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Abstract. A key issue in the development and deployment of model-
based automatic target recognition (ATR) systems is the generation of
target models to populate the ATR database. Model generation is typi-
cally a formidable task, often requiring detailed descriptions of targets in
the form of blueprints or CAD models. We propose a method for gener-
ating a 3-D target model directly from multiple SAR images of a target
obtained at arbitrary viewing angles. This 3-D model is a parameterized
description of the target in terms of its component reflector primitives.
We pose the model generation problem as a parametric estimation prob-

lem based on information extracted from the SAR images. We accom-
plish this parametric estimation in the context of data association using
the expectation-maximization (EM) method. Our model generation tech-
nigue operates without supervision and adaptively selects the model or-
der. Although we develop our method in the context of a specific data
extraction technique and target parameterization scheme, our underlying
framework is general enough to accommodate different choices. We
present results demonstrating the utility of our method. © 2002 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1417493]
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1 Introduction CAD models and potentially more straightforward to gen-
erate from SAR imagery, but also allow statistical uncer-
tainty and variability to be modeled directly in feature
space. Additionally, such models couple physical relevance
to predictive utility in ATR, facilitating the model manipu-
lation and component articulation required to form classifi-
cation hypotheses.

Our framework entails estimation of the number of scat-

erers and their descriptive parameters based on the ob-

In recent years there has been a surge of interest in model
based automatic target recogniti¢ATR) algorithms for
use with synthetic aperture radéBAR) imaging systems.
The broad utility of SAR as an imaging methodology is
well known, and SAR imaging techniques and systems
have been extensively documentedThe effectiveness of
SAR as a remote sensing tool has motivated research intot

the development of model-based ATR systéthadodel- served set of SAR images. In principle the optimal way to

based ATR systems identify targets by comparing image , his is to use all of the available imagery to perform the

features to classification hypotheses generated from a datay 5 ameter estimation directly. Note that the explicit inclu-

base of physical target models. The generation of targetgion of ocation as one of the parameters describing each
models to populate this database is a problem that is centralymitive implies that the model estimation procedure must
to the implementation of any model-based ATR system.  geal with establishing a correspondence between each pos-
~We present a framework for producing a three- tyjated primitive and the observed scattering responses in
dimensional target model from the multiple SAR images of )| of the SAR images. In principle, the optimal way to do
a target. Our models consist of spatial collections of reflec- this is to use all of the SAR images directly to establish
tor primitives such as cylinders, tophats, dihedrals, and tri- these correspondences at the same time that the parameters
hedrals, each of which is described in terms of a handful of of each primitive are estimated. However, because of the
parameters, including a discrete index indicating basic scat-complexity of such a task, the fact that our ultimate objec-
tering type and several continuous parameters including lo-tive is a low-dimensional description of the target as a set
cation, pose, and other information relevant to describing of primitives, and the fact that model-based ATR systems
the scattering signature of the overall targ@Such reflec- already operate in this manner, we propose to view the
tor primitive models offer compact representations of many estimation problem as a two-step procedure. Each SAR im-
targets and are well-suited to the feature-driven philosophy age is first compressed into a set of augmented detections
of model-based ATR. In particular, reflector primitive mod- consisting of relevant information about significant scatter-
els are not only more compact than full facetization or ing responses in each image, including location and other
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Fig. 1 Target model generation block diagram.

data extracted from the individual images or phase histo- tively. In Sec. 5 we present experimental results illustrating
ries. These compressed representations are then fused tthe performance of our algorithm. Section 6 concludes with
estimate the 3-D locations and characteristics of the targeta brief summary and discussion of several of the most sig-
primitives. This framework offers great flexibility in the nificant extensions of our framework to be pursued.
choice of a compression scheme, with possibilities ranging
from fine-grained extractions, in which the compression of
e_ach SAR image involves keeping a great many b_asis func-2 Problem Formulation
tions that capture most of the energy in the raw image, to i )
more coarse-grained representations, in which only a smallA block diagram representation of our approach to 3-D tar-
number of dominant scatterers are kept from each image,get model estimation is depicted in Fig. 1. A target is ob-
with only a few parameters describing each response. Toserved through a set ¢f SAR images. Each of these im-
introduce our framework and to highlight representations a@ges corresponds to a particular viewing geometry, as
commonly used in ATR, we focus here on a parameteriza- illustrated in Fig. 2: each imagk is characterized by a
tion at the coarser end of this spectrum. This choice also line-of-sight vector from the center of the synthetic aperture
highlights the importance of the correspondence problem to the center of the target region being imaged. The azimuth
mentioned previously. ¢ and elevationyy, defining this line-of-sight vector in
The major contribution of this paper is to describe a terms of a fixed ground frame of reference are arbitrary; we
systematic formalism for model generation from multiple assume each image has been formed at a squint angle of
SAR images and to provide an initial demonstration of this 90°. (Extension of our approach to allow arbitrary squint
approach in a constrained environment. In particular, for angles is straightforwardThe synthetic aperture along the
clarity of presentation, the reflector primitive models we platform motion vector and the line-of-sight vector define
employ here to illustrate and exercise our formalism are of the slant plane, the imaging plane for the SAR iméage.
limited extent and variability, and the features we extract  As indicated in Fig. 1, each of thK SAR images is
from the SAR images are relatively basic. Additionally, processed to extract a set of observed features, which are
there are several places in which we make certain idealiza-then fused to produce a 3-D target model. The framework
tions or opt for a suboptimal implementation for computa- depicted in Fig. 1 is quite flexible. For instance, we could
tional reasons. However, the methodology we present notconsider modeling the target as a spatially varying scatter-
only is extendible to much richer environments, but also ing medium and use a trivial data processing stage that
provides a clear audit trail for analyzing the effect on algo- simply passes on each complete SAR image to the data
rithm performance and complexity of removing idealiza- processing module, which would then bear the full burden
tions and approximations. In the next section, we presentof inverse scattering. However, as indicated in the introduc-
our formulation of the target model estimation problem, tion, we have in mind a much more constrained approach
and in Secs. 3 and 4 we describe our application of the that restricts our description of the target to focus on vari-
expectation-maximizatiofEM) method to its solution and  ables that are most observable and of significant interest for
a modification that enables us to select model order adap-model-based ATR.
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Fig. 2 Imaging geometry and the slant plane for image k.
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(W.0)

Fig. 3 Reflector primitives: trihedral, tophat, dihedral, and cylinder. Relative elevation ¢} , and azimuth
¢/ are determined by the absolute viewing elevation ¢, and azimuth ¢, and the pose of primitive,
indicated by the orientation of its local axes; primitive dimensions relevant to physical optics RCS
models are indicated.

The principal goal is the design of the data fusion mod- eling of scatterers in SAR images is conceptually similar to
ule in Fig. 1. This requires specification of exactly what we those used elsewhere, e.g., in Refs. 7—9. We will denote the
wish to estimate(i.e., the parameterization of our target log RCS observed from a primitive parameterizedgbgnd
models and how the features serving as input to this mod- viewed from elevationy and azimuthg as A(@ ,,¢),
ule are related to the quantities to be estimated. The latteryhich we typically quote in dBsm. If polarimetric measure-
step involves modeling both the SAR image collection pro- ants are used, we take the scal(i@ ,¢,$) to be the
cess and the subsequent data processing that produces thf—norm of the magnitude of the polarimetric vector.

observable features on which the fusion module will oper- We constrain the set of scattering types to a small class

ate. We descnbe_the notation and basic assumptions def'n'of idealized primitives consisting of trihedrals, tophats, di-
ing the problem in Sec. 2.1, and then present our chosen

feature extraction procedure in Sec. 2.2. We then present ahedrals', and cyl.md'ersso thatn,=4), depicted n Fl_g. 3
Jve assign type indices 1 through 4 to these primitives, re-

features(the data sets in Fig.)land the 3-D target model spectively. For these primitiveg-,j consists of either two or

parameters to be estimated. three parameters: an overall base amplitéerelated to
the physical size of the scatterer, a paeindicating the
2.1 Target Models: Assumptions and Notation orientation of the scatterer, and a radius of curvatijréor

Our target models consist of collections of reflector primi- radially symmetric primitives including tophats and cylin-
tives, each of which is described by a small set of param- ders. Each primitive’s locatiod} is defined to correspond
eters that completely specify the scattering behavior of suchto the origin of the primitive’s local axes, as depicted in
a primitive given any imaging geometry. As we indicated Fig. 3. Primitive pose indicates the orientation of these axes
previously, we restrict attention to a comparatively con- with respect to the fixed ground-based coordinate system in
strained set of primitives, each of which can be completely terms of three Euler anglé8 Primitive pose and the abso-
described for our purposes by a short vector of parameters.jyte viewing angle of imagé together define a relative

In pa_rtu_:l_JIar, a target r_n(_)del will be specified by the number viewing elevationy; , and azimuthg/  for each primitive,

of primitives N comprising the target and a vector of pa- as depicted in Fig.'3. '

rameters@ associated with each compon_ent primitive The complete vecto@ provides a concise yet accurate
= 1"t"">" In general,t we can express this vector @S jescription of a primitive's appearance in an arbitrary SAR
=[6;.6 6], whered| is an integer index designating the image. Locations! and radius of curvature (for those
primitive as one ofn, canonical primitive typesg; is the primitives for which it is definel along with the viewing
3-D location of the primitive, and#' is a generic vector  angle, determine the apparent location of the primitive in
parameter corresponding to a set of continuous-valued de-the slant plané?® In particular, the apparent location of a
scriptors that, along witl#} and 6, completely specify the ~ primitive in an SAR image is determined essentially by a
log-amplitude scattering response or radar cross sectionprojection of its apparent 3-D reflection point into the 2-D
(RCS of the primitive from any viewing angle® (This slant plane. For trihedrals and dihedrals, this apparent re-
general parametric formulation for phenomenological mod- flection point coincides withg for most viewing angles;
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for radially symmetric primitives such as cylinders and Fig. 3). Additionally, primitive responses that comprise
tophats, the apparent reflection point is always uprange multiple reflection mechanism&.g., the single-, double-,

from ¢ and migrates around the surface of the primitive as and triple-bounce response mechanisms of the trihedral
the viewing angle varies. We thus model the location of rely on primitive dimensions to determine the relative

primitive i in imagek as phase between each component mechanism's response.
There are at least three ways in which we can deal with
Hy 0%, ole{1,3, these dependences. We coul_d simply ignorg the s.ize depen-
1 dence and base tt&,it on nominally chosen dimensions for
md 6)= Hkgix_[ 'cosy 6 c{2,4, @ each primitive,. even though real scatterers may have signa-
0 ' tures that deviate from thes&,it. Alternatively, we could

, . L . _ . expand the set of canonical primitives to include several
where 45 is the relative viewing elevation as pictured in gitferent-sized instances of each basic reflector type. Fi-

Fig. ?’ and whereH, 113 the 2>f3 ground-to-slant-plane a1y we could expand the parameterizatighto include
transformation matrix for imagk: all relevant dimensions for each primitive type and con-
struct S, with appropriate dependences on these dimen-

) . 2 sions. For clarity of presentation here we choose the first
—Sinéy COS¢y 0 alternative. In particular, we construct d8jt using empiri-
1

cally chosen nominal values for each primitive’s size.

These nominal values are used to determine the individual
responses for each primitive’s component reflection mecha-
nisms, which are then combined via a noncoherent sum

COSi COSh,  COSY, SN, — Siniy

Hy=

The model of Eq.1), while accurate for most primitives
viewed from most angles, will be inaccurate for primitives
viewed at angles at which secondary reflection mechanisms

dominate and the apparent specular reflection point does,. . . X
not correspond t@ (e.g., when a single- or double-bounce (i.e., without regard to the size-dependent relative phiase

response is observed from a trihedral produce the overall mod&, for each primitive type. Ex-
The other components @ determine other features of —tensions to the second or third alternatives listed before are

the observed response: discrete typespecifies the basic ~conceptually straightforwardalthough with a computa-
dependence of the response on viewing aheded, if po- tional cos}. In Sec. 5 we explore to what extent a mismatch

larimetric measurements are made, the polarimetric signa-bew\'een _actua_l primitive dimensions and the nominally
1. P . oo chosen dimensions selected to construct3heffects per-
ture vectot’); posedP orients this response by rotating it to i

correspond to the orientation of the primitive; base ampli- formance. _ . _
tude 02 scales the response intensity according to the physi- Before  proceeding, ~we introduce  notationd
cal size of the primitive. In particular, physical optics pro- =[01,-...6x]. (Note thaté implicitly specifies the model
vides expressions for the RCS of each primitive as the orderN.) Target model generation in our framework is thus
product of a size-dependent amplitude term and a unique€stimation of the vecto# from the data provided by the set
type-dependent shaping function capturing the dependencedf SAR images. We moded (and thusN) as unknown
of RCS on a relative viewing angle and siz@ur log-RCS parameters about which no information is available other
models are based on these physical optics results and takéhan that provided by the SAR images.
the form

2.2 Observable Features for Model Generation

A8 i di) = 07+ St i, b 1) + Cpl, () We assume that we have multiple spotlight-mode SAR
images? of the target, formed at arbitrary viewing angles
where 62 encapsulates the fundamental size dependenceas depicted in Fig. 2. Each of these images is polarimetric,
described by physical optics, whe®g: is the physical op- SO that a vector measuremeiH V2HV VV] is avail-
. . . G ] o able at each pixel. Furthermore, we assume that all SAR
tics log-shaping function describing the variation in scatter- imaging parameter¢such as bandwidth, aperture width
ing response in terms of the viewing angle for all primitives range and cross-range locations of eac,h pixel center énd
of type ¢}, and wherec is a polarimetry-dependent term  57imith and depression to the target cerdee known, and
that encapsulates any effective gain achieved by using mul-can pe related to the absolute ground-based frame of refer-
tiple polarimetric channels. For each primitive tyi$y is ence. Such information could be provided, for instance, by

scaled to give a maximum response of 0 dBsm, so tfat geolocation or global positioning measurements taken as
will correspond to the maximum single-polarization RCS the images are collected, coupled with accurate ranging and

of the primitive response. The physical optics models we POSitioning of the target. _ _ _
use for6?, Sa}, andc,, are detailed in Sec. 7. As previously described in the introduction and in con-

ot o ] junction with Fig. 1, we compress the full set of raw SAR
One complication in the specification of tBg asin Eq.  imagery by extracting information from each image prior to
(3) is the fact that each primitive’s physical optics shaping the model generation stage. For this purpose we utilize a
function depends on its dimensions. This dependence issimple amplitude-based peak-extraction technique de-
most pronounced for the dihedral and cylinder, which ex- scribed in detail in Ref. 12. An arbitrary number of inten-
hibit sinc-like elevation responses dependingloand h, sity peaksM are extracted from each imaggeach peak
respectively(i.e., those primitives’ heights as depicted in j=1,... M is described in terms of three parameters: a 2-D
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slant-plane range/cross-range locatiaR;, a discrete IMAGE | —IMAGE 2 IMAGE 3
polarimetric-signature type indet ;, and a scalar log- ‘\\2\ ol ‘ * o3 .3
amplitudea, ; . Location and amplitude are obtained using | o3 } | 2 v g" .2
a simple subpixel-interpolation procedure, and polarimetric § 1 Joel] | e
signature type is obtained via a generalized likelihood ratio /
test to distinguish between odd-bounce and even-bounce
responses! The extracted type is thus a binary variable; we . \
designate an odd-bounce classificationtgs=1, and an : /v',‘,u[ 7
even-bounce classification s;=2. Note that because tri- ¥ s ™
hedrals and cylinders are predominantly odd-bounce scat- \\\J//
terers, and dihedrals and tophats predominantly even- TARGET PRIMITIVES
bounce scatterers, discrimination between trihedrals and
cylinders, or between dihedrals and tophats, is based pre- [ image 1 | image2 | image3
dominantly on location and amplitude information. The ef- Mo =3 | L= | if.=4
T R 1 2 3
fect of the indistinguishable type measurements for these pv— SV}
primitive classes is investigated in Sec. 5. Ma=0 | T2,
We note that the performance of our peak extractor de- Maz=2 | (22T
pends on the resolution of the SAR imaging system. In Mg =1 S T

Aog =1 Agq =2
=1 F2:3 Fy =2

particular, not only will the quality of the measurements
depend on the resolution of the sensor, but, more funda-
mentally, our amplitude-based peak-extraction technique
cannot distinguish scatterers separated by less than one
resolution cell in a given SAR image. Although we could
use existing SAR feature-extraction techniques capable of
super-resolving scatterers, such as Refs. 8 and 13, we emy
ploy the simpler amplitude-based peak-extraction technique

Fig. 4 Notation example.

K.j

to provide a straightforward demonstration of our frame- i, ifreportZ; corresponds to target primitive

work and because to its ease of statistical characterization. =)o reportZ, ; is spuriougcorresponds to no primitiye
Utilization of a different feature extractor would not present !

any conceptual difficulties. 4

For convenient reference, the three-parameter Iocation/We also defineF, to be the number of false alarms in
amplitude/type description of thith peak of imagek is imagek, i.e., the number ok, ; that equal O for a givek.

called a report and denoted % ;. At times it will be Figure 4 presents an illustrative example of the notation

c%n\ferzlrﬁnt to :efe: to t|rr]1$ coIIe('::uc;nthof reporrts W'th\'lc ad and concepts encapsulated ;. This figure depicts a
SINGIE IMage or across IMages. ~or ese purposes We deg o nqyjq involving two target primitived\(=2) and three
fine notation for all reports in a single image,

-~ . . : images K=3).

=[Zk1,-- 2], and notation for all reports in all im It is convenient to define a vectadx, collecting the
agesZ=[Zy,....Z]. label parameters for all of the reports in image A,
23 Measurement Model =[Nk, - ')\k'Mk]' The vectorA introduced before can be

In this section we describe the probabilistic model relating ];E)rrt?]aellﬁndglr?;ﬁtagr\e;[;rlﬂ’ﬁ' Iz)"l‘g 'thi I\Zﬁgtrii(gl?t\?cl)l ﬁdcgcethog
features extracted by the data processor to the target param-" Y 9

eters that must be estimated from those features. The un-components of each repdty;; this is our fine-level un-
certainties in the extracted features come at two levels of certainty. Chara_\cterlzatlon of the fine-level uncertainty can
granularity, one coarse and one fine. The coarse-level un-0€ done conditionally, and the measurement model can be
certainty involves the identity of each measurement; given SPecified as

a set of reports extracted from a single SAR image and a set

of target primitives, there is no way of knowing with cer- P(MZ[0)=p(Z|\, )p(A|6), 5
tainty which reports correspond to which primitives. The . - . .

fine-level uncertainty involves the stochastic nature of the @ product of the fine-level probability density functiguuf)
elements 0%, ;, even given the report's proper correspon- 2nd the coarse-level probability mass functigpmf).
dence. Compounding the coarse-level uncertainty is the fact 1 hroughout this work we describe discrete random vari-
that, like any detector, the data processor is subject to@Ples and vectors such asby their pmfs, and continuous
missed detections and false alarms, so in general there willFandom variables and vectors suctzaby their pdfs, using

not be exhaustive correspondence between the sets of rethe same notatiop(®) in both cases.

ports and target primitives. To formalize the coarse-level =~ We make five general assumptions about the relationship
uncertainty we introduce a vector of hidden parameders of A andZ to @ that facilitate the specification of a mea-
that describes the correspondences between reports and tasurement model. The first three of these concern the coarse-
get primitives in concrete terms. In particular, we define a level uncertainty expressed Ip(A|6); the remaining two
label parameter describing the identity of each re@qrt concern the remaining fine-scale uncertainty expressed by
as follows: p(Z|\,0). These assumptions are largely justifiable on
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simple physical grounds, and are standard in a variety of by assuming a standard Poisson false-alarm model and de-
data association contexts!® These assumptions are as fol- fining a probability-of-detection function that depends only

lows.

Assumption 1. False alarms are independent from image
to image and do not depend @h

Assumption 2. The detectability of the'th primitive in

any image depends only ah and on the viewing angle of
the image; furthermore, missed detections are conditionally
independent from image to image and from report to report
given @ and are also independent of false alarms.

Assumption 3. Any primitive generates at most one re-
port in each image, and any report is attributable to at most
one primitive.

Assumption 4. Reports in a single image and between
images are conditionally independent giveth and A,
whether they are detections or false alarms.

Assumption 5. The component measuremenrts , a ;,
andt, ; comprising each report are conditionally indepen-
dent given® and A\, whether the report is a detection or a
false alarm.

Together, Assumptions 1, 2, and 3 imply the conditional
independence of the label parameter vectors for each im-
age:

K

p(""’):kﬂl P(N 6). (6)

Similarly, Assumptions 4 and 5 imply tha(Z|\, 6) can be
factored as

K

|o<2|>~,6'>=klj1 P(Zi/\. 6)

K

gl

My
jljl p(Xk,j|)\k,j ,0) p(ak,i|)\k,j )

Xp(tij A, 0) | (7)

Although there are situations in which these assumptions
will fail—for instance, obstruction will violate Assumption
2, multiple-primitive reflections will violate Assumption 3,

and phenomena that cannot be adequately described in th@(A«.Zd0)=
context of the chosen parameterization of Secs. 2.1 and 2.2
could compromise Assumptions 2, 4, and 5—these assump-

tions are largely realistic and standafd® In Sec. 6 we

discuss how these assumptions might be relaxed to capture

more sophisticated real-world effects.

To complete the measurement model, we now need only
specify the terms on the right-hand sides of E@.and
(7). The imagewise identity-uncertainty terp(\,|6) re-
quired by Eq.(6) is almost completely determined by As-
sumption 3 and the constraints it imposesXgn no more
thanN of its elements may be nonzero, it cannot contain the
same nonzero index twice, and so on. We compi¢ig| 6)

on a primitive’s amplitude in any imagde In particular, we
write Ppy ;=Pp[A(8 ¢, ¢ ], wherePp is a function
that we assume is empirically estimated by running the pro-
cessor on characteristic imagery. If there is no systematic or
preferential way of ordering the elements Xf, it then
follows that

N
exd — YeaV1(yeaV) K )
PN 0)= M T (a-Poiy)
k- i=
Poiox,,

®

N j#0 1= PD{(,)\kj

whereV denotes the sensor volume and whetg is the
false-alarm rate, a parameter that we assume is empirically
estimated in the same mannerRs.

Our models for the report parameter densities of &J.
are conditional on whether the report is a detection or false
alarm. False alarms are assumed to be uniformly distributed
throughout the SAR images, equally likely to be classified
as either polarimetric type, and to have an amplitude distri-
bution denoted byg,, which can be estimated from char-
acteristic imagery. For a report corresponding to a detection
of primitive i, we modelx,; as a Gaussian with mean
m(6) and covarianc®, anda, ; as a Gaussian with mean
A(8, 4,4 and varianceo?, whereR and o2 can be
estimated from characteristic imagery. To motig|, we
assume the availability of an, X2 confusion matriXp},
wherep; ; is the probability that the data processor classi-
fies a primitive of typei as having polarimetric signature
type j, given that the primitive is detected. As with our
other assumed parametefs} can be estimated by pro-
cessing training data. To simplify notation in subsequent
expressions, we writhIQ'jEp(tk,jl)\k,j,0)=p0txkv,tkj for

g

any detectior(i.e., when\, ;#0).

We now have all the required components to specify
p(Z|\,0) as in Eq.(7); this can in turn be combined with
p(A|@) according to Eq(5) to yield a complete measure-
ment model that can be factored irfoproduct terms, one
for each image. In particular, p(\,Z|6)
=TIF_;p(N\¢.Z| 0), where

E
YEa| X
exd — yraV] ( T) N
M H (1—Ppy)- H Pea(@y,j)
k* i=1 jih =0
o,
Pk, j

- e
jihi#0 1- PDk,XkJ

- |

exp{— 5[ m (6, )= xR [ m( 6, ) =1}
27 (deR)Y2 '

1 2
- F[ak,j*A( oxkljv'ﬁk el

a

(27705) w2

j:Akyﬁo

©)
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3 A Data Association Approach to Model where A is the set of all possiblen. The M step then
Generation requires maximization of( 86"~ 1) over 6. Specifically,

The measurement model of E@) relies on the introduc-  the M step determines theth iterate value:

tion of a vector of unobservable label parametedescrib-

ing the origin of each report. This vector provides not only #"'=argmax (66"~ ). (11)

a convenient device for the specification of a measurement 0

model, but also a conceptual foothold for the estimation of We d ibe the impl . fthe E and M ¢
the target parameters. Specifically, if these label parameters/V€ describe the implementation of the E and M steps for
ur problem in Secs. 3.2 and 3.3, respectively. Because the

were observable—if report data could be associated acros . . ; . ; A
images—estimation of would be straightforward. This M method is an iterative procedure, it requires an initial-
suggests approaching model generation by way c;f the un-ization #° and a criterion for termination; the latter is
derlying data association problem. There is a large body of dlscussed in Sec. 3.4, Wh'l.e. our |n|_t|al_|zat|(_)n _procedure IS
literature describing theory and methods for solving data described in Sec. 4 In addition, while in principle the EM
method can deal directly with unknown model ordieby

association roblems in various contexts and . ) , X .
applicationsi**5 The chief difficulty facing almost all data  Introducing this quantity as part of the complete data, this
adds an undesirable level of complexity to our algorithm.

association problems, including the one described here, isA It the basic alaorith develon in S 3.2 and
the combinatorial proliferation of possible correspon- AS @ result, the basic algorithm we develop in Secs. 3.2 an
3.3 assumes thatl is specified. In Sec. 4 we describe a

dences. One way to manage the combinatorial explosion of S . . .
y 9 b modification to the basic algorithm that enables adaptive

possibilities is to dismiss as infeasible a majority of asso- lecti t model ord the alaorith
ciations corresponding to extremely unlikely events; we Selection of model order as the algorithm progresses.

utilize a technique known as gating, to be described later, ]
for this purpose? Even with such a simplification, how- 3.2 Implementation of the E Step

ever, the remaining data association problem is still formi- |t follows from Eq. (9) that with N specified, the expected
dable and requires a powerful tool for solution. The tool we |og likelihood to be calculated in the E step as in Ep)
apply is the expectation-maximizati¢EM) method®*In can be expressed as

the following section we briefly describe the EM method,

and in subsequent sections describe its application to the

problem of model generation in the framework we have Q(0|0["])=2 Qi((;l,|0i[”])+CK

constructed. =

=

I
M =

> Qe +Cy, (12)

3.1 Expectation-Maximization Method i =1

The EM method is an iterative procedure for producing a
maximum likelihood (ML) estimate of parameters when
there is a many-to-one mapping from a ?glstulated set of K
“complete” data to the set of observed dataln data as- nly _ n

sociation problems, the set of complete data comprises theQi((”I| o ])_,Zl Qi ala™) (13
observed data and the vector of associatioAsand A\ in

our context. Each iteration of the basic EM method consists and

of two steps: an expectatiof) step and a maximization

(M) step. The E step averages the log likelihood of the My

complete data over all feasible association vectors given theQ; \( 6 Hi[”]) = E PN =i]Zx, oy

observed data and the latest parameter estimate iterate. The =1

result is an expected log likelihood that is a function of the P

true parameter vectof. The M step then maximizes this % Iog¢+logp|’(-
expected log likelihood with respect to the parameter vec- 1—Ppy; .
tor. This yields an estimate @ffor the current iteration that
may be used to recompute the expected log-likelihood in
the next iteration’s E step. Under relatively mild conditions,
the EM method is guaranteed to converge to at least a local

Il
=
=

where

1 2
_ 27.-2[ak,j_A(0| ;(/lk!d)k)]

maximum of the likelihood function of the observed 1
data!"1® = 50— m TR~ m(8)]

In our context, the EM method proceeds as follows. Let

n—1] H H ,
_0[ . be the estimate of) produc,ed _by the M ste.p in +log(1—Ppy ). (14)
iteration n—1. The E step of then'th iteration requires
calculation of the expected log likelihood In other words, the expected log likelihood separates into

NK terms, each of which depends only on a single target

Q6 é" h=E[logp(\,Z|6)|z,6" 1] primitive, and theM reports extracted from the given im-

agek. This decoupling of the expected log likelihood is a
_ E [logp(A,Z|6)]p(A|Z, 611 (10) consequence of our independence assumptions of Sec. 2.3.
XeA ' ' ’ (A similar decomposition will be possible in the M stgp.
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This is an encouraging result, because it means that theand radius while fixing pose and amplitude at the values
computational complexity of the E step will increase only just obtained; this can be done in closed form as a weighted

linearly with K andN.
Examining Eq.(14), we see that the computation of the

least-squares errdkVLSE) estimate based on report loca-
tions (where the E-step report-to-primitive correspondence

E step uses quantities specified previously, as well as theprobabilities give the weightsdue to the quadratic depen-

report-to-primitive  association  probabilities Ry

=i|Z,,6™). In theory these probabilities can be calculated
via Bayes’ rule. In practice, however, this computation is
typically intractable even for problems of modest size due

to the combinatorial dependence of the number of possible (" *1l=

A on N and M. (For the multiple-primitive example of
Sec. 5, the set of possible association vectors typically
numbers in the hundreds; for a problem involving as few as
a dozen primitives, the cardinality increases to billipfis
overcome this difficulty, we use a common and easily jus-
tifiable simplification known as gatintf.Specifically, com-
plete enumeration of the set of possillg entails consid-
eration of all possible associations, even very unlikely ones
in which measured locationg ; are associated with target
primitives that project to points in the slant plane far from
Xyj- Gating is a method for excluding such unlikely pair-
ings from consideration by adaptively defining the set of
feasible associations to be the much smaller sex,ahat

dence ofQ;(#|6™) on location and radius. In particular,
for 6" {1,3' we have

K M, -1
k§=:1 Jz HER™H, Pr()\k,j:i|zkadn])}

1
My

X >, HER x| Pr()\k,j:”Zk:dn])},

=1

K
>
k=1

(15

and we can obtain a similar expression to maximize @er
and 6/ when 6!l" € {2,412 [If the WLSE estimate gives a
negative radius in this case, we set the radius estimate to
zero and use Eq15) for the location estimatgThis type

of partitioned M-step implementation is known as expecta-
tion conditional maximizationlECM) and is sufficient to
ensure eventual convergence of the EM method to a maxi-

correspond to associations between reports and primitiveSmum of the likelihood function under the same conditions

that are believed to be close enough, i.e., for wHigg;
— i ( 0>\k’j)||2$rgate, j=1,...M. Typically r g, is taken

as a small multiple oftrace®)]*>

3.3 Implementation of the M step

The M step requires maximization of the E step’s expected
log likelihood Q( 4 6™ with respect to# as in Eq.(11).
The separation of this expected log likelihood into indepen-
dent terms for each primitive in Eq12) implies that this
maximization may be achieved independently for each
primitive. In particular, the M step requirés independent
maximizations, each of a sing@;(é|6") over 6 . Since

6. includes both continuous parameted’ ( 6, 67, and
possibly #) and a discrete parameteﬂ}l, we are faced
with a hybrid maximization problem for each primitive,
with the discrete parameter limited to a small, finite space
of n, elements. We thus maximizg, (6| ") by perform-

ing n; separate trial maximizations over the continuous
components o, one for each possible value 6f. Ex-
amination of Eq.14) reveals that each trial maximization
is nontrivial: there is a complicated relationship between
Qi(0,|0i[“]) and the set of continuous parameters. Specifi-

as an algorithm that achieves a true joint maximum at each
M step!® If not for the pose search, the computational bur-
den of the M step would generally be insignificant com-
pared to that of the E step. As it is, however, the M step

greatly exceeds the E step in execution time.

3.4 Termination Criterion

Rather than directly monitoring(Z| 6" for convergence,

we adopt the computationally simpler and widely used pro-
cedure of monitoring the estimat#’” themselves. Once
the estimates of} produced by the M step remain fixed
between iterations and the changes in the continuous pa-
rameter estimates all drop below specified thresholds, the
iteration is terminated and the finél" is used as the final
estimate ofé.

4 Initialization and Model Order Estimation

In this section we describe two final features of our model

generation algorithm, namely the initialization stage and a
modification to the standard EM iteration that enables adap-
tive model order selection as the iteration progresses. Our
model order adjustment stage occurs after every M step,
before the termination criterion check, and is capable only

cally, the pose, location, and radius terms are coupled dueof reducing the model order or leaving it unchanged. This
to m(6), and the pose and base amplitude are coupled dueimposes the important guideline that the initialization

to Ppy; and A8, ¢, bi).

Consider the following approximate maximization over
the continuous parameters wil fixed, equivalent to a
single-iteration coordinate ascent. First, maximize
Qi(#|6™) over pose while fixing amplitude, location, and
radius at their maximizing values from the previous itera-
tion; this can be accomplished with a coarse-to-fine searc

h4.1

should be biased toward overestimatidgany overfit can

be corrected in subsequent iterations by the model order
reduction stage, but any underfit is permanent. We describe
our initialization procedure in Sec. 4.1, and model order
reduction in Sec. 4.2.

Initialization of the EM Method

over pose. Second, perform a line search to maximize overOur initialization procedure is based on an agglomerative

amplitude with pose fixed at the value just obtained, and
with location and radius fixed at their values from the pre-
vious iteration. Finally, maximiz&;( & Hi[”]) over location

clustering algorithm that groups reports between images
based on the set of at|, ;. Each group of reports produced
by this agglomeration is used to initialize a single target
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primitive. Because the number of clusters produced by the that described in Sec. 3.3 in conjunction with the M step.
agglomeration depends on the data, the orde®d is Location(and radius, if deemed applicable by the type ini-
adaptive toZ. As we indicate later, we can bias toward tialization) is estimated by a least-squares approximation
overfitting by setting an agglomeration threshold appropri- based on the set o ; similar to that of Eq(15).
ately. Our initialization procedure is completely described ~ The agglomeration described here is based solely on lo-
in Ref. 12; the following is an outline of the procedure that cation, although it can easily be extended to include type
omits some minor details and modifications made for com- and amplitude information. In addition, note that the pro-
putational reasons. cedure we have described is not perfectly designed for
Agglomerative clustering is a general procedure in grouping reports produced by cylinders and tophats since,
which a collection of items is iteratively grouped into dis- as is evident from Eq(1), the apparent reflection point for
tinct clusters by successively merging items and groups such primitives changes from view to view due to the radial
based on some measure of their dissimilaﬂﬁtﬁt each symmetry of these reflectors. As a result, the dissimilarity
iteration, the two most similar items or groups in the col- values computed by our clustering method for a group of
lection are merged. This is repeated until all remaining reports produced by such a primitive will generally be
groups are more dissimilar than some threshgldThe larger than those computed for trihedrals or dihedrals.
number of clusters produced depends strongly,oa large While it is possible to design a more sophisticated cluster-

. . . ing method to deal with this effect, we have found our
choice for» will generally resuit in fewer clusters than a simpler algorithm to be sufficient to produce a satisfactory

small choice. RO ; .
Our dissimilarity measure is a chi-squared statistic that initialization for the EM iteration.
is based on the measured report locatiaps and moti- 4.2 Model Order Reduction

vated by the following observation: reports from different
images that could be explained by projection from a single

point or closely spaced points Ii? are likely to correspond ining the empirical evidence for each hypothesized primi-

to '_che same target primitive. _Reports that cannot be ex-e's existence after each M step and removing any primi-
plained by closely spaced points i (or reports from  iyes whose estimates have converged to values which are
within the same imageare d|ss!m|Iar and should not be ¢ strongly supported by the data. More precisely, after
grouped. It can be showhthat if a group of reports all  each M step we calculate an empirical probability of detec-

correspond to the same primitive according to the GaUSSiantionTD for each primitivei for which 8™ has converaed:
model described in Sec. 2.3 with an identity-multiple cova- D:i P [ ged:

riance R, then the total squared error of the linear least- 1 KoM

squares errofLLSE) estimate of the corresponding primi- 5 _ i n

ti\?e’s 3-D Iofcation)(i.e., the sum of thepsquar?adIO 2.0 TPITK k§=:1 j§=:l PO =112, 87, (18
distances between the projections of the LLSE estimate and

the report locationss a chi-squared random variable. If the [The Pr(xk'j=i|zk,0[”]) terms are available from the E
reports come from multiple primitives, the total squared giep of the iteration Intuitively, if Pp.; is near zero, thed
error will in general be much larger and will have a non- 4 iges little evidence to support the hypothesis of a target
central chi-squared distribution. If the reports include false primitive whose parameters are given W]- This sug-

alarms, which we model as having uniform rather than hatd™ is eith : ibly d
Gaussian distributions, the total squared error will have nei- 96StS thatdi™ is either a poor estimatépossibly due to

ther a central nor a noncentral chi-squared distribution, but convergence of the EM iteration to a local maximum of the
will still generally be larger than when all reports are at- likelihood function or that the model order is too high. In
tributable to a single primitive. We thus use the chi-squared €ither case it is appropriate simply to remove the primitive
cumulative distribution function as our dissimilarity mea- Tom the estimate and decrement the model order. We make
sure. This provides an interpretation gfas a confidence  this decision by comparing th®p,; of the converged
level for accepting or rejecting a candidate group based onprimitives to a type-dependent threshgfcom a set ofn,
how well a single primitive could explain the report loca- thresholds empirically chosen to reflect the fact that primi-
tions. We sety to a value empirically determined to give a tives with highly specular responses will almost certainly
low probability of underfitting, so that the initialization is be detected in fewer images than those with spatially per-
likely to contain more hypothesized primitives than are sistent responsgsThis model order reduction stage ensures
necessary to describe the target. Some of these primitivesthat all primitives contained in the final estimate @fwill
will be removed in the subsequent model order reduction have empirical probabilities of detection at least as great as
stage. their type-dependent thresholds dictate. One drawback to
We use each report cluster produced by the agglomera-our approach is the increased computational burden in the
tion to initialize a single target primitive parameter vector early stages of the EM iteration, before the extraneous
6, as follows. Base amplitude is set to the maximum log a- Primitives have been eliminated amd is still artificially
mplitude among the clustered reports, mieys of Eq. (3). Iarge._T_he benefit of this extra computatlo_n is the increased
Type and pose are chosen to maximize the likelihood of @daptivity and robustness of the final estimate
having observed the amplitudes and types in the report
group, given that all the reports correspond to a single ® Results
primitive and given the just-selected base amplitid@gpe In this section, we present results of the application of our
and pose maximization are achieved by a search similar toalgorithm to synthetic SAR imagery generated by XPatch,

Our model order reduction stage counteracts the overfitting
induced in the initialization. This is accomplished by exam-
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Table 1 Measurement model parameters. Table 2 Single-primitive targets: primitive dimensions.
quantity notation value primitive 67 [dBsm] dimensions
location covariance R (5.0cm)2x|1 trihedral 10 a=12.67 cm
normalized false alarm rate ., 0.058 / m? tophat 10 r=18.39 cm, h=36.78 cm

. . 0.78 001 0.17 0.97]|7 dihedral 10 a=14.05 cm, b=14.05 cm
type confusion matrix {p} .

0.22 0.99 0.83 0.03 cylinder 10 r=17.70 cm, h=53.05 cm
amplitude variance a2 (5dBsm)?

onstrate the relative observability of the four primitive
an electromagnetic simulation package capable of accu-types and to establish a rough benchmark for results from
rately simulating arbitrary electromagnetic scattering mea- more complex targets. Each of the four targets in this sec-
surements obtained by interrogating a facetization-model tion corresponds to a single primitiv@ unique type for
target with radiatiof>** We use the XPatch-T module of each targetlocated at ground coordinaté30.5 0 15.2
the package to produce image chips at a range and crossem]. The trihedral and tophat are oriented with their bases
range resolution of 0.3 m, a range and cross-range pixelparallel to the ground plane, the trihedral rotated to give a
spacing of 0.2 m, and a center frequency of 9.6 GHz, and maximum specular response at azimuth 0 deg; the dihedral
use a— 35-dB Kaiser sidelobe weighting function for im- and cylinder are oriented so that a maximum specular re-
age formation from phase history data. XPatch produces ansponse is obtained at elevation 25 deg and azimuth O deg.
image of a target in the absence of natural clutter; we model Primitive dimensions(see Fig. 3 are given in Table 2.
clutter as an additiv&-distributed process independent for (Choosing primitive sizes to give a base amplitude of 10
each pixel, with grassy terrain parameters as reported indBsm facilitates comparison of primitive observability but
Ref. 22. requires the dihedral and trihedral to be much smaller than
Recall that the measurement model described in Sec. 2.3typically observed dihedrals and trihedrals in many targets
is parameterized by several quantities that must be specifiedof interest))
in advance. The quantities we use for the experiments in  Tables 3 and 4 present the performance of the algorithm
this section are given in Table 1. The location covariance, on these four targets for both the 10- and 20-deg AVSDs.
false alarm rate, and confusion matrix given in Table 1 are Table 3 presents model order and type estimation statistics:
average values compiled by processing a set of training Py refers to the fraction of runs in which an estimate was
images, each containing a single primitive in the grassy produced for the primitive, i.e., in which it was captured by
terrain clutter environment. The probability-of-detection the initialization stage and survived the model order reduc-
function and false-alarm amplitude pdf are histograms tion stage through convergence of the EM iteration; overfit
compiled from the training results. The amplitude variance refers to the fraction of runs in which the final model order
term is a heuristic value chosen with the intention of cap- was greater than one. Type confusion presents type estima-
turing some of the variability in primitive responses en- tion results conditional on detection. In most runs in which
countered in the real world that would be difficult to model the primitive is detected and estimated to be the correct
in a training set(e.g., geometrical deviations or perturba- type, the continuous parameter estimates cluster near the
tions from ideality. Recall also that construction of the true values; in a handful of runs they do not. The fraction of
primitive scattering models requires specification of rel- runs in which this occurs is listed in the fraction spurious
evant primitive dimensions, as described in Secs. 2.1 and 7.column. Table 4described latgrpresents the results of the
For most of the results in this sectigne., all results in continuous parameter estimation, conditional on correct
Secs. 5.1, 5.2, and 9,3he scattering-model primitive di-  type identification and nonspurious parameters. For each of
mensions have been set to the dimensions of the primitivesthe eight experimentgour primitives, two AVSD$, Monte
to be estimated; in Sec. 5.4 we examine the effects of Carlo runs were continued until we had obtained 500 trials
primitive dimension mismatch on algorithm performance. in which the primitive was detected and estimated to be the
For each target described, we generated a superset otorrect type.
2736 XPatch images—one for each viewing angle on a  Table 3 illustrates the relative observability of the primi-
2.5-deg elevation/azimuth grid extending in elevation from tive types. Trihedrals and tophats have broad angular re-
5 to 50deg and in azimuth from O to 357.5deg. For each sponses and are easily detected by the algorithm; dihedrals
Monte Carlo run, we selected a random subset of images toand cylinders have responses largely confined to a single
give an average view sampling dendi¥/SD) of either 10 azimuthal plane and are more difficult to detect. The dihe-
or 20 deg, i.e., a random subset containing exactly enoughdral is much shorter than the cylindeee Table Rand thus
images to create a 10-deg gri#l80 imagey or a 20-deg has a much broader out-of-plane elevation respofise-
grid (54 images if the images were equally spaced, and counting in part for the greater detectability of the dihedral.
corrupted each image with independé&atlistributed clut- It is also apparent from Table 3 that the type classification
ter as described earlier. performance of the algorithm is excellent: in almost every
. - trial in which the primitive is detected, its type is correctly
5.1  Single-Primitive Targets identified. This suggests that the limited type information
Our first set of experiments details the performance of the provided by the even-bounce/odd-bounce discriminator in
algorithm on four targets, each consisting of a single primi- the data extraction stage, as discussed in Sec. 2.2, is not a
tive with a base amplitude of 10 dBsm. This serves to dem- significant impediment to type estimation.
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Table 3 Single-primitive targets: model order and type confusion statistics.

model order

- fraction
AVSD target P et overfit type confusion spurious
10 deg trihedral 1.000 0.000 [1.000 0.000 0.000 0.000] 0.000
10 deg tophat 1.000 0.000 [0.000 1.000 0.000 0.000] 0.000
10 deg dihedral 0.721 0.000 [0.000 0.000 0.998 0.002] 0.002
10 deg cylinder 0.490 0.000 [0.000 0.000 0.021 0.979] 0.002
20 deg trihedral 0.948 0.000 [0.990 0.000 0.006 0.004] 0.000
20 deg tophat 1.000 0.000 [0.000 1.000 0.000 0.000] 0.000
20 deg dihedral 0.185 0.000 [0.035 0.000 0.933 0.032] 0.000
20 deg cylinder 0.109 0.002 [0.030 0.000 0.004 0.966] 0.026

Table 4 presents the error statistics for the continuous match betweeis,: and the XPatch-predicted scattering re-
. . . |
parameters. Base amplitude figures are quoted in dBSM.gyonses; which is attributable to several sources including

location and radius in inches, and pose in degrees. Weyhe tormation of theS, as noncoherent sums of individual
break up location and base amplitude statistics into bias and [

covariance to illustrate bias effects described later. We résponse mechanisms as described in Secs. 2.1 and 7, inac-
separate pose results into two components because, alcuracies in the physical optics approximations for basic
though in general three Euler anglesrresponding essen-  Scattering mechanisnig,and XPatch-related shooting-and-
tially to elevation, azimuth, and rotatifh are required to ~ bouncing-rays and facetization effeéts: (A more de-
specify the pose of a primitive, only two angléazimuth tailed analysis of these factors is presented in Ref. Tize

and elevationare required to specify the pose of the tophat base amplitude standard deviation figures indicate that, as
and cylinder due to those primitives’ rotational symmetry. €xpected, the greater observability afforded by a broad an-

The azimuth/elevation root-mean-squared erfBMSE) gular response results in a lower standard deviation. The
statistics correspond to angular separation in degrees besame trend holds for the location and radius statistics.
tween two points on a sphere. The trihedral and dihedral location estimates exhibit a

The amplitude bias exhibited in Table 4 is largely attrib- pronounced bias. This is due to the influence of these
utable to two factors. First is the frequency windowing in- Primitives’ lower-bounce mechanisms described earlier. For
herent in the SAR imaging proceg?sm particular, a primi- instance, although trihedral triple-bounce reflections all ap-
tive’'s brightness in an image is affected by its location in pear to emanate from that primitive’s apexét(see Fig.
the slant plane relative to the pixel centers. In most images 3), trihedral double-bounce reflections appear to emanate
a detected primitive will not project directly onto a pixel from the trihedral creases, and single-bounce reflections ap-
center, resulting in a tendency to underestimate amplitude.pear to emanate from the trinedral plates. The WLSE loca-
In the absence of other effects, it can be shtwhat this tion estimate of Eq(15) [induced by the model of Eq1)]
nominal bias is roughly-0.5 dBsm.(It is possible to cor- is biased by these lower-bounce reflections. In Sec. 5.2 we
rect for this factor simply by adding 0.5 to the amplitude discuss an approach to removing this bias, if desired. Ad-
estimates produced by the algorithm, although we have notditionally, although it is not illustrated in Table 4, the radius
done this in the presentation of the results in TabjeThe errors are correlated with the location errors due to layover
second factor influencing amplitude bias is the slight mis- effects.

Table 4 Single-primitive targets: base amplitude, location, pose, and radius statistics.

62 error [dBsm] 6% error [cm] 6° rmse [°]
6" rmse

AVSD target bias stdev | bias|| Jtr(cov) azl/el rot [cm]
10 deg trihedral 0.156 0.494 6.233 3.025 2.169 7.786 —
10 deg tophat —1.382 0.191 0.409 1.288 1.329 — 1.056
10 deg dihedral —0.148 1.114 11.511 14.171 10.592 7.471 —
10 deg cylinder 0.080 1.625 0.410 22.169 1.286 — 6.629
20 deg trinedral —0.000 1.035 5.559 6.831 9.175 22.363 —
20 deg tophat —1.298 0.365 0.446 2.175 2.388 — 1.730
20 deg dihedral —0.052 1.840 7.591 31.417 14.285 11.644 —
20 deg cylinder 0.455 2.771 1.786 30.845 3.433 — 9.980
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Table 5 Single-primitive targets: trihedral and dihedral location es- Table 6 Multiple-primitive target: primitive locations and dimen-
timate refinement. sions.
unrefined location refined location primitive .9,” [em] 62 [dBsm] dimensions
error [cm] error [cm]
o _ ' trihedral [-457 —457 0] 23.75 a=28.00 cm
AVSD primitive |bias|| Vtr(cov) ||bias|| Vtr(cov) tophat [~457 457 0] 10 r=18.39 cm,
10deg  trihedral  6.233 3025 0576  4.792 _ h=36.78 cm
10deg  dihedral 11511 14171  3.259  18.012 dihedral  [45.7 a7 0 25 a=33.30 cm,
b=33.30 cm
20 deg trihedral 5.559 6.831 0.735 12.652 cylinder  [45.7 —-457 0] 10 r=17.70 cm,
20deg dihedral 7.591 31.417 3.671 38.742 h=53.04 cm

The pose results of Table 4 demonstrate that primitive
pose can in general be accurately estimated to a finer granu
larity than provided by the AVSD. The dihedral pose errors,
which are larger than those observed for the other primitive
types, are attributable to the near-invariance of the dihedra
response to certain changes in the Euler-angle foske
relatively large trinedral rotational error stems from the
near-invariance of the trihedral response to changes in the
rotation Euler anglé:®

estimate is accurate, this will correct the bigsough po-
tentially at the cost of a higher overall RMS location ejror
The results of this postprocessing on the trials of the
Iprevious section are presented in Table 5. The trihedral lo-
cation estimation refinement achieves a greater fractional
reduction in bias than the dihedral location estimate refine-
ment due to the greater accuracy of the trihedral pose esti-
mates(see Table % For similar reasons, the refinement is
more successful for the 10-deg AVSD than for the 20-deg

5.2 Reducing Trihedral and Dihedral Location AVSD.

Estimate Bias

As described in the previous section, the location estimates®-3 Multiple-Primitive Target

of the trihedral and dihedral, formed according to Etp) The results of Sec. 5.1 demonstrate the performance of the
at each iteration, are biased. The direction and magnitude ofalgorithm on single-primitive targets, for which the under-
the bias will depend on the primitive orientation and di- lying data association problem faced by the algorithm is
mensions. If we seek an unbiased location estimate, wequite simple. In this section, we examine algorithm perfor-
could modify the model of Eq.1) to take into account the  mance when faced with a more challenging data association
different reflection points of the lower-bounce mechanisms. problem, specifically for a multiple-primitive target. We
Unfortunately, this introduces a dependence on primitive would expect the error statistics obtained for each primitive
dimension and pose, and complicates the maximization atin a multiprimitive target to be no better than those of Sec.
each iteration. We opt for a computationally simpler ap- 5.1, which were obtained in the absence of confusing
proach that is in effect a postprocessing step to be imple- primitives. Similar statistics would indicate that the algo-
mented after the EM iteration has converged. Specifically, rithm is successfully solving the implicit data association
at the conclusion of the iteration we have available a final problem.

estimate of primitive poséfrom the final M step and a The multiple-primitive target we examine here consists
final set of report-to-primitive correspondence probabilities of four primitives, one of each type, centered at the corners
(from the final E step We use the E-step probabilities and of a 91.4-cm square. The dimensions and locations of these
M-step pose estimate to form a new WLSE estimate of primitives are given in Table 6. The cylinder and tophat are
primitive location based only on those reports from relative the same size as those of Sec. 5.1; the dihedral and tophat
viewing angles at which the highest bounce response domi-are larger(but still smaller than many dihedrals and trihe-
nates, as deemed by the M-step pose estimate. If this posealrals that might be encountered in targets of interdse-

Table 7 Multiple-primitive target: model order and type confusion statistics.

target fraction
AVSD component P et type confusion overfit spurious
10 deg trihedral 1.000 [1.000 0.000 0.000 0.000]
10 deg tophat 1.000 [0.000 1.000 0.000 0.000]

. 0.002 0.008
10deg dihedral 0.950 [0.000 0.000 0.998 0.002]
10 deg cylinder 0.406 [0.000 0.000 0.045 0.955]
20 deg trihedral 1.000 [1.000 0.000 0.000 0.000]
20 deg tophat 1.000 [0.000 1.000 0.000 0.000]

. 0.000 0.016
20 deg dihedral 0.460 [0.026 0.004 0.953 0.017]
20 deg cylinder 0.082 [0.024 0.000 0.024 0.952]
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Table 8 Multiple-primitive target: base amplitude, location, pose, and radius statistics.

62 error [dBsm] 6x error [cm] 6° rmse [°] )
target 0} rmse

AVSD component bias stdev  |bias|  \ftr(cov) azlel rot [cm]
10 deg trihedral —-0.617 0.495 7.635 2.395 2.978 17.866 —
10 deg tophat —-1.119 0.222 0.339 1.407 1.810 — 1.126
10 deg dihedral —1.696 2.411 7.227 12.647 11.337 6.934 —
10 deg cylinder 0.154 1.507 1.190 21.713 1.209 — 7.553
20 deg trihedral —0.900 0.959 7.236 4.821 4,911 25.839 —
20 deg tophat —1.026 0.374 0.531 2.480 2.683 — 1.923
20 deg dihedral —2.873 4.045 7.368 21.776 13.483 15.391 —
20 deg cylinder 0.517 2.567 2.718 29.500 1.869 — 7.480

cause the cylinder and tophat are the same size as those ofned for the dihedral because dihedral size does not appre-
Sec. 5.1, we can directly compare the results for theseciably affect the dihedral response’s pose invariatde
primitives between the two sections. scribed in Sec. 5)2 The trihedral rotational errors have

We performed 500 Monte Carlo runs for both a 10-deg worsened because the larger trihedral dimensions here
AVSD and a 20-deg AVSD for the multiple-primitive tar- make the single- and double-bounce reflections less promi-
get. The results are presented in Tables 7 and 8 in a formatent and the overall response more invariant to changes in
similar to that of Tables 3 and 4Qverfit and spurious-  rotation. Finally, the larger amplitude biases and standard
estimate results in Table 7 are presented for the target indeviations seen here are attributable to the initialization of
ensemble rather than for individual primitive3he tophat base amplitude as a maximum report amplitude, which
and cylinder results here compare favorably to those of Sec.tends to underestimate base amplitude. In some runs this
5.1, suggesting that the algorithm is overcoming the more underestimate persists to convergence.
challenging data association problem. In particular, tophat
detection and type-estimation performance are unaffected,5 4  primitive Dimension Mismatch
and tophat continuous-parameter error statistics are only
slightly worse; cylinder statistics are generally of the same
quality or slightly worse than those observed in Sec. 5.1.
(For the 20-deg AVSD experiment in particular, the small
number of detections limits the statistical significance of
the cylinder result$.Most marked is the decrease in cylin-
der detectability in the 10-deg AVSD experiment, sugges
ing that the initialization suffers from the presence of more
primitives.

Comparison of the dihedral and trihedral statistics here
to those of Sec. 5.1 demonstrates the impact of greater
primitive observability. One marked change is the im-
proved detectability of the larger dihedral. Also apparent

The scattering models used to generate the results of the
previous sections were all constructed using primitive di-
mensions perfectly matched to the primitives being esti-
mated. In practice this is not possible. A model generation
algorithm will have to contend with unknown dimensions
t. and multiple-sized instances of each primitive class. As de-
scribed in Sec. 2.1, there are several ways to deal with this
issue, ranging from the method we have chosen to the con-
ceptually optimal but computationally demanding approach
of including all relevant primitive dimensions in the target
parameterization. In this section, we examine the impact of
primitive dimension mismatch on algorithm performance
and address the question of whether the nominal-dimension

are the smaller location covariances of both primitives. h taken h : ici | h ¢
(The location estimates can be refined according to the pro-2PProach taken here is suificient to envelop the range o
henomenology observed from primitives of different

cedure described in Sec. 5.2; the results of that refinementpizes

are displayed in Table PPose errors have slightly wors- _— . . -
splayed | P ve slightly w All four primitive scattering functions depend on primi-

tive dimensions(see Sec. )/ This dependence is most
Table 9 Multiple-primitive target: trihedral and dihedral location es- marked for the _d'hedral and Cy“nder' whose primary ',’e',
timate refinement. sponse mechanisms are fundamentally affected by primi-
tive height; the dependence is relatively minor for trihedrals

unrefined location refined location
error [cm] error [cm]
. . Table 10 Dimensions of three dihedrals.

AVSD primitive bias|| ytr(cov) ||bias|| Vtr(cov)

10deg  trihedral  7.635 2395 2448 2288 dihedral 67 [dBsm] dimensions

10 deg dihedral 7.227 12.647 4.729 11.750 short 25 2=53.04 cm, b=20.90 cm
20 deg trihedral 7.236 4.821 2.895 4.487 square 25 a=33.30 cm, b=33.30 cm
20 deg dihedral 7.368 21.776 4.358 24.013 tall 25 a=20.90 cm, b=53.04 cm
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Table 11 Matched primitive dimensions: dihedral estimation results.

62 error [dBsm] 6* error [cm] 6P rmse [°]
dihedral Pet Py bias stdev || bias|| Vtr(cov) az/el rot
short 1.000 1.000 —3.218 1.804 7.394 12.781 10.394 8.274
square 0.953 0.996 —2.033 2.338 5.764 13.890 11.713 9.281
tall 0.822 0.960 —1.242 2.746 10.593 11.896 13.675 7.714

and tophats, whose primary response mechanisms do no6 Conclusion
vary with primitive dimension. We limit our investigation
here to the effects of dihedral dimension mismatch. The f a flexible f K for th tructi 3Dt i
effects of cylinder dimension mismatch can be expected to of a flexible framework for the construction o arge
be similar, due to the similar dependence of the dihedral Models from SAR data. The research presented here estab-
and cylinder shaping functions on primitive dimension. The lishes a formalization for the general problem of model
effects of mismatch on trihedral and tophat estimation per- 9eneration and describes a computational engine that pro-
formance can be expected to be less marked than thoseides a foundation for further development toward more
observed for the dihedral; due to the trihedral's and tophat’s advanced, less restrictive model generation. There are three
secondary dependendee., only observed in the lower fundamental factors to be weighed when considering any
bounce mechanism responses primitive size. extension to this basic framework: the improvement in
Table 10 presents dimensions of three 25-dBsm dihe- physical fidelity, the effect on algorithm performance, and
drals (short, square, and talleach with different plate di-  the impact on algorithm complexity. Greater physical fidel-
mensions. To establish a benchmark against which to gaugey wiil generally be rewarded with better performance, but
the effects of size mismatch, we compiled estimation per- i giso be attended by an increase in complexity. An ex-
formance statistics for each of these three dihedrals, UsiNgiansion that achieves a slight improvement in performance

dihedral scattering models constructed from the actual di- o ; . . .
hedral dimensions and other primitives’ scattering models at the cost of a significant increase in algorithm complexity

constructed from the dimensions in Table 6. The results ' of questionable practical value. e
from 500 Monte Carlo runs with a 10-deg AVSD are pre- __1here are several sources of loss of fidelity in our algo-
sented in Table 11 in a format similar to that of previous fithm. Firstis an idealized and limited set of primitive re-
sections.(For the sake of compactness, type estimation re- SPonses. Greater fidelity could be attained by broadening
sults have been abridged to a sinflg statistic, denoting  the set of canonical responses and expanding the primitive
the fraction of runs in which type was estimated correctly Parameterization to accommodate noncanonical or nonideal
as a dihedral, conditional on detectipfhe variation in the ~ primitives. As described before, this should be done with
statistics for each of these dihedral sizes is primarily a re- consideration of the achievable improvement in perfor-
sult of the broader out-of-plane responses of shorter dihe-mance and the required increase in complexity. For in-
drals, making them easier to detect. stance, the analysis of Sec. 5.4 suggests that algorithm per-
Table 12 presents results from two experiments in which formance is relatively robust to mismatches in assumed and
modeled dihedral dimensions are mismatched to the actualycryal dinedral dimensions: broadening primitive param-
primitive dimensions. In both cases the dihedral scattering eterization to include primitive dimensions might not be
model was constructed using the square dihedral; the aCtu""brudent because it would complicate the M step of the it-
primitive, however, was either the short or tall dihedral. eration with limited gain in algorithm performance. It is

Comparing the results of Table 12 to those of Table 11, itis likely that algorithm performance is less robust to changes

apparent that size mismatch has a relatively minor effect on. o e .
performance for this example. This is an indication that a I" Primitive geometry(e.g., deviations from 90-deg trihe-
single instance of a dihedral might suffice to serve as an dral and dihedral anglé$ and thus this area is a suitable
exemplar for the entire class of dihedrals, and, more gener-direction for extension. One approach to accommodating
ally, that the nominal-sizing approach used here could suf- honcanonical primitive responses is proposed in Ref. 12.
fice to capture the behavior of primitives of a range of  Another limitation in fidelity is imposed by the assumed
dimensions without significant degradation in performance. independence of report parameters as described in Secs. 2.2

The principal contribution of this work is the development

Table 12 Mismatched primitive dimensions: dihedral estimation results.

62 error [dBsm] 6% error [cm] 6° rmse [deg]
dihedral P get Py bias stdev |bias| Jtr(cov) az/el rot
short 0.990 1.000 —0.207 2.010 6.784 12.147 10.167 7.894
tall 0.872 0.988 —4.062 2.799 11.741 12.715 14.182 9.850
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(a) trinedral triple-bounce response component (b) trihedral double-bounce response components
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Fig. 5 Construction of trihedral response model from multiple response mechanisms.

and 2.3. For instance, the presence of single-, double-, andzation of the Gaussian model for extracted scalar amplitude
triple-bounce response mechanisms in the overall trihedrala, ; would be to model the vector of extracted featuags
response suggests a correlation betwiggr(an even-/odd-  as a Gaussian whose mean vector and covariance matrix
bounce classificatigrand x, ; (which projects from a dif-  would need to be estimated from data or simulations.
ferent point for each response mechanisMrelaxation of Another source of fidelity loss is the omission of scat-
Assumption 5 to model such a dependence would increaseterer interaction effects formalized by Assumptions 2 and 3.
physical realisn{though with unknown effect on algorithm  In particular, obstruction and multiple-primitive reflections
performancgand would likely not require a significant in-  are not modeled and are likely to have an impact on algo-
crease in algorithm complexity: the E step could proceed rithm performance. Capturing multiple-primitive reflec-
largely as before, and any potential complication to the tions, which arise as a result of sophisticated interactions
maximization would be largely mitigated by the between scatterers, would likely require fundamental modi-
partitioned-maximization ECM approaéhdescribed in  fications to the current framework and an increase in algo-
Sec. 3.3. Fidelity could also be improved by utilizing a rithm complexity due to the coupling of primitive calcula-
peak extractor capable of super-resolving scatterers, as distions in both the E and M steps of the algorithm.
cussed in Sec. 2.2, or by performing a less severe compresObstruction involves less complicated interactions and re-
sion of the raw SAR imagery to obtain the observable fea- quires some description of how primitive detections are
tures. In particular, instead of passing on a scalar amplitudecoupled within an image and between images. An extension
for each extracted peak, we can imagine passing on a vecthat accommodates obstruction without necessitating a de-
tor of continuous descriptors corresponding to a compres- parture from the independent primitive-by-primitive calcu-
sion of the phase history associated with the peak. A usefullations of the E and M steps is proposed in Ref. 12.

way in which to think about such a feature vector is as the
set of coefficients in a finite series approximation to the
phase history: at one extreme we have a single-term series,
whose sole coefficient is simply peak amplitude, while at
the other extreme the coefficients would simply correspond
to all of the samples of the phase histdor an invertible
transform theregf While conceptually straightforward,
there are two principal challenges in developing such an
extension: first, choosing a finite series form that captures
information for our purposese.g., using bases such as
those proposed by Potter and Mdses by McClure and
Carirf), and second, determining the probabilistic model Fig. 6 Rectangular plate. The notation here is identical to that of
for such a feature vector. In particular, the natural generali- Fig. 3.

(¥,0p)
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Table 13 Physical optics RCS approximations for basic scattering mechanisms.

response mechanism (amplitude) - (pol) - (shaping function)
K&\ . . . .
rectangular plate p % [cos i cos ¢ sinc(kob siny,) sinc(koa cosy, sing, )12
2k(2132b2 ol ' LT ’ m B H ! ! ?
dihedral double-bounce p B V2 cosy sin 7 | % 7 || sinc(kob sin ) Wio y2)(j )
1 ’4/,'m,' 2 , , n;
3K2a 3T Wio,z121( i 1) Wio,mi2) (i 1) ms 7,
trihedral triple-bounce ( ° ) Rl Lo
m 1 n; 2 , , n;
3| I\ 4— m Wio,7121( i 1) Wio,z121(¥i 1) mi>5|
1

where (/;,m;,n;)=S0ryin max(SiN ¥, COS ¢, Sin ¢/, COS ¥, COS P/ )
(kotM?) - %[ cos i sinc(koh sin ¢ )T

2 sin(% - )r

cylinder shaft

(2kort?) - Y2

T
tophat double-bounce Yk~ 4

7 Reflector Primitive Scattering Models We construct all primitive response models from sums

As indicated in Sec. 2.1, our log-RCS response models are0f five basic component response mechanisms: a rectangu-

based on physical optics. Physical optics enables characterl@’ Plate, a dihedral double-bounce mechanism, a trihedral

ization of the RCSs of a wide variety of primitives as func- giplgibobunce mechz;:nis_m, a r(]:ylilnder fshaft, ar;]d a tophatd
tions of the illuminating frequency, relative viewing angle double-bounce mechanism. The latter four mechanisms an

Y ; ) their coordinate axes are clearly pictured as components of
((el\eéat(@é)e s;griert]:rr;d;g: Z;i'hzifpgﬁr?oeﬁ&pggiicgls are the primitives of Fig. 3; the rectangular plate is pictured in
illustrated in Fig. 3. Each of these primitives embodies Fig. 6. The physical optics RCS approximations for the

. ; . ; component response mechanisms can each be written as the
multiple response mechanisms. For instance, a trihedral ca

produce not only a triple-bounce response but also Single_r})roduct of three_terms; a size-dependent amplitudg describ-
ing the overall intensity of the response, a scaling term

and double-bounce responses, and a cylinder can produce %ncompassing the effect of the given antenna polarimetry

response not only from its shaft, but also from its flat ends. ;\'o 5 "and a shaping function describing the variation in
Figure 5 depicts the contribution of individual response . ) I
response as a function of the relative viewing angle.dget

mechanisms to the overall trihedral response model: thedenote the wavenumber of the illuminating freauency. let
contributing components include a triple-bounce reflection ~. . . . g freq Y
sinc(x) =sin(x)/x, and define a window function

mechanism[Fig. 5a)], three double-bounce reflection
mechanisms produced by pairs of the trihedral’s plpfes.
5(b)], and three single-bounce reflection mechanisms pro-
duced by the individual platefFig. 5(c)]. Although the |1 asxsp, .
three individual double-bounce components of Figp) Zre [ )(X) = 0, otherwise. 17)
identical except for unique Euler angle orientations, as are

the three single-bounce components of Fir)5the pro-

jection of azimuth and elevation coordinates onto a rectan-

gular array distorts each response differently. These re-Physical opths thenOIyieIds the RCS approximations given
sponses are summed to yield the overall response in Fig.in Table 13>° The ¥P° terms in each row are polarimetric
5(d). Azimuth and elevation are defined as in Fig.(Bhe scaling coefficient$?4If fully polarimetric measurements
trihedral dimension used to generate the responses of Fig. 5re available and the RCS is taken to be the magnitude of

is 28.0 cm, as in Table B. the polarimetric vectofHH 2HV VV], then y/°'=2

Table 14 Primitive scattering model composition.

primitive .9/! 62 components of 59§(¢f,k:¢f,k) relevant dimensions

3Kk2a% one trihedral triple-bounce response
trihedral 1 10 |0910( 0 ) three dihedral double-bounce responses a

™ three rectangular-plate responses
5 one tophat double-bounce response
tophat 2 10logyo(2korh?) one cylinder-shaft response r.h
. 2k3a?b?|  one dihedral double- bounce response

dihedral 3 10 l0gso p two rectangular-plate responses a,b
cylinder 4 10 log;q(korh?) one cylinder-shaft response r.h
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“XPatch: a high-frequency electromagnetic scattering prediction code
using shooting and bounding rays,” iflargets and Backgrounds:
Characterization and RepresentatidV. R. Watkins and D. Clement,
Eds., Vol. 2469, pp. 266—278.995.

21. User's Manual for XPatchT version 2.4, DEMACO,

- ; . paign, IL(199)).

As described in Sec. 2.1, our scattering models are 22. L. M. Novak, M. C. Burl, and W. W. Irving, “Optimal polarimetric

processing for enhanced target detectidEEE Trans. Aerosp. Elec-

formed as noncoherent sums of components of Table 13~ PO* SySta0L). 2342441993,

With empirically ch_osen nominal primitive dimenSiO_ns- R_e' 23. W. C. Anderson, “Consequences of nonorthogonality on the scattering
calling Eq.(3), Cpol IS taken to be the log of the polarimetric properties of dihedral reflectors|EEE Trans. Antennas Propag.P-

; . 35(10), 1154—11591987.
scaling ConStan'Sa} is taken to be the log of the sum of the 4, J. R. Huynen, “Phenomenoloigcal theory of radar targets,” Ph.D. the-
appropriately rotated and scaled component response shap- S Delft University of Technology, The Netherland70.
ing functions, and? is taken to be the log of the amplitude

scaling factor that ensure&s;: will have a maximum value
|

of 0 dBsm. Each primitive'ss?, the mechanisms that we
use to construct itS,:, and the relevant dimensions affect-
|

for all components. If only single-polarimetric data are
available, they will take on values between 0 and*#2*

The shaping functions of Table 13 are all scaled to give a

maximum value of 1. Inc., Cham-
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