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Abstract. A key issue in the development and deployment of model-
based automatic target recognition (ATR) systems is the generation of
target models to populate the ATR database. Model generation is typi-
cally a formidable task, often requiring detailed descriptions of targets in
the form of blueprints or CAD models. We propose a method for gener-
ating a 3-D target model directly from multiple SAR images of a target
obtained at arbitrary viewing angles. This 3-D model is a parameterized
description of the target in terms of its component reflector primitives.
We pose the model generation problem as a parametric estimation prob-
lem based on information extracted from the SAR images. We accom-
plish this parametric estimation in the context of data association using
the expectation-maximization (EM) method. Our model generation tech-
nique operates without supervision and adaptively selects the model or-
der. Although we develop our method in the context of a specific data
extraction technique and target parameterization scheme, our underlying
framework is general enough to accommodate different choices. We
present results demonstrating the utility of our method. © 2002 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1417493]
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1 Introduction

In recent years there has been a surge of interest in mo
based automatic target recognition~ATR! algorithms for
use with synthetic aperture radar~SAR! imaging systems.
The broad utility of SAR as an imaging methodology
well known, and SAR imaging techniques and syste
have been extensively documented.1,2 The effectiveness o
SAR as a remote sensing tool has motivated research
the development of model-based ATR systems.3,4 Model-
based ATR systems identify targets by comparing ima
features to classification hypotheses generated from a d
base of physical target models. The generation of ta
models to populate this database is a problem that is ce
to the implementation of any model-based ATR system3

We present a framework for producing a thre
dimensional target model from the multiple SAR images
a target. Our models consist of spatial collections of refl
tor primitives such as cylinders, tophats, dihedrals, and
hedrals, each of which is described in terms of a handfu
parameters, including a discrete index indicating basic s
tering type and several continuous parameters including
cation, pose, and other information relevant to describ
the scattering signature of the overall target.4,5 Such reflec-
tor primitive models offer compact representations of ma
targets and are well-suited to the feature-driven philoso
of model-based ATR. In particular, reflector primitive mo
els are not only more compact than full facetization
150 Opt. Eng. 41(1) 150–166 (January 2002) 0091-3286/2002/$15
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CAD models and potentially more straightforward to ge
erate from SAR imagery, but also allow statistical unc
tainty and variability to be modeled directly in featu
space. Additionally, such models couple physical releva
to predictive utility in ATR, facilitating the model manipu
lation and component articulation required to form class
cation hypotheses.

Our framework entails estimation of the number of sc
terers and their descriptive parameters based on the
served set of SAR images. In principle the optimal way
do this is to use all of the available imagery to perform t
parameter estimation directly. Note that the explicit inc
sion of location as one of the parameters describing e
primitive implies that the model estimation procedure m
deal with establishing a correspondence between each
tulated primitive and the observed scattering response
all of the SAR images. In principle, the optimal way to d
this is to use all of the SAR images directly to establi
these correspondences at the same time that the param
of each primitive are estimated. However, because of
complexity of such a task, the fact that our ultimate obje
tive is a low-dimensional description of the target as a
of primitives, and the fact that model-based ATR syste
already operate in this manner, we propose to view
estimation problem as a two-step procedure. Each SAR
age is first compressed into a set of augmented detect
consisting of relevant information about significant scatt
ing responses in each image, including location and ot
.00 © 2002 Society of Photo-Optical Instrumentation Engineers
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Fig. 1 Target model generation block diagram.
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data extracted from the individual images or phase his
ries. These compressed representations are then fus
estimate the 3-D locations and characteristics of the ta
primitives. This framework offers great flexibility in th
choice of a compression scheme, with possibilities rang
from fine-grained extractions, in which the compression
each SAR image involves keeping a great many basis fu
tions that capture most of the energy in the raw image
more coarse-grained representations, in which only a sm
number of dominant scatterers are kept from each ima
with only a few parameters describing each response
introduce our framework and to highlight representatio
commonly used in ATR, we focus here on a parameter
tion at the coarser end of this spectrum. This choice a
highlights the importance of the correspondence prob
mentioned previously.

The major contribution of this paper is to describe
systematic formalism for model generation from multip
SAR images and to provide an initial demonstration of t
approach in a constrained environment. In particular,
clarity of presentation, the reflector primitive models w
employ here to illustrate and exercise our formalism are
limited extent and variability, and the features we extr
from the SAR images are relatively basic. Additional
there are several places in which we make certain idea
tions or opt for a suboptimal implementation for compu
tional reasons. However, the methodology we present
only is extendible to much richer environments, but a
provides a clear audit trail for analyzing the effect on alg
rithm performance and complexity of removing idealiz
tions and approximations. In the next section, we pres
our formulation of the target model estimation proble
and in Secs. 3 and 4 we describe our application of
expectation-maximization~EM! method to its solution and
a modification that enables us to select model order ad
to
t

-

l
,

-

t

t

-

tively. In Sec. 5 we present experimental results illustrat
the performance of our algorithm. Section 6 concludes w
a brief summary and discussion of several of the most
nificant extensions of our framework to be pursued.

2 Problem Formulation

A block diagram representation of our approach to 3-D t
get model estimation is depicted in Fig. 1. A target is o
served through a set ofK SAR images. Each of these im
ages corresponds to a particular viewing geometry,
illustrated in Fig. 2: each imagek is characterized by a
line-of-sight vector from the center of the synthetic apertu
to the center of the target region being imaged. The azim
fk and elevationck defining this line-of-sight vector in
terms of a fixed ground frame of reference are arbitrary;
assume each image has been formed at a squint ang
90°. ~Extension of our approach to allow arbitrary squi
angles is straightforward.! The synthetic aperture along th
platform motion vector and the line-of-sight vector defi
the slant plane, the imaging plane for the SAR image.2

As indicated in Fig. 1, each of theK SAR images is
processed to extract a set of observed features, which
then fused to produce a 3-D target model. The framew
depicted in Fig. 1 is quite flexible. For instance, we cou
consider modeling the target as a spatially varying scat
ing medium and use a trivial data processing stage
simply passes on each complete SAR image to the d
processing module, which would then bear the full burd
of inverse scattering. However, as indicated in the introd
tion, we have in mind a much more constrained appro
that restricts our description of the target to focus on va
ables that are most observable and of significant interes
model-based ATR.
Fig. 2 Imaging geometry and the slant plane for image k.
151Optical Engineering, Vol. 41 No. 1, January 2002
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Fig. 3 Reflector primitives: trihedral, tophat, dihedral, and cylinder. Relative elevation c i ,k8 and azimuth
f i ,k8 are determined by the absolute viewing elevation ck and azimuth fk and the pose of primitive,
indicated by the orientation of its local axes; primitive dimensions relevant to physical optics RCS
models are indicated.
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The principal goal is the design of the data fusion mo
ule in Fig. 1. This requires specification of exactly what w
wish to estimate~i.e., the parameterization of our targ
models! and how the features serving as input to this mo
ule are related to the quantities to be estimated. The la
step involves modeling both the SAR image collection p
cess and the subsequent data processing that produce
observable features on which the fusion module will op
ate. We describe the notation and basic assumptions d
ing the problem in Sec. 2.1, and then present our cho
feature extraction procedure in Sec. 2.2. We then prese
measurement model in Sec. 2.3 that relates the observ
features~the data sets in Fig. 1! and the 3-D target mode
parameters to be estimated.

2.1 Target Models: Assumptions and Notation

Our target models consist of collections of reflector prim
tives, each of which is described by a small set of para
eters that completely specify the scattering behavior of s
a primitive given any imaging geometry. As we indicat
previously, we restrict attention to a comparatively co
strained set of primitives, each of which can be complet
described for our purposes by a short vector of parame
In particular, a target model will be specified by the numb
of primitives N comprising the target and a vector of p
rametersui associated with each component primitivei
51,...,N. In general, we can express this vector asui

5@u i
t ,u i

x ,ui
d#, whereu i

t is an integer index designating th
primitive as one ofnt canonical primitive types,u i

x is the
3-D location of the primitive, andui

d is a generic vector
parameter corresponding to a set of continuous-valued
scriptors that, along withu i

t andu i
x , completely specify the

log-amplitude scattering response or radar cross sec
~RCS! of the primitive from any viewing angle.5,6 ~This
general parametric formulation for phenomenological m
neering, Vol. 41 No. 1, January 2002
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eling of scatterers in SAR images is conceptually similar
those used elsewhere, e.g., in Refs. 7–9. We will denote
log RCS observed from a primitive parameterized byui and
viewed from elevationc and azimuthf as A(ui ,c,f),
which we typically quote in dBsm. If polarimetric measur
ments are used, we take the scalarA(ui ,c,f) to be the
2-norm of the magnitude of the polarimetric vector.

We constrain the set of scattering types to a small cl
of idealized primitives consisting of trihedrals, tophats,
hedrals, and cylinders~so thatnt54), depicted in Fig. 3;
we assign type indices 1 through 4 to these primitives,
spectively. For these primitives,ui

d consists of either two or
three parameters: an overall base amplitudeu i

a related to
the physical size of the scatterer, a poseu i

p indicating the
orientation of the scatterer, and a radius of curvatureu i

r for
radially symmetric primitives including tophats and cylin
ders. Each primitive’s locationu i

x is defined to correspond
to the origin of the primitive’s local axes, as depicted
Fig. 3. Primitive pose indicates the orientation of these a
with respect to the fixed ground-based coordinate system
terms of three Euler angles.10 Primitive pose and the abso
lute viewing angle of imagek together define a relative
viewing elevationc i ,k8 and azimuthf i ,k8 for each primitive,
as depicted in Fig. 3.

The complete vectorui provides a concise yet accura
description of a primitive’s appearance in an arbitrary SA
image. Locationu i

x and radius of curvatureu i
r ~for those

primitives for which it is defined!, along with the viewing
angle, determine the apparent location of the primitive
the slant plane.1,6 In particular, the apparent location of
primitive in an SAR image is determined essentially by
projection of its apparent 3-D reflection point into the 2-
slant plane. For trihedrals and dihedrals, this apparent
flection point coincides withu i

x for most viewing angles;
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for radially symmetric primitives such as cylinders a
tophats, the apparent reflection point is always upra
from u i

x and migrates around the surface of the primitive
the viewing angle varies. We thus model the location
primitive i in imagek as

pk~ui !5H Hku i
x , u i

tP$1,3%,

Hku i
x2F1

0Gu i
rcosc i ,k8 , u i

tP$2,4%,
~1!

wherec i ,k8 is the relative viewing elevation as pictured
Fig. 3, and whereHk is the 233 ground-to-slant-plane
transformation matrix for imagek:

Hk5Fcosck cosfk cosck sinfk 2sinck

2sinfk cosfk 0 G . ~2!

The model of Eq.~1!, while accurate for most primitives
viewed from most angles, will be inaccurate for primitiv
viewed at angles at which secondary reflection mechani
dominate and the apparent specular reflection point d
not correspond tou i

x ~e.g., when a single- or double-bounc
response is observed from a trihedral!.

The other components ofu i determine other features o
the observed response: discrete typeu i

t specifies the basic
dependence of the response on viewing angle5 ~and, if po-
larimetric measurements are made, the polarimetric sig
ture vector11!; poseu i

p orients this response by rotating it t
correspond to the orientation of the primitive; base am
tudeu i

a scales the response intensity according to the ph
cal size of the primitive. In particular, physical optics pr
vides expressions for the RCS of each primitive as
product of a size-dependent amplitude term and a uni
type-dependent shaping function capturing the depende
of RCS on a relative viewing angle and size.5 Our log-RCS
models are based on these physical optics results and
the form

A~ui ,ck ,fk!5u i
a1Su

i
t~c i ,k8 ,f i ,k8 !1cpol , ~3!

where u i
a encapsulates the fundamental size depende

described by physical optics, whereSu
i
t is the physical op-

tics log-shaping function describing the variation in scatt
ing response in terms of the viewing angle for all primitiv
of typeu i

t , and wherecpol is a polarimetry-dependent term
that encapsulates any effective gain achieved by using m
tiple polarimetric channels. For each primitive type,Su

i
t is

scaled to give a maximum response of 0 dBsm, so thau i
a

will correspond to the maximum single-polarization RC
of the primitive response. The physical optics models
use foru i

a , Su
i
t, andcpol are detailed in Sec. 7.

One complication in the specification of theSu
i
t as in Eq.

~3! is the fact that each primitive’s physical optics shapi
function depends on its dimensions. This dependenc
most pronounced for the dihedral and cylinder, which e
hibit sinc-like elevation responses depending onb and h,
respectively~i.e., those primitives’ heights as depicted
s
s

-

-

e

e

e

-

Fig. 3!. Additionally, primitive responses that compris
multiple reflection mechanisms~e.g., the single-, double-
and triple-bounce response mechanisms of the trihed!
rely on primitive dimensions to determine the relati
phase between each component mechanism’s respo
There are at least three ways in which we can deal w
these dependences. We could simply ignore the size de
dence and base theSu

i
t on nominally chosen dimensions fo

each primitive, even though real scatterers may have sig
tures that deviate from theseSu

i
t. Alternatively, we could

expand the set of canonical primitives to include seve
different-sized instances of each basic reflector type.
nally, we could expand the parameterizationui

d to include
all relevant dimensions for each primitive type and co
struct Su

i
t with appropriate dependences on these dim

sions. For clarity of presentation here we choose the fi
alternative. In particular, we construct ourSu

i
t using empiri-

cally chosen nominal values for each primitive’s siz
These nominal values are used to determine the individ
responses for each primitive’s component reflection mec
nisms, which are then combined via a noncoherent s
~i.e., without regard to the size-dependent relative phase! to
produce the overall modelSu

i
t for each primitive type. Ex-

tensions to the second or third alternatives listed before
conceptually straightforward~although with a computa-
tional cost!. In Sec. 5 we explore to what extent a mismat
between actual primitive dimensions and the nomina
chosen dimensions selected to construct theSu

i
t affects per-

formance.
Before proceeding, we introduce notationu

5@u1 ,...,uN#. ~Note thatu implicitly specifies the model
orderN.! Target model generation in our framework is th
estimation of the vectoru from the data provided by the se
of SAR images. We modelu ~and thusN) as unknown
parameters about which no information is available ot
than that provided by the SAR images.

2.2 Observable Features for Model Generation

We assume that we have multiple spotlight-mode S
images1,2 of the target, formed at arbitrary viewing angle
as depicted in Fig. 2. Each of these images is polarime
so that a vector measurement@HH A2HV VV# is avail-
able at each pixel. Furthermore, we assume that all S
imaging parameters~such as bandwidth, aperture widt
range and cross-range locations of each pixel center,
azimuth and depression to the target center! are known, and
can be related to the absolute ground-based frame of re
ence. Such information could be provided, for instance,
geolocation or global positioning measurements taken
the images are collected, coupled with accurate ranging
positioning of the target.

As previously described in the introduction and in co
junction with Fig. 1, we compress the full set of raw SA
imagery by extracting information from each image prior
the model generation stage. For this purpose we utiliz
simple amplitude-based peak-extraction technique
scribed in detail in Ref. 12. An arbitrary number of inte
sity peaksMk are extracted from each imagek; each peak
j 51,...,Mk is described in terms of three parameters: a 2
153Optical Engineering, Vol. 41 No. 1, January 2002
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slant-plane range/cross-range locationxk, j , a discrete
polarimetric-signature type indextk, j , and a scalar log-
amplitudeak, j . Location and amplitude are obtained usi
a simple subpixel-interpolation procedure, and polarime
signature type is obtained via a generalized likelihood ra
test to distinguish between odd-bounce and even-bou
responses.11 The extracted type is thus a binary variable; w
designate an odd-bounce classification astk, j51, and an
even-bounce classification astk, j52. Note that because tri
hedrals and cylinders are predominantly odd-bounce s
terers, and dihedrals and tophats predominantly ev
bounce scatterers, discrimination between trihedrals
cylinders, or between dihedrals and tophats, is based
dominantly on location and amplitude information. The e
fect of the indistinguishable type measurements for th
primitive classes is investigated in Sec. 5.

We note that the performance of our peak extractor
pends on the resolution of the SAR imaging system.
particular, not only will the quality of the measuremen
depend on the resolution of the sensor, but, more fun
mentally, our amplitude-based peak-extraction techni
cannot distinguish scatterers separated by less than
resolution cell in a given SAR image. Although we cou
use existing SAR feature-extraction techniques capabl
super-resolving scatterers, such as Refs. 8 and 13, we
ploy the simpler amplitude-based peak-extraction techni
to provide a straightforward demonstration of our fram
work and because to its ease of statistical characteriza
Utilization of a different feature extractor would not prese
any conceptual difficulties.

For convenient reference, the three-parameter locat
amplitude/type description of thej th peak of imagek is
called a report and denoted byZk, j . At times it will be
convenient to refer to the collection of reports within
single image or across images. For these purposes we
fine notation for all reports in a single image,Zk

5@Zk,1 ,...,Zk,Mk
#, and notation for all reports in all im

ages,Z5@Z1 ,...,ZK#.

2.3 Measurement Model

In this section we describe the probabilistic model relat
features extracted by the data processor to the target pa
eters that must be estimated from those features. The
certainties in the extracted features come at two levels
granularity, one coarse and one fine. The coarse-level
certainty involves the identity of each measurement: giv
a set of reports extracted from a single SAR image and a
of target primitives, there is no way of knowing with ce
tainty which reports correspond to which primitives. T
fine-level uncertainty involves the stochastic nature of
elements ofZk, j , even given the report’s proper correspo
dence. Compounding the coarse-level uncertainty is the
that, like any detector, the data processor is subjec
missed detections and false alarms, so in general there
not be exhaustive correspondence between the sets o
ports and target primitives. To formalize the coarse-le
uncertainty we introduce a vector of hidden parameterl
that describes the correspondences between reports an
get primitives in concrete terms. In particular, we define
label parameter describing the identity of each reportZk, j
as follows:
154 Optical Engineering, Vol. 41 No. 1, January 2002
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lk, j

5H i , if reportZk, j corresponds to target primitivei ,

0, if reportZk, j is spurious~corresponds to no primitive!.

~4!

We also defineFk to be the number of false alarms i
imagek, i.e., the number oflk, j that equal 0 for a givenk.
Figure 4 presents an illustrative example of the notat
and concepts encapsulated inlk, j . This figure depicts a
scenario involving two target primitives (N52) and three
images (K53).

It is convenient to define a vectorlk collecting the
label parameters for all of the reports in imagek: lk

5@lk,1 ,•••,lk,Mk
#. The vectorl introduced before can be

formally defined asl5@l1 ,•••,lK#. Given knowledge of
l, the uncertainty remaining inZ is the distribution of the
components of each reportZk, j ; this is our fine-level un-
certainty. Characterization of the fine-level uncertainty c
be done conditionally, and the measurement model can
specified as

p~l,Zzu!5p~Zzl,u!p~lzu!, ~5!

a product of the fine-level probability density function~pdf!
and the coarse-level probability mass function~pmf!.
Throughout this work we describe discrete random va
ables and vectors such asl by their pmfs, and continuous
random variables and vectors such asZ by their pdfs, using
the same notationp(O) in both cases.

We make five general assumptions about the relations
of l and Z to u that facilitate the specification of a mea
surement model. The first three of these concern the coa
level uncertainty expressed byp(lzu); the remaining two
concern the remaining fine-scale uncertainty expressed
p(Zul,u). These assumptions are largely justifiable

Fig. 4 Notation example.
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simple physical grounds, and are standard in a variety
data association contexts.14,15These assumptions are as fo
lows.

Assumption 1. False alarms are independent from ima
to image and do not depend onu.

Assumption 2. The detectability of thei ’th primitive in
any image depends only onui and on the viewing angle o
the image; furthermore, missed detections are condition
independent from image to image and from report to rep
given u and are also independent of false alarms.

Assumption 3. Any primitive generates at most one r
port in each image, and any report is attributable to at m
one primitive.

Assumption 4. Reports in a single image and betwe
images are conditionally independent givenu and l,
whether they are detections or false alarms.

Assumption 5. The component measurementsxk, j , ak, j ,
and tk, j comprising each report are conditionally indepe
dent givenu andl, whether the report is a detection or
false alarm.

Together, Assumptions 1, 2, and 3 imply the condition
independence of the label parameter vectors for each
age:

p~lzu!5)
k51

K

p~lkuu!. ~6!

Similarly, Assumptions 4 and 5 imply thatp(Zzl,u) can be
factored as

p~Zzl,u!5)
k51

K

p~Zkulk ,u!

5)
k51

K F)
j 51

Mk

p~xk, j ulk, j ,u! p~ak, j ulk, j ,u!

3p~ tk, j ulk, j ,u!G . ~7!

Although there are situations in which these assumpti
will fail—for instance, obstruction will violate Assumption
2, multiple-primitive reflections will violate Assumption 3
and phenomena that cannot be adequately described i
context of the chosen parameterization of Secs. 2.1 and
could compromise Assumptions 2, 4, and 5—these assu
tions are largely realistic and standard.14,15 In Sec. 6 we
discuss how these assumptions might be relaxed to cap
more sophisticated real-world effects.

To complete the measurement model, we now need o
specify the terms on the right-hand sides of Eqs.~6! and
~7!. The imagewise identity-uncertainty termp(lkuu) re-
quired by Eq.~6! is almost completely determined by As
sumption 3 and the constraints it imposes onlk : no more
thanN of its elements may be nonzero, it cannot contain
same nonzero index twice, and so on. We completep(lkuu)
t

-

e
2
-

e

by assuming a standard Poisson false-alarm model and
fining a probability-of-detection function that depends on
on a primitive’s amplitude in any imagek. In particular, we
write PDk,i8 [PD@A(ui ,ck ,fk)#, where PD is a function
that we assume is empirically estimated by running the p
cessor on characteristic imagery. If there is no systemati
preferential way of ordering the elements oflk , it then
follows that

p~lkuu!5
exp@2gFAV#~gFAV!Fk

Mk!
•)

i 51

N

~12PDk,i8 !

• )
j :lk, jÞ0

PDk,lk, j
8

12PDk,lk, j
8

, ~8!

whereV denotes the sensor volume and wheregFA is the
false-alarm rate, a parameter that we assume is empiric
estimated in the same manner asPD .

Our models for the report parameter densities of Eq.~7!
are conditional on whether the report is a detection or fa
alarm. False alarms are assumed to be uniformly distribu
throughout the SAR images, equally likely to be classifi
as either polarimetric type, and to have an amplitude dis
bution denoted bypFA , which can be estimated from cha
acteristic imagery. For a report corresponding to a detec
of primitive i, we modelxk, j as a Gaussian with mea
pk(ui) and covarianceR, andak, j as a Gaussian with mea
A(ui ,ck ,fk) and variancesa

2 , where R and sa
2 can be

estimated from characteristic imagery. To modeltk, j , we
assume the availability of annt32 confusion matrix$r%,
wherer i , j is the probability that the data processor clas
fies a primitive of typei as having polarimetric signatur
type j, given that the primitive is detected. As with ou
other assumed parameters,$r% can be estimated by pro
cessing training data. To simplify notation in subsequ
expressions, we writerk, j8 [p(tk, j ulk, j ,u)5ru

lk, j

t ,tk, j
for

any detection~i.e., whenlk, jÞ0).
We now have all the required components to spec

p(Zul,u) as in Eq.~7!; this can in turn be combined with
p(lzu) according to Eq.~5! to yield a complete measure
ment model that can be factored intoK product terms, one
for each image. In particular, p(l,Zuu)
5)k51

K p(lk ,Zkuu), where

p~lk ,Zkuu!5

exp@2gFAV#S gFA

2 D Fk

Mk!
•)

i 51

N

~12PDk,i8 !• )
j :lk, j 50

pFA~ak, j !

• )
j :lk, jÞ0

PDk,lk, j
8

12PDk,lk, j
8

•rk, j8

•

expH 2
1

2sa
2

@ak, j2A~ulk, j
,ck ,fk!#

2J
~2psa

2!1/2

• )
j :lk, jÞ0

exp̂ 2
1
2 @pk~ulk, j

!2xk, j #
TR21@pk~ulk, j

!2xk, j #‰

2p~detR!1/2
.

~9!
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3 A Data Association Approach to Model
Generation

The measurement model of Eq.~9! relies on the introduc-
tion of a vector of unobservable label parametersl describ-
ing the origin of each report. This vector provides not on
a convenient device for the specification of a measurem
model, but also a conceptual foothold for the estimation
the target parameters. Specifically, if these label parame
were observable—if report data could be associated ac
images—estimation ofu would be straightforward. This
suggests approaching model generation by way of the
derlying data association problem. There is a large bod
literature describing theory and methods for solving d
association problems in various contexts a
applications.14,16 The chief difficulty facing almost all data
association problems, including the one described here
the combinatorial proliferation of possible correspo
dences. One way to manage the combinatorial explosio
possibilities is to dismiss as infeasible a majority of as
ciations corresponding to extremely unlikely events;
utilize a technique known as gating, to be described la
for this purpose.14 Even with such a simplification, how
ever, the remaining data association problem is still form
dable and requires a powerful tool for solution. The tool
apply is the expectation-maximization~EM! method.16,17In
the following section we briefly describe the EM metho
and in subsequent sections describe its application to
problem of model generation in the framework we ha
constructed.

3.1 Expectation-Maximization Method

The EM method is an iterative procedure for producing
maximum likelihood ~ML ! estimate of parameters whe
there is a many-to-one mapping from a postulated se
‘‘complete’’ data to the set of observed data.16 In data as-
sociation problems, the set of complete data comprises
observed data and the vector of associations—Z and l in
our context. Each iteration of the basic EM method cons
of two steps: an expectation~E! step and a maximization
~M! step. The E step averages the log likelihood of
complete data over all feasible association vectors given
observed data and the latest parameter estimate iterate
result is an expected log likelihood that is a function of t
true parameter vectoru. The M step then maximizes thi
expected log likelihood with respect to the parameter v
tor. This yields an estimate ofu for the current iteration tha
may be used to recompute the expected log-likelihood
the next iteration’s E step. Under relatively mild condition
the EM method is guaranteed to converge to at least a l
maximum of the likelihood function of the observe
data.17,18

In our context, the EM method proceeds as follows. L
u[n21] be the estimate ofu produced by the M step in
iteration n21. The E step of then’th iteration requires
calculation of the expected log likelihood

Q~uuu[n21]!5E@ log p~l,Zuu!uZ,u[n21]#

5 (
lPL

@ log p~l,Zuu!#p~luZ,u[n21]!, ~10!
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where L is the set of all possiblel. The M step then
requires maximization ofQ(uuu[n21]) over u. Specifically,
the M step determines then’th iterate value:

u[n]5argmax
u

Q~uuu[n21]!. ~11!

We describe the implementation of the E and M steps
our problem in Secs. 3.2 and 3.3, respectively. Because
EM method is an iterative procedure, it requires an initi
ization u[0] and a criterion for termination; the latter i
discussed in Sec. 3.4, while our initialization procedure
described in Sec. 4 In addition, while in principle the E
method can deal directly with unknown model orderN by
introducing this quantity as part of the complete data, t
adds an undesirable level of complexity to our algorith
As a result, the basic algorithm we develop in Secs. 3.2
3.3 assumes thatN is specified. In Sec. 4 we describe
modification to the basic algorithm that enables adapt
selection of model order as the algorithm progresses.

3.2 Implementation of the E Step

It follows from Eq. ~9! that with N specified, the expected
log likelihood to be calculated in the E step as in Eq.~10!
can be expressed as

Q~uuu[n] !5(
i 51

N

Qi~ui uui
[n] !1CK

5(
i 51

N

(
k51

K

Qi ,k~ui uui
[n] !1CK , ~12!

where

Qi~ui uui
[n] !5 (

k51

K

Qi ,k~ui uui
[n] ! ~13!

and

Qi ,k~ui uui
[n] !5(

j 51

Mk

Pr~lk, j5 i uZk ,u[n] !

3F log
PDk,i8

12PDk,i8
1 logrk, j8

2
1

2sa
2 @ak, j2A~ui ,ck ,fk!#

2

2
1

2
@xk, j2pk~ui !#

TR21@xk, j2pk~ui !#G
1 log~12PDk,i8 !. ~14!

In other words, the expected log likelihood separates i
NK terms, each of which depends only on a single tar
primitive, and theMk reports extracted from the given im
agek. This decoupling of the expected log likelihood is
consequence of our independence assumptions of Sec
~A similar decomposition will be possible in the M step!
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This is an encouraging result, because it means that
computational complexity of the E step will increase on
linearly with K andN.

Examining Eq.~14!, we see that the computation of th
E step uses quantities specified previously, as well as
report-to-primitive association probabilities Pr(lk, j

5 i uZk ,u[n] ). In theory these probabilities can be calculat
via Bayes’ rule. In practice, however, this computation
typically intractable even for problems of modest size d
to the combinatorial dependence of the number of poss
lk on N and Mk . ~For the multiple-primitive example o
Sec. 5, the set of possible association vectors typic
numbers in the hundreds; for a problem involving as few
a dozen primitives, the cardinality increases to billions.! To
overcome this difficulty, we use a common and easily j
tifiable simplification known as gating.14 Specifically, com-
plete enumeration of the set of possiblelk entails consid-
eration of all possible associations, even very unlikely o
in which measured locationsxk, j are associated with targe
primitives that project to points in the slant plane far fro
xk, j . Gating is a method for excluding such unlikely pa
ings from consideration by adaptively defining the set
feasible associations to be the much smaller set oflk that
correspond to associations between reports and primit
that are believed to be close enough, i.e., for whichixk, j

2pk(ulk, j
)i2<r gate, j 51,...,Mk . Typically r gate is taken

as a small multiple of@trace(R)] 1/2.

3.3 Implementation of the M step

The M step requires maximization of the E step’s expec
log likelihood Q(uuu[n] ) with respect tou as in Eq.~11!.
The separation of this expected log likelihood into indep
dent terms for each primitive in Eq.~12! implies that this
maximization may be achieved independently for ea
primitive. In particular, the M step requiresN independent
maximizations, each of a singleQi(ui uui

[n] ) over ui . Since
ui includes both continuous parameters (u i

x , u i
p , u i

a , and
possibly u i

r) and a discrete parameter (u i
t), we are faced

with a hybrid maximization problem for each primitive
with the discrete parameter limited to a small, finite spa
of nt elements. We thus maximizeQi(ui uui

[n] ) by perform-
ing nt separate trial maximizations over the continuo
components ofui , one for each possible value ofu i

t . Ex-
amination of Eq.~14! reveals that each trial maximizatio
is nontrivial: there is a complicated relationship betwe
Qi(ui uui

[n] ) and the set of continuous parameters. Spec
cally, the pose, location, and radius terms are coupled
to pk(ui), and the pose and base amplitude are coupled
to PDk,i8 andA(ui ,ck ,fk).

Consider the following approximate maximization ov
the continuous parameters withu i

t fixed, equivalent to a
single-iteration coordinate ascent. First, maxim
Qi(ui uui

[n] ) over pose while fixing amplitude, location, an
radius at their maximizing values from the previous ite
tion; this can be accomplished with a coarse-to-fine sea
over pose. Second, perform a line search to maximize o
amplitude with pose fixed at the value just obtained, a
with location and radius fixed at their values from the p
vious iteration. Finally, maximizeQi(ui uui

[n] ) over location
e

s

e

r

and radius while fixing pose and amplitude at the valu
just obtained; this can be done in closed form as a weigh
least-squares error~WLSE! estimate based on report loca
tions ~where the E-step report-to-primitive corresponden
probabilities give the weights! due to the quadratic depen
dence ofQi(ui uui

[n] ) on location and radius. In particula
for u i

t[n]P$1,3% we have

u i
x[n11]5F (

k51

K

(
j 51

Mk

Hk
TR21Hk Pr~lk, j5 i uZk ,u[n] !G21

3F (
k51

K

(
j 51

Mk

Hk
TR21xk, j Pr~lk, j5 i uZk ,u[n] !G ,

~15!

and we can obtain a similar expression to maximize overu i
x

andu i
r whenu i

t[n]P$2,4%.12 @If the WLSE estimate gives a
negative radius in this case, we set the radius estimat
zero and use Eq.~15! for the location estimate.# This type
of partitioned M-step implementation is known as expec
tion conditional maximization~ECM! and is sufficient to
ensure eventual convergence of the EM method to a m
mum of the likelihood function under the same conditio
as an algorithm that achieves a true joint maximum at e
M step.16 If not for the pose search, the computational b
den of the M step would generally be insignificant com
pared to that of the E step. As it is, however, the M st
greatly exceeds the E step in execution time.

3.4 Termination Criterion

Rather than directly monitoringp(Zuu[n] ) for convergence,
we adopt the computationally simpler and widely used p
cedure of monitoring the estimatesu[n] themselves. Once
the estimates ofu i

t produced by the M step remain fixe
between iterations and the changes in the continuous
rameter estimates all drop below specified thresholds,
iteration is terminated and the finalu[n] is used as the fina
estimate ofu.

4 Initialization and Model Order Estimation

In this section we describe two final features of our mo
generation algorithm, namely the initialization stage an
modification to the standard EM iteration that enables ad
tive model order selection as the iteration progresses.
model order adjustment stage occurs after every M s
before the termination criterion check, and is capable o
of reducing the model order or leaving it unchanged. T
imposes the important guideline that the initializatio
should be biased toward overestimatingN: any overfit can
be corrected in subsequent iterations by the model o
reduction stage, but any underfit is permanent. We desc
our initialization procedure in Sec. 4.1, and model ord
reduction in Sec. 4.2.

4.1 Initialization of the EM Method

Our initialization procedure is based on an agglomerat
clustering algorithm that groups reports between ima
based on the set of allxk, j . Each group of reports produce
by this agglomeration is used to initialize a single targ
157Optical Engineering, Vol. 41 No. 1, January 2002
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primitive. Because the number of clusters produced by
agglomeration depends on the data, the order ofu[0] is
adaptive toZ. As we indicate later, we can bias towa
overfitting by setting an agglomeration threshold approp
ately. Our initialization procedure is completely describ
in Ref. 12; the following is an outline of the procedure th
omits some minor details and modifications made for co
putational reasons.

Agglomerative clustering is a general procedure
which a collection of items is iteratively grouped into di
tinct clusters by successively merging items and gro
based on some measure of their dissimilarity.19 At each
iteration, the two most similar items or groups in the c
lection are merged. This is repeated until all remain
groups are more dissimilar than some thresholdh. The
number of clusters produced depends strongly onh: a large
choice forh will generally result in fewer clusters than
small choice.

Our dissimilarity measure is a chi-squared statistic t
is based on the measured report locationsxk, j and moti-
vated by the following observation: reports from differe
images that could be explained by projection from a sin
point or closely spaced points inR3 are likely to correspond
to the same target primitive. Reports that cannot be
plained by closely spaced points inR3 ~or reports from
within the same image! are dissimilar and should not b
grouped. It can be shown12 that if a group of reports al
correspond to the same primitive according to the Gaus
model described in Sec. 2.3 with an identity-multiple cov
riance R, then the total squared error of the linear lea
squares error~LLSE! estimate of the corresponding prim
tive’s 3-D location ~i.e., the sum of the squared 2-
distances between the projections of the LLSE estimate
the report locations! is a chi-squared random variable. If th
reports come from multiple primitives, the total squar
error will in general be much larger and will have a no
central chi-squared distribution. If the reports include fa
alarms, which we model as having uniform rather th
Gaussian distributions, the total squared error will have n
ther a central nor a noncentral chi-squared distribution,
will still generally be larger than when all reports are a
tributable to a single primitive. We thus use the chi-squa
cumulative distribution function as our dissimilarity me
sure. This provides an interpretation ofh as a confidence
level for accepting or rejecting a candidate group based
how well a single primitive could explain the report loc
tions. We seth to a value empirically determined to give
low probability of underfitting, so that the initialization i
likely to contain more hypothesized primitives than a
necessary to describe the target. Some of these primit
will be removed in the subsequent model order reduct
stage.

We use each report cluster produced by the agglom
tion to initialize a single target primitive parameter vect
ui as follows. Base amplitude is set to the maximum log
mplitude among the clustered reports, minuscpol of Eq. ~3!.
Type and pose are chosen to maximize the likelihood
having observed the amplitudes and types in the re
group, given that all the reports correspond to a sin
primitive and given the just-selected base amplitude.~Type
and pose maximization are achieved by a search simila
158 Optical Engineering, Vol. 41 No. 1, January 2002
d

s

-

t

that described in Sec. 3.3 in conjunction with the M ste!
Location~and radius, if deemed applicable by the type in
tialization! is estimated by a least-squares approximat
based on the set ofxk, j similar to that of Eq.~15!.

The agglomeration described here is based solely on
cation, although it can easily be extended to include ty
and amplitude information. In addition, note that the pr
cedure we have described is not perfectly designed
grouping reports produced by cylinders and tophats sin
as is evident from Eq.~1!, the apparent reflection point fo
such primitives changes from view to view due to the rad
symmetry of these reflectors. As a result, the dissimila
values computed by our clustering method for a group
reports produced by such a primitive will generally b
larger than those computed for trihedrals or dihedra
While it is possible to design a more sophisticated clus
ing method to deal with this effect, we have found o
simpler algorithm to be sufficient to produce a satisfacto
initialization for the EM iteration.

4.2 Model Order Reduction

Our model order reduction stage counteracts the overfit
induced in the initialization. This is accomplished by exa
ining the empirical evidence for each hypothesized prim
tive’s existence after each M step and removing any pri
tives whose estimates have converged to values which
not strongly supported by the data. More precisely, a
each M step we calculate an empirical probability of det
tion P̃D: i for each primitivei for which ui

[n] has converged:

P̃D: i5
1

K (
k51

K

(
j 51

Mk

Pr~lk, j5 i uZk ,u[n] !. ~16!

@The Pr(lk, j5 i uZk ,u[n] ) terms are available from the E

step of the iteration.# Intuitively, if P̃D: i is near zero, thenZ
provides little evidence to support the hypothesis of a tar
primitive whose parameters are given byui

[n] . This sug-
gests thatui

[n] is either a poor estimate~possibly due to
convergence of the EM iteration to a local maximum of t
likelihood function! or that the model order is too high. I
either case it is appropriate simply to remove the primit
from the estimate and decrement the model order. We m
this decision by comparing theP̃D: i of the converged
primitives to a type-dependent threshold~from a set ofnt
thresholds empirically chosen to reflect the fact that prim
tives with highly specular responses will almost certain
be detected in fewer images than those with spatially p
sistent responses!. This model order reduction stage ensur
that all primitives contained in the final estimate ofu will
have empirical probabilities of detection at least as grea
their type-dependent thresholds dictate. One drawbac
our approach is the increased computational burden in
early stages of the EM iteration, before the extraneo
primitives have been eliminated andN is still artificially
large. The benefit of this extra computation is the increa
adaptivity and robustness of the final estimateu.

5 Results

In this section, we present results of the application of o
algorithm to synthetic SAR imagery generated by XPat
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Richards, Willsky, and Fisher: Expectation-maximization . . .
an electromagnetic simulation package capable of ac
rately simulating arbitrary electromagnetic scattering m
surements obtained by interrogating a facetization-mo
target with radiation.20,21 We use the XPatch-T module o
the package to produce image chips at a range and c
range resolution of 0.3 m, a range and cross-range p
spacing of 0.2 m, and a center frequency of 9.6 GHz,
use a235-dB Kaiser sidelobe weighting function for im
age formation from phase history data. XPatch produce
image of a target in the absence of natural clutter; we mo
clutter as an additiveK-distributed process independent f
each pixel, with grassy terrain parameters as reporte
Ref. 22.

Recall that the measurement model described in Sec
is parameterized by several quantities that must be spec
in advance. The quantities we use for the experiment
this section are given in Table 1. The location covarian
false alarm rate, and confusion matrix given in Table 1
average values compiled by processing a set of train
images, each containing a single primitive in the gra
terrain clutter environment. The probability-of-detectio
function and false-alarm amplitude pdf are histogra
compiled from the training results. The amplitude varian
term is a heuristic value chosen with the intention of ca
turing some of the variability in primitive responses e
countered in the real world that would be difficult to mod
in a training set~e.g., geometrical deviations or perturb
tions from ideality!. Recall also that construction of th
primitive scattering models requires specification of r
evant primitive dimensions, as described in Secs. 2.1 an
For most of the results in this section~i.e., all results in
Secs. 5.1, 5.2, and 5.3!, the scattering-model primitive di
mensions have been set to the dimensions of the primit
to be estimated; in Sec. 5.4 we examine the effects
primitive dimension mismatch on algorithm performanc

For each target described, we generated a supers
2736 XPatch images—one for each viewing angle on
2.5-deg elevation/azimuth grid extending in elevation fro
5 to 50 deg and in azimuth from 0 to 357.5 deg. For ea
Monte Carlo run, we selected a random subset of image
give an average view sampling density~AVSD! of either 10
or 20 deg, i.e., a random subset containing exactly eno
images to create a 10-deg grid~180 images! or a 20-deg
grid ~54 images! if the images were equally spaced, a
corrupted each image with independentK-distributed clut-
ter as described earlier.

5.1 Single-Primitive Targets

Our first set of experiments details the performance of
algorithm on four targets, each consisting of a single prim
tive with a base amplitude of 10 dBsm. This serves to de

Table 1 Measurement model parameters.

quantity notation value

location covariance R (5.0cm)23I

normalized false alarm rate gFA 0.058 / m2

type confusion matrix $r% F0.78 0.01 0.17 0.97

0.22 0.99 0.83 0.03GT

amplitude variance sa
2 (5dBsm)2
-

l

s-
l

l

3
d

.

s

f

onstrate the relative observability of the four primitiv
types and to establish a rough benchmark for results fr
more complex targets. Each of the four targets in this s
tion corresponds to a single primitive~a unique type for
each target! located at ground coordinates@30.5 0 15.2
cm#. The trihedral and tophat are oriented with their bas
parallel to the ground plane, the trihedral rotated to giv
maximum specular response at azimuth 0 deg; the dihe
and cylinder are oriented so that a maximum specular
sponse is obtained at elevation 25 deg and azimuth 0
Primitive dimensions~see Fig. 3! are given in Table 2.
~Choosing primitive sizes to give a base amplitude of
dBsm facilitates comparison of primitive observability b
requires the dihedral and trihedral to be much smaller t
typically observed dihedrals and trihedrals in many targ
of interest.6!

Tables 3 and 4 present the performance of the algori
on these four targets for both the 10- and 20-deg AVS
Table 3 presents model order and type estimation statis
Pdet refers to the fraction of runs in which an estimate w
produced for the primitive, i.e., in which it was captured
the initialization stage and survived the model order red
tion stage through convergence of the EM iteration; ove
refers to the fraction of runs in which the final model ord
was greater than one. Type confusion presents type est
tion results conditional on detection. In most runs in whi
the primitive is detected and estimated to be the corr
type, the continuous parameter estimates cluster near
true values; in a handful of runs they do not. The fraction
runs in which this occurs is listed in the fraction spurio
column. Table 4~described later! presents the results of th
continuous parameter estimation, conditional on corr
type identification and nonspurious parameters. For eac
the eight experiments~four primitives, two AVSDs!, Monte
Carlo runs were continued until we had obtained 500 tri
in which the primitive was detected and estimated to be
correct type.

Table 3 illustrates the relative observability of the prim
tive types. Trihedrals and tophats have broad angular
sponses and are easily detected by the algorithm; dihed
and cylinders have responses largely confined to a sin
azimuthal plane and are more difficult to detect. The dih
dral is much shorter than the cylinder~see Table 2! and thus
has a much broader out-of-plane elevation response,5,6 ac-
counting in part for the greater detectability of the dihedr
It is also apparent from Table 3 that the type classificat
performance of the algorithm is excellent: in almost eve
trial in which the primitive is detected, its type is correct
identified. This suggests that the limited type informati
provided by the even-bounce/odd-bounce discriminato
the data extraction stage, as discussed in Sec. 2.2, is n
significant impediment to type estimation.

Table 2 Single-primitive targets: primitive dimensions.

primitive u i
a [dBsm] dimensions

trihedral 10 a512.67 cm

tophat 10 r518.39 cm, h536.78 cm

dihedral 10 a514.05 cm, b514.05 cm

cylinder 10 r517.70 cm, h553.05 cm
159Optical Engineering, Vol. 41 No. 1, January 2002
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Table 3 Single-primitive targets: model order and type confusion statistics.

AVSD target

model order

type confusion
fraction
spuriousPdet overfit

10 deg trihedral 1.000 0.000 [1.000 0.000 0.000 0.000] 0.000

10 deg tophat 1.000 0.000 [0.000 1.000 0.000 0.000] 0.000

10 deg dihedral 0.721 0.000 [0.000 0.000 0.998 0.002] 0.002

10 deg cylinder 0.490 0.000 [0.000 0.000 0.021 0.979] 0.002

20 deg trihedral 0.948 0.000 [0.990 0.000 0.006 0.004] 0.000

20 deg tophat 1.000 0.000 [0.000 1.000 0.000 0.000] 0.000

20 deg dihedral 0.185 0.000 [0.035 0.000 0.933 0.032] 0.000

20 deg cylinder 0.109 0.002 [0.030 0.000 0.004 0.966] 0.026
ous
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Table 4 presents the error statistics for the continu
parameters. Base amplitude figures are quoted in dB
location and radius in inches, and pose in degrees.
break up location and base amplitude statistics into bias
covariance to illustrate bias effects described later.
separate pose results into two components because
though in general three Euler angles~corresponding essen
tially to elevation, azimuth, and rotation10! are required to
specify the pose of a primitive, only two angles~azimuth
and elevation! are required to specify the pose of the toph
and cylinder due to those primitives’ rotational symmet
The azimuth/elevation root-mean-squared error~RMSE!
statistics correspond to angular separation in degrees
tween two points on a sphere.

The amplitude bias exhibited in Table 4 is largely attr
utable to two factors. First is the frequency windowing i
herent in the SAR imaging process.1,2 In particular, a primi-
tive’s brightness in an image is affected by its location
the slant plane relative to the pixel centers. In most ima
a detected primitive will not project directly onto a pix
center, resulting in a tendency to underestimate amplitu
In the absence of other effects, it can be shown12 that this
nominal bias is roughly20.5 dBsm.~It is possible to cor-
rect for this factor simply by adding 0.5 to the amplitud
estimates produced by the algorithm, although we have
done this in the presentation of the results in Table 4.! The
second factor influencing amplitude bias is the slight m
neering, Vol. 41 No. 1, January 2002
,
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t

match betweenSu
i
t and the XPatch-predicted scattering r

sponses, which is attributable to several sources includ
the formation of theSu

i
t as noncoherent sums of individua

response mechanisms as described in Secs. 2.1 and 7,
curacies in the physical optics approximations for ba
scattering mechanisms,5,6 and XPatch-related shooting-and
bouncing-rays and facetization effects.20,21 ~A more de-
tailed analysis of these factors is presented in Ref. 12.! The
base amplitude standard deviation figures indicate that
expected, the greater observability afforded by a broad
gular response results in a lower standard deviation.
same trend holds for the location and radius statistics.

The trihedral and dihedral location estimates exhibi
pronounced bias. This is due to the influence of the
primitives’ lower-bounce mechanisms described earlier.
instance, although trihedral triple-bounce reflections all
pear to emanate from that primitive’s apex atu i

x ~see Fig.
3!, trihedral double-bounce reflections appear to eman
from the trihedral creases, and single-bounce reflections
pear to emanate from the trihedral plates. The WLSE lo
tion estimate of Eq.~15! @induced by the model of Eq.~1!#
is biased by these lower-bounce reflections. In Sec. 5.2
discuss an approach to removing this bias, if desired.
ditionally, although it is not illustrated in Table 4, the radiu
errors are correlated with the location errors due to layo
effects.
Table 4 Single-primitive targets: base amplitude, location, pose, and radius statistics.

AVSD target

û i
a error [dBsm] û i

x error [cm] û i
p rmse [°]

û i
r rmse
[cm]bias stdev ibiasi Atr(cov) az/el rot

10 deg trihedral 0.156 0.494 6.233 3.025 2.169 7.786 —

10 deg tophat 21.382 0.191 0.409 1.288 1.329 — 1.056

10 deg dihedral 20.148 1.114 11.511 14.171 10.592 7.471 —

10 deg cylinder 0.080 1.625 0.410 22.169 1.286 — 6.629

20 deg trihedral 20.000 1.035 5.559 6.831 9.175 22.363 —

20 deg tophat 21.298 0.365 0.446 2.175 2.388 — 1.730

20 deg dihedral 20.052 1.840 7.591 31.417 14.285 11.644 —

20 deg cylinder 0.455 2.771 1.786 30.845 3.433 — 9.980
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The pose results of Table 4 demonstrate that primit
pose can in general be accurately estimated to a finer gr
larity than provided by the AVSD. The dihedral pose erro
which are larger than those observed for the other primi
types, are attributable to the near-invariance of the dihe
response to certain changes in the Euler-angle pose.12 The
relatively large trihedral rotational error stems from t
near-invariance of the trihedral response to changes in
rotation Euler angle.5,6

5.2 Reducing Trihedral and Dihedral Location
Estimate Bias

As described in the previous section, the location estima
of the trihedral and dihedral, formed according to Eq.~15!
at each iteration, are biased. The direction and magnitud
the bias will depend on the primitive orientation and d
mensions. If we seek an unbiased location estimate,
could modify the model of Eq.~1! to take into account the
different reflection points of the lower-bounce mechanism
Unfortunately, this introduces a dependence on primit
dimension and pose, and complicates the maximizatio
each iteration. We opt for a computationally simpler a
proach that is in effect a postprocessing step to be im
mented after the EM iteration has converged. Specifica
at the conclusion of the iteration we have available a fi
estimate of primitive pose~from the final M step! and a
final set of report-to-primitive correspondence probabilit
~from the final E step!. We use the E-step probabilities an
M-step pose estimate to form a new WLSE estimate
primitive location based only on those reports from relat
viewing angles at which the highest bounce response do
nates, as deemed by the M-step pose estimate. If this

Table 5 Single-primitive targets: trihedral and dihedral location es-
timate refinement.

AVSD primitive

unrefined location
error [cm]

refined location
error [cm]

ibiasi Atr(cov) ibiasi Atr(cov)

10 deg trihedral 6.233 3.025 0.576 4.792

10 deg dihedral 11.511 14.171 3.259 18.012

20 deg trihedral 5.559 6.831 0.735 12.652

20 deg dihedral 7.591 31.417 3.671 38.742
-

l

e

f

t

-

-
e

estimate is accurate, this will correct the bias~though po-
tentially at the cost of a higher overall RMS location erro!.

The results of this postprocessing on the trials of
previous section are presented in Table 5. The trihedra
cation estimation refinement achieves a greater fractio
reduction in bias than the dihedral location estimate refi
ment due to the greater accuracy of the trihedral pose e
mates~see Table 4!. For similar reasons, the refinement
more successful for the 10-deg AVSD than for the 20-d
AVSD.

5.3 Multiple-Primitive Target

The results of Sec. 5.1 demonstrate the performance of
algorithm on single-primitive targets, for which the unde
lying data association problem faced by the algorithm
quite simple. In this section, we examine algorithm perf
mance when faced with a more challenging data associa
problem, specifically for a multiple-primitive target. W
would expect the error statistics obtained for each primit
in a multiprimitive target to be no better than those of S
5.1, which were obtained in the absence of confus
primitives. Similar statistics would indicate that the alg
rithm is successfully solving the implicit data associati
problem.

The multiple-primitive target we examine here consi
of four primitives, one of each type, centered at the corn
of a 91.4-cm square. The dimensions and locations of th
primitives are given in Table 6. The cylinder and tophat a
the same size as those of Sec. 5.1; the dihedral and to
are larger~but still smaller than many dihedrals and trih
drals that might be encountered in targets of interest!. Be-

Table 6 Multiple-primitive target: primitive locations and dimen-
sions.

primitive u i
xT [cm] u i

a [dBsm] dimensions

trihedral @245.7 245.7 0] 23.75 a528.00 cm

tophat @245.7 45.7 0] 10 r518.39 cm,
h536.78 cm

dihedral [45.7 45.7 0] 25 a533.30 cm,
b533.30 cm

cylinder [45.7 245.7 0] 10 r517.70 cm,
h553.04 cm
Table 7 Multiple-primitive target: model order and type confusion statistics.

AVSD
target

component Pdet type confusion overfit
fraction
spurious

10 deg trihedral 1.000 [1.000 0.000 0.000 0.000]

10 deg tophat 1.000 [0.000 1.000 0.000 0.000]
0.002 0.008

10 deg dihedral 0.950 [0.000 0.000 0.998 0.002]

10 deg cylinder 0.406 [0.000 0.000 0.045 0.955]

20 deg trihedral 1.000 [1.000 0.000 0.000 0.000]

20 deg tophat 1.000 [0.000 1.000 0.000 0.000]
0.000 0.016

20 deg dihedral 0.460 [0.026 0.004 0.953 0.017]

20 deg cylinder 0.082 [0.024 0.000 0.024 0.952]
161Optical Engineering, Vol. 41 No. 1, January 2002
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Table 8 Multiple-primitive target: base amplitude, location, pose, and radius statistics.

AVSD
target

component

û i
a error [dBsm] û i

x error [cm] û i
p rmse [°]

û i
r rmse
[cm]bias stdev ibiasi Atr(cov) az/el rot

10 deg trihedral 20.617 0.495 7.635 2.395 2.978 17.866 —

10 deg tophat 21.119 0.222 0.339 1.407 1.810 — 1.126

10 deg dihedral 21.696 2.411 7.227 12.647 11.337 6.934 —

10 deg cylinder 0.154 1.507 1.190 21.713 1.209 — 7.553

20 deg trihedral 20.900 0.959 7.236 4.821 4.911 25.839 —

20 deg tophat 21.026 0.374 0.531 2.480 2.683 — 1.923

20 deg dihedral 22.873 4.045 7.368 21.776 13.483 15.391 —

20 deg cylinder 0.517 2.567 2.718 29.500 1.869 — 7.480
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cause the cylinder and tophat are the same size as tho
Sec. 5.1, we can directly compare the results for th
primitives between the two sections.

We performed 500 Monte Carlo runs for both a 10-d
AVSD and a 20-deg AVSD for the multiple-primitive tar
get. The results are presented in Tables 7 and 8 in a for
similar to that of Tables 3 and 4.~Overfit and spurious-
estimate results in Table 7 are presented for the targe
ensemble rather than for individual primitives.! The tophat
and cylinder results here compare favorably to those of S
5.1, suggesting that the algorithm is overcoming the m
challenging data association problem. In particular, top
detection and type-estimation performance are unaffec
and tophat continuous-parameter error statistics are
slightly worse; cylinder statistics are generally of the sa
quality or slightly worse than those observed in Sec. 5
~For the 20-deg AVSD experiment in particular, the sm
number of detections limits the statistical significance
the cylinder results.! Most marked is the decrease in cylin
der detectability in the 10-deg AVSD experiment, sugge
ing that the initialization suffers from the presence of mo
primitives.

Comparison of the dihedral and trihedral statistics h
to those of Sec. 5.1 demonstrates the impact of gre
primitive observability. One marked change is the im
proved detectability of the larger dihedral. Also appare
are the smaller location covariances of both primitiv
~The location estimates can be refined according to the
cedure described in Sec. 5.2; the results of that refinem
are displayed in Table 9.! Pose errors have slightly wors

Table 9 Multiple-primitive target: trihedral and dihedral location es-
timate refinement.

AVSD primitive

unrefined location
error [cm]

refined location
error [cm]

ibiasi Atr(cov) ibiasi Atr(cov)

10 deg trihedral 7.635 2.395 2.448 2.288

10 deg dihedral 7.227 12.647 4.729 11.750

20 deg trihedral 7.236 4.821 2.895 4.487

20 deg dihedral 7.368 21.776 4.358 24.013
neering, Vol. 41 No. 1, January 2002
of

t

.

,
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t

ened for the dihedral because dihedral size does not ap
ciably affect the dihedral response’s pose invariance~de-
scribed in Sec. 5.2!. The trihedral rotational errors hav
worsened because the larger trihedral dimensions h
make the single- and double-bounce reflections less pro
nent and the overall response more invariant to change
rotation. Finally, the larger amplitude biases and stand
deviations seen here are attributable to the initialization
base amplitude as a maximum report amplitude, wh
tends to underestimate base amplitude. In some runs
underestimate persists to convergence.

5.4 Primitive Dimension Mismatch

The scattering models used to generate the results of
previous sections were all constructed using primitive
mensions perfectly matched to the primitives being e
mated. In practice this is not possible. A model generat
algorithm will have to contend with unknown dimension
and multiple-sized instances of each primitive class. As
scribed in Sec. 2.1, there are several ways to deal with
issue, ranging from the method we have chosen to the c
ceptually optimal but computationally demanding approa
of including all relevant primitive dimensions in the targ
parameterization. In this section, we examine the impac
primitive dimension mismatch on algorithm performan
and address the question of whether the nominal-dimen
approach taken here is sufficient to envelop the range
phenomenology observed from primitives of differe
sizes.

All four primitive scattering functions depend on prim
tive dimensions~see Sec. 7!. This dependence is mos
marked for the dihedral and cylinder, whose primary
sponse mechanisms are fundamentally affected by pr
tive height; the dependence is relatively minor for trihedr

Table 10 Dimensions of three dihedrals.

dihedral u i
a [dBsm] dimensions

short 25 a553.04 cm, b520.90 cm

square 25 a533.30 cm, b533.30 cm

tall 25 a520.90 cm, b553.04 cm
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Table 11 Matched primitive dimensions: dihedral estimation results.

dihedral Pdet Pid

û i
a error [dBsm] û i

x error [cm] û i
p rmse [°]

bias stdev ibiasi Atr(cov) az/el rot

short 1.000 1.000 23.218 1.804 7.394 12.781 10.394 8.274

square 0.953 0.996 22.033 2.338 5.764 13.890 11.713 9.281

tall 0.822 0.960 21.242 2.746 10.593 11.896 13.675 7.714
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. 2.2
and tophats, whose primary response mechanisms do
vary with primitive dimension. We limit our investigatio
here to the effects of dihedral dimension mismatch. T
effects of cylinder dimension mismatch can be expected
be similar, due to the similar dependence of the dihed
and cylinder shaping functions on primitive dimension. T
effects of mismatch on trihedral and tophat estimation p
formance can be expected to be less marked than t
observed for the dihedral; due to the trihedral’s and toph
secondary dependence~i.e., only observed in the lowe
bounce mechanism responses! on primitive size.

Table 10 presents dimensions of three 25-dBsm d
drals ~short, square, and tall!, each with different plate di-
mensions. To establish a benchmark against which to ga
the effects of size mismatch, we compiled estimation p
formance statistics for each of these three dihedrals, u
dihedral scattering models constructed from the actual
hedral dimensions and other primitives’ scattering mod
constructed from the dimensions in Table 6. The res
from 500 Monte Carlo runs with a 10-deg AVSD are pr
sented in Table 11 in a format similar to that of previo
sections.~For the sake of compactness, type estimation
sults have been abridged to a singlePid statistic, denoting
the fraction of runs in which type was estimated correc
as a dihedral, conditional on detection.! The variation in the
statistics for each of these dihedral sizes is primarily a
sult of the broader out-of-plane responses of shorter d
drals, making them easier to detect.

Table 12 presents results from two experiments in wh
modeled dihedral dimensions are mismatched to the ac
primitive dimensions. In both cases the dihedral scatter
model was constructed using the square dihedral; the ac
primitive, however, was either the short or tall dihedr
Comparing the results of Table 12 to those of Table 11, i
apparent that size mismatch has a relatively minor effec
performance for this example. This is an indication tha
single instance of a dihedral might suffice to serve as
exemplar for the entire class of dihedrals, and, more ge
ally, that the nominal-sizing approach used here could s
fice to capture the behavior of primitives of a range
dimensions without significant degradation in performan
t

e

e

-

l

l

-

6 Conclusion

The principal contribution of this work is the developme
of a flexible framework for the construction of 3-D targ
models from SAR data. The research presented here e
lishes a formalization for the general problem of mod
generation and describes a computational engine that
vides a foundation for further development toward mo
advanced, less restrictive model generation. There are t
fundamental factors to be weighed when considering
extension to this basic framework: the improvement
physical fidelity, the effect on algorithm performance, a
the impact on algorithm complexity. Greater physical fid
ity will generally be rewarded with better performance, b
will also be attended by an increase in complexity. An e
tension that achieves a slight improvement in performa
at the cost of a significant increase in algorithm complex
is of questionable practical value.

There are several sources of loss of fidelity in our alg
rithm. First is an idealized and limited set of primitive re
sponses. Greater fidelity could be attained by broaden
the set of canonical responses and expanding the prim
parameterization to accommodate noncanonical or noni
primitives. As described before, this should be done w
consideration of the achievable improvement in perf
mance and the required increase in complexity. For
stance, the analysis of Sec. 5.4 suggests that algorithm
formance is relatively robust to mismatches in assumed
actual dihedral dimensions; broadening primitive para
eterization to include primitive dimensions might not b
prudent because it would complicate the M step of the
eration with limited gain in algorithm performance. It
likely that algorithm performance is less robust to chang
in primitive geometry~e.g., deviations from 90-deg trihe
dral and dihedral angles23! and thus this area is a suitab
direction for extension. One approach to accommodat
noncanonical primitive responses is proposed in Ref. 1

Another limitation in fidelity is imposed by the assume
independence of report parameters as described in Secs
Table 12 Mismatched primitive dimensions: dihedral estimation results.

dihedral Pdet Pid

û i
a error [dBsm] û i

x error [cm] û i
p rmse [deg]

bias stdev ibiasi Atr(cov) az/el rot

short 0.990 1.000 20.207 2.010 6.784 12.147 10.167 7.894

tall 0.872 0.988 24.062 2.799 11.741 12.715 14.182 9.850
163Optical Engineering, Vol. 41 No. 1, January 2002
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Fig. 5 Construction of trihedral response model from multiple response mechanisms.
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and 2.3. For instance, the presence of single-, double-,
triple-bounce response mechanisms in the overall trihe
response suggests a correlation betweentk, j ~an even-/odd-
bounce classification! and xk, j ~which projects from a dif-
ferent point for each response mechanism!. A relaxation of
Assumption 5 to model such a dependence would incre
physical realism~though with unknown effect on algorithm
performance! and would likely not require a significant in
crease in algorithm complexity: the E step could proce
largely as before, and any potential complication to
maximization would be largely mitigated by th
partitioned-maximization ECM approach16 described in
Sec. 3.3. Fidelity could also be improved by utilizing
peak extractor capable of super-resolving scatterers, as
cussed in Sec. 2.2, or by performing a less severe comp
sion of the raw SAR imagery to obtain the observable f
tures. In particular, instead of passing on a scalar amplit
for each extracted peak, we can imagine passing on a
tor of continuous descriptors corresponding to a comp
sion of the phase history associated with the peak. A us
way in which to think about such a feature vector is as
set of coefficients in a finite series approximation to t
phase history: at one extreme we have a single-term se
whose sole coefficient is simply peak amplitude, while
the other extreme the coefficients would simply correspo
to all of the samples of the phase history~or an invertible
transform thereof!. While conceptually straightforward
there are two principal challenges in developing such
extension: first, choosing a finite series form that captu
information for our purposes~e.g., using bases such a
those proposed by Potter and Moses8 or by McClure and
Carin9!, and second, determining the probabilistic mod
for such a feature vector. In particular, the natural gener
neering, Vol. 41 No. 1, January 2002
d
l

e
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zation of the Gaussian model for extracted scalar amplit
ak, j would be to model the vector of extracted featuresak, j
as a Gaussian whose mean vector and covariance m
would need to be estimated from data or simulations.

Another source of fidelity loss is the omission of sca
terer interaction effects formalized by Assumptions 2 and
In particular, obstruction and multiple-primitive reflection
are not modeled and are likely to have an impact on al
rithm performance. Capturing multiple-primitive reflec
tions, which arise as a result of sophisticated interacti
between scatterers, would likely require fundamental mo
fications to the current framework and an increase in al
rithm complexity due to the coupling of primitive calcula
tions in both the E and M steps of the algorithm
Obstruction involves less complicated interactions and
quires some description of how primitive detections a
coupled within an image and between images. An extens
that accommodates obstruction without necessitating a
parture from the independent primitive-by-primitive calc
lations of the E and M steps is proposed in Ref. 12.

Fig. 6 Rectangular plate. The notation here is identical to that of
Fig. 3.



Richards, Willsky, and Fisher: Expectation-maximization . . .
Table 13 Physical optics RCS approximations for basic scattering mechanisms.

response mechanism (amplitude) • (pol) • (shaping function)

rectangular plate Sk0
2a2b2

p D•g1
pol
•@cos ci,k8 cos fi,k8 sinc~k0b sinci,k8 ! sinc~k0a cosci,k8 sinfi,k8 !#2

dihedral double-bounce S2k0
2a2b2

p D•g2
pol
•FA2 cosci,k8 sinSp4 2Ufi,k8 2

p

4 UD sinc~k0b sin ci,k8 ! W[0,p/2]~f i ,k8 !G2

trihedral triple-bounce S 3k0
2a4

p D •g3
pol
•H 1

3S 4limi

ni
D 2

W[0,p/2]~f i ,k8 !W[0,p/2]~c i ,k8 !, mi<
ni

2
,

1

3F l iS 42
ni

mi
D G2

W[0,p/2]~f i ,k8 !W[0,p/2]~c i ,k8 !, mi.
ni

2
,

where (l i ,mi ,ni)5sortmin→max(sin ci,k8 , cos ci,k8 sin fi,k8 , cos ci,k8 cos fi,k8 )

cylinder shaft ~k0rh
2! •g4

pol
•@cos ci,k8 sinc~k0h sin ci,k8 !#2

tophat double-bounce ~2k0rh
2! •g5

pol
•FA2 sinSp4 2Uci,k8 2

p

4 UDG2
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7 Reflector Primitive Scattering Models

As indicated in Sec. 2.1, our log-RCS response models
based on physical optics. Physical optics enables chara
ization of the RCSs of a wide variety of primitives as fun
tions of the illuminating frequency, relative viewing ang
(c i ,k8 ,f i ,k8 ), and a handful of size parameters.5,6 The rel-
evant size parameters for each of our four primitives
illustrated in Fig. 3. Each of these primitives embod
multiple response mechanisms. For instance, a trihedral
produce not only a triple-bounce response but also sin
and double-bounce responses, and a cylinder can produ
response not only from its shaft, but also from its flat en
Figure 5 depicts the contribution of individual respon
mechanisms to the overall trihedral response model:
contributing components include a triple-bounce reflect
mechanism @Fig. 5~a!#, three double-bounce reflectio
mechanisms produced by pairs of the trihedral’s plates@Fig.
5~b!#, and three single-bounce reflection mechanisms p
duced by the individual plates@Fig. 5~c!#. Although the
three individual double-bounce components of Fig. 5~b! are
identical except for unique Euler angle orientations, as
the three single-bounce components of Fig. 5~c!, the pro-
jection of azimuth and elevation coordinates onto a rect
gular array distorts each response differently. These
sponses are summed to yield the overall response in
5~d!. Azimuth and elevation are defined as in Fig. 3.~The
trihedral dimension used to generate the responses of F
is 28.0 cm, as in Table 6.!
r-

n
-
a

-
.

5

We construct all primitive response models from su
of five basic component response mechanisms: a recta
lar plate, a dihedral double-bounce mechanism, a trihe
triple-bounce mechanism, a cylinder shaft, and a top
double-bounce mechanism. The latter four mechanisms
their coordinate axes are clearly pictured as component
the primitives of Fig. 3; the rectangular plate is pictured
Fig. 6. The physical optics RCS approximations for t
component response mechanisms can each be written a
product of three terms: a size-dependent amplitude desc
ing the overall intensity of the response, a scaling te
encompassing the effect of the given antenna polarim
on RCS, and a shaping function describing the variation
response as a function of the relative viewing angle. Letk0
denote the wavenumber of the illuminating frequency,
sinc(x)5sin(x)/x, and define a window function

W[a,b]~x!5H 1, a<x<b,

0, otherwise.
~17!

Physical optics then yields the RCS approximations giv
in Table 13.5,6 The g i

pol terms in each row are polarimetri
scaling coefficients.11,24 If fully polarimetric measurements
are available and the RCS is taken to be the magnitud
the polarimetric vector@HH A2HV VV#, then g i

pol52
Table 14 Primitive scattering model composition.

primitive u i
t u i

a components of Su i
t(c i ,k8 ,f i ,k8 ) relevant dimensions

trihedral 1 10 log10S 3k0
2a4

p D one trihedral triple-bounce response
three dihedral double-bounce responses

three rectangular-plate responses
a

tophat 2 10 log10~2k0rh2!
one tophat double-bounce response

one cylinder-shaft response r,h

dihedral 3 10 log10S 2k0
2a2b2

p D one dihedral double- bounce response
two rectangular-plate responses a,b

cylinder 4 10 log10(k0rh2) one cylinder-shaft response r,h
165Optical Engineering, Vol. 41 No. 1, January 2002
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for all components. If only single-polarimetric data a
available, theg i

pol will take on values between 0 and 1.11,24

The shaping functions of Table 13 are all scaled to giv
maximum value of 1.

As described in Sec. 2.1, our scattering models
formed as noncoherent sums of components of Table
with empirically chosen nominal primitive dimensions. R
calling Eq.~3!, cpol is taken to be the log of the polarimetr
scaling constant,Su

i
t is taken to be the log of the sum of th

appropriately rotated and scaled component response s
ing functions, andu i

a is taken to be the log of the amplitud
scaling factor that ensuresSu

i
t will have a maximum value

of 0 dBsm. Each primitive’su i
a , the mechanisms that w

use to construct itsSu
i
t, and the relevant dimensions affec

ing Su
i
t are given in Table 14. The assumed primitive d

mensions used to construct theSu
i
t are indicated in Sec. 5

for all results presented there.
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