performance analysis.
Proceedings of the 38th IEEE Conference on Decision
and Control, 5, 1999.

[18] J. Rolia X. Zhu and M. Arlitt. Resource access
management for a utility hosting enterprise
applications. Integrated Network Management VIII,
2003.

