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Figure 1: Adaptive EWA splatting for head (208× 256× 225, 2.86 fps), bonsai (256× 256× 128, 7.53 fps), lobster (301×324×56, 10.6 fps)
and engine (256× 256× 110, 10.28 fps) data sets with 512 × 512 image resolution.

ABSTRACT

We present a hardware-accelerated adaptive EWA (elliptical
weighted average) volume splatting algorithm. EWA splatting com-
bines a Gaussian reconstruction kernel with a low-pass image filter
for high image quality without aliasing artifacts or excessive blur-
ring. We introduce a novel adaptive filtering scheme to reduce the
computational cost of EWA splatting. We show how this algorithm
can be efficiently implemented on modern graphics processing units
(GPUs). Our implementation includes interactive classification and
fast lighting. To accelerate the rendering we store splat geometry
and 3D volume data locally in GPU memory. We present results for
several rectilinear volume datasets that demonstrate the high image
quality and interactive rendering speed of our method.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics Processor; I.3.3 [Computer Graphics]:
Picture/Image Generation—Display algorithms

Keywords: Direct volume rendering, volume splatting, EWA fil-
ter, hardware acceleration

1 INTRODUCTION

Splatting is a popular algorithm for direct volume rendering that
was first proposed by Westover [30]. The splatting process recon-
structs a continuous function from the sampled scalar field using
3D reconstruction kernels associated with each scalar value. For
volume rendering, the continuous function is mapped to the screen
as a superposition of pre-integrated 3D kernels, which are called
2D footprints. Recently, Zwicker and colleagues [35] proposed a
high quality splatting algorithm called EWA volume splatting for
aliasing-free splatting. However, achieving interactive high quality
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EWA splatting is still difficult due to the computational complex-
ity of EWA filtering and insufficient commodity hardware support.
These two issues limit the applicability of high quality EWA vol-
ume splatting.

In this paper, we present two major contributions addressing
these issues: First, we introduce adaptive EWA splatting, an adap-
tive filtering scheme to reduce the cost of EWA computation that
still achieves high quality rendering with antialiasing. The adaptive
EWA splatting algorithm can be incorporated seamlessly into previ-
ous splatting systems. Second, we exploit programmable graphics
hardware to achieve interactive EWA volume splatting. We present
a hardware-accelerated EWA volume splatting framework that al-
lows interactive high quality volume rendering, interactive transfer
function design, and fast two-pass shading.

Our approach stores both the proxy geometry (i.e., the textured
quads representing the splats) and the 3D volume data locally in
graphics hardware for efficient access during interactive rendering.
This leads to two advantages over previous approaches. First, par-
allel processing in graphics hardware can be fully exploited with
retained-mode splatting. Second, the memory bandwidth bottle-
neck between CPU and GPU occurring in immediate-mode algo-
rithms is completely avoided, facilitating interactive volume splat-
ting. However, the memory requirements to store the proxy geom-
etry can be very large due to the large number of voxels. We solve
this problem by employing proxy geometry compression and a fast
decompression procedure based on the regularity of regular or rec-
tilinear volumes, which are commonly used in volume rendering.

The remainder of this paper is organized as follows: We first dis-
cuss related work in Section 2. We then briefly review the EWA vol-
ume splatting scheme and introduce adaptive EWA volume splat-
ting in Section 3. Next, we present our hardware-accelerated adap-
tive EWA volume splatting framework in Section 4. In Section 5
we compare our approach with previous ones and present results
for several rectilinear volume data sets that demonstrate the high
image quality and interactive rendering speed of our method. Fi-
nally, we conclude our work in Section 6.



2 RELATED WORK

Hardware-accelerated volume rendering algorithms for rectilinear
grids include ray casting [25], texture slicing [24, 3], shear-warp
and shear-image rendering [21, 31], and splatting. For a detailed
overview see [20]. In this paper we focus on volume splatting,
which offers the most flexibility in terms of volume grids (including
non-rectilinear [11]) and mixing with point-sampled geometry [35].
Splatting is also attractive because of its efficiency, which derives
from the use of pre-integrated reconstruction kernels.

Since Westover’s original work [29, 30], most volume splatting
algorithms focus on improving the image quality, including ray-
driven perspective splatting [17], edge preservation [6], eliminating
popping and blur [13, 14], and image-aligned splatting [16].

The aliasing problem in volume splatting has first been addressed
by Swan and colleagues [27] and Mueller and colleagues [15].
They used a distance-dependent stretch of the footprints to make
them act as low-pass filters. Zwicker and colleagues [34] developed
EWA splatting along similar lines to the work of Heckbert [5], who
introduced EWA filtering to avoid aliasing of surface textures. They
extended his framework to represent and render texture functions
on irregularly point-sampled surfaces [33], and to volume splat-
ting [35].

Point-based geometry has been successfully rendered on the
GPU [26, 2, 4]. Ren and colleagues [23] derived an object space
formulation of the EWA surface splats and described its efficient
implementation on graphics hardware. For each point in object-
space, quadrilateral that is texture-mapped with a Gaussian texture
is deformed to result in the correct screen-space EWA splat after
projection. The work presented in this paper builds on that algo-
rithm and extends it to volume splatting.

Other techniques were proposed to improve splatting perfor-
mance, such as opacity-based culling [16], fast splat rasteriza-
tion [7], hierarchical splatting [9], object and image space coher-
ence [8], shell splatting [1], 3D adjacency data structure [19] and
post-convolved splatting [18]. Lippert and Gross [10] introduced a
splatting algorithm that directly uses a wavelet representation of the
volume data. Welsh and Mueller [28] used a hierarchical and fre-
quency sensitive splatting algorithm based on wavelet transforma-
tions and pre-computed splat primitives, which accomplishes view-
dependent and transfer function-dependent splatting. None of these
methods have been implemented completely on the GPU.

Some GPU-accelerated splatting methods [22, 1] use texture
mapping hardware for the projection and scan-conversion of foot-
prints. In more recent work, Xue and Crawfis [32] compared sev-
eral hardware-accelerated splatting algorithms, including an effi-
cient point-convolution method for X-ray projections. They did not
address anti-aliasing and reported lower performance numbers than
our adaptive EWA splatting implementation.

3 ADAPTIVE EWA VOLUME SPLATTING

Our adaptive splatting approach is based on EWA volume splat-
ting introduced by Zwicker and colleagues [35], hence we briefly
review this technique in Section 3.1 and refer the reader to the orig-
inal publication for more details. We then present adaptive EWA
volume splatting in Section 3.2.

3.1 EWA Volume Splatting

Volume splatting interprets volume data as a set of particles that are
absorbing and emitting light. To render the data, line integrals are
precomputed across each particle separately, resulting in 2D foot-
print functions or splats in the image plane. The splats are compos-
ited back-to-front to compute the final image. Particles are repre-
sented by 3D reconstruction kernels, and a common choice is 3D

elliptical Gaussian kernels. We use the notation GV(t−p) to rep-
resent an elliptical Gaussian kernel centered at a 3D point p with a
3×3 variance matrix V:

GV(t−p) =
1

(2π)3/2|V|1/2
e−

1
2 (t−p)T V−1(t−p) (1)

Although Gaussian kernels have infinite support in theory, they are
truncated to a given cutoff radius r in practice. I.e., they are evalu-
ated only in the range

(t−p)T V−1(t−p)≤ r2, (2)

where usually 1 ≤ r ≤ 3. Further, the choice of Gaussians as 3D
kernels guarantees a closed-form footprint function after integration
along viewing rays.

However, the change of sampling rate due to the perspective
transformation in the splatting process usually results in aliasing
artifacts. EWA volume splatting solves this problem by convolv-
ing the footprint function with a 2D low-pass filter, which yields an
aliasing-free footprint function called the EWA volume resampling
filter. Zwicker and colleagues [35] derived a closed-form repre-
sentation of the EWA volume resampling filter that is based on the
following two assumptions: First, the low-pass filter takes the form
of a 2D Gaussian. Second, the nonlinear perspective transformation
that maps reconstruction kernels to image space is linearly approx-
imated using its Jacobian.

To summarize the derivation of the EWA volume resampling fil-
ter we introduce some notation. The rotational part of the viewing
transformation that maps object space to camera space coordinates
is given by a 3×3 matrix W. We denote camera space coordinates
by u = (u0,u1,u2). The origin of camera space u = 0 is at the cen-
ter of projection and the image plane is the plane u2 = 1. Camera
space coordinates of a voxel k are given by uk. Image space coor-
dinates are denoted by x, the image space position of voxel k is xk.
Further, the Jacobian of the perspective projection at a point uk in
camera space to image space is a 3×3 matrix Juk (see [35]):

Juk =









1
uk2

0 −
uk0
u2

k2

0 1
uk2

−
uk1
u2

k2uk0
||(uk0 ,uk1 ,uk2 )||

uk1
||(uk0 ,uk1 ,uk2 )||

uk2
||(uk0 ,uk1 ,uk2 )||









. (3)

Given the 3× 3 variance matrix V′′k of a reconstruction ker-
nel k in object space, its transformation to image space is Vk =
Juk WV′′kWT Juk

T . The EWA volume resampling filter ρk(x) is now
obtained by integrating the reconstruction kernel in image space
along viewing rays and convolving it with the Gaussian low-pass
filter. As derived by Zwicker and colleagues [35], this yields the
2D footprint function

ρk(x) =
1

2π|J−1
uk ||W−1||V̂k +Vh|

1
2

e−
1
2 (x−xk)T Mk(x−xk), (4)

where we use the notation

Mk = (V̂k +Vh)
−1. (5)

Here, Vh is the 2×2 variance matrix of the Gaussian low-pass filter,
which is usually chosen to be the identity matrix. The 2×2 variance
matrix V̂k is obtained by skipping the third row and column of Vk

1.

1Throughout the paper, a matrix with a hat symbol denotes the result of
skipping its third row and column.
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Figure 2: EWA volume splatting process.

3.2 Adaptive EWA Filtering

Even though the EWA volume resampling filter avoids aliasing arti-
facts because of its built-in low-pass filter, its evaluation is compu-
tationally quite expensive as is obvious from Equation 4. The mo-
tivation of adaptive EWA volume splatting is to simplify the evalu-
ation in an adaptive way but still accomplish high quality, aliasing-
free splatting.

Adaptive EWA volume splatting is based on the following ob-
servations: When the volume data is far away from the view point,
the sampling rate of diverging viewing rays falls below the sam-
pling rate of the volume grid. To avoid aliasing artifacts, the EWA
volume resampling filter has to rely on strong prefiltering to get rid
of high frequency components in the volume data. In this case, the
shape and the size of the EWA resampling filter is dominated by the
low-pass filter. Hence, approximating the EWA resampling filter
with a low-pass filter alone will avoid the expensive EWA compu-
tation without degrading the rendering quality much. In the other
extreme case when the volume data is very close to the view point,
the sampling rate of diverging viewing rays is higher than that of
the original volume grid. The low-pass filter, though not a dom-
inant component in the resampling filter, can degrade the render-
ing quality with unnecessary blurring. Approximating the EWA
resampling filter with the dominant reconstruction filter (i.e., with-
out the convolution with the low-pass filter) not only reduces the
computation cost but also yields better rendering quality. However,
in the transition between the two extremes, neither approximation
can avoid aliasing artifacts without time-consuming EWA computa-
tion. As a consequence, in our adaptive EWA splatting approach we
classify each volume particle into one of the above three cases dur-
ing rendering. This allows more efficient computation of footprint
functions whereas preserving high image quality of EWA splatting
(Figure 3).

We now present a distance-dependent classification criteria for
adaptive EWA volume splatting based on a careful analysis of the
EWA volume resampling filter (Equation 4). The 2× 2 variance
matrix Mk(x) (Equation 5) determines the final footprint’s size and
shape, which can be described mathematically as an ellipse. Be-
cause W, V′′k and Vh are the same for all voxels in one view, the
footprint of each voxel depends only on the Jacobian Juk . Suppose
that V′′k is symmetric and the cutoff radius (see Equation 2) of the
reconstruction and the low-pass kernels are rk and rh respectively,
then V̂k is symmetric and the minor and major radius of the ellipse
can be derived from Equation 4:

r0 =

√

rk
2

u2
k2

+ rh
2, r1 =

√

rk
2(u2

k0
+u2

k1
+u2

k2
)

u4
k2

+ rh
2 (6)

Not surprisingly, the depth of a voxel in camera space uk2 (Fig-
ure 3) largely determines the ellipse radii as can be seen in Equa-
tion 6. Remember that the distance between the viewpoint and the

image plane is 1.0 (see section 3). It can be shown that uk0/uk2
and uk1/uk2 range from − tan( f ov/2) to tan( f ov/2) given f ov is
the view angle. Hence the maximum value of (u2

k0
+u2

k1
+u2

k2
)/u2

k2

is (1.0 + 2.0× tan( f ov/2)2). Therefore, a conservative distance
dependent adaptive criteria can be determined by considering uk2
only. To compute r0, rh can be discarded given that rk/uk2 is much
larger than rh. In this case, rh can be skipped for the computation of
r1, too. On the other hand, if rk× (1.0+2.0× tan( f ov/2)2)/uk2 is
much smaller than rh, r1 can be approximated by rh and so does
r0. From the above analysis we derive the following distance-
dependent adaptive EWA filtering formula2 with two controlling
parameters cmin and cmax:







Hk(x) = xT · V̂−1
k ·x, i f uk2 < rk

rh
× cmin

Hk(x) = xT ·V−1
h ·x, i f uk2 > rk

rh
× cmax

Hk(x) = x · (V̂k +Vh)
−1 ·x, otherwise






(7)

Based on the above criteria, adaptive EWA volume splatting de-
termines the appropriate resampling filter to be used for efficient
interactive rendering as illustrated in Figure 3. Note that the param-
eters cmin and cmax can be adjusted to achieve the desired balance
between efficiency and quality. For example, by slightly increas-
ing cmin and decreasing cmax, adaptive EWA splatting becomes less
conservative without affecting the image quality much.
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Figure 3: The distance-dependent adaptive EWA volume splatting
scheme. The low-pass filter or the reconstruction filter can be chosen
to replace EWA resampling filter in the extreme cases.

Adaptive EWA volume splatting can work with regular, recti-
linear and irregular volume datasets. It can also be incorporated
seamlessly in previous splatting systems. However, the downside
of the approach is the additional computation required for the clas-
sification criteria of each footprint function. To reduce this cost,
the volume data can be organized in patches or blocks in a spatial
data structure. The filter criteria (Equation 7) is then conservatively
evaluated on a per block basis and the same filter is applied to all
voxels in a patch or block. Heuristic and cheap metrics can be used
to speedup the calculation on-the-fly.

4 HARDWARE-ACCELERATED FRAMEWORK

In this section we describe how we apply our adaptive EWA vol-
ume splatting approach in a hardware-accelerated splatting frame-
work for the rendering of regular or rectilinear volume datasets.
Our framework is based on an axis-aligned volume splatting
scheme [30] with three traversal orders along the three major axes
(Figure 4). During rendering, the voxels are processed in slices
perpendicular to the major axis that is most parallel to the viewing

2For the nonsymmetric case, similar adaptive criteria can be derived.
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Figure 4: Hardware-accelerated EWA volume splatting. The process
is based on axis-aligned scheme with three traversal orders. For
simplicity, one traversal order is shown.

direction. A textured quad (proxy geometry) representing a splat
is attached at each voxel. Splats are processed in two stages (Fig-
ure 4): In the first stage, the contributions from splats in one slice
are added in an intermediate buffer. Then back-to-front or front-to-
back composition of each slice in an accumulation buffer yields the
final results. We call this composition method slice-by-slice com-
position. Alternatively, composition can be done directly without
using intermediate buffer as shown in Figure 4. We call this simple
composition method splat-every-sample composition.

Our hardware accelerated splatting pipeline features several in-
novations: First, it includes a hardware implementation of the adap-
tive EWA scheme, which is described in Section 4.1. This pro-
vides high image quality with better rendering performance than
full EWA splatting. Further, the pipeline employs a retained-mode
scheme that relies on proxy geometry compression as described in
Section 4.2. This avoids the memory bandwidth bottleneck between
CPU and GPU, which occurs in immediate mode algorithms. Fi-
nally, our pipeline includes a technique for interactive classification
of voxels, which we describe in Section 4.3, and a fast two-pass
shading method introduced in Section 4.4.

4.1 Adaptive Splat Computation

We embed adaptive EWA volume splatting in our framework using
a patch-based classification scheme. In this scheme, the quads (i.e.,
voxels) of each slice are grouped into uniform rectangular patches.
During splatting, we compute the camera space coordinate uk2 of
each of the four corner voxels of the patch on-the-fly and evalu-
ate the criteria given in Equation 7. If all four vertices meet the
magnification criterion, the reconstruction filter is used as the foot-
print function. If all four vertices meet the minification criterion,
the low-pass filter is used as the footprint function. Otherwise,
the full EWA resampling filter is applied. Following the analysis
in Section 3, we choose cmin and cmax in Equation 7 as 0.3 and
2.0×(1.0+2.0× tan( f ov/2)2) respectively for all examples shown
in the paper.

Our splatting process relies on proxy geometry, i.e., textured
quads, as rendering primitives that represent the footprint functions.
The texture on each quad encodes a 2D unit Gaussian function.
Note that the geometry of the quad has to be deformed to stretch and
scale the unit Gaussian texture, such that its projection to the image
plane matches the footprint function. This is achieved using pro-
grammable vertex shaders as described by Ren and colleagues [23].

In particular, they explained how to derive the geometry of the quad
by analyzing the EWA resampling filter (Equation 4). In our adap-
tive scheme, we implemented three different vertex shaders for each
of the cases in Equation 7 and chose the appropriate one based on
our per-patch evaluation described above. During the rasterization
of the proxy quads, the filter weight, the color and the illumination
components of each pixel are computed based on voxel attributes
in the volume texture.

4.2 Proxy Geometry Compression

In our approach, volume data and its proxy geometry are stored lo-
cally in graphics hardware. This configuration avoids heavy band-
width consumption between CPU and GPU and allows interactive
rendering in programmable graphics hardware. However, a naive
implementation has huge memory requirements. Let us take a 2563

volume data set as an example. The scalar density value of each
voxel usually takes one byte and the gradient vector takes three
bytes with each of its three components quantized to 8 bits. Hence,
we pack the attributes of each voxel into four bytes and save the
2563 volume data as a volume texture of 64M bytes.

On the other hand, we use a quad (4 vertices) as proxy geometry
for each voxel, so the whole volume data requires 64 million ver-
tices. Each vertex contains its position (3 floating-point numbers,
12 bytes), volume texture coordinates (3 floating-point numbers, 12
bytes) and texture coordinates for splatting with the Gaussian tex-
ture (2 floating-point numbers, 8 bytes), resulting in a total of 32
bytes. Moreover, to specify the connectivity of a quad (i.e., 2 trian-
gles) from 4 vertices, additional 6 vertex indices are needed. Each
index is stored as a two or four byte integer, depending on the total
number of vertices. With the three traversal orders for axis-aligned
splatting, we store the indices for each quad three times. Using
two bytes for each index, the proxy geometry of a voxel takes 164
bytes, hence the whole dataset requires as much as 2240M bytes of
memory. Unfortunately, commodity graphics hardware currently
provides a maximum of 256M local memory.

Facing these huge memory requirements, previous splatting ap-
proaches resorted to immediate-mode rendering, sending each quad
separately to the rendering pipeline. This solves the memory prob-
lem at the cost of huge bandwidth consumption between CPU and
GPU. In contrast, our approach employs a proxy geometry com-
pression scheme that allows to store the volume data locally in
graphics memory. Fast decompression is performed on-the-fly in
the vertex shader.

4.2.1 Efficient Compression

We exploit the regularity of rectilinear or regular volumes to reduce
the size of proxy geometry. First, the position of each vertex can be
omitted because it can be calculated from the volume texture coor-
dinates. Second, one slice of proxy geometry can be shared by all
slices of the volume because the difference of the volume texture
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Quad as proxy geometry

Figure 5: Proxy geometry compression.
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Figure 6: Auxiliary data structure for interactive classification. To reduce the size of the index buffers, the size of each patch is chosen to
contain no more than 65,535 vertices so that two instead of four bytes can be used as an index.

coordinates between consecutive slices is constant. This one slice
of proxy geometry is called the proxy geometry template. Third,
within a slice the volume texture coordinate along the traversal di-
rection does not change. Hence, only two texture coordinates are
needed. Moving from one slice to the next along the traversal direc-
tion simply requires to update the constant texture coordinate. We
maintain three proxy geometry templates for the three traversal or-
ders, hence for the 2563 volume dataset only 768k instead of 192M
vertices are needed. However, for each vertex we still need to store
two components of the volume texture coordinate and the Gaussian
texture coordinates, totally 16 bytes per vertex.

Efficient encoding of vertex attributes is performed as follows:
The two volume texture coordinates are denoted by tx and ty. They
are stored as integers of the form tx = mx× 256 + ix, where mx =
tx/256 and ix = tx mod 256, and analogous for ty. Although ix and
iy require 8 bits, mx and my are stored using 7 bits only. This allows
slices as large as 215× 215 voxels. Two additional bits fx and fy
per vertex are used to specify the coordinates of the 2D Gaussian
texture applied to the quad. As described in detail in [23], fx and
fy are either zero or one. Hence, each vertex of the proxy geometry
can be packed into 32 bits (Figure 5).

With these compression techniques, a 2563 volume dataset re-
quires only 12M (256×256×4×4×3) instead of 2048M memory
for the vertices, which corresponds to a compression ratio of 171:1
compared to the naive approach. Further, because for most vol-
ume datasets only 5%−20% non-transparent voxels need to be ren-
dered, the vertex indices will not require more than 115.2M bytes
in most cases. As a result, the volume texture data and the packed
proxy geometry information can be pre-loaded in the local memory
of graphics hardware entirely for interactive rendering.

4.2.2 Fast Decompression

Recovering the volume texture coordinates and Gaussian texture
coordinates from the packed representation is the first step in the
processing of each vertex. We extract mx,my, fx and fy from the
packed representation using a small lookup table (our Direct3D im-
plementation stores this lookup table in constant registers and ac-
cesses it through an address register in the vertex shader[12]). The
decompression, the recovery of different kinds of texture coordi-
nates, and the further calculation of voxel center positions require
only a few operations that can be performed efficiently with pro-
grammable vertex shaders in graphics hardware.

4.3 Interactive Classification

Interactive classification is critical for interactive volume explo-
ration. Post-classification schemes, where all the voxels are ren-
dered and classification is performed on-the-fly, are not efficient
because no culling of transparent voxels can be performed. Un-
necessary rendering of transparent voxels can be avoided using

pre-classification. Here, only non-transparent voxels are ren-
dered, which typically account only for 5%− 20% of all vox-
els. However, in our retained-mode hardware implementation pre-
classification requires collecting the indices of the vertices for those
non-transparent voxels and loading the index buffer to the graphics
hardware whenever the transfer function is changed. Because the
construction of the index buffer is time-consuming and loading it
to graphics memory involves a significant amount of data transfer
between CPU and GPU, changes of the transfer function cannot be
visualized at interactive rates.

We solve this problem by constructing an auxiliary data struc-
ture as illustrated in Figure 6. The basic idea follows the list-based
splatting algorithm proposed by Mueller and colleagues [16]. We
first bucket sort the voxels based on their density values. In con-
trast to [16], who built iso-value lists for the whole volume, we
compute them for each slice of each traversal order. The indices of
the corresponding proxy geometry are sorted accordingly and rear-
ranged into iso-value index buffers. The index buffers, which are
pre-loaded in graphics hardware before interactive rendering, span
256 intervals of iso-value voxels. Practically, the index buffers are
placed in video memory or AGP memory, depending on their sizes.
Putting them in AGP memory does not affect the performance as
shown in our video demonstration. Pointers to the start of each
iso-value array are maintained in main memory. When the transfer
function is interactively changed, appropriate pointers are collected
and merged quickly to send visible voxels to the rendering pipeline.

4.4 Fast Two-Pass Shading

Per-fragment lighting has to be applied for splat illumination be-
cause current graphics hardware allows volume texture access only
in the fragment, but not in the vertex processing stage. However,
this makes per-fragment processing expensive, since it involves vol-
ume texture access, voxel classification, and lighting computation
for each pixel per splat. Each splat may cover between 2×2 and as
many as 40×40 pixels, depending on the viewpoint.

We observe that pixels covered by one splat can share interme-
diate results, such as access to the volume texture, classification
(via lookup table), and illumination computations. We propose a
two-pass shading scheme to avoid redundant computation. In the
first pass, voxels of a slice are projected as single-pixel points as
shown in Figure 7a. The results of volume texture access, voxel
classification, and illumination for each (point) splat are stored in a
render target (also known as P-buffer). These intermediate results
are then reused during lookup in the second pass, in which the full
splat with per-fragment lighting and EWA filtering is projected (see
Figure 7b). The final composition of all splats from each slice is
shown in Figure 7c. In practice, this two-pass shading improves
rendering performance by 5%−10% though the additional render-
ing pass increases the number of context switches.



a) Pass one for some slice b) Pass two for the same slice c) Final result

Figure 7: Two-pass shading for a test dataset (323).

5 RESULTS

We have implemented our algorithm with DirectX 9.0 SDK [12]
under Windows XP. Performance has been measured on a 2.4 GHz
P4 system with 2 GB memory and an ATI 9800 Pro video card (256
MB local memory).

Data Type EWA Reconstruction Low-pass
Regular 70 45 26

Rectilinear 74 45 26

Table 1: Numbers of vertex shader instructions for different filters.

The adaptive EWA volume resampling filter is implemented us-
ing three different vertex shaders. The main efficiency improve-
ment of adaptive EWA filtering over full EWA resampling arises
from the simplified computation in case of minification or magni-
fication. Table 1 reports the numbers of vertex shader instructions
required to implement the different filters for regular and rectilinear
datasets. Note that we also maintain two different implementations
for regular and rectilinear datasets, respectively.

We first demonstrate the efficiency and the quality of adaptive
EWA volume splatting by rendering a 512×512×3 checkerboard
dataset with all voxels classified as non-transparent. In Figure 8a
and Figure 8b we compare the image quality of splatting with the
reconstruction filter only with that of splatting with the EWA vol-
ume resampling filter. We also compare the image quality of splat-
ting with the low-pass filter only with that of splatting with the EWA
volume resampling filter in Figure 8c and Figure 8d.

These comparisons show that splatting with improper filters,
though more efficient as shown in Table 2, can result in aliasing
artifacts and holes. Splatting with the EWA volume resampling fil-
ter corrects those errors, however at a high computational effort.
Adaptive EWA splatting yields an image quality comparable to that
of full EWA filtering, as shown in Figure 8e-h, but at reduced com-
putational cost, as reported in Table 2.

Reconstruction (Figure8a) 6.25 fps EWA (Figure8b) 4.97 fps
Low-pass (Figure8c) 6.14 fps EWA (Figure8d) 3.79 fps
Adaptive EWA (Figure8e) 1.84 fps EWA (Figure8f) 1.75 fps
Adaptive EWA (Figure8g) 6.88 fps EWA (Figure8h) 4.83 fps

Table 2: Performance comparison in fps for checkerboard data set.

Figure 1 shows adaptive EWA splatting of a number of volume
datasets. Based on our hardware-accelerated splatting framework,
we compare the performance of the adaptive EWA splatting scheme
with that of the previous EWA volume splatting method in Table 3.
The performance improvement achieved by adaptive EWA filtering
is about 10% to 20%.

We compare our retained-mode rendering approach with proxy
geometry compression to a naive immediate mode implementation,
where each splat is sent to the graphics pipeline separately. The re-
sults of the comparison are reported in Table 4 for various data sets
using EWA volume splatting. The results clearly indicate that the

CPU-to-GPU memory bandwidth is a bottleneck in this scenario,
and our retained mode rendering approach leads to significant per-
formance improvements.

Data Rendered splat Immediate Retained
Bonsai 274866 0.53 fps 7.53 fps
Engine 247577 1.40 fps 10.28 fps
Checkerboard 786432 0.47 fps 6.88 fps
Lobster 555976 1.19 fps 10.60 fps
UNC Head 2955242 0.12 fps 2.86 fps

Table 4: Performance comparison in fps between immediate and
retained rendering modes for adaptive EWA volume splatting.

We also compare the efficiency of pre-classification with list-
based pre-classification. Table 5 shows the average classification
time for various data sets. When the transfer function is unchanged,
the rendering speed of list-based pre-classification is a little slower
than pre-classification. However, our list-based pre-classification
achieves much better performance during interactive transfer func-
tion changes as shown in Table 5.

Data List-based Pre-classification Pre-classification
UNC Head 2.80 fps 0.3 fps
Engine 10.18 fps 0.8 fps
Bonsai 7.23 fps 0.8 fps
Lobster 10.30 fps 1.1 fps

Table 5: Performance comparison in fps between list-based pre-
classification and traditional pre-classification modes.

In Figure 9, we show a series of splatting results of the UNC
head dataset with different transfer functions. We compare splat-
every-sample composition (Figure 9a) with our slice-by-slice (or
sheet buffer) splatting (Figure 9b) [30]. The images generated by
splat-every-sample composition are darker than those of slice-based
composition because of incorrect visibility determination. On the
other hand, the splat-every-sample composition achieves better per-
formance because it avoids per-slice additions.

It is well known that slice-based compositing introduces popping
artifacts when the slice direction suddenly changes. Mueller and
Crawfis [13] proposed to use an image-aligned kernel-slicing and
traversal order. But their method has high computational cost and
its GPU implementation needs to be investigated in the future. Note
that our algorithm and almost all of the GPU implementation is
independent of the compositing method that is used.

6 CONCLUSIONS AND FUTURE WORK
We have presented a hardware-accelerated adaptive EWA splat-
ting approach for direct volume rendering. Adaptive EWA volume
splatting yields high quality aliasing-free images at a smaller com-
putation cost than full EWA splatting. We embedded the adaptive
EWA splatting scheme in a hardware-accelerated volume splatting
framework whose key features include efficient proxy geometry
compression and fast decompression, support for interactive trans-
fer function design, and fast two-pass shading.

In the future, we want to make our current hardware-accelerated
framework more efficient. Several researchers demonstrate that
EWA point splatting with OpenGL point primitives can signifi-
cantly improve the performance by reducing the size of the proxy
geometry and processing time for each splat [2, 4]. We plan to
use a similar technique for adaptive EWA volume splatting. We
also want to apply our adaptive EWA splatting scheme to irregular
volume datasets in a hardware-accelerated framework. Finally, we
are interested in developing a hardware-accelerated adaptive EWA
volume splatting framework with image-aligned traversal order to
avoid popping artifacts and implement post-classification.



Data Resolution Slice thickness Rendered splats Adaptive EWA Improvement
Engine 256 × 256 ×110 1.0×1.0×1.0 594430 (8.25%) 3.25 fps 2.90 fps 12%
Bonsai 256× 256 × 128 0.586×0.586× 1.0 274866 (3.28%) 7.53 fps 6.90 fps 9%
Lobster 301× 324× 56 1.0×1.0×1.4 177720 (31.7%) 10.60 fps 8.75 fps 21%
UNC Head 208× 256× 225 1.0×1.0×1.0 693032 (5.78%) 3.00 fps 2.70 fps 11%

Table 3: Performance comparison in fps between adaptive EWA splatting and EWA splatting.
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(a) Reconstruction filter only (b) EWA filter

(c) Low-pass filter only (d) EWA filter

(e) Adaptive EWA filter (f) EWA filter

(g) Adaptive EWA filter (h) EWA filter

Figure 8: Adaptive EWA splatting for checkerboard dataset with resolution of 512× 512× 3. Figure (a-d) show that EWA filter is necessary.
Figure (e-h) show adaptive EWA splatting leads to visually indistinguishable results.

(a) Splat-every-sample compositing mode. From left to right: 0.94 fps, 3.34 fps, 4.04 fps.

(b) List-based pre-classification / pre-classification modes. From left to right: 0.80 / 0.81 fps, 3.00 / 3.08 fps, 3.45 / 3.53 fps.

Figure 9: Comparison among splat-every-sample compositing, list-based pre-classification and pre-classification modes. From left to right:
2905251, 702768, 585682 splats.


