
Determining Computable Scenes in Films and their 
Structures using Audio-Visual Memory Models 

Hari Sundaram 
Dept. of Electrical Engineering, 

Columbia University, 
New York New York 10027. 

sundaram@ctr.columbia.edu 

Shih-Fu Chang 
Dept. of Electrical Engineering, 

Columbia University, 
New York New York 10027. 

sfchang@ctr.columbia.edu 
 

ABSTRACT  
In this paper we present novel algorithms for computing scenes 
and within-scene structures in films. We begin by mapping 
insights from film-making rules and experimental results from the 
psychology of audition into a computational scene model. We 
define a computable scene to be a chunk of audio-visual data that 
exhibits long-term consistency with regard to three properties: (a) 
chromaticity (b) lighting (c) ambient sound. Central to the 
computational model is the notion of a causal, finite-memory 
model. We segment the audio and video data separately. In each 
case we determine the degree of correlation of the most recent 
data in the memory with the past. The respective scene boundaries 
are determined using local minima and aligned using a nearest 
neighbor algorithm. We introduce the idea of a discrete object 
series to automatically determine the structure within a scene. We 
then use statistical tests on the series to determine the presence of 
dialogue. The algorithms were tested on a difficult data set: five 
commercial films. We take the first hour of data from each of the 
five films. The best results: scene detection: 88% recall and 72% 
precision,  dialogue detection:  91% recall and 100% precision. 

Keywords 
Computable scenes, scene detection, shot-level structure, films, 
discrete object series, memory models.  

1. INTRODUCTION 
This paper deals with the problem of computing scenes 

within films using audio and visual data. We also derive 
algorithms for shot-level structures that exist within each scene. 
The problem  is important for several reasons: (a)  automatic 
scene segmentation is the first step towards greater semantic 
understanding of the film (b) breaking up the film into scenes will 
help in creating film summaries, thus enabling a non-linear 
navigation of the film. (c) the determination of  visual structure 
within each scene (e.g. dialogues), will help in the process of 
visualizing each scene in the film summary. 

There has been prior work on video scene segmentation using 

image data alone [8], [19]. In [8], the authors derive scene 
transition graphs to determine scene boundaries. Their method 
assumes a presence of repetitive shot structure within a scene. 
While this structure is present in scenes such as interviews, it can 
be absent from many scenes in commercial films. This can 
happen, for example, when the director relies on fast succession 
of shots to heighten suspense or uses a series of shots to merely 
develop the plot of the film.  

Prior work [14], [15], [20] concerning the problem of audio 
segmentation dealt with very short-term (100 ms) changes in a 
few features (e.g. energy, cepstra). This was done to classify the 
audio data into several predefined classes such as speech, music 
environmental sounds etc. They do not examine the possibility of 
using the long-term consistency found in the audio data for 
segmentation. Audio data has been used for identifying important 
regions [6] or detecting events such as explosions [9] in video 
skims. These skims do not segment the video data into scenes; the 
objective there is to obtain a compact representation.  

There has been prior work on structure detection [19], [20]. 
There, the authors begin with time-constrained clusters of shots 
and assign labels to each shot. Then, by analyzing the label 
sequence, they determine the presence of dialogue. This method 
critically depends upon the clustering parameters that need to be 
manually tuned.  

In this paper, we derive the notion of a computable scene using 
rules from film-making and from experimental observations in the 
psychology of audition. A computable scene exhibits long-term 
consistency with respect to three properties: (a) chromatic 
composition of the scene (b) lighting conditions and (c) ambient 
audio. We term such a scene as computable, since it can be 
reliably computed using low-level features alone. In this paper, 
we do not deal with the semantics of a scene. Instead, we focus on 
the idea of determining a computable scene, which we believe is 
the first step in deciphering the semantics of a scene. 

We present algorithms for determining computable scenes and 
periodic structures that  may exist within such scenes. We begin 
with a causal memory model based in part on the model in [8]. 
The model has two parameters: (a) an analysis window that stores 
the most recent data (the attention span) (b) the total amount of 
data (memory). 

In order to segment the data into audio scenes, we compute 
correlations amongst the envelopes of the audio features in the 
attention-span with feature envelopes in the rest of the memory. 
The video data comprises shot key-frames. The key-frames in the 
attention span are compared to the rest of the data in the memory 
to determine a coherence value. This value is derived from a 

 

 
 
 
 



Line of interest 

Figure 1: showing the line of 
interest in a scene. 

color-histogram dissimilarity. The comparison takes also into 
account the relative shot length and the time separation between 
the two shots. In both cases, we use a local minima for detecting a 
scene change and the audio and video scene boundaries are 
aligned using a simple time-constrained nearest neighbor 
approach.  

The visual structure within each computable scene is determined 
using a novel idea of a discrete object series. The series computes 
the degree of periodicity amongst a time-ordered sequence of 
images (key-frames of shots). We use the Student’s t-test in 
conjunction with a simple rule on this series, to detect the 
presence of a dialogue. In contrast to [19], [20] which require 
manually tweaked cluster diameter threshold parameters, this 
algorithm is almost parameter free. Our experiments show that the 
scene change detector and the intra-scene structure detection  
algorithm show good results. 

The rest of this paper is organized as follows. In the next section, 
we formalize the definition of a computable scene. In section 3, 
we present an algorithm for the detection of such computational 
scenes. In section 4, we derive algorithms for automatically 
determining periodic structures within a scene. In section 5, we 
present our experimental results. In section 6 we discuss 
shortcomings of our model and finally in the section  7, we 
present our conclusions. 

2. WHAT IS A COMPUTABLE SCENE? 
In this section we shall define the notion of a computable 

scene. We begin with a few insights obtained from understanding 
the process of film-making and from the psychology of audition. 
We shall use these insights in creating our computational model 
of the scene. 

2.1 Insights from Film Making Techniques 
The line of interest is an 

imaginary line drawn by the 
director in the physical 
setting of a scene [4]. During 
the filming of the scene, all 
the cameras are placed on 
one side of this line. This is 
because we desire successive 
shots to maintain the spatial 
arrangements between the 
characters and other objects 
in the location. As a 
consequence there is no 
confusion in the mind of the 
viewer about the  spatial 
arrangements of the objects 
in the scene. He (or she) can 
instead concentrate on the 
dramatic aspect of the scene. It is interesting to note that directors 
willingly violate this rule only in very rare circumstances1.  

                                                                 
1 This is so infrequent that directors who transgress the rule are noted in 

the film theory community. e.g. Alfred Hitchcock willingly violates this 
rule in a scene in his film North by Northwest thus adding suspense to 
the scene [4]. 

The line-of-interest rule has interesting implications on the 
computational model of the scene. Since all the cameras in the 
scene  remain on the same side of the line in all the shots, there is 
an overlap in the field of view of the cameras. This implies that 
there will be a consistency to the chromatic composition and the 
lighting in all the shots. 

2.2 The Psychology of Audition 
The term auditory scene analysis was coined by Bregman in 

his seminal work on auditory organization [1]. In his 
psychological experiments on the process of audition, Bregman 
made many interesting observations, a few of which are 
reproduced below: 

!" Unrelated sounds seldom begin and end at the same 
time.  

!" A sequence of sounds from the same source seem to 
change its properties smoothly and gradually over a 
period of time. The auditory system will treat the 
sudden change in properties as the onset of a new 
sound. 

!" Changes that take place in an acoustic event will affect 
all components of the resulting sound in the same way 
and at the same time. For example, if we are walking 
away from the sound of a bell being struck repeatedly, 
the amplitude of all the harmonics will diminish 
gradually. At the same time, the harmonic relationships 
and common onset2 are unchanged. 

Bregman also noted that different auditory cues (i.e. harmonicity, 
common-onset etc.) compete for the user’s attention and 
depending upon the context and the knowledge of the user, will 
result in different perceptions. However, the role played by higher 
forms of knowledge in grouping is yet to be ascertained.  

Different computational models (e.g. [3]) have emerged in 
response to those experimental observations. While these models 
differ in their implementations and differ considerably in the 
physiological cues used, they focus on short-term grouping 
strategies of sound. Notably, Bregman’s observations indicate that 
long-term grouping strategies are also used by human beings (e.g. 
it is easy for us to identify a series of footsteps as coming from 
one source) to group sound. 

2.3 The Computable Scene Model 
The constraints imposed by production rules in film and the 

psychological process of hearing lead us to the following 
definition of a scene: It is a continuous segment of audio-visual 
data that shows long-term3 consistency with respect to three 
properties:  

!" Chromaticity 

!" Lighting conditions 

                                                                 
2 Different sounds emerging from a single source begin at the same time. 
3 Analysis of experimental data (one hour each, from five different films) 

indicates that the scenes in the same location (e.g. in a room, in the 
marketplace etc.) are typically 40~50 seconds long. 



!" Ambient sound 

Table 1: Several scenarios are examined using our c-scene 
definition. These would normally be viewed as a single 
“normal” scene. 

Scenario Shot-sequence C-Scenes Explanation 

Alice goes 
home to 
read a book.  

(a) She is shown 
entering the room 
(b) Shown picks up 
the book (c) We see 
her reading silently 
(d) while she is 
reading we hear the 
sound of rain. 

2 

One consistent 
visual but two 
consistent chunks 
of audio. 

Alice goes 
to sleep. 

(a) She is shown 
reading on her bed 
(b) she switches off 
the light and room is 
dark. 

2 

Two consistent 
visuals but the 
audio is 
consistent over 
both video 
segments. 

Bob goes for 
a walk 

(a) He switches on 
his handy-cam 
inside the house and 
walks outside. Note, 
this is one single 
camera take. 

2 

There are two 
consistent visuals 
(inside/outside) as 
well as two 
consistent chunks 
of audio. 

 

We denote this to be a computable scene since these properties 
can be reliably and automatically determined using low-level 
features present in the audio-visual data. We need to examine the 
relationship between a computable scene (abbreviated as c-scene) 
and normal notions of a shot and a scene. A shot is a segment of 
audio-visual data filmed in a single camera take. A scene is 
normally defined to be sequence of shots that share a common 
semantic thread. Table 1 examines the impact of the c-scene 
definition for several scenarios. 

The semantics of a normal scene within a film, are often difficult 
to ascertain. While a collection of shots may have objects that are 
meaningful without context (e.g. a house, a man, a woman the 
colors of the dress etc.), the collection of shots are infused with 
meaning only with regard to the context.  

The context is established due to two factors: the film-maker and 
the viewer. The film-maker infuses meaning to a collection of 
shots in three ways: (a) by deciding the action in the shots (b) the 
kind of shots that precede this scene and the shots that follow it 
(c) and finally by the manner in which he visualizes4 the scene. 
All three methods affect the viewer, whose interpretation of the 
scene depends on his world-knowledge. Hence, if the meaning in 
a scene is based on factors that cannot be measured directly, it is 
imperative that we begin with a scene definition in terms of those 
attributes that are measurable and which lead to a consistent 
interpretation. We believe that such a strategy will greatly help in 
deciphering the semantics of the c-scene at a later stage.  

                                                                 
4 In order to show tension in a scene, one film-maker may have fast 

succession of close-ups of the characters in a scene. Others may indicate 
tension by showing both characters but changing the music. 

2.4 The C-Scene Definition 
We wished to validate the computational scene definition, 

which appeared out of intuitive considerations, with actual  film 
data. The data was diverse with one hour segments from three 
English language films and two foreign films5.  

The definition for a scene works very well in many film 
segments. In most cases, the c-scenes are usually a collection of 
shots that are filmed in the same location and time and under 
similar lighting conditions. However, the definition does not work 
well for montage6 sequences. In such sequences, we observed a 
long-term consistency of the ambient audio. We need to define a 
c-scene in order to accommodate different production styles. We 
now make two distinctions:  

1. N-type: These scenes (or normal scenes) fit our original 
definition of a scene: they are characterized by a long-
term consistency of chromatic composition, lighting 
conditions and sound. 

2. M-type:  These scenes (or montage/Mtv scenes) are 
characterized by widely different visuals (differences in 
location, time of creation as well as lighting conditions) 
which create a unity of theme by manner in which they 
have been juxtaposed. However M-type scenes will be 
assumed to be characterized by a long-term consistency 
in the  audio track.  

In this paper, we narrow our focus to derive algorithms that detect 
two adjacent N-type scenes. We will not handle the two cases 
when we have either (a) two adjacent M-type scenes or (b) an N-
type scene that borders an M-type scene. Analysis of the ground 
truth indicates that these two transitions constitute about 25% of 
all the transitions. Henceforth, for the sake of brevity, we shall 
use the term “scene” for our notion of a computable scene (c-
scene).  

3. DETECTING SCENES 
We begin the process of scene detection by first detecting 

audio and video scene segments separately and then aligning the 
two by a simple nearest neighbor algorithm. 

This section has four areas of focus: In section 3.1, we develop 
the idea of a memory model. In sections 3.2 and 3.3, we build 
upon some early techniques in [16], [17] for automatic audio and 
video scene detection. In section 3.4 we present a simple nearest-
neighbor algorithm for aligning the two scene detector results. 

3.1 A Memory Model 
In order to segment data into scenes, we use a causal, first-

in-first-out (FIFO) model of memory (figure 2). This model is 
derived in part from the idea of coherence [8].  

                                                                 
5 The English films: Sense and Sensibility, Pulp Fiction, Four Weddings 

and a Funeral. The foreign films: Farewell my Concubine (Chinese), 
Bombay (Hindi). 

6 In classic Russian montage, the sequence of shots are constructed from 
placing shots together that have no immediate similarity in meaning. For 
example, a shot of a couple may be followed by shots of two parrots 
kissing each other etc. The meaning is derived from the way the 
sequence is arranged.  



In our model of a listener, two parameters are of  interest: (a) 
memory: This is the net amount of information (Tm) with the 
viewer and (b) attention span: It is the most recent data (Tas) in the 
memory of the listener. This data is used by the listener to 
compare against the contents of the memory in order to decide if a 
scene change has occurred. 

The work in [8] dealt with a non-causal, infinite memory 
model based on psychophysical principles, for video scene change 
detection. We use the same psychophysical principles to come up 
with a causal and finite memory model. Intuitively, causality and 
finiteness of the memory, will more faithfully mimic the human 
memory-model than an infinite model. We shall use this model 
for both audio and video scene change detection. 

3.2 Determining Audio Scenes 
In this section we present our algorithm for audio-scene 

segmentation. We model the audio-scene as a collection of a few 
dominant sound sources. These sources are assumed to possess 
stationary properties that can be characterized using a few 
features. An  audio-scene change is said to occur when the 
majority of the dominant sources in the sound change. A more 
detailed description of audio scene segmentation is to be found in 
[16]. 

3.2.1 Features and Envelope Models 
We use ten different features [13], [14], [15], [16], [20] in 

our algorithm: (a) cepstral-flux (b) multi-channel cochlear 
decomposition (c) cepstral vectors (d) low energy fraction (e) zero 
crossing rate (f) spectral flux (g) energy (h) spectral roll off point.  
We also use the variance of the zero crossing rate and the 
variance of the energy as additional features. The cochlear 
decomposition was used because it was based on a 
psychophysical ear model. The cepstral features are known to be 
good discriminators [13].  All the other features were used for 
their ability to distinguish between speech and music [14], [15], 
[20]. Features are extracted per frame (100ms. duration) for the 
duration of the analysis window. 

Given a particular feature f and a finite time-sequence of values, 
we wish to determine the behavior of the envelope of the feature. 
The feature envelopes are force-fit into signals of  the following 
types: constant, linear, quadratic, exponential, hyperbolic and sum 
of exponentials. All the envelope (save for the sum of 
exponentials case) fits are obtained using a robust curve fitting 
procedure [5]. We pick the fit that minimizes the least median 
error. The envelope model analysis is only used for the scalar 
variables. The vector variables (cepstra and the cochlear output) 
and the aggregate variables (variance of the zero-crossing rate and 
the spectral roll off point) are used in the raw form. 

3.2.2 Detecting a Scene Change 

Let us examine the case where a scene change occurs just to 
the left of the listeners attention span. First, for each feature, we 
do the following:  

1. Place an analysis window of length Tas (the attention-span 
length) at to and generate a sequence by computing a feature 
value for each frame (100 ms duration) in the window. 

2. Determine the optimal envelope fit for these feature values. 

3. Shift the analysis window back by #t and repeat steps 1. and 
2. till we have covered all data in the memory.  

We then define a local correlation function per feature, using the 
sequence of envelope fits. The correlation function Cf  for each 
feature f is then defined as follows: 

( ) 1 ( ( , ), ( , )f o o as o o asC m t d f t t t f t m t t m t t# $ % % & # & # % (1) 

where, f(t1, t2) represents the envelope fit for feature f for the 
duration [t1,t2]. Clearly, m ' [0..-N], where N ( (Tm - Tas)/#t. #t is 
the duration by which the analysis window is shifted. and d  is the 
Euclidean metric7 on the envelopes For the vector and the 
aggregate data, we do not compute the distance between the 
windows using envelope fits but use a L2 metric on the raw data. 
In our experiments we use #t = 1 sec.  

We model the correlation decay as a decaying exponential [16]: 0,)exp()( )$ ttbtC ii  where Ci is the correlation function for 

feature i, and bi is the exponential decay parameter. The audio-
scene decision function D(to) at any instant to is defined as 
follows: *$ i io btD )( .  

                                                                 
7This metric is intuitive: it is a point-by-point comparison of the two 

envelopes. 

Figure 3: Audio detector results for a part of the audio 
track of the film Sense and Sensibility. The red dots show 
the ground truth label while the green dots show the 
detector result. In the first two cases the result is very 
close while in the third case there is an exact match. The 
x-axis shows the time in sec. while y-axis shows the 
detector magnitude. 

time

to attention span 

memory Tm 

Tas 

Figure 2: The attention span (Tas) is the most recent data in the 
buffer. The memory (Tm) is the size of the entire buffer. Clearly, 
Tm ++++ Tas. 



The audio-scene change is detected using the local minima of the 
decision function. In order to do so, we use a sliding window of 
length 2wa+1 sec. to slide across the data. We then determine if 
the minima in the window coincides with the center of the 
window. If it does, the location is labeled as an audio scene 
change location. The result for a single film is shown figure 3. 
The figure shows that the results agree within an ambiguity 
window of wa sec.  

3.3 Determining Video Scenes 
In this section, we shall describe the algorithm for video-

scene segmentation. The algorithm is based on notions of recall 
and coherence. We model  the video-scene as a contiguous 
segment of visual data that is chromatically coherent and also 
possesses similar lighting conditions. A video-scene is said to 
occur when there is a change in the long-term chromaticity and 
lighting properties in the video. 

In an ideal case, we would like to work with raw frames. 
However, this would lead to an enormous increase in the 
computational complexity of the algorithm. Hence, the video 
stream is converted into a sequence of shots using a simple color 
and motion based shot boundary detection algorithm [10]. A 
frame at a fixed time after the location of the cut is extracted and 
denoted to be the key-frame.  

3.3.1 Recall 
In our visual memory model, the data is in the form of key-

frames of shots (figure 4) and each shot occupies a definite span 
of time. The model also allows for the most recent and the oldest 
shots to be partially present in the buffer. A point in time (to) is 
defined to be a scene transition boundary if the shots that come 
after that point in time, do not recall [8] the shots prior to that 
point. The idea of recall between two shots a and b is formalized 
as follows: 

( , ) (1 ( , )) (1 / ),a b mR a b d a b f f t T$ % ! ! ! % #   (2) 

where, R(a,b) is the recall between the two shots a, b. d(a,b) is a 
L1 color-histogram based distance between the key-frames 
corresponding to the two shots, fi is the ratio of the length of shot 
i to the memory size (Tm). #t is the time difference between the 
two shots.  

The formula for recall indicates that recall is proportional to the 
length of each of the shots. This is intuitive since if a shot is in 
memory for a long period of time it will be recalled more easily.  
Again, the recall between the two shots should decrease if they 
are further apart in time.  

In order to model the continuous nature of the film, we need to 
introduce the notion of a “shot-let”. A shot-let is a fraction of a 
shot, typically , sec. in length but could be smaller due to shot 
boundary conditions. Shot-lets are obtained by breaking 
individual shots into , sec. long chunks. Each shot-let is 
associated with a single shot and its representative frame is the 
key-frame corresponding to the shot. In our experiments, we find 
that , = 1 sec. works well. Figure 4 shows how shot-lets are 
constructed. The formula for recall for shot-lets is identical to 
that for shots. The idea of shot-lets can be shown to significantly 
improve the detection rate results in [17], [8]. 

3.3.2 Computing Coherence 
Coherence is easily defined using the definition of recall: 

max
, { \ }

( ) ( , ) ( )
as m as

o o
a T b T T

C t R a b C t
- ' '

. /$ 0 10 12 3*   (3) 

where, C(to) is the coherence across the boundary at to and is just 
the sum of recall values between all pairs of shot-lets across the 
boundary at to. Cmax(to) is obtained by setting d(a, b) = 0 in the 
formula for recall. This normalization compensates for the 
different number of shots in the buffer at different instants of 
time.  

We compute coherence at the boundary between every adjacent 
pair of shot-lets. Then, similar to the procedure for audio scene 
detection, we determine the local minima. This we do by using a 
sliding window of length 2wv+1 sec. and determine if the 
minima in the window coincides with the center of the window. 
If it does, the location is labeled as a video scene change 
location.  

Shot-lets become necessary in films since films can contain c-
scenes with shots that have a long duration. In such cases, if in 
equation (3), we use shots  instead of shot-lets, we will be unable 
to determine correct minima locations as we will have too few 
data points. A thought will indicate that interpolating the 
coherence values will not be of much use. Shot-lets have a 
smaller time granularity and hence provide us with more reliable 
minima location estimates. 

3.4 Aligning the Detector Results 
We generate correspondences between the audio and the 

video scene boundaries using a simple time-constrained nearest-
neighbor algorithm. Let the list of video scene boundaries be Vi i 
' {1..Nv}. Let the list of audio scene boundaries be Ai i ' {1..Na}. 
The ambiguity window around each video scene is wv sec. long. 
The ambiguity window width around each audio scene boundary 

Figure 4: (a) Each solid colored block represents a single shot. 
(b) each shot is broken up into “shot-lets” each at most ,,,, sec. 
long.  (c) the bracketed shots are present in the memory and 
the attention span. Note that sometimes, only fractions of 
shots are present in the memory. 

time 

time 

each shot is broken up into , sec. long “shot-lets.” 

to attention span 

memory Tm

Tas 

time 

(a) 

(b) 

(c) 



is wa sec long. Note that these sizes are the same size of the 
windows used for local minima location. For each video scene 
boundary, do the following: 

!" Determine a list of audio scene boundaries whose ambiguity 
windows intersect the ambiguity window of the current video 
scene boundary. 

!" If the intersection is non-null, pick the audio scene boundary 
closest to the current video scene boundary. Remove this 
audio scene boundary from the list containing audio scene 
boundaries. 

!" If the intersection is null, add the current video scene 
boundary to the list of singleton (i.e. non-alignable) video 
scene changes. 

At the end of this procedure, if there are audio scene boundaries 
left, collect them and add them to the list of singleton audio scene 

changes. Figure 5 illustrates this scenario.  

Films exhibit interesting interactions between audio and video 
scene changes. Singleton audio and video scene boundaries can 
be caused due to the following reasons:  

1. Audio scene change but no video scene change: this 
can happen for example : the director wants to indicate 
a change the mood of the scene, by using a sad / joyous 
sounding audio track. (b) In Sense and Sensibility, one 
character was shown singing and once she was finished, 
we had conversation amongst the characters in the same 
location. 

2. Video scene changes within an audio scene: This 
happens when a sequence of video scenes have the 
same underlying semantic . For example, we can have a 
series of video scenes showing a journey and these 
scenes will be accompanied by the same audio track. 

Now that we have determined the scene boundaries, we will now 
present algorithms that determine structure within a scene.  

4. THE SCENE LEVEL STRUCTURE 
In this section we shall discuss possible structures that could 

exist within a scene and technique to detect and classify such 
structures. The detection of these structures will help in 
summarizing the scene. Here, we focus on detection of visual 
structures. 

4.1 Postulating Scene-level Structures 
We postulate the existence of two broad category of scenes: 

N-type (based on the initial definition) and the M-type scene. The 
N-type scenes are further subdivided into three types: (a) pure 

dialogue (b) progressive and (c) hybrid. We use an abstract graph 
representation for representing the shot structure within a scene. 
Each node in the graph represents one cluster of shots. Figure 6 
shows a hybrid scene containing an embedded dialogue. 

4.1.1 N-type Scenes 
An N-type scene has unity of location, time and sound. We 

now look at three sub-categories:  

Dialogue: A simple repetitive visual structure (amongst shots) 
can be present if the action in the scene is a dialogue. Note that 
sometimes, directors will not use an alternating sequence to 
represent a dialogue between two characters. He (or she) may use 
a single shot of long duration that shows both the characters 
talking. A repetitive structure is also present when the film-maker 
shuttles back and forth between two  shots (e.g. man watching 
television). We denote this as a thematic dialogue. 

Progressive: There can be a linear progression of visuals without 
any repetitive structure (the first part of figure 6 is progressive). 
For example, consider the following scene: Alice enters the room 
looking for a book. We see the following shots (a) she enters the 
room (b) she examines her book-shelf (c) looks under the bed (d) 
locates the book and the camera follows her as she sits on the sofa 
to read.  

Hybrid: This is the most common case, when we have a dialogue 

embedded in an otherwise progressive scene. For example, in the 
scene mentioned above, assume Bob enters the room while Alice 
is searching for the book. They are shown having a brief dialogue 
that is visualized using an alternating sequence. Then Bob leaves 
the room and Mary continues her search.  

4.1.2 M-type Scenes 
In M-type scenes (in classic montage, commercials and 

MTV videos) we assume there to be no unity of visuals either in 
terms of location, time or lighting conditions8. However, we 
expect that the audio track will be consistent over the scene. This 
condition can be converted into a detection rule: A sequence of 
highly dissimilar shots with unity of sound will be labeled as a M-
type scene.  

4.2 Determining the Structure 
In this section we shall describe techniques to identify 

structures within N-type scenes. We begin by first describing the 
discrete object series. Then we show how to use this series in 
conjunction with statistical tests to determine the presence of a 
dialogue. Finally we show a simple algorithm that determines the 
exact location of the dialogue. 

                                                                 
8 There will be a unity of theme which shall be brought about by how the 

director assembles the component shots of the scene. 

Figure 5: The figure shows video (triangles) and audio (solid 
circles) scene change locations. The dashed circles show 
audio/video scene boundaries which align. 

singleton audio scene boundaries 

Figure 6: A hybrid scene with an embedded 
dialogue sequence.  



4.2.1 The Discrete Object Series 
The discrete object series (DOS) is a transform that helps us 

estimate the periodicity in an time-ordered sequence of N objects. 
It is defined as follows: 
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where, d is the distance function between the objects, mod is the 
usual modulus function and oi represents the ith object in the 
sequence. The modulus function simply creates a periodic 
extension of the original input sequence. In our case, each object 
is an image: a key-frame of a shot. Distance between two images 
is computed using a L1 color-histogram based distance function.  

4.2.2 Statistical Tests 
We shall use two statistical tests: the students t-test for the 

means and the F-test for the variances [12]. The F-test is used to 
determine the appropriate9 students t-test. These tests are used to 
compare two series of numbers and determine if the two means 
and the variance differ significantly. 

4.2.3 Detecting Dialogues  
We can easily detect dialogues using the discrete object 

series. In a dialogue, every 2nd frame will be very similar while 
adjacent frames will differ. This is also to observed in figure 7. 
Let us assume that we have a time-ordered sequence of N key-
frames representing different shots in a scene. Then we do the 
following: 

1. Compute the series #(n). 

2. Check the DOS to see if #(2) > #(1) and #(2) > #(3). 

3. A dialogue is postulated to exist if at least one of two 
conditions in step 2 is significant at 4 = 0.05 and at 
most one is significant at 4 = 0.110. Note that #(n) for 
each n is the mean of N numbers. We use the Student’s 
t-test to determine whether the two means are different 
in a statistically significant sense.  

We use a simple technique to make a distinction between 
thematic and actual spoken dialogue. From test data we observe 
that the average shot length for a thematic dialogue is much 
shorter than for a spoken dialogue. The reason is that there is a 
minimum time required to utter a meaningful phrase. In [7], the 
authors assume that phrases last between 5~15 sec. An analysis of 
hand-labeled data reveals that dialogues with average shot length 
of less than 4 sec. are thematic. 

4.2.4 The Sliding Window Algorithm 
We use a sliding window algorithm to detect the presence of 

a dialogue (thematic or true dialogue) within a sequence of 
frames. Assuming that the total number of frames in the scene to 
be N, we set the size of the initial window to be k frames. Starting 
with the leftmost key-frame, the algorithm is as follows:  

                                                                 
9 There are two t-tests depending upon whether the variances differ 

significantly.  
10 We are rejecting the null hypothesis that the two means are equal. We 

reject the hypothesis if we believe that the observed difference between 
the means occurred by chance with a probability less than 4.  

1. Run the dialogue detector on the current window. 

2. If no dialogue is detected, keep shifting the window to 
the right by one key-frame to the immediate right until 
either a dialogue has been detected or we have reached 
the end of the scene. 

3. If a dialogue has been detected, keep growing the 
window by adding the key-frame to the immediate right 
of the current window until either the end of the scene 
has been reached or the sequence of key-frames in the 
window is no longer a statistically significant dialogue. 
The dialogue is the longest statistically significant 
sequence. 

4. Move the start of the new window to the immediate 
right of the detected dialogue. Go to step 1. 

The initial window size is linearly dependent on the average shot 
length of the scene; it increases with an increase of the average 
shot length. This is intuitive since a larger average shot length 
indicates that we have fewer but longer shots.  

The DOS could also be used for creating tests for more elaborate 
structures (e.g. peaks at n = 2 and n = 5) but it is unclear to us 
whether these structures exist.  

5. EXPERIMENTAL RESULTS 
In this section we shall discuss the experimental results of 

our algorithms. The data used to test our algorithms is complex: 
we have five one hour segments from five diverse films. There are 
three English films: (a) Sense and Sensibility (b) Pulp Fiction and 
(c) Four Weddings and a Funeral. We also have two foreign 
language films: (a) Bombay (Hindi) and (b) Farewell my 
Concubine (Chinese). 

This section is organized as follows. We begin with a section that 
explains how the labeling of the ground truth data was done. The 
section following that section deal with the experimental results 
of the two detectors. 

5.1 Labeling the Ground Truth 
The audio and the video data were labeled separately. This 

was because when we use both the audio and the  video (i.e. 

… 

Figure 7: A dialogue scene and its 
corresponding discrete object series. Note 
the distinct peaks at n=2, 4 . . .



normal viewing of the film) we tend to label scene boundaries 
based on the semantics of the scene.  

The video scene changes were labeled as follows. While watching 
the video if at any time there was a distinct change in lighting or 
color, this was labeled as a video scene change. This usually 
meant a change in location, but walking from a lit room to a dark 
one was also labeled as a scene change. Scene boundaries for M-
type scenes (transient, montage) were very troublesome and 
difficult to locate. 

Table 2: The ground truth data derived from labeling the 
audio and video data of each film separately. Columns two 
and three show the number of audio and video scene changes. 
The last column shows the number of audio/video scene 
change locations that align. 

 For audio, we adopted the following policy: label a scene change 
if it was felt that the ambient audio properties had changed. For 
example, if we heard the sounds of a marketplace immediately 
followed a conversation, this was labeled as a scene change. 
Correctly labeling the audio scene boundaries is challenging since 
we don’t see the associated video. Often, with the beginning and 
the end of dialogues since there is silence, it becomes very hard to 
place the boundary accurately11. This became particularly arduous 
when labeling the Chinese film. Since the labeler (the first author) 
had no semantic understanding of the film, it became hard to 
determine if a conversation had ended if there was a pause after 
the last sentence or if the speakers had changed (if one dialogue 
sequence followed the other). 

There are a few interesting observations that one can make from 
the data in Table 2. The audio and video scene changes in a film, 
are not random events; i.e. there is a high degree of synergy 
between the two thus lending support to our computable scene 
model. In fact, for the first four films the a/v scene changes (last 
column) are highly correlated with the video scene changes 
(65%~80%) while for the last film, there is an 80% correlation 
with the  audio scene change locations.  

5.2 Scene Change Detector Results 
There are three parameters of interest in each scene change 

algorithm (i.e. audio and video). They are: (a) memory (Tm) (b) 
attention-span (Tas) (c) ambiguity-window size. For both audio 
and video scene change algorithms, the attention-span and the 

                                                                 
11 The accuracy in labeling that we refer to is with a comparison to the 

where the label would have been had we labeled the film with both 
audio and the video.  

memory parameters follow intuition: results improve with a large 
attention-span and a large memory. For both scene change 
algorithms, large windows have the property of smoothing the 
audio decision function and the video coherence function. Larger 
windows decrease the number of false alarms but also increase the 
number of misses.  

Table 3: The table shows c-scene change detector results for 
the five films. We only deal with adjacent N-type scenes.  The 
columns are: Hits, Misses, False Alarms, Recall and Precision. 

Film H M FA Recall Precision 

Bombay 24 3 9 0.88 0.72 

Farewell my 
Concubine 

28 9 10 0.75 0.73 

Four Weddings and a 
Funeral 

17 11 4 0.60 0.80 

Pulp Fiction 19 9 11 0.67 0.63 

Sense and Sensibility 27 7 7 0.79 0.79 

 

The audio and video ambiguity parameters12 are used in the 
location of local minima in both scene change algorithms. The 
same parameters are used as time-constraints when aligning the 
two scene boundaries. The memory buffer parameters for the 
entire data set was fixed as follows: audio: Tm=31sec. Tas=16sec., 
video: Tm=16sec., Tas=8 sec.  

We now present results for the five films in Table 3. These results 
are for two adjacent N-type transitions only since our algorithms 
cannot handle N-type 5 M-type or M-type 5 M-type transitions. 
Note that: recall = hits/(hits + misses) while precision = 
hits/(hits + false alarms). 

 The results show that our detector works well, achieving a best 
result of recall of 0.88 and precision of 0.72 for the film Bombay.  
There are two types of errors that decrease our algorithm 
performance: uncertainty in the location of the audio labels due to 
human uncertainty and (b) misses in the video shot boundary 
detection algorithm. Shot misses cause the shot preceding the 
missed shot to be deemed longer than its actual length. This 
affects our coherence formulation as it takes into account the 
length of shots in the buffer. This, in turn causes video-scene 
change detection to place the minima at the wrong location. 

Prior work done in video scene segmentation used visual features 
alone [19], [8]. There, the authors focus on detecting scene 
boundaries for sitcoms (and other TV shows) and do not consider 
films. However, since we expect the c-scenes in sitcoms to be 
mostly long, coherent, N-type scenes, we expect our combined 
audio visual detector to perform very well.  

                                                                 
12 This is half the size of the windows used for location of the audio and 

video minima (wa and wv sec. respectively).  

Film Audio Video 
Synchronized A/V 
Changes  

Bombay 77 46 33 

Farewell my 
Concubine 

91 58 44 

Four Weddings and a 
Funeral 

76 57 37 

Pulp Fiction 45 39 31 

Sense and Sensibility 52 65 41 



5.3 Structure Detection Results 
 The statistical tests that are central to the dialogue detection 

algorithm make it almost parameter free. These test are used at 
the standard levels of significance (4 = 0.05). We do need to set 
two parameters: The initial sliding window size Tw (8 frames) and 
the threshold for the thematic dialogue test (4 sec.).  

The results of the dialog detector show that its performs very 
well. The best result is  precision: 1.00 and recall of 0.91 for the 
film Sense and Sensibility. The misses are primarily due to misses 
by the shot-detection algorithm. Missed key-frames will cause a 
periodic sequence to appear unordered. The thematic/true dialog 
detector’s performance is mixed: with a best detection result 
(precision) of  0.84 for the Indian film Bombay and a worst result 
of  0.50 for Pulp Fiction. Thematic dialogues seem to vary 
significantly with the film genre and the director style; hence a 
simple time threshold does not seem to suffice. 

 Table 4:The table shows the dialogue detector results for the 
five films. The columns are: Hits, Misses, False Alarms, Recall 
and Precision. 

6. DISCUSSING MODEL BREAKDOWNS 
In this section we shall discuss three situations that arise in 
different film-making situations. In each instance, the line-of-
interest rule is adhered to and yet our computational scene model 
breaks down.  

1. Change of scale: Rapid changes of scale cannot be 
accounted for in simple model as they show up as 
change in the chrominance of the shot. For example, the 
director might show two characters talking in a 
medium-shot13. Then he cuts to a close up. This causes a 
change in the dominant color of the shots. 

2. Widely differing backgrounds: This results from the 
two opposing cameras having no overlap in their field-
of-view causing an apparent change in the background. 
This can happen for example when the film shows one 
character inside the house, talking through a widow to 
another character who is standing outside.  

3. Background changes with time: The background can 
change with time. This can happen for example if the 
film shows several characters talking in a party (or in a 
crowd) . Then the stream of people who are moving 

                                                                 
13 The size (long/medium/close-up/extreme close-up) refers to the size of 

the objects in the scene relative to the size of the image. 

behind the characters of interest can cause the dominant 
chrominance/lighting of the shot to change. 

These situations cause errors in the video scene segmentation 
algorithm; either resulting in misses or an incorrect placement of 
the scene boundary. We have similar problems when M-type 
scenes abut N-type scenes. Clearly, our computational model 
makes simplifying assumptions on the possible scenarios when 
film-makers adhere to the line-of-interest rule.  

One possible strategy to deal with these situations is to compute 
the self-coherence14 of the shot-lets in the attention span and the 
self-coherence of the shot-lets in the rest of the buffer. If either 
self-coherence is low, then we would decide to put an “uncertain” 
label there and continue ahead. Then, we would group all shot-
lets between two “uncertain” labels using the audio-segmentation 
results. 

7. CONCLUSIONS 
In this paper we have presented a novel paradigm for film 

segmentation using audio and video data and visual structure 
detection within scenes. We developed the notion of 
computational scenes. The computational model for the c-scenes 
was derived from film-making rules and experimental 
observations on the  psychology of audition. These scenes exhibit 
long-term consistency with regard to (a) lighting conditions (b) 
chromaticity of the scene (c) ambient audio. We believe that the 
c-scene formulation is the first step towards deciphering the 
semantics of a scene.  

We showed how a causal, finite memory model formed the basis 
of our scene segmentation algorithm. In order to determine audio 
scene segments we first determine the correlation amongst the 
envelope fits for each feature extracted in the memory buffer. We 
then determine the correlation amongst the envelope fits. The 
video segmentation algorithm determines the coherence amongst 
the shot-lets in the memory. The coherence between shot-lets is 
proportional to the length of the each of the two shot-let as well as 
incorporates the time difference between the two shot-lets. A 
local minima criterion determines the scene change points and a 
nearest neighbor algorithm aligns the scenes. 

We introduced the formulation of the discrete object series to 
determine the periodic structure within a scene. We showed how 
one can design statistical tests using the Student’s t-test to detect 
the presence of dialogues. 

The scene segmentation algorithms were tested on a difficult test 
data set: five hours from commercial films. They work well, 
giving a best scene detection result of 88% recall and 72% 
precision. The structure detection algorithm was tested on the 
same data set giving excellent results: 91% recall and 100% 
precision. We believe that the results are very good when we keep 
the following considerations in mind: (a) the data set is complex 
(b) the audio ground truth labeling was difficult and introduced 
errors (c) the shot cut detection algorithm had misses that 
introduced additional error. 

There are some clear improvements possible to this work. (a) The 
computational model for the c-scene is limited, and needs to 

                                                                 
14 Self-coherence is of a c-scene is determined by computing the coherence 

of the scene with itself. 

Film H M FA Recall Precision 

Bombay 10 2 0 0.83 1.00 

Farewell my Concubine 
10 2 1 0.83 0.90 

Four Weddings and a 
Funeral 

16 4 1 0.80 0.94 

Pulp Fiction 11 2 2 0.84 0.84 

Sense and Sensibility 28 3 0 0.91 1.00 



tightened in view of the model breakdowns pointed out in section 
6. (b) we need to come up with a technique that handles N-type 
scenes that abut M-type scenes and also the case when M-type 
scenes are in succession. A possible solution is to introduce a 
short-term self-coherence function followed by audio-scene based 
grouping.  

8. ACKNOWLEDGEMENTS 
The authors would like to thank Di Zhong for help with the 

shot boundary detection algorithm. 

9. REFERENCES 
[1] A.S. Bregman Auditory Scene Analysis: The Perceptual 

Organization of Sound, MIT Press, 1990. 

[2] M. Christel et. al. Evolving Video Skims into Useful 
Multimedia Abstractions Proc. of the Conference on Human 
Factors in Computing System, CHI'98, pp 171-178, Los 
Angeles, CA, Apr. 1998. 

[3] D.P.W. Ellis Prediction-Driven Computational Auditory 
Scene Analysis, Ph.D. thesis, Dept. of EECS, MIT, 1996. 

[4] Bob Foss Filmmaking: Narrative and Structural techniques 
Silman James Press LA, 1992. 

[5] F. R. Hampel et. al. Robust Statistics: The Approach Based 
on Influence Functions, John Wiley and Sons, 1986. 

[6] A. Hauptmann M. Witbrock  Story Segmentation and 
Detection of Commercials in Broadcast News Video 
Advances in Digital Libraries Conference, ADL-98, Santa 
Barbara, CA., Apr. 22-24, 1998.  

[7] Liwei He et. al. Auto-Summarization of Audio-Video 
Presentations, ACM MM 699, Orlando FL, Nov. 1999. 

[8] J.R. Kender B.L. Yeo, Video Scene Segmentation Via 
Continuous Video Coherence, CVPR '98, Santa Barbara CA,  
Jun. 1998. 

[9] R. Lienhart et. al. Automatic Movie Abstracting, Technical 
Report TR-97-003, Praktische Informatik IV, University of 
Mannheim, Jul. 1997. 

[10] J. Meng S.F. Chang, CVEPS: A Compressed Video Editing 
and Parsing System, Proc. ACM Multimedia 1996, Boston, 
MA, Nov. 1996 

[11] R. Patterson et. al. Complex Sounds and Auditory Images, in 
Auditory Physiology and Perception eds. Y Cazals et. al. pp. 
429-46, Oxford, 1992. 

[12] W.H. Press et. al Numerical recipes in C, 2nd ed. Cambridge 
University Press, 1992. 

[13] L. R. Rabiner  B.H. Huang Fundamentals of Speech 
Recognition, Prentice-Hall 1993. 

[14] Eric Scheirer Malcom Slaney Construction and Evaluation 
of a Robust Multifeature Speech/Music Discriminator Proc. 
ICASSP 697, Munich, Germany Apr. 1997. 

[15] S. Subramaniam et. al. Towards Robust Features for 
Classifying Audio in the CueVideo System, Proc. ACM 
Multimedia 699, pp. 393-400, Orlando FL, Nov. 1999. 

[16] H. Sundaram S.F. Chang Audio Scene Segmentation Using 
Multiple Features, Models And Time Scales, to appear in 
ICASSP 2000, International Conference in Acoustics, 
Speech and Signal Processing, Istanbul Turkey, Jun. 2000. 

[17] H. Sundaram S.F Chang Video Scene Segmentation Using 
Audio and Video Features, to appear in IEEE International 
Conference on Multimedia and Expo, New York, NY,  Aug. 
2000. 

[18] S. Uchihashi et. al. Video Manga: Generating Semantically 
Meaningful Video Summaries Proc. ACM Multimedia 699, 
pp. 383-92, Orlando FL, Nov. 1999.  

[19] M. Yeung B.L. Yeo Time-Constrained Clustering for 
Segmentation of Video into Story Units, Proc. Int. Conf. on 
Pattern Recognition, ICPR 696, Vol. C pp. 375-380, Vienna 
Austria, Aug. 1996. 

[20] M. Yeung B.L. Yeo Video Content Characterization and 
Compaction for Digital Library Applications, Proc. SPIE 
’97, Storage and Retrieval of Image and Video Databases V, 
San Jose CA, Feb. 1997. 

[21] T. Zhang C.C Jay Kuo Heuristic Approach for Generic 
Audio Segmentation and Annotation, Proc. ACM Multimedia 
699, pp. 67-76, Orlando FL, Nov. 1999.

 


