
Impostors and pseudo-instancing for GPU crowd rendering

Erik Millan∗
ITESM CEM

Isaac Rudomin†

ITESM CEM

Figure 1: Rendering of a 1,048,576 character crowd.

Abstract

Animated crowds are effective to increase realism in virtual reality
applications. However, rendering crowds requires large computa-
tional power. In this paper, we present a technique suitable to ren-
der large crowds of characters that takes advantage of existing pro-
grammable graphics hardware. Impostors are used for low-detail
representation, while pseudo-instancing is used for higher detail. A
LOD map is used to select between both representations, based on
a customizable threshold.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.3 [Computer Graphics]:
Picture/Image Generation—Display algorithms

Keywords: crowds, level of detail, impostors, GPU

1 Introduction

Large computer-generated crowds have become a common feature
in action films. Transition of these large crowds from movies to
interactive applications requires efficient methods to simulate thou-
sands of characters at interactive frame rates. One of the most time-
consuming parts in this simulation is crowds rendering.

Many different techniques have been used to increase the number
of rendered characters within an application. In order to reduce the
processing requirements to render each character, these techniques
usually decrease the detail on those characters displayed in small
portions of the screen.

However, recent advances in graphics hardware present new oppor-
tunities to increase the size of real-time rendered crowds. In this

∗e-mail: emillan@itesm.mx
†e-mail: rudomin@itesm.mx

paper we propose the use of a set of techniques in order to ren-
der large animated crowds at interactive frame rates. An instancing
technique will be used to display detailed characters, while impos-
tors will be used to show low-detail characters.

This paper is organized as follows. In section 2 some articles re-
garding different level-of-detail techniques are presented. Section 3
describes the techniques in this research to display large animated
crowds, as well as some approaches to harness the power of graph-
ics hardware using these techniques. Then, section 4 describes the
LOD map, which is an efficient technique to select which rendering
technique will be used to display each character. Section 5 presents
an efficient implementation of crowd rendering using the graphics
processor. Finally, section 6 presents results on the implementation
of these techniques, and section 7 provides some conclusions and
future work.

2 Related work

There are many possible approaches that can be used to reduce the
detail of a geometric mesh, having different advantages and draw-
backs for its implementation within the graphics processor. Initial
mesh reduction approaches involved sampling a smaller set of ver-
tices over a surface, to then join these points into a new polygonal
structure. For instance, Turk [Turk 1992] sampled random points
within polygons in a mesh, to then attach them to the original mesh
and remove one by one the original vertices, producing models with
a lower number of polygons. Progressive Meshes, introduced by
Hoppe [Hoppe 1996], use a similar approach. Here, no new vertices
are added to the mesh. Instead, one vertex is removed iteratively,
and the mesh topology is updated. All these updates are stored into
a hierarchical structure which allows to render the original mesh
using any number of vertices.

Within mesh reduction approaches, the changing topology of lower-
detail meshes requires the storage of a set of indices that will con-
tain the connectivity among this reduced number of vertices. This,
however, presents a limitation when we imply to use current graph-
ics hardware, as selecting a set of indices from within a shader pro-
gram is not a direct operation. To avoid storing connectivity infor-
mation, point-based rendering approaches can be useful.

Point-based render group a set of algorithms that display complex
objects as a dense array of points [Grossman and Dally 1998].



These points may contain different attributes of the surface, such
as color, normal vector or material. Approaches such as Q-splats
[Rusinkiewicz and Levoy 2000] or surfels [Pfister et al. 2000] are
point-based techniques that use different rendering methods to ef-
ficiently display large clouds of points as realistic solid objects.
Point-based techniques have also been adapted to work with ani-
mated objects [Wand and Straßer 2002]. Point-based approaches
solve the connectivity problem, as point primitives do not require
information about the topology of the mesh for rendering. Never-
theless, a different number of points should be displayed for each
character, which still presents problems in current graphics hard-
ware, where shader programs lack the capacity of producing new
vertices.

Image based approaches have also been used to simplify rendering
of large crowds. In these approaches, 3D models are replaced by
a small set of textured polygons that resemble the original geome-
try. Tecchia [Tecchia and Chrysanthou 2000] used an image-based
technique to render large crowds in an urban simulation. A discrete
set of possible views for a character is prerendered and stored in
memory. Then, when rendering the character, the closest view from
the set is used to display the character using a single quad. Dobbyn
et al. [Dobbyn et al. 2005] present Geopostors, which combine de-
tailed geometries with impostors to produce characters in an urban
simulation. Final textures for characters are constructed by blend-
ing a set of image maps produced by normal maps, detail maps,
and a set of customizable color materials. In this way, they achieve
interactive frame rates and visually realistic simulations with large
numbers of characters.

The use of image-based techniques provides with many features
that may be harnessed by graphics processors to efficiently render
large crowds of characters. Each object is represented by a sin-
gle polygon with a fixed number of vertices, which adapts to the
possibilities of current vertex programs. Animation is produced by
mapping a texture to this polygon. While it is difficult to use a large
number of different textures within a single shader program, indi-
vidual textures can be obtained by selecting a sub-texture from a
large texture. This reduces the texture selection process to a simple
texture lookup. The main drawback of image-based techniques is
that they require a large amount of memory for storing every frame
and view for an animation. Nevertheless, the amount of memory
in graphics hardware is increasingly high, making image-based ap-
proaches a good option for large crowd rendering.

Graphics hardware has also been used as an additional resource to
improve rendering of large crowds in real time applications. De
Heras et al. used shader programs to increase the diversity of large
crowds in a heritage application [de Heras Ciechomski et al. 2005].
For each character, a polygonal mesh with different resolution is
selected according to its distance to the camera. Polygonal mod-
els are useful here, as individual deformations can be specified for
each character, producing a large variety of poses that would be im-
possible in image-based approaches. On the other hand, these large
number of polygons per character decreases the number of charac-
ters that can be interactively rendered.

Instancing [Scott 2004], is a technique that can improve the ren-
dering performance of large sets of similar objects based on fea-
tures available on graphics hardware. While this technique was
originally created for static objects, a similar technique has been
adapted to render animated characters [Rudomı́n et al. 2005]. Nev-
ertheless, though instancing can efficiently render a large number
of polygons, all of these polygons must be actually rendered, con-
suming resources from the graphics hardware. Therefore, the use of
image-based approaches, where a single quad is required to display
a character, may yield more promising results. Instancing can then
be used where detailed objects are required, as a detailed impostor

would require large amounts of memory.

Geopostors [Dobbyn et al. 2005] use an image-based approach –
impostors– and graphics hardware to blend different image maps
for a set of characters, adding per-pixel illumination to dynami-
cally lit each impostor, and producing visually realistic results for
large numbers of characters. In addition, this technique uses polyg-
onal models for characters that require more detail. However, the
constant updates for impostor textures and character positions in-
crease the traffic towards the graphics hardware and reduce the per-
formance of the application. By using the graphics hardware to
handle more parts of the rendering process, better results could be
obtained.

3 Impostors and Pseudo-instancing

Aubel et al. [Aubel et al. 1998] presented impostors as an image-
based approach to display virtual objects. An impostor displays a
character as a textured polygon, commonly a square, which contin-
uously faces toward the camera. The texture coordinates for this
polygon will change according to the current viewing position of
the camera. In the case of animated models, the texture coordinates
will also change according to the current animation frame.

Most approaches based on impostors involve a preprocessing stage.
Here, different views for a model are rendered and stored into an
image. As it is impossible to render every possible view of a model,
a discrete set of views is parameterized, usually by uniformly dis-
tributing these views over the surface of a bounding sphere or a
bounding hemisphere.

The 3D model will be rendered from these views, and the set of
renders will be stored into an image texture. This texture is usually
organized as a grid, where columns share views from the same slice
and rows share views of the same stack of the bounding sphere. In
the case of animated models, a discrete set of frames will also be
selected, and for each frame, a set of views will be rendered and
stored. Images produced by this preprocessing stage will be later
used to obtain the texture map applied for rendering impostors.

Impostors are drawn as textured quads. Using the camera view, the
vertices of the quad are transformed so that the quad faces the cam-
era. Then, texture coordinates for this quad will be calculated. The
current view for an object is obtained based on the camera view and
on the object heading. The closest available view in the impostor
texture map will be then selected, and applied to the transformed
quad.

As mentioned by Millan and Rudomin [Millán and Rudomı́n 2006],
impostors present great advantages in current graphics hardware for
character instancing. Through a shader program, it is possible to ex-
tract the viewing frustum from the current view, and by combining
this view with the heading for each character, obtain its viewing an-
gle. Then, texture coordinates can be calculated to extract the most
similar image resembling the current view and animation pose, to
then map this texture to a polygon that will display this character.

Impostors are a useful representation for low-detail crowd render-
ing. However, when impostors are rendered to an area larger than
the impostor resolution, pixels from the impostor texture become
noticeable. Therefore, a different representation should be used.

Instancing is not a level-of-detail technique by itself. Instead, in-
stancing is a feature provided in modern graphics hardware that
optimizes rendering an object several times. Instancing works by
drawing multiple instances of the same model through a single draw
call [Scott 2004]. Through instancing, graphics processor deals



with per-instance geometry transformations and appearance mod-
ifications, releasing the main processor from this task.

While instancing has been designed originally for static objects, it
is possible to adapt this technique for its use in large crowds. In
this case, geometry should be updated on every animation frame.
Obtaining a real benefit from instancing requires that each model is
used for as many instances as possible. Updating the animation of
a model implies sending the modified data from the main memory
to the graphics memory. As this operation is a well known bottle-
neck in the rendering pipeline, its use should be reduced as much
as possible.

4 LOD Map

Two different approaches were thus selected to display characters:
impostors for low-detailed, distant characters, and instancing for
detailed, nearby characters. Distance to the camera to each char-
acter must then be estimated to select the appropriate detail. In
addition, to improve rendering efficiency, those characters outside
the viewing frustum should not be considered for rendering. An
efficient technique to calculate this distance is through a LOD map.

A LOD map approximates distance calculations within an area
through a discrete grid. This grid will describe the required detail
in the entire surface of the scene. In this way, the detail for a char-
acter can be obtained by verifying the pixel corresponding to the
position for that character. This can be achieved through a single
texture lookup, which constitutes a single operation for a fragment
shader program.

Calculation of a LOD map is also an efficient task. Whenever the
camera location is updated, the viewing frustum should be inter-
sected with the scene plane, which contains all the possible loca-
tions for a character. This intersection will produce a convex poly-
gon, which will bound the area of the scene plane visible by the
camera. Intensity of pixels outside this polygon will be set to zero,
in order to specify that characters located in those areas will not be
drawn.

To calculate detail within the visibility polygon, vertices of this
polygon will be assigned a specific weight. This weight will be
assigned according to the distance of the point p from the camera,
according to this equation:

w =
z f ar− zp

z f ar
(1)

where z f ar is the distance between the far plane and the near plane,
and zp is the distance between the point p and the near plane. Points
located in the near plane will obtain a weight of 1, while for points
at the far plane will obtain a weight of 0.

The visibility polygon will then be rendered on the visibility plane,
using the weights as grayscale values. Linear blending will be used
to interpolate colors within this polygon, producing the final LOD
map. A sample LOD map is shown in Figure 2.

Finally, the detail for each character will be compared to a certain
threshold. When the detail value is greater than this threshold, this
character will be rendered using the instancing technique, while
when the detail value is less than this threshold, an impostor will
be used.

Figure 2: LOD map produced by the intersection of a scene plane
with the viewing frustum.

5 GPU implementation

An example implementation was programmed to evaluate the effi-
ciency of the presented techniques aided by the graphics hardware.
A set of characters was randomly distributed over a plane. The
same model was used for all characters, but in order to increase
the appearance diversity, a random color was assigned to each char-
acter. Characters would then stand in their position, turning around
using a running keyframe animation. The reference application was
programmed using Open GL and GLSL.

An initialization step will load both the impostor and the polygonal
representations for the animated characters. As impostor generation
is produced in a preprocessing phase, a different application was
used to produce impostor textures. Two animation frames for a
custom impostor texture are shown in Figure 3. Animation frames
will be contained within the same image to reduce the number of
textures queried by the shader program, and thus simplify its code.

Figure 3: Animation frames from an impostor texture.

The set of animated character instances will be initialized. First,
the location and heading for each character will be generated ran-
domly. This information will then be copied to the graphics mem-
ory by using a pixel buffer. In this way, rendering and updating of
characters may be performed internally by the graphics processor,
avoiding sending information back and forth between main mem-
ory and graphics memory. Color information for each character
will also be generated randomly and sent to the graphics card using
a different pixel buffer. Rendering of the animated crowd involves
a set of rendering passes.

Pass 1. Character update In this step, the position and head-
ing for each character will be updated. A fragment program will
read the character pixel buffer as a texture, and then will update the
attributes for characters. In the presented example, characters will
be spinning in their place, so the fragment shader will only update



the heading for characters. The new position and heading will be
then copied to a new character pixel buffer. Both character pixels
buffers can be swapped after the rendering procedure has finished.
This pass can also include the update of the animation frame for
characters.

Pass 2. LOD map generation Here, the LOD map will be
updated according to the camera position. The LOD map will also
be stored into a pixel buffer. This is a quick rendering pass, as
it only involves the rasterization of a single, non-textured polygon
using the fixed rendering pipeline.

Pass 3. Detail Selection This pass will define the detail for
each character. A fragment shader will use the character position to
query the LOD map texture, mapped from the pixel buffer produced
by step 2. The obtained detail value will be compared to a thresh-
old parameter to verify whether the character will be rendered as
an impostor or as instanced geometry. Experimentally, thresholds
of 0.95 produced a good frame rate, while restricting the size of
impostors to its maximum display on-screen area – related to its
resolution. The detail value will also be compared with a minimum
display threshold, usually 0, to evaluate if that character is visible
by the camera.

Conditional statements are expensive in current graphics hardware.
Step functions are commonly used to efficiently produce an equiv-
alent functionality. Step functions evaluate as 0 when a value is
below a certain threshold, and as 1 otherwise. Hence, both thresh-
olds comparisons required can be handled by the shader program as
step functions. The sum of both functions will then be written on
the character detail pixel buffer, and used to decide how to render
each character by the following steps of the algorithm.

Pass 4. Character texture expansion The character pixel map
contains the position and heading for all characters on the scene. In
order to display individual objects, these pixels must be copied into
a vertex buffer. However, it is not possible to render a character
using the impostor technique with a single vertex. While the point
sprites technique [ARB 2003] may display a point primitive as a
textured quad, it is not yet possible to use programmable graphics
hardware to provide the texture coordinates for such quad. There-
fore, each vertex must be expanded into a quad for rendering.

An expanded pixel buffer will be filled with the information from
the updated character pixel buffer. Unlike passes 1 and 3, where
pixel buffers of the same size are produced, this pass requires a
wider image buffer, where each row will contain four times more
pixels than the original texture. Each pixel from the character pixel
buffer will be rendered to four pixels in the expanded pixel buffer.
In this way, a quad can be constructed in a later pass by using the
four contiguous vertices that share the same character information.

This rendering pass includes some additional processing that will
eliminate a bottleneck for the next rendering pass. Texture lookups
are very expensive within vertex programs [Scott 2004]. In addition
to the location and heading for each character, the resulting pixel
buffer will also indicate whether the character will be rendered as
an impostor. This will be stored as the alpha component of the color
in the pixel buffer, and will be set to 1 or -1, depending on whether
the character will or will not be displayed as an impostor.

After finishing this rendering pass, the expanded pixel buffer will be
copied into a vertex buffer, which will be used to render impostors.
The alpha components produced in this pass will become the w
homogeneous coordinate for the pixel. When this coordinate is set

to −1, this vertex is discarded by the graphics pipeline. This will
discard those characters that are not shown as impostors from the
next step.

Pass 5. Impostor rendering The expanded vertex buffer is now
used by a vertex shader to display impostors in the frame buffer. In
addition to character data, this pass receives the color vertex buffer
that will contain the color for individual characters, as well as a
corners vertex buffer.

The corners vertex buffer is created at the initialization phase, and
will specify which one of the four vertices of the quad corresponds
to which corner. The two components for this buffer are set to −1
or 1 depending on whether the vertex is the right or left – or upper
or lower – corner of the quad. Additionally, the camera position and
orientation, and the attributes of the impostor texture, are received
as parameters.

First, the position V of vertices for the impostor quad are obtained.
The right vector Qx for this quad is calculated as the cross product
of the camera up vector and the vector from the impostor location
P to the camera. The up vector Qy for the quad will be the camera
up vector. Then, the coordinates for each vertex will be obtained as
follows.

V = P+Qxδx +Qyδy (2)

where δx and δy are the values obtained from the corners vertex
buffer for the current vertex.

The texture coordinates for the current vertex will be obtained using
the character heading and the direction from the character to the
camera. From these parameters, the stack and slice for the current
view can be obtained as the closest discrete value available. These
variables, as well as the current animation frame, are combined to
select from the impostor texture grid the closest subimage for the
character. This subimage will be mapped to the impostor quad, and
alpha testing will be used to discard pixels from the background.

Finally, the fragment shader modifies the mapped texture to pro-
duce different-colored characters. A character color vertex buffer,
similar to the corners vertex buffer, is generated in the initialization
phase, and will produce a different color for each character. It is im-
portant to store this information so that each character maintains the
same color during the application and can be identified within the
crowd. To produce the final render, the fragment shader multiplies
each visible pixel by the character color.

Pass 6. Instanced geometry rendering Characters at full de-
tail will be drawn using instancing. However, instancing is a feature
only present in DirectX [Scott 2004]. As the example application
is programmed in OpenGL, a different technique should be used.
A technique based in pseudo-instancing will then be used. Pseudo-
instancing [Zelsnack 2004] takes advantage on the efficiency of us-
ing persistent vertex attributes, such as color or transformations,
to provide information for an entire instance. The main difference
with instancing is that, in instancing, only one call is used to ren-
der all primitives, while pseudo-instancing requires one call to a
display list to render each instance. However, these calls are very
efficient in OpenGL, so similar performances are achieved by both
techniques [Zelsnack 2004].

This pass requires first the generation of a set of display lists, which
will later be used to display different instances. In the current ex-
ample application, the same animation frame will be used for every
character for simplicity. Hence, a single display list will be pro-
duced. This can be modified to support different animation frames



for each character, which should have no impact on impostor ren-
dering, as it would simply modify the calculation of texture coor-
dinates. However, to maintain the efficiency of the algorithm, a
reduced number of frames should be sent to the graphics card, as
vertices should be interpolated and sent to the graphics card on ev-
ery frame, which will decrease rendering performance.

The next step consists in retrieving character information and detail
from the graphics memory to the main memory. This is one of the
most time consuming parts of the rendering procedure. Optimiza-
tions in this step will probably improve largely the performance of
this approach. However, this was the most efficient way to display
character instances available in current graphics hardware.

Retrieved character detail will then be used to verify which charac-
ters will be rendered as geometry instances. Characters selected for
pseudo-instancing will then be rendered by calling the previously
produced display lists. Character color, position and heading will
be passed as primary and secondary color attributes. Position and
heading will be used by a vertex program to transform the model
geometry, while color will be used by a fragment program to mod-
ify the resulting color, using a similar algorithm to the one used for
impostors.

A summary of the rendering procedure is shown in Figure 4.

1. CharacterUpdate 2. LOD MapGeneration 3. Detail Selection
6. InstancedGeometryRendering 5. ImpostorRendering 4. CharacterTextureExpansion
Characters

UpdatedCharacters
LODMap

CharacterDetail
ExpandedPixel /VertexBufferCharacterColor CornerVertex Buffer

Figure 4: Overview of the crowd rendering procedure.

6 Results

The proposed technique was evaluated on a Pentium Xeon com-
puter at 3.2Ghz using a QuadroFX 4400 graphics card with 512
MB of memory, and rendered to a 1280 x 1024 window. A differ-
ent number of characters was used to evaluate the performance of
the proposed technique. Rendering performance for different num-
ber of characters is shown in Figure 5.

Maximum frame rates were achieved when rendering all characters
as impostors, while minimum frame rates involved a mixed ren-
dering of impostors and instanced geometry. In order to select the
detail for each character, a 256×256 LOD map was used.

Produced crowds had a maximum number of 220 characters due to
the maximum texture size of 2,048×2,048 pixels supported by our
graphics hardware. As the expanded character texture requires four
pixels per character, this allows a maximum number of 512×2,048
(1,048,576) characters per texture.

0

10

20

30

40

50

60

70

16,384 65,536 131,072 262,144 524,288 1,048,576

Number of characters

F
ra

m
e 

ra
te

Minimum frame rate Maximum frame rate

Number of Minimum Maximum
characters frame rate frame rate
214 - 16,384 50.4 fps 60.0 fps
216 - 65,536 49.5 fps 60.0 fps
217 - 131,072 30.7 fps 37.8 fps
218 - 262,144 15.7 fps 19.8 fps
219 - 524,288 8.0 fps 10.1 fps
220 - 1,048,576 4.3 fps 5.1 fps

Figure 5: Rendering performance for different number of charac-
ters.

Memory requirements of 128 bytes per character are constant for
character rendering. Half-float textures were used to reduce mem-
ory usage to two bytes per channel, and eight bytes per RGBA
pixel. Each buffer from Figure 4 has different memory require-
ments, shown in Figure 6. In general, 128 bytes are required for
each character. LOD map generation does not depend on the num-
ber of characters, but good results can be achieved with 128×128
maps, adding 16K of memory to the algorithm.

128 MB of memory are required to produce a million characters.
While is a large amount of memory, recent graphics hardware in-
clude up to 512 MB of memory, leaving a good amount for the
scene itself. However, rendering a million characters is a rather
complex task that requires many computational resources, and is
hard to achieve at good frame rates using a single computer.

Memory requirements for the impostor textures vary according to
the number of animations, frames, and viewpoints. A walking ani-
mation of 6 frames using 16×8 viewpoints with 64×64 pixels im-
postors requires 192 KB of texture memory. Changing the number
of frames to 18 and the number of viewpoints to 16×16 increases
the required memory to 288 KB, which is still a small amount com-
pared to memory used by the character textures.

Number 1 16 K 64 K 256 K 1 M
Characters 8 B 128 KB 512 KB 2 MB 8 MB
Updated chars. 8 B 128 KB 512 KB 2 MB 8 MB
Character detail 8 B 128 KB 512 KB 2 MB 8 MB
Exp. Pixel 32 B 512 KB 2 MB 8 MB 32 MB
Exp. Vertex 32 B 512 KB 2 MB 8 MB 32 MB
corners 16 B 256 KB 1 MB 4 MB 16 MB
Character color 24 B 368 KB 1.5 MB 6 MB 24 MB
Total memory 128 B 2 MB 8 MB 32 MB 128 MB

Figure 6: Memory requirements for different number of characters.

Some of the renders for the example application are illustrated in
Figure 7. Here, a gap is left between impostors and instanced ge-
ometry to help identifying both approaches on the image. The de-
cision to use different colors for each character was motivated by
these results. The use of a single colored model for every character
would make it even more difficult to distinguish individual charac-
ters within the crowd.



a)

b)

c)

d)

Figure 7: Display of different size crowds. a) 16 K characters. b)
64 K characters. c) 256 K characters. d) 1 M characters.

While the render of 1,048,576 characters provided a relatively low
frame rate of between 4.3 and 5.0 frames per second, the produced
crowd is very large for the window resolution used. A crowd of
262,144 characters produces a better frame rate and still gives a
similar appearance. Character size may also be enlarged to give
the appearance of a large crowd with a smaller number of charac-
ters. Here, a smaller character size was used to better appreciate the
crowd density.

Having a set of characters spinning in their own place is not a very
common behavior in videogames or in any graphics application.
Hence, the proposed rendering technique was integrated with an-
other application, where character behavior is simulated within the
graphics processor [Rudomı́n et al. 2005]. In order to do this, step
1 from the rendering algorithm was replaced by the programmable
Finite State Machine simulation proposed in our previous work. In
the presented example, characters are programmed to go from one
region to other and back.

Using only pseudo-instancing, the simulation was only capable of
displaying 16,384 characters at only 5.45 frames per second. By

integrating the proposed rendering technique, the resulting perfor-
mance was very similar to that of the spinning characters: between
59 and 60 frames per second for 16,384 characters, between 29.9
and 60 fps for 65,536 characters, and between 3.1 and 4.6 fps for
1,048,576 characters. The main reason of the frame rate reduction
is that in certain moments, the number of characters rendered at full
detail is higher than in the spinning example. Two screenshots of
this simulation are shown in Figure 8.

a)

b)

Figure 8: Display of different size crowds using FSM simulation
on the GPU. a) 512 K characters. b) 1 M characters.

7 Conclusions and Future Work

An efficient technique has been presented to display large crowds of
animated characters at interactive frame rates. As graphic proces-
sors become more powerful and common, the use of this approach
may enable the interactive display of even larger crowds. Impos-
tors are a well suited technique for graphics processor, as a con-
stant single quad is only required to display each character, and its
animation and transformations are based on simple texture lookups.

Different thresholds between impostors and pseudo-instancing can
be used in different applications. A lower threshold can be used
in realistic virtual reality simulations, where powerful hardware en-
ables the production of higher resolution images. Here, as char-
acters will be rendered to a larger on-screen area, the use of more
instanced geometry will produce more realistic results.

In contrast, console videogames and applications for commodity
hardware may rely on a higher threshold, improving the rendering
performance for such applications. Furthermore, these applications
may even eliminate the pseudo-instancing stage, avoiding the trans-
fer of character data to main memory, and thus producing an even
better performance, though with less detail.

While this distance threshold variability is useful to customize the
detail of the characters according to the capabilities of the render-
ing hardware, a better metric may be used to switch between both
representations. This metric could be obtained from the impostor
generation phase; thresholds for image maps could be obtained as
a function of the distance between the characters and the camera in
the impostor generation phase, and of the image resolution of the
produced impostor.



The number of displayed characters exceeds at least by an order of
magnitude existing algorithms for rendering. Reynolds was able to
produce crowds of 10,000 characters at 60 frames per second on
Playstation 3 hardware [Reynolds 2006]. Other approaches have
reached between 1,000 and 30,000 characters at interactive frame
rates [de Heras Ciechomski et al. 2005; Dobbyn et al. 2005], adding
features not present in our initial rendering approach. In particular,
Dobbyn [Dobbyn et al. 2005] uses a set of texture maps to improve
rendering: normal maps for per-pixel lighting, region maps to as-
sign different colors to different parts of the character, and detail
maps. This rendering technique produces a more realistic appear-
ance.

Our rendering system uses a simplified version of behavior simula-
tion and does not calculate illumination or shadows, but is capable
of displaying more than 60,000 characters at 60 fps, and many more
at interactive frame rates. While this is an initial approach, the ef-
ficiency obtained by these results encourage the extension of this
algorithm to include further improvements in rendering.

Character behavior is extremely simple in the presented application.
Better algorithms for character simulation, executed either by the
main processor or by the graphics hardware, should be evaluated
to produce more interesting character behaviors for videogames or
other applications. Using finite state machines through image maps
[Rudomı́n et al. 2005] is a starting point, but better ways to specify
complex behaviors should be developed.

Finally, next generation graphics hardware should be thoroughly
evaluated, as upcoming features, such as geometry shaders, ani-
mated instancing, or vertex shaders texture lookups, may provide
with additional functionality that may be harnessed to improve the
flexibility and efficiency of GPU crowd rendering.

References

ARB. 2003. ARB point sprite extension. Tech. rep., OpenGL
Architecture Review Board.

AUBEL, A., BOULIC, R., AND THALMANN, D. 1998. Animated
impostors for real-time display of numerous virtual humans. In
VW ’98: Proceedings of the First International Conference on
Virtual Worlds, Springer-Verlag, London, UK, 14–28.

DE HERAS CIECHOMSKI, P., SCHERTENLEIB, S., MAM, J.,
MAUPU, D., AND THALMANN, D. 2005. Real-time shader ren-
dering for crowds in virtual heritage. In The 6th International
Symposium on Virtual Reality, Archaeology and Cultural Her-
itage, Eurographics Association, Pisa, Italy, 91–98.

DOBBYN, S., HAMILL, J., O’CONOR, K., AND O’SULLIVAN, C.
2005. Geopostors: A real-time geometry / impostor crowd ren-
dering system. In SI3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games, ACM Press, New York,
NY, USA, 95–102.

GROSSMAN, J. P., AND DALLY, W. J. 1998. Point sample render-
ing. In Rendering Techniques ’98, Springer, 181–192.

HOPPE, H. 1996. Progressive meshes. In Proceedings of the 23rd
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 99–108.

MILLÁN, E., AND RUDOMÍN, I. 2006. A comparison between
impostors and point-based models for interactive rendering of
animated models. In Proceedings of the International Confer-
ence on Computer Animation and Social Agents (CASA) 2006,
University Press.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M.
2000. Surfels: surface elements as rendering primitives. In Pro-
ceedings of the 27th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., 335–342.

REYNOLDS, C. 2006. Crowd simulation on PS3. In Game Devel-
opers Conference 2006.

RUDOMÍN, I., MILLÁN, E., AND HERNÁNDEZ, B. 2005. Frag-
ment shaders for agent animation using finite state machines.
Simulation Modelling Practice and Theory 13, 8 (November),
741–751.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A multireso-
lution point rendering system for large meshes. In Proceedings
of the 27th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
343–352.

SCOTT, P. 2004. Shader model 3.0, best practices.
Tech. rep., NVIDIA Corporation. available online at
http://developer.nvidia.com/object/SM3 0 best practices.html.

TECCHIA, F., AND CHRYSANTHOU, Y. 2000. Real-time render-
ing of densely populated urban environments. In Proceedings
of the Eurographics Workshop on Rendering Techniques 2000,
Springer, 83–88.

TURK, G. 1992. Retiling polygonal surfaces. Computer Graphics
26, 2, 55–64.

WAND, M., AND STRASSER, W. 2002. Multi-resolution rendering
of complex animated scenes. Computer Graphics Forum 21, 3.
Eurographics 2002.

ZELSNACK, J. 2004. GLSL pseudo-instancing. Tech.
rep., NVIDIA Corporation. available online at
http://download.nvidia.com/developer/SDK/Individual Samples/
samples.html.


