
Determining Average Program Execution Timesand their VarianceVivek SarkarIBM ResearchT. J. Watson Research CenterP. O. Box 704, Yorktown Heights, NY 10598AbstractThis paper presents a general framework for de-termining average program execution times andtheir variance, based on the program's intervalstructure and control dependence graph. Averageexecution times and variance values are computedusing frequency information from an optimizedcounter-based execution pro�le of the program.1 IntroductionIt is important for a compiler to obtain estimatesof execution times for subcomputations of an inputprogram, if it is to attempt optimizations related tooverhead values in the target architecture. In earlierwork [SH86a, SH86b, Sar87, Sar89], we used estimatesof execution times to facilitate the automatic partition-ing and scheduling of programs written in the single-assignment language, Sisal, for parallel execution onmultiprocessors.In this paper, we present a general framework forestimating average execution times in a program. Thisapproach is based on the interval structure [ASU86]and the control dependence relation [FOW87], both ofwhich can be derived from an arbitrary reducible control

ow graph. Therefore, this framework supports general,unstructured programs, rather than the special case ofstructured programs that was addressed earlier whendealing with Sisal. Average execution times are derivedfrom frequency values, and from estimated executiontimes of primitive operations on the target architecture.Besides showing how average execution times canbe computed, we also introduce the notion of executiontime variance which corresponds to the statistical mean-ing of variance (or standard deviation). We show howvariance values can be computed in a manner similar toaverage execution times. Variance information can beused, for example, to help determine the chunk size ofparallel loops [KW85].In our framework, frequency values are obtainedfrom a counter-based execution pro�le of the program.Rather than using the naive approach of incrementinga counter once per basic block, the control dependencerelation is used to increment a counter once for eachdistinct control dependence branch condition. We usefrequency information to estimate average executiontimes and variances, but this approach to executionpro�ling based on control dependence and countervariables would be useful for any code optimizationthat needs frequency information e.g. register allocation[Wal86], trace scheduling [FERN84], optimization ofdelayed branches [MH86].This framework for estimating execution times has



been implemented as part of the PTRAN (ParallelTranslation) project at IBM Research [ABC+87]. ThePTRAN system contains a program database which canbe conveniently used to store the frequency, executiontime and variance information. Currently, the primaryuse of execution time information in PTRAN is inautomatically partitioning the input program into tasksfor parallel execution.2 Program RepresentationThis section describes the program representations usedfor estimating execution times. These representationsare used in PTRAN [ABC+87], and the approachdescribed here is based on the PTRAN implementation.The initial representation is assumed to be thetraditional control ow graph [ASU86]. The nodes ofthe control ow graph may represent arbitrary units ofcomputation | basic blocks, statements, operations orinstructions. The only requirement is that the controlow graph should contain all control ow relations ofinterest. As in other code analysis and optimizationtechniques, we assume that the control ow graph isreducible. Node splitting [ASU86] is a standard approachthat can be used to transform an irreducible control owgraph into a reducible control ow graph.A reducible control ow graph has a unique depth-�rst spanning tree and hence a unique interval structurewhich can be easily computed from the control owgraph [Bur87, SS79]. The intervals identify the loops inthe program. The other program representation we useis the forward control dependence graph [Hsi88, CHH89]based on the control dependence relation de�ned in[FOW87].De�nition 1 A control ow graph CFG = (Nc; Ec; Tc)consists of� Nc, a set of nodes� Ec � Nc � Nc � L, a set of labelled control owedges, where L is the set of all possible labels.

� Tc, a node type mapping. Tc(n) identi�es thetype of node n as one of the following values| START , STOP , HEADER, PREHEADER,POSTEXIT , OTHER.Since there can be multiple edges with di�erentlabels between the same pair of nodes in Ec, CFG isin general a multi-graph. The classi�cation into nodetypes speci�ed by Tc is only used to help identify theinterval structure in the forward control dependencegraph computed later. The node type mapping doesnot change the semantics of the control ow graph inany way.Figure 1 shows a Fortran code fragment along withthe corresponding statement-level control ow graph,CFG. The labels T and F are used to identify thetrue and false branches respectively, for an IF statement.The label U is used to identify an unconditional branchfrom a node. All nodes in the original control ow graphhave type = OTHER.We �rst determine the interval structure of CFG[Bur87, SS79]. The intervals are summarized in amapping called HDR, where HDR(n) = h indicatesthat node h is the header of the interval containingnode n. Interval nesting is stored in a mapping calledHDR PARENT , where HDR PARENT (h1) = h2indicates that the interval with header node h1 isan immediate subinterval of the interval with headernode h2. HDR PARENT (h) = 0 indicates1 that theinterval with header node h is the outermost interval (weassume that there is exactly one such interval | the onecontaining nfirst, the �rst node to be executed in CFG).HDR PARENT de�nes a directed tree on all headernodes in CFG. HDR LCA(h1; h2) = h3 indicates thatheader node h3 is the least common ancestor of headernodes h1 and h2 in this tree.After determining the interval structure, the next1Assume that all nodes are numbered from 1 onwards.



step is to build an extended control ow graph,ECFG = (Ne; Ee; Te), as follows:1. Initialize, Ne  Nc;Ee  Ec;Te  Tc2. For each header node h in CFG:(a) Create a new preheader node, ph, add it to Ne,and mark it as h's preheader(b) For each control ow edge (u; h; l) in CFGif HDR LCA(HDR(u); h) 6= h then (we havean interval entry):i. Replace (u; h; l) by (ph; u; l) in ECFG(c) Add an unconditional branch from ph to h3. For each control ow edge (u; v; l) in CFGif HDR LCA(HDR(u); HDR(v)) 6= HDR(u)then (we have an interval exit):(a) Create a new postexit node, pe, and add it toNe(b) Replace edge (u; v; l) by edges (u; pe; l) and(pe; v; U)(c) Add a pseudo control ow edge from thepreheader node of node u's interval, to the newpostexit node pe4. Add a special START node with an unconditionalbranch to nfirst, the �rst node to be executed inCFG5. Add a special STOP node with an unconditionalbranch from nlast, the last node to be executed inCFG6. Add a pseudo control ow edge from START toSTOPFigure 2 shows the extended control ow graph,ECFG, corresponding to the control ow graph fromFigure 1. The pseudo control ow edges introducedin steps 3.c and 6 have a special label (Z1 or Z2 inFigure 2) to indicate that the corresponding branch can

never be taken in the original program. However, theinsertion of these pseudo edges provides a convenientstructure to the control dependence graph, as describedlater. For convenience, we assumed that CFG has aunique �rst node (nfirst in step 4) and a unique lastnode (nlast in step 5. If there is more than one \�rst"node (e.g. due to multiple entry points) then step 4should be modi�ed to insert an edge from START toeach such node. Similarly, if there is more than one\last" node (e.g. due to RETURN statements), thenstep 5 should be modi�ed to insert an edge from eachsuch node to STOP .We now turn to the notion of control dependence asde�ned in [FOW87]:De�nition 2 Let x and y be nodes in a control owgraph. y is control dependent on x with label l if andonly if1. y does not post-dominate x2. there exists a directed path P from x to y with allintermediate nodes post-dominated by y3. there exists an edge with label l from node x to thesecond node in path PIn other words, there is some edge from x that de�nitelycauses y to execute, and there is also some path from xto STOP that avoids executing y.Based on this de�nition, we can build a controldependence graph, CDG, containing exactly the edgesof the form (x; y; l) that satisfy the above conditions[FOW87, CF87, CFR+89]. However, we will �nd itmore convenient to use an acyclic form of the controldependence graph obtained by ignoring all back edgesin CDG. This is the forward control dependence graph[Hsi88, CHH89].Figure 3 shows the forward control dependencegraph, FCDG, corresponding to the extended controlow graph, ECFG, shown in Figure 2. The tuples



enclosed in < ::: > and [:::] brackets provide frequencyand execution time values, which are discussed later.The pseudo control ow edge inserted from START toSTOP caused all nodes in ECFG, except STOP , tobe directly or indirectly control dependent on START .Therefore, the forward control dependence graph isrooted and connected. Similarly, the pseudo controlow edges introduced from the PREHEADER nodeto the POSTEXIT nodes caused all nodes in thecorresponding interval (and subintervals) to be directlyor indirectly control dependent on the PREHEADERnode. The pseudo control ow edges were inserted inECFG so as to obtain this nested structure of intervalsin FCDG.3 Automatic Run-time Pro�lingIn this section, we de�ne the execution frequency ofa control dependence edge in FCDG. Executionfrequencies include conditional branch probabilities aswell as loop frequencies. These frequency values maybe determined by program analysis, or may be obtainedfrom an execution pro�le of the input program. Webelieve that program analysis is feasible for only a fewrestricted cases (e.g. a Fortran DO loop with constantbounds and no conditional loop exits, an IF conditionthat can be computed at compile-time, etc.), and shouldbe complemented by execution pro�le information wher-ever compile-time analysis is unsuccessful.De�nition 3 Given an edge (u; v; l) in the forwardcontrol dependence graph, FCDG = (Ne; Ef ; Te), theexecution frequency of the edge is de�ned as:1. (when u is a preheader node and l is the labelconnecting u to its header node in ECFG)FREQ(u; l) = average number of times u's headernode is executed in one execution of u's interval.In this case, FREQ(u; l) � 0 represents the loopfrequency for u's interval.

2. (all other cases)FREQ(u; l) = average number of times that node utakes the branch labelled l in one execution of nodeu. In this case, 0 � FREQ(u; l) � 1 represents thebranch probability of label l in node u.Many execution pro�lers are based on run-timesampling of the program counter, typically done bythe operating system. The output of a sampling-based pro�ler is of the form \Procedure P was foundexecuting x% of the time", which gives an approximatebut realistic measure of the relative execution timespent in each procedure, for that particular executionrun. However, the coarse granularity of the samplinginterval makes this approach unsuitable for determiningexecution frequencies of individual statements, or evensmall procedures. So, we propose using a counter-based pro�ler instead, where counter variables areincremented in the compiled code and recorded in aprogram database at the end of each program exe-cution. The output of a counter-based pro�ler is ofthe form \Statement S was executed n times", whichgives an exact measure of the execution frequency ofeach statement. This approach is very exible, inthat the frequency information can be generated onany machine, and can be used to estimate executiontimes for di�erent optimizations/transformations of theprogram on di�erent target architectures.An important e�ciency advantage of the counter-based approach is that the pro�ling code is directlycompiled in with the program, without requiring anycalls to the operating system. However, the potentialoverhead of counter-based pro�ling is still a concernif the counter variables need to be incremented toofrequently. The naive approach would be to maintainone counter per basic block. In this section, we outlinethree optimizations for counter-based pro�ling, basedon the interval structure and control dependence graph.With these optimizations, we believe that counter-



based pro�ling is a practical approach. This belief issupported by experimental results presented at the endof this section. Throughout the following, we assumethat the program completes execution with no abnormaltermination, so that all procedure calls are followed bycorresponding returns.Let f(u; l)j(u; v; l) 2 Efg be the set of controlconditions in FCDG. The �rst optimization is tomaintain one counter per control condition, rather thanone per basic block. This optimization is based onthe observation that identically control dependent nodesmust have the same execution frequency. In this way,one counter could serve for several identically controldependent basic blocks. For example, in the followingFortran code fragment, the I=1 and K=3 statements areidentically control dependent on the C1=true condition,though the statements belong to di�erent basic blocksin the control ow graph. Therefore, only one counteris needed to track the execution frequency of bothstatements.IF ( C1 ) THENI = 1IF ( C2 ) THENJ = 1ELSEJ = 2ENDIFK = 3ENDIFL = 4The second optimization applies to any node, u,that has at least one edge (u; v; l) in FCDG for eachbranch labelled l out of u in CFG. Of course, it isnot necessary for every branch label from u to appearas a control condition in FCDG. For example, in theabove Fortran code fragment, the L=4 statement is notcontrol dependent on the C1 condition, so there will beno edge in FCDG corresponding to C1=false. However,

if all the branch labels from node u (say n of them) arepresent as control conditions in FCDG, then we observethat the sum of the total execution frequencies of all nlabels must equal the total execution frequency of nodeu. Therefore, we only need to maintain counters for(n � 1) of the n labels. This represents a 50% savingswhen n = 2. This optimization can also be applied toloops by making the following observations:1. The sum of the total execution frequencies of allloop exits must equal the total execution frequencyof the loop preheader (i.e. the total number of timesthe loop is entered from outside).2. The sum of the total execution frequencies ofall control conditions (u; l) that transfer controlback to the loop header must equal the di�erencebetween the total execution frequencies of thepreheader and header nodes.The two optimizations discussed above are purelysyntactic, in that they are derived from the structureof the control ow graph without examining the nodes'contents. If we limit ourselves to syntax-based schemesfor counter-based pro�ling, then these two optimiza-tions will yield the minimum possible number of countervariables and operations. To do better, one wouldhave to use semantic information which could involveexhaustive symbolic analysis of all branch conditionsand other parts of the program.Our third optimization uses limited semantic in-formation, and has been chosen because it provides alarge payo� for little e�ort! The optimization appliesto a DO loop with no loop exits, where the numberof iterations can be added to the counter variable onceat the start of the loop, instead of incrementing thecounter by 1 in each iteration. Further, if the numberof iterations is known to be a compile-time constant,then it is not necessary to maintain a counter variableat all. In the absence of interval structure information,



the best we can do is to perform this optimization onlywhen the DO loop body consists of straight-line code.However, with interval structure information, we cancheck if any branch in the body of the DO loop istargetted to a node that is not contained (directly orindirectly) in the DO loop's interval. If so, the branchrepresents a loop exit and the optimization cannot beapplied. This is a simple test to do in FCDG, wherewe can just look for an edge to a POSTEXIT node,since the interval structure information was alreadyincorporated in ECFG by adding the PREHEADERand POSTEXIT nodes.For each control condition (u; l) in FCDG, theoutput of execution pro�ling is TOTAL FREQ(u; l),the total number of times the branch labelled l was takenfrom node u. The relative frequency values, FREQ(u; l)from De�nition 3, can be computed from the totalfrequency values by a single top-down pass over FCDG.First, we know that TOTAL FREQ(START;U) givesthe total execution frequency of the procedure or sub-routine containing CFG, since it is the total num-ber of times the START node was executed. LetNODE FREQ(u) be the average execution frequencyof node u, for a single execution of u's subroutine. Then,all FREQ(u; l) values can be computed in a single top-down pass of FCDG by using the following recurrenceequations2:1. NODE FREQ(START ) = 12. FREQ(u; l) =TOTAL FREQ(u;l)TOTAL FREQ(START;U)�NODE FREQ(u)3. NODE FREQ(v) =P(u;v;l)2Ef NODE FREQ(u)� FREQ(u; l)2One must take care to avoid a division by zero in equa-tion 2. It can only happen if TOTAL FREQ(START;U) =0 or NODE FREQ(u) = 0, in which case the numerator,TOTAL FREQ(u; l) must also = 0, so we can correctly setFREQ(u; l) = 0 without performing the division.

Since the only use of TOTAL FREQ values isas a ratio in equation 2, we can just as well useTOTAL FREQ values that are accumulated over sev-eral program runs. In fact, it is a good idea toaccumulate the TOTAL FREQ values (as a sum oraverage) from di�erent program executions in the pro-gram database, so as to get a more representative set offrequency values.The < ::: > tuples in Figure 3 contain FREQ andTOTAL FREQ values respectively, for each edge inFCDG. These values correspond to an execution ofthe code in Figure 1, in which the IF statement withlabel 10 is executed 10 times, and the loop is exited bytaking the IF (N:LT:0) branch. Note that the pseudoedges with labels Z1 and Z2 have zero frequencies.We end this section with some execution time mea-surements for the overhead of counter-based pro�ling.Table 1 gives the CPU time in seconds for the followingcases:1. Original code | time taken for a complete execu-tion of the original program2. Smart pro�ling | time taken for a complete ex-ecution of the original program, augmented withcounter-update operations as dictated by our opti-mized approach3. Naive pro�ling | time taken for a complete ex-ecution of the original program, augmented withcounter-update operations for the naive approachof one counter per basic block, with the DO loopoptimization applied only when the body consistsof straight-line code by our optimized approachThese measurements were made on an IBM 3090,using the VS Fortran compiler, Version 2, Release 3.The \Compiler optimization ON" heading stands forfull optimization and vectorization, and the \Compileroptimization OFF" heading stands for no optimizationor vectorization. The benchmark programs used are:



� LOOPS | a program that executes all 24 Liver-more Loops [McM86].� SIMPLE | a benchmark for computational uiddynamics and heat ow [CHR78]. The problemsize used was 100� 100, with NCY CLES = 10.The execution times in Table 1 show that the overheadof counter-based pro�ling is small compared to the per-formance di�erence between optimized and unoptimizedcode, and that \smart pro�ling" is noticeably moree�cient than \naive pro�ling".4 Computation of AverageExecution TimesIn this section, we describe how average execution timescan be computed for all nodes in the forward controldependence graph. Having obtained frequency valuesas described in the previous section, the other impor-tant set of values is the execution times of primitiveoperations on the target architecture. We will notdiscuss in detail the possible techniques for obtainingthe costs of primitive operations, as they vary widely fordi�erent architectures. A simple approach is to simplycount the number of instructions required to implementa primitive operation. A more careful estimationis required when considering pipelined architectures,vector instructions or the e�ects of cache usage. For thepurpose of this work, it is assumed that the (average)local execution time of each node, u, in FCDG hasalready been estimated, and is stored as COST (u).This section describes the computation of node u's totalexecution time, TIME(u), which includes COST (u)and the frequency-weighted execution times of all ofnode u's descendants in the forward control dependencegraph.The computation of TIME(u) is based on twosimple rules:1. TIME(u) =

COST (u) +P(u;v;l)2Ef FREQ(u; l)� TIME(v)This rule assumes that the node v's execution timeis independent of which conditional branch causedit to execute. With this assumption, we can use thesame average value, TIME(v), for all predecessorsof node v in FCDG.2. If node u is a procedure or function call, thenCOST (u) = TIME(START ), where START isthe start node from the callee function's forwardcontrol dependence graph. This rule assumes thatthe execution time of a procedure call is indepen-dent of the call site, so that the same averageexecution time of the procedure, TIME(START ),is used as the average execution time of each callto that procedure. This assumption is commonlymade in execution pro�lers e.g. the Unix pro�ler[GKM82].Rules 1 and 2 implicitly dictate how the execution timevalues should be computed. Rule 2 requires that theprocedures be visited in a bottom-up traversal of thecall graph, so that the root procedure (main program)is visited last. We do not address the issue of cost esti-mation for recursive procedures in this paper. In [Sar87,Sar89] we described an approach for handling recursiveprocedures in structured programs, which can easily beextended for use with the forward control dependencegraph for unstructured programs. Analogous to rule 2,rule 1 requires that the nodes be visited in a bottom-uptraversal of FCDG.The �rst two values in the [...] tuples in Figure3 contain the COST and TIME values respectively,for each node in FCDG. These values were obtainedassuming COST = 0 for the START , CONTINUE,PREHEADER and POSTEXIT nodes, COST = 1for the IF nodes, and COST = 100 for the CALL node.The entire program has an estimated execution time ofTIME(START ) = 920.



5 Computation of VarianceThis section generalizes the computation of averageexecution times to the computation of variance. Aninteresting application of variance information is indetermining the optimal chunk size [KW85] for theexecution of parallel loops on multiprocessors. In-tuitively, when the execution time of the loop bodyhas zero variance, we would prefer to use a chunksize of dN=P e for N iterations on P processors, sincethat provides perfect load balancing with the smallestoverhead. However, when the variance is large, wehave to move to smaller chunk sizes to get better loadbalancing, at the cost of increased overhead due to alarger number of chunks. The techniques presentedin this section show how variance can be estimated atcompile-time, allowing the compiler to choose smallerchunk sizes only when it is really necessary (when thevariance is large).To de�ne variance precisely, let T be the ran-dom variable corresponding to the execution time ofnode v (say). In the previous section, we computedTIME(v) = E(T ), the expected value of T . Vari-ance is de�ned according to the well-known equation,V AR(v) = E(T 2)�E(T )2, and the standard deviationis STD DEV (v) =pV AR(v).The computation of average execution times in theprevious section freely used the rulesE(A+B) = E(A) +E(B), andE(A�B) = E(A) �E(B).Computing variance is more complicated becauseV AR(A�B) 6= V AR(A)�V AR(B) in general, thoughV AR(A + B) = V AR(A) + V AR(B) is always true.To compute V AR(A � B), we instead need to use theidentities E(A2 �B2) = E(A2)�E(B2)V AR(A) = E(A2)�E(A)2

to obtainV AR(A�B) = V AR(A)� V AR(B) +E(A)2 � V AR(B) +E(B)2 � V AR(A)The relationship between node execution times inFCDG was stated in the previous section as:TIME(u) = COST (u)+ X(u;v;l)2Ef FREQ(u; l)� TIME(v)Based on this relationship between average executiontimes, TIME(u) and TIME(v), we now derive therelationship between the variance values, V AR(u) andV AR(v).Let L(u) = flj(u; v; l) 2 FCDGg be the set oflabels from node u in FCDG, andC(u; l) = fvj(u; v; l) 2 FCDGg be the set of u's childrenin FCDG with label l. Then the relationship betweenaverage execution times can be rewritten asTIME(u) = COST (u) +Xl2L(u)FREQ(u; l)� Xv2C(u;l)TIME(v)We consider two cases:Case 1: u is a preheader nodeThere is only one label l from u that is of interest| the label of the FCDG edges connecting u to nodesin the loop body (which includes the header node). Allother labels from u go to postexit nodes and have zeroexecution frequencies. For simplicity, we also assumethat COST (u) = 0, since preheader node u is a specialnode with no local computation. Therefore, the aboveexpression for TIME(u) becomesTIME(u) = FREQ(u; l)� Xv2C(u;l)TIME(v)



Using the identity for V AR(A�B) discussed above, wegetV AR(u) = FREQ(u; l)2 � � Xv2C(u;l)V AR(v)�+V AR(FREQ(u; l))� � Xv2C(u;l)TIME(v)�2+V AR(FREQ(u; l))� � Xv2C(u;l)V AR(v)�In this case, FREQ(u; l) represents the averagenumber of iterations in the interval, and the correspond-ing variance, V AR(FREQ(u; l)), can be determined byassuming an appropriate distribution for the numberof iterations. If we do not wish to assume a par-ticular distribution for the number of loop iterations,the variance term can also be computed by obtainingE(FREQ(u; l)2) from execution pro�le information.If we decide to ignore the variance in FREQ(u; l)and consider V AR(FREQ(u; l)) = 0, then the aboveequation simply becomesV AR(u) = FREQ(u; l)2 � Xv2C(u;l)V AR(v)Case 2: u is not a preheader nodeIn this case, FREQ(u; l) represents a branch prob-ability from node u. For convenience, we assume thatV AR(COST (u)) = 0, i.e. the local execution timeat a node has zero variance, though a sophisticatedapproach to estimating the execution time of primaryoperations may provide a variance value (e.g. dependenton a cache miss ratio). Similarly, we also assume thatV AR(FREQ(u; l)) = 0 for all branch probabilities,otherwise we would have to deal with the complicationof computing variance when the probability valuesthemselves are random variables with non-zero variance!LetTIMEC(u) = Xl2L(u)FREQ(u; l)� Xv2C(u;l)TIME(v)be the total cost of u's children.

Therefore, TIME(u) = COST (u) + TIMEC(u),andV AR(u) = V AR(COST (u)) + V AR(TIMEC(u))= V AR(TIMEC(u))= E[TIMEC(u)2]�E[TIMEC(u)]2But E[TIMEC(u)2] can be computed as follows:E[TIMEC(u)2]= Xl2L(u)FREQ(u; l)�Eh� Xv2C(u;l)TIME(v)�2i= Xl2L(u)FREQ(u; l)��V AR� Xv2C(u;l)TIME(v)�+Eh� Xv2C(u;l)TIME(v)�i2�= Xl2L(u)FREQ(u; l)�� Xv2C(u;l)V AR(v)+� Xv2C(u;l)TIME(v)�2�The dependence between V AR(u) and V AR(v) issimilar to that of average execution times, in that itrequires a bottom-up traversal of FCDG. The lastthree values in the [...] tuples in Figure 3 containthe E[TIME(v)2], V AR(v) and STD DEV (v) valuesfor our examples. For simplicity, we assumed thatV AR(FREQ(u; l)) = 0 for the loop frequency as well.Therefore, the only contribution to variance arises fromthe conditional branches. The estimated standarddeviation in execution time for the entire program isSTD DEV (START ) = 300 (the average executiontime was 920).6 Related WorkThere has been a long-standing interest in measuringexecution frequencies, and using the information asfeedback to the programmer. An early study of ex-ecution frequencies in Fortran program was reportedin [Knu71], which discusses both the sampling-basedand counter-based approaches to execution pro�ling.



[CK74] presented an approach for determining averageexecution frequencies from transition probabilities in acontrol ow graph. It is only recently that automaticprogram optimizations have been proposed that usefrequency information e.g. trace scheduling [FERN84],register allocation [Wal86], optimization of delayedbranches [MH86], partitioning and scheduling of parallelprograms [SH86a, SH86b]. Given its growing impor-tance, execution pro�le information ought to becomean indispensable component of future programming sys-tems, and the availability of the frequency informationwill no doubt motivate its use in new optimizations.Previous e�orts in obtaining execution frequencieswere typically extended to estimate the total programexecution time as the sum,TOTAL TIME = Xbasic block B freq(B)� time(B)To the best of our knowledge, our work is the �rst toextend this approach to estimate each statement's totalexecution time by considering the contribution of allstatements \contained" within it. For the structuredSisal programs considered in [Sar89], \containment"was de�ned by lexical nesting; in this paper, we con-sidered unstructured programs where \containment" isde�ned by the control dependence relation. Also, to thebest of our knowledge, this work is the �rst to de�nethe notion of execution time variance and to provide analgorithm for computing variance.A far more ambitious approach than the methodspresented in this paper is to automatically perform asymbolic complexity analysis of the program, and thusestimate execution times without relying on executionpro�le information. The complexity analysis problem is,of course, undecidable in general, but there have been afew e�orts to solve the problem for restricted cases.[Weg75] describes Metric, a prototype system thatanalyzes simple Lisp programs and produces closed-form symbolic expressions for execution times as a

function of the length of the arguments, costs of prim-itive operations, and branch probabilities. Recursionis handled by mapping each recursive procedure intoa recursive cost expression, which is mapped into aset of recursive equations, which in turn are mappedinto a set of di�erence equations, which are then �nallysolved for the integer-valued complexity measures ofinterest. The approach enforces several approximationsand restrictions at each step e.g. all branch probabilitiesare assumed to be statistically independent, and thecall graph is required to be acyclic with possible self-loops to permit only direct recursion. The approachworks reasonably well for simple Lisp functions likeREVERSE and UNION, but it appears that it wouldbe too restrictive to be useful for larger programs.[FS87] and [HC88] discuss approaches for auto-matic average-case analysis of special classes of pro-grams. The work in [FS87] is applicable to recursivedescent procedures over recursively de�ned data struc-tures that can be expressed in their language PL-treee.g. tree matching, binary search. [HC88] describesapproaches for simple probabilistic programs and asimple functional programming language.An interesting question that arises with symboliccomplexity analysis is how will the information be used,even if it can be derived for real programs? There is adanger of ooding the programmer or compiler with toomuch information, when providing symbolic expressionswith several variables. The most common usage ofcomplexity analysis in program optimization would bea less-than or greater-than comparison between twodi�erent symbolic expressions. Such a comparison ishard to resolve when the expressions contain morethan one variable. Even if all symbolic expressions aresomehow rewritten in terms of a single variable, somerange information is necessary to answer questions like\Is 100 � N < N2?" or \Is N > (log2N)3?". Therange information would somehow have to represent a



\typical" program input, making the whole approachcome closer to that of using execution pro�les. It seemsthat automatic symbolic analysis is better suited toasymptotic analysis where constants can be ignored,than to compiler optimizations where real numbers areneeded.7 ConclusionsWe have presented a general framework for the estima-tion of average execution times and variance in a pro-gram. Our approach is based on the control dependencerelation, and can be used for unstructured programs.Execution pro�le information is used to obtain thefrequency values necessary for cost estimation. Thecost of primitive operations is assumed to be a functionof the target architecture, so that the same frequencyinformation can be used to estimate execution times ondi�erent architectures. The average execution times andvariance values can be computed in a single, linear time,bottom-up traversal of the forward control dependencegraph.This framework has been implemented in thePTRAN system, where the execution time and variancevalues will be used to guide the automatic partitioningof the input program into parallel tasks. We believe thatseveral new optimizations that use average executiontimes will naturally evolve, now that the information isavailable in the program database.AcknowledgementsThe author would like to thank members of the PTRANgroup | Fran Allen, Michael Burke, Ron Cytron,Jeanne Ferrante and Dave Shields | for their commentsand suggestions on the paper, and their assistance inthe implementation of this work. The author especiallythanks Ron Cytron for suggesting the use of controldependence for e�cient pro�ling. Finally, the candidcomments of the reviewers served as valuable feedback
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Figure 1. Original Control Flow Graph, CFG



Figure 2. Extended Control Flow Graph, ECFG Figure 3. Forward Control Dependence Graph, FCDG


