Quantitative Analysis of NK₁ Receptor in the Human Brain Using PET with ¹⁸F-FE-SPA-RQ

Masaki Okumura¹,², Ryosuke Arakawa¹,², Hiroshi Ito¹, Chie Seki¹, Hidehiko Takahashi¹, Harumasa Takano¹, Eisuke Haneda¹,³, Ryuji Nakao⁴, Hidenori Suzuki³, Kazutoshi Suzuki³, Yoshiro Okubo², and Tetsuya Suhara¹

¹Molecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan; ²Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan; ³Department of Pharmacology, Nippon Medical School, Tokyo, Japan; and ⁴Molecular Probe Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan

¹⁸F-fluoroethyl-SPA-RQ (¹⁸F-FE-SPA-RQ) was recently developed as a radioligand for the measurement of neurokinin 1 (NK₁) receptor with PET. In this study, we used ¹⁸F-FE-SPA-RQ with PET to visualize and quantify NK₁ receptor in the human brain. Methods: PET scans were performed on 7 healthy men after intravenous injection of ¹⁸F-FE-SPA-RQ. Binding potential (BPND) was calculated by the indirect kinetic method and simplified reference tissue model (SRTM). Results: Regional radioactivity was highest in the caudate head and putamen, and lowest in the cerebellum. BPND values by the indirect kinetic method were 3.15 ± 0.23, 0.82 ± 0.15, 0.76 ± 0.15, and 0.69 ± 0.16 in the occipital, temporal, frontal, and anterior cingulate cortices, respectively. BPND values by the SRTM and ratio methods were in good agreement with those by the indirect kinetic method (r = 0.94–0.98). Conclusion: The regional distribution of ¹⁸F-FE-SPA-RQ was in agreement with previous PET studies and postmortem studies of NK₁ receptor in the human brain. The ratio method will be useful for clinical research of psychiatric disorders, for the estimation of NK₁ receptor without arterial blood sampling and long dynamic PET.

Key Words: NK₁ receptor; substance P; ¹⁸F-FE-SPA-RQ; PET; human brain

Tachykinins are a family of neuropeptides that serve as neurotransmitters in the central nervous system (CNS) and peripheral nervous system (PNS). Three major mammalian tachykinins—substance P (SP), neurokinin A, and neurokinin B—are known, and they share a consensus amino acid sequence [-Phe-Glu-Leu-Met-NH₂] in their carboxyl terminals (1–4). SP is a well-characterized neuropeptide, participating in neurotransmission by itself or synergistically with other neurotransmitters such as monoamines, acetylcholine, and glutamate in nerve terminals. Receptors for tachykinins—termed neurokinin 1 (NK₁), NK₂, and NK₃ receptors—have been identified (all are G protein–coupled 7-transmembrane receptors) and demonstrated to selectively show high affinity for SP, neurokinin A, and neurokinin B, respectively (5,6). NK₁ receptors are expressed in both CNS and PNS, whereas NK₂ and NK₃ receptors are expressed in PNS and CNS, respectively (7,8). SP and NK₁ receptors have been shown to play significant roles in pain (9), emesis (10), neuroinflammation (11,12), vasomotor control, and many gastrointestinal functions. Because the SP–NK₁ system is localized in brain regions (such as the striatum, amygdala, hypothalamus, raphe nucleus, and periaqueductal gray matter) that are involved in the regulation of affective behavior (7,8), the activity of the central tachykinergic pathway mediated by SP and NK₁ receptors is conceived to be mechanistically related to psychiatric conditions such as depression and anxiety disorder. Recent clinical trials of the NK₁ receptor antagonist aprepitant have shown that the blockade of SP is a highly effective strategy for the prevention of chemotherapy-induced nausea and vomiting (13–15). Aprepitant was recently registered worldwide, and it represents an improvement for antiemetic control during chemotherapy. Early clinical studies also suggested that aprepitant may have antidepressant activity, implicating SP in the modulation of mood and anxiety in humans (16,17). However, recent results from phase III clinical trials indicate that aprepitant is not effective for the treatment of depression (18).

A recently developed nonpeptide PET tracer that can permeate the blood–brain barrier, [¹⁸F-2-fluoromethoxy-5-(5-trifluoromethyl-tetrazol-1-yl)-benzyl][2S,3S][2-phenylpiperidin-3-yl]-amine) (¹⁸F-SPA-RQ) (19), has been proven...
to bind to NK₁ receptors with high affinity and selectivity and applied to in vivo imaging of human brains (20–22).

¹⁸F-fluoroethyl-SPA-RQ (¹⁸F-FE-SPA-RQ) was recently developed as a radioligand for the measurement of NK₁ receptors (23). It is the fluoroethyl analog of ¹⁸F-SPA-RQ and was designed for brain imaging with reduced radioactive accumulation in bone by slowing the rate of defluorination. ¹⁸F-FE-SPA-RQ has higher affinity for NK₁ receptors than does ¹⁸F-SPA-RQ (human NK₁ inhibitory concentration of 50% [IC₅₀] = 17 and 67 pM for ¹⁸F-FE-SPA-RQ and ¹⁸F-SPA-RQ, respectively), and a small-animal PET study has been performed using ¹⁸F-FE-SPA-RQ (24).

In the present study, we aimed to quantify NK₁ receptor binding in the human brain using ¹⁸F-FE-SPA-RQ with arterial blood sampling and also to validate noninvasive methods for the quantification without arterial blood sampling.

MATERIALS AND METHODS

Subjects

A total of 7 healthy male subjects (age range, 20–31 y; mean ± SD, 24.6 ± 4.0 y) participated in this study. All subjects were free of any somatic, neurologic, or psychiatric disorders, and they had no history of current or previous drug abuse. After we described the study to the participants, written informed consent was obtained. The study was approved by the Ethics and Radiation Safety Committee of the National Institute of Radiologic Sciences, Chiba, Japan.

Radioligand

The NK₁ receptor antagonist SPA-RQ (molecular weight, 450M) was labeled with the positron emitter ¹⁸F (half-life, 109.8 min). Details of the precursor compound, radiosynthesis, and quality control were described previously (23,25). Briefly, ¹⁸F-FCH₂CH₂Br was prepared from ¹⁸F-F⁻ and 2-bromoethyl triflate and purified by distillation. ¹⁸F-Fluoroalkylation of the deprotonated phenolic hydroxyl group in the precursor with FCH₂CH₂Br in dimethyl formamide was performed at 120°C for 10 min. The resultant ¹⁸F-FE-SPA-RQ was purified by preparative high-performance liquid chromatography (HPLC). The final product was formulated in saline solution (10 mL) containing polysorbate 80 (75 μL).

PET Procedure

A PET scanner system (ECAT EXACT HR+; CTI-Siemens) was used for all subjects, and a head restraint was used to minimize head movement. A transmission scan for attenuation correction was performed using a ⁶⁸Ge-⁶⁸Ga source, and a dynamic PET scan was performed after a 1-min intravenous slow-bolus injection of 210.2–228.8 MBq (221.6 ± 6.7 MBq) of ¹⁸F-FE-SPA-RQ. Specific radioactivity of ¹⁸F-FE-SPA-RQ was 281.8–487.7 GBq/μmol (355.6 ± 68.7 GBq/μmol). Brain radioactivity was measured from 0 to 90 min (1 min × 10, 2 min × 15, 5 min × 10), from 120 to 180 min (5 min × 12), from 210 to 270 min (5 min × 12), and from 300 to 330 min (5 min × 6). MR images of the brain were acquired with a 1.5-T MRI scanner (Gyroscan NT; Philips). T1-weighted images were obtained at 1-mm slices.

Arterial Blood Sampling and Metabolite Analysis

To obtain the arterial input function, arterial blood samples were taken manually 49 times during PET. Each of the blood samples was centrifuged to obtain plasma and blood cell fractions, and the concentrations of radioactivity in whole blood and in plasma were measured.

The percentage of unchanged ¹⁸F-FE-SPA-RQ in plasma was determined by HPLC in 29 of the total blood samples. Acetonitrile was added to each plasma sample, and samples were centrifuged. The supernatant was subjected to radio-HPLC analysis using an XBridge Prep C18 column (Waters) (mobile phase, 6:4 90% acetonitrile:50 mM phosphoric acid). The plasma input function was defined as the radioactivity of plasma multiplied by the percentage of unchanged radioligand. Plasma protein binding was not determined in the present study.

Regions of Interest

All MR images were coregistered to the PET images using a statistical parametric mapping (SPM2) system. Regions of interest were drawn manually on summed PET images with reference to coregistered MRI and were defined for the caudate head; putamen; parahippocampal region; occipital, temporal, frontal, and anterior cingulate cortices; thalamus; and cerebellum, according to our previous study (26). The parahippocampal region included the hippocampus, posterior part of the parahippocampal gyrus, and uncus including the amygdala. Regional radioactivity was calculated for each frame, corrected for decay, and plotted versus time.

Kineti cs Model of ¹⁸F-FE-SPA-RQ

The 3-compartment model (3CM) with 4 first-order rate constants was used to describe the kinetics of ¹⁸F-FE-SPA-RQ in the brain. The 3 compartments were defined as follows: CP, the radioactivity concentration of unchanged radioligand in plasma (arterial input function); CN, the radioactivity concentration of nondisplaceable radioligand in the brain, including nonspecifically bound and free radioligand; and CS, the radioactivity concentration of radioligand specifically bound to receptors. The rate constants K₁ and k₂ represent the influx and efflux rates for radioligand diffusion through the blood–brain barrier, respectively. The rate constants k₃ and k₄ are the radioligand transfers between the compartments for nondisplaceable and specifically bound radioligand. This model can be described by the following equations:

\[
\frac{dC_{ND}(t)}{dt} = K_1 C_{P}(t) - (k_2 + k_3) C_{ND}(t) + k_4 C_S(t),
\]

\[
\frac{dC_S(t)}{dt} = k_1 C_{ND}(t) - k_4 C_S(t), \text{ and}
\]

\[
C_T(t) = C_{ND}(t) + C_S(t).
\]

C_T(t) is the total radioactivity concentration in a brain region measured by PET.

Calculation of ¹⁸F-FE-SPA-RQ Binding Potential (BP⁰₀)

¹⁸F-FE-SPA-RQ binding was quantified by the indirect kinetic, simplified reference tissue model (SRTM), and ratio methods. In these methods, ¹⁸F-FE-SPA-RQ bindings were expressed as BP⁰₀ relative to nondisplaceable bindings (27). We used the cerebellum as reference brain region because of its negligible NK₁ receptor.
density (20, 22, 28). For these analyses, the software package PMOD (PMOD Technologies) was used.

Indirect Kinetic Method. With the cerebellum as reference region, \(\text{BP}_{\text{ND}} \) can be expressed as:

\[
\text{BP}_{\text{ND}} = \frac{V_T(\text{regions})}{V_T(\text{cerebellum})} - 1,
\]

where \(V_T(\text{regions}) \) is the total distribution volume \(= [K_i/k_f]([k_f/k_i + 1]) \) of target regions and \(V_T(\text{cerebellum}) \) is that of the cerebellum. \(K_1, k_2, k_3, \) and \(k_4 \) values were determined by nonlinear least-squares curve fitting to the regional time–activity curves. In this analysis, blood volume \((V_b) \), which depends on the first-pass extraction fraction of the tracer, was assumed to be 0.04 mL/mL, with use of the radioactivity of whole blood to diminish the influence of the tracer remaining in the blood. In this study, the indirect kinetic method was used as the gold standard method (29).

SRTM Method. Assuming that both target and reference regions have the same level of nondisplaceable binding, the SRTM can be used to describe time–activity data in the target region as follows (30):

\[
C_T(t) = R_1C_R(t) + (k_2 - R_1k_2/[1+\text{BP}_{\text{ND}}])C_R(t)*\exp(-k_2t/[1+\text{BP}_{\text{ND}}]),
\]

where \(R_1 \) is the ratio of \(K_i/K_{i'} \) (\(K_i \), influx rate constant for the brain region; \(K_{i'} \), influx rate constant for the reference region), \(C_R(t) \) is the radioactivity concentration in the reference region (cerebellum), and * denotes the convolution integral. Using this method, 3 parameters \((R_1, k_2, \) and \(\text{BP}_{\text{ND}}) \) were estimated by a nonlinear curve-fitting procedure. Scan data up to 180, 270, and 330 min were used.

Ratio Method. In the ratio method, \(\text{BP}_{\text{ND}} \) can be expressed as:

\[
\text{BP}_{\text{ND}} = \frac{\text{AUC}(\text{regions})}{\text{AUC}(\text{cerebellum})} - 1,
\]

where \(\text{AUC}(\text{regions}) \) is the area under the time–activity curve of target regions and \(\text{AUC}(\text{cerebellum}) \) is the time–activity curve of the cerebellum. The integration intervals of 120–180, 210–270, and 300–330 min were used.

RESULTS

Typical summed PET images of 4 time periods and T1-weighted MR images are shown in Figure 1. Typical time–activity curves in the brain showed that regional radioactivity was highest in the putamen and caudate (Fig. 2). The next highest region was the parahippocampus, followed by the cerebral cortices and thalamus. Among cerebral
TABLE 1

Rate Constants for Each Brain Region Determined by Kinetic Approach Using 3CM with Arterial Input Function

<table>
<thead>
<tr>
<th>Region</th>
<th>Rate constant</th>
<th>Total distribution volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_1 (mL/mL/min)</td>
<td>k_2 (min$^{-1}$)</td>
</tr>
<tr>
<td>Putamen</td>
<td>0.111 ± 0.019</td>
<td>0.036 ± 0.016</td>
</tr>
<tr>
<td>Caudate</td>
<td>0.088 ± 0.018</td>
<td>0.023 ± 0.018</td>
</tr>
<tr>
<td>Parahippocampus</td>
<td>0.140 ± 0.023</td>
<td>0.033 ± 0.007</td>
</tr>
<tr>
<td>Occipital lobe</td>
<td>0.127 ± 0.017</td>
<td>0.065 ± 0.038</td>
</tr>
<tr>
<td>Temporal lobe</td>
<td>0.106 ± 0.050</td>
<td>0.050 ± 0.025</td>
</tr>
<tr>
<td>Frontal lobe</td>
<td>0.108 ± 0.011</td>
<td>0.041 ± 0.011</td>
</tr>
<tr>
<td>Anterior cingulate cortex</td>
<td>0.115 ± 0.014</td>
<td>0.064 ± 0.018</td>
</tr>
<tr>
<td>Thalamus</td>
<td>0.112 ± 0.019</td>
<td>0.043 ± 0.018</td>
</tr>
<tr>
<td>Cerebellum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3CM</td>
<td>0.115 ± 0.017</td>
<td>0.051 ± 0.015</td>
</tr>
<tr>
<td>2CM</td>
<td>0.089 ± 0.014</td>
<td>0.019 ± 0.002</td>
</tr>
</tbody>
</table>

Values are mean ± SD. For cerebellum, both 2CM and 3CM were applied.
In a previous autoradiographic study using 3H-GR205171, the maximum number of binding sites for NK₁ receptor in the striatum was 6 times as much as in the cortex, a result in accordance with the BPND values in these regions in the present study.

In this study, the indirect kinetic method with arterial blood sampling was used as the gold standard method, because BPND determined by the kinetic approach as k₃/k₄ showed wide variation. The BPND values in all brain regions determined by the SRTM method (with scan times of 330, 270, and 180 min) and by the ratio method (with time integration intervals of 300–330, 210–270, and 120–180 min) were in good agreement with those determined by the indirect kinetic method. Although good correlations were observed in BPND values among the methods, BPND was underestimated in the caudate and putamen using the

TABLE 2

<table>
<thead>
<tr>
<th>Region</th>
<th>Indirect kinetic</th>
<th>SRTM (min)</th>
<th>Ratio (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>330</td>
<td>270</td>
</tr>
<tr>
<td>Putamen</td>
<td>3.11 ± 0.66</td>
<td>2.43 ± 0.33</td>
<td>2.33 ± 0.32</td>
</tr>
<tr>
<td>Caudate</td>
<td>3.15 ± 0.36</td>
<td>2.14 ± 0.24</td>
<td>2.02 ± 0.22</td>
</tr>
<tr>
<td>Parahippocampus</td>
<td>1.17 ± 0.25</td>
<td>1.04 ± 0.16</td>
<td>1.02 ± 0.12</td>
</tr>
<tr>
<td>Occipital lobe</td>
<td>0.94 ± 0.23</td>
<td>0.88 ± 0.14</td>
<td>0.92 ± 0.07</td>
</tr>
<tr>
<td>Temporal lobe</td>
<td>0.82 ± 0.15</td>
<td>0.77 ± 0.11</td>
<td>0.79 ± 0.08</td>
</tr>
<tr>
<td>Frontal lobe</td>
<td>0.76 ± 0.15</td>
<td>0.72 ± 0.12</td>
<td>0.74 ± 0.07</td>
</tr>
<tr>
<td>Anterior cingulate cortex</td>
<td>0.69 ± 0.16</td>
<td>0.66 ± 0.15</td>
<td>0.67 ± 0.13</td>
</tr>
<tr>
<td>Thalamus</td>
<td>0.46 ± 0.14</td>
<td>0.46 ± 0.13</td>
<td>0.51 ± 0.10</td>
</tr>
</tbody>
</table>

Values are mean ± SD.

FIGURE 4. Correlation among BPND values in all brain regions estimated by indirect kinetic and SRTM methods, with scan times of 330 (A), 270 (B), and 180 (C) min.
SRTM and ratio methods. The underestimations of B_{ND} were 32% and 34% in the caudate and 22% and 16% in the putamen for the SRTM method (with a scan time of 330 min) and the ratio method (with a time integration interval of 300–330 min), respectively. More underestimation was observed in the caudate and putamen with the shorter scan time in the SRTM method and with the earlier time integration interval in the ratio method. The reason might be that striatal radioactivity in some subjects did not reach a peak by 330 min. However, the B_{ND} values of the other regions calculated by the SRTM method (with a scan time of 180 min) and the ratio method (with a time integration interval of 120–180 min) were not greatly underestimated, indicating that the scan time can be shortened to 180 min. Although the indirect kinetic method was considered as the gold standard method, it required a long PET time and arterial blood sampling, an invasive procedure sometimes difficult for patients with psychiatric disorders. The ratio method, which does not require long scanning times and arterial blood sampling, would surely be preferable for clinical investigations. The ratio method, with a time integration interval of 300–330 min, seemed most suitable because the correlation coefficient with the indirect kinetic method was highest and the slope of the regression line was nearest to 1.

The time–activity curves in the cerebellum were well described by the 3CM rather than the 2CM. Similar results were reported for several PET radioligands, with the kinetics in the reference region also being evaluated using the 3CM. The results could be explained if the cerebellum would contain specific bindings for NK₁ receptors. However, previous autoradiographic studies showed that the density of NK₁ receptors in the cerebellum was low (22), and a previous PET study with 18F-SPA-RQ showed that there was no change in the cerebellar signal before and after high blocking doses of the NK₁ receptor antagonist aprepitant (20). Another possible explanation for the results was that the compartments of free and nonspecific binding might have been separated by the kinetic analysis. In addition, 18F-FE-SPA-RQ showed defluorination during the later scans, and bone uptake of 18F might influence the radioactivity in the cerebral cortex and cerebellum adjacent to the skull (although 18F-FE-SPA-RQ showed reduced radioactive accumulation in bone, compared with 18F-SPA-RQ (23)).

CONCLUSION

18F-FE-SPA-RQ is a suitable radioligand for PET measurement of NK₁ receptors in the human brain. The 3CM could well describe the brain kinetics of 18F-FE-SPA-RQ. Because the ratio method does not require long scanning times and arterial blood sampling, this method would be useful for clinical research on psychiatric disorders.
ACKNOWLEDGMENTS

We thank Dr. Fumitoshi Kodaka, Dr. Tatsui Otsuka, Katsuyuki Tanimoto, Takahiro Shiraishi, and Akira Ando for their assistance in performing the PET experiments at the National Institute of Radiological Sciences. We also thank Yoshiko Fukushima of the National Institute of Radiological Sciences for her help as clinical research coordinator. This study was supported by a consignment expense for the Molecular Imaging Program on Research Base for PET Diagnosis from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japanese Government.

REFERENCES

