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Abstract

In developing decision-making models for the evaluation of medical procedures, the model parameters
can be estimated by fitting the model to data observed in trial studies. For complex models that are
implemented by discrete event simulation (microsimulation) of individual life histories, the Score
Function (SF) method can potentially be an appropriate approach for such estimation exercises. We
test this approach for a microsimulation model of screening for cancer that is fitted to data from the
HIP randomized trial for early detection of breast cancer. Comparison of the parameter values
estimated by the SF method and the analytical solution shows that method performs well on this
simple model. The precision of the estimated parameter values depends (as expected) on the size of the
simulation (number of life histories), and on the number of parameters estimated. Using analytical
representations for parts of the microsimulation model can increase the precision in the estimation of
the remaining parameters. Compared to the Nelder and Mead Simplex method which is often used in
stochastic simulation because of its ease of implementation, the SF method is clearly more efficient
(ratio computer time: precision of estimates). The additional analytical investment needed to
implement the method in an (existing) simulation model may well be worth the effort.
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1. Introduction

Microsimulation models are increasingly used in epidemiology and public health for analyzing data from

disease control projects and for evaluating the costs and effects of control policies. Microsimulation of

disease control is a specific type of discrete event simulation in which individual life histories of

fictitious persons are generated, including disease(s) in the persons and the effects of interventions, such

as early detection (screening) and prevention and control of transmission of infectious diseases. These

models have many parameters, and only part of these parameters can be quantified directly on the basis

of existing knowledge. Inferences for other parameters may be obtained by optimizing the goodness of

fit between the model-simulated data and data from intervention trials. Examples of these models are the

MISCAN model for breast cancer screening [1] and for colorectal cancer screening [2]. These

microsimulation models, which can be regarded as extended and more realistic alternatives for simpler

numerical-analytical models [3], have been used in decision making on implementation of a national

mass screening program for breast cancer in The Netherlands and in evaluation of the results of

screening programs.

An essential step in the quantification of the models is the estimating parameter values from available

screening trial data. The stochastic output and the long duration of microsimulation runs make that

finding precise parameter estimates may be very time-consuming. The same applies to finding optimal

disease control policies such as policies that give the highest gain in life years for a certain budget. In this

paper we will concentrate on finding the parameter estimates of microsimulation models.  A search

method for the best parameter estimates requires running the microsimulation for different parameter

values and comparing the performance of the simulation to that of recorded trial data. Typically fitting

the parameters of a microsimulation model results in an optimization problem where the objective

function (the goodness of fit of the model) has the following characteristics:

1. Calculation of the objective function is very expensive or time-consuming.

2. Exact first partial derivatives of this function cannot be calculated.

3. Numerical approximation of the gradient of the objective function is impracticably expensive or slow.

An example of a direct search method, i.e. a method that only uses the value of the objective function [4]

is the Nelder and Mead Simplex (NMSM) algorithm [5], because it considers the (micro)simulation

model as a black box. Therefore, this method can be applied to any (micro)simulation model or

optimization problem. In the NMSM approach, each step in the optimization algorithms is based on

output from a number of simulation runs with a large number of life histories. The basic NMSM is based

on ranking of vertices of the simplex with respect to model results, and it will often perform quite well in

locating the (broad) neighborhood of the optimum. However, it is seriously hindered by noise in finding
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precise optimal parameter values.  A modified “adaptive version” of the simplex algorithm, in which the

number of life histories simulated is increased when noise dominates the differences between simulation

output between vertices, is more efficient than the basic algorithm [6].

Other approaches that consider the model to be a black box that does not give information on gradients

or higher order derivatives are the Response Surface methodology [7],[8] and the Stochastic

Approximation method [9]. These methods use evaluations of the objective function of a simulation

model for different parameter values to calculate estimates of derivatives that are then used in

optimization routines.

Opening the black box to obtain information during the (micro-)simulation or even adapting the

simulation procedure  may give more precise estimates of the objective function and its derivatives.

Several approaches have been proposed, such as the quasi-gradient method that is usually combined

with a stochastic approximation type of optimization method. Here the specifics of the

microsimulation are important for the estimation  of the derivatives.

Another approach to (quasi) gradient optimization uses the Score Function (SF) method [10],[11]. In

this optimization approach first a single (micro-)simulation run is performed, and then the score

function is used to obtain successive estimates of the gradient and Hessian for different parameter

values. In this way, the sample trajectories generated during the simulation run are used to model the

objective function and its derivatives as a continuous deterministic function of the model parameters.

Therefore, the model parameters can be optimized with a standard (quasi) Newton optimization

method.

In the context of estimating parameters of disease control microsimulation models from empirical data,

the Score Function method calculates a goodness of fit and its derivatives on the basis of only one (large)

sample of simulated life histories that are generated for a certain "reference" value of the model

parameters. The SF method can under mild conditions be added to an existing microsimulation model

and will in general not change the generation of life histories.

We will investigate the use of the SF method for estimating parameters of a microsimulation version

of the simplified analytical model for cancer screening proposed by Day and Walter [3],[12], using the

same dataset as they did from the HIP randomized controlled trial of breast cancer screening. The SF

method requires that individual life histories are independent, which is true for this cancer-screening

model. The efficiency of optimization using the SF-method is compared to that of the adaptive version

of simplex (NMSM) method [6] by gauging the precision of the estimated optimum and the

computational effort required.

Our tests for the simple breast cancer model will demonstrate that the SF method does indeed show a

much better balance between precision of the parameter estimates and computational effort if compared

to either the basic or the adaptive version of the NMSM. An additional advantage of the SF method is
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that the outcome regarding gradients and Hessian matrices for the best-fitting parameter value can be

used to estimate an (approximate) confidence region for the parameters. We will discuss the potential use

of the SF method for more comprehensive model for breast cancer screening and for other medical

decision making models.

2. Material and methods

The score function (SF) method is tested for a microsimulation model that is an implementation of a

simple model for the detection of early stages of breast cancer by mass screening proposed by Walter

and Day [3].In this model the preclinical disease consists of only one stage, the detectable pre-clinical

period (DPCP), in which the cancer is already detectable by a screening test but does not cause serious

symptoms. The DPCP starts when the tumor becomes detectable by the screening test used and ends

when the tumor is detected clinically on the basis of symptoms. The model predicts the number of

cancers detected by screening and the numbers of interval cancers, i.e. cancers that are missed by

screening and detected clinically on the basis of symptoms. The model can be used to predict the

number of cancers detected by screening for different screening strategies, or to estimate values of

model parameters that can not be observed directly from numbers of screen detected and clinically

diagnosed cancers in a trial study.

2.1 Material

The data used in this paper is from the first randomized controlled trial of breast cancer, the Health

Insurance Plan of Greater New York (HIP) study. The aim of the HIP study, which started in 1963,

was to establish whether early detection and treatment would result in a reduction of breast cancer

mortality. The study involved approximately 62000 women between age 40 and 64 who were

randomly divided over a study group and a control group of equal size. The women in the study group

were invited to a first screening, and the 20166 (65%) participants of the first screening were offered

three more screenings with intervals of one year [13]. The intervals after the screenings are called

follow up intervals where a woman can only be diagnosed on the basis of symptoms. If a woman does

not show for a screening the follow up intervals after the following screenings all relate to the last

attended screening.

We consider the data for the first five years of the HIP study, because these were also used by Walter

& Day for estimating a numerical version of the model  [3],[12], see Figure 1. In this paper, the total

number of screenings is denoted by S and the total number of follow-up intervals by I. In each of the
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18 categories shown in the figure the number of women present in the category and the number of

cancers observed have been registered in the HIP study. For a screening category Gs (s=1,..,S) the

number of women who attended the screening and the number of cancers detected are recorded. For an

interval group Gr,i (r=1,..,S and i=r,..,I) where r indicates the number of screenings attended, the

number of women who are present in this group (who were not detected in the previous screening or

did not show for this screening) and the number of diagnosed cancers are recorded. At the initial

screening test, breast cancer was detected in 55 of the 20166 women examined. In the year between

the first and second screening, breast cancer was diagnosed in 13 women who had a negative test

result at the first screening. These interval cancers were either fast growing tumors that were not yet

detectable at the screening, or had been missed because of the limited sensitivity of the screening

procedure. In the second screening, 15936 women participated and 32 cancers were detected. The

detection rates at subsequent screenings are lower than at the first screening because the cancers with a

long detectable phase can be detected at multiple screening instances. If the sensitivity of the test is

good enough the cancers will be detected at the first screening occasion causing a lower detection rate

at later screenings. The incidence rates for women who did not participate in a screening round is

expected to increase with time since the last screening, and to return to the level for the situation

without screening. These data are therefore considered separately in the analysis. Data for women who

participated irregularly in the screenings have been neglected in the analysis.

==Insert Figure 1==

2.2 Microsimulation model

We consider the following microsimulion model, which is based on the simple one-stage breast cancer

model as proposed Walter and Day [3]. The incidence of breast cancer is modeled by the hazard rate J

∈ (0,1). If a cancer occurs then the starting time and the length of the DPCP completely determine the

disease process.

Define the stochastic variable λY  as the sojourn time (duration) of the DPCP and assume that the

sojourn time has an exponential distribution function:

)(yf λ )exp( y⋅−⋅= λλ  0≥y (1)

where λ is the sojourn time parameter.
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Let 1t  and St  be the points in time at which the first and the last screening take place respectively and

FUt  as the point in time at which the follow-up period after the last screening ends (Figure 1). We only

simulate relevant histories, i.e. life histories that can either be detected by screening or diagnosed as

interval cancer before the end of the follow-up period. For given length y of the DPCP, these life

histories all have a DPCP that starts within the interval [ ]yyMyt −− )(,1 , where

)(yM = { }11 ,max ttytt FUS −−−  (2)

Define the stochastic variable X as the starting point of a relevant DPCP that, for given y, is uniformly

distributed on [ ]yyMyt −− )(,1 . The conditional probability density function (pdf) )|( yxk is given by

)|( yxk ( )1)(1 tyM −= [ ]yyMytx −−∈ )(,1 (3)

The probability that a screening test will detect a cancer, depends on the incidence (hazard) rate J, the

false-negative rate of the screening test (i.e. the probability that the screening test does not identify a

cancer in the DPCP, denoted by β) and the sojourn time of the DPCP (parameter λ). The model thus

has three parameters that will be denoted by the parameter vector ( )Jv ,, βλ= .

Define the stochastic variable β,rA  identifying the category in Figure 1 in which the cancer is detected

by screening or is diagnosed as an interval cancer, where the woman has attended r screenings. Define

Cr as the subset of the 4 screenings and 14 intervals in Figure 1, given that the number of attended

screenings is equal to r, and add an additional category Grest for cancers that are neither detected by

screening nor diagnosed as interval cancer. This means that restr GA =β,  when all screenings that

could detect the cancer are false-negative and the DPCP ends after the end of the follow-up period. For

given λY  and XJ, the conditional pdf ),|(, yxahr β  of β,rA  on domain rC is given by:

),|(, yxahr β
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and  δ  and  δ  are defined as the upper and lower entier for δ respectively.

A life history is then completely specified by the stochastic vector Zv = ( )βλ ,,, rAXY . The main

interest in the model is for the unconditional pdf )(, ap vr  of β,rA , which can be formulated as:

)(, ap vr  = ( )∫ ∫
∞

=

−

−=

⋅⋅⋅−⋅
0

)(

1

,1 )()|(),|()(
y

yyM

ytx
r dxdyyfyxkyxahtyMJ λβ (5)

= ( )( ) { }{ }arAvZ tYMJE =⋅−⋅
βλ ,1 1       for rCa∈ , r=1,..,S

with the life history Zv taken from the joint pdf ( ) )(|),|(, yfyxkyxahr λβ ⋅⋅ . For given y, the factor

( )1)( tyMJ −⋅  represents the probability that the DPCP of a cancer starts in the interval of interest

[ ]yyMyt −− )(,1 . Given that a cancer occurs in this interval, the life history models the category in

Figure 1 in which the cancer will be detected by screening or diagnosed as interval cancer.

Estimates of )(, ap vr in (5) will be obtained by simulation of a large number of disease histories Zv

using the following procedure: First a sojourn time λY  is obtained from the sojourn time distribution

)( yf λ . Second a moment X when a DPCP starts is obtained from )|( yxk . Finally a category β,rA  in

which the cancer is detected by screening or diagnosed as interval cancer is obtained from

),|(, yxahr β . 

With the estimates for )(, ap vr and the total number of women arN ,  corresponding to category a in the

HIP study, where the woman has attended r screenings, the expected number of detected cancers

)(, vE ar  can be estimated by:

)(, vE ar =
∑−

⋅

ai
vr

vr
ar ip

ap
N

 before 
,

,
, )(1

)(
rCa∈ , r=1,..,S (6)

where )(, ip vr , i before a, indicates those categories in Figure 1 that a women has traversed before she

enters category a.



8

2.3. Optimization of model parameters

If the microsimulation model gives an adequate representation of the natural history of breast cancer

and the sensitivity of the screening test, the differences between the expected number of cancers and

the observed number of cancers should be small. We use the weighted sum of squared differences

between the expected and observed number of cancers as goodness of fit criterion, i.e. as a measure of

the quality of the microsimulation model in representing the data recorded by the HIP trial.

In particular, for the observed numbers of cases Or,a in the HIP study and the corresponding expected

numbers of cases )(, vE ar  according to the microsimulation model we define the goodness of fit

criterion as the statistic )(2 vχ :

)(2 vχ  =∑ ∑
= ∈

−S

r rCa ar

arar

vE

vEO

1 ,

2
,,

)(

))((
(7)

Note that the number of observed cases is assumed to be a realization of a Poisson distribution with as

mean the corresponding expected number.

The resulting optimization problem is to find the optimal parameter vector ( )**,*,* Jv βλ=  of the

microsimulation model such that the goodness of fit statistic is minimized:

( )microP  min )(2 vχ

st Vv ∈

where V= ( ){ }0,01,0|,, >≥≥> JJ βλβλ .

An optimization algorithm to find the optimal parameter vector for ( )microP  requires frequent

evaluations of the objective function )(2 vχ . A straightforward evaluation of )(2 vχ  will use a sample

of N individual life histories, Nvrvr ZZ ,,1,, ,.., , simulated from pdf )(, zg vr ,

)(, zg vr = )()|(),|(, yfyxkyxahr λβ ⋅⋅ . (8)

where fλ, k and hr,β as defined in formulas (1), (3) and (4) respectively.
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Every parameter vector v corresponds to a different sample Nvrvr ZZ ,,1,, ,..,  and finding the optimal

parameter will therefore require many runs of the microsimulation model. Since the output of the

microsimulation model is stochastic, the optimization will be hindered by noise.

Through the application of the Score Function (SF) technique [10] a standard deterministic

optimization procedure, e.g. (quasi) Newton procedure, can be used to optimize (Pmicro). The SF

technique derives estimates for )(, ap vr in formula (5) and its derivatives for every value of the

parameter vector v, based on a single sample, called the reference sample. This reference sample is

simulated from a pdf )(
0, zg vr  that is characterized by values of a pre-specified reference parameter

vector ( )0000 ,, Jv βλ= . To estimate, for a given reference sample, )(, ap vr and its derivatives for

other parameter vectors, the SF method does not change the sample but it changes the likelihood of the

sample. This means that for a given reference sample, estimates for )(, ap vr and its derivatives for

other parameter vectors v are, according to the SF method, deterministic functions of v.

The change in likelihood of a realization z of the variable vector vrZ ,  for a parameter vector v with

respect to the reference parameter vector v0  is modeled by the likelihood ratio:

( )zW vvr 0,, = )()(
0,, zgzg vrvr  (9)

It is not hard to see with formula (8) and the definitions of fλ, k and hr,β in formulas (1), (3) and (4) that

( )zW vvr 0,,  is given by

( )zW vvr 0,, =
 { }( )

{ } 
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In the application for breast cancer screening we use the SF method to obtain estimates of )(, ap vr in

formula (5) and of their derivatives with respect to ( )βλ,=v . These estimates are then used to

estimate )(2 vχ  and its derivatives with respect to v. Observe that the parameter J is not a parameter of

the pdf of the life histories Zv, but a parameter that directly influences )(, ap vr  (formula (5)). Later on,
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the (standard) SF method will be extended to include J and obtain estimates of )(, ap vr  and of their

derivatives with respect to ( )Jv ,, βλ= .

According to formula (5) )(, ap vr  can be viewed as expectation E { })( ,, vrar ZL of a certain performance

measure )( ,, vrar ZL

)( ,, vrar ZL  = ( ) { }aAr
tYMJ =⋅−⋅

βλ ,
1)( 1 a∈Cr, r=1,…,S (11)

The SF method estimates the values of )(, ap vr and their derivatives for other parameters v using

reference parameter values v0=(λ0, β0). These reference parameters are used to obtain a reference

sample Nvrvr ZZ ,0,1,0, ,..,  from )(
0, zg vr .

An estimate of )(, ap vr is defined in the SF method by averaging the performance of the reference

sample Nvrvr ZZ ,,1,, 00
,..,  after multiplication by the likelihood ratio:

)(ˆ , ap vr = ( ) ( )∑
=

⋅
N

n
nvrv,vrnvrar ZWZL

N 1
,0,0,,0,,

1
rCa ∈ , r=1,..,S (12)

An estimate of the k-th order derivatives of )(, ap vr with respect to v is given by

)(ˆ ,
)( ap vr

k∇ = ( ) ( ) ( )nvr

N

n

k
vrnvrvvrnvrar ZSZWZL

N ,0,
1

)(
,,0,0,,,0,,

1 ∑
=

⋅⋅ (13)

for r=1,..,S , where ( )zS k
vr
)(

,  is called the Score Function and is given by

)()(
, zS k
vr )(

)(

,

,
)(

zg

zg

vr

vr
k∇

= (14)

Notice that )()1(
, zS vr  is a vector and )()2(

, zS vr is a matrix.

With the pdf gr,v(z) as defined in (8) and by observing that
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Including the incidence parameter J in the estimations of )(, ap vr  and their derivatives is not

straightforward because J is not a parameter of the pdf )(, zg vr , so the likelihood ratio and score

functions with respect to J can not be calculated. We use two different methods to estimate the

derivatives of )(, ap vr  with respect to J.

First, direct differentiation of )(, ap vr  to J is not difficult in this simple model. By direct

differentiation of the performance measure )( ,, vrar ZL  defined in (11), estimates for 
( ) )(

,
)( )(

k
vr

k

J

ap

∂

∂
 can be

calculated as follows for k=1,2:

J

ap vr
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Alternatively, J can be estimated using the ‘push-out’ technique. The ‘push-out’ technique implies that

a parameter that influences the performance measures directly (instead of indirectly through the

underlying pdf ) is pushed out of the performance measures into a pdf, so that the standard SF method

can be applied to estimate this parameter. We used this technique for J, by introducing an extra

variable θQ  for the incidence, i.e. the constant J in the performance measure )( ,, vrar ZL  in formula

(11) is replaced by θQ . The optimal value of J will be estimated as θQ ’s mean.

We assume a Weibull distribution for θQ  with scale parameter θ and a fixed shape parameter α.. The

pdf of θQ  is given by

 )(qmθ = 


















−







⋅
− αα

θθθ
α qq

exp
1

. (18)

Estimates of )(, ap vr and derivatives with respect to θ  can be calculated using the standard SF

method. J and θ are directly related through the relation cJ ⋅= θ , where c= 





 +Γ

α
1

1  is constant for

fixed α and ( )tΓ = ∫
∞

− −
0

1 )exp( dztzz t  is the Gamma function.

In the ‘push-out’ variant the parameter vector is ( )θβλ ,,=v  and the vector of stochastic variables is

( )θβλ QAXYZ rvr ,,, ,, =  with pdf )(, zg vr , where r is the number of attended screenings, as defined as

follows:

)(, zg vr = )()|(),|()( , yfybkybahqm r λβθ ⋅⋅⋅ (19)

Estimates of )(, ap vr  and their derivatives can be calculated using the SF method, using formula (5),

with Nvrvr ZZ ,,1,, 00
,..,  from )(

0, zg vr  as defined in formula (19), the constant J in the performance

measures )( ,, vrar ZL  in formula (11) replaced by θQ , and the likelihood ratio ( )zW vvr 0,,  as defined in

formula (20). The score function ( )zS k
vr
)(

, , k=1,2 can be calculated using formulas (15), (16) and (21).
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3. Tests of the score function method for microsimulation

The one stage breast cancer model as proposed by Walter and Day for the HIP data set can be solved

analytically. Using the analytical model we find the optimal parameter values v*=( )**,*, Jβλ  =

(0.614, 0.129, 0.00213) and the goodness of fit value )( *2 vχ =13.343.

The optimal parameters found using the microsimulation model and the score function technique are

compared to these analytical optimal values. The non-linear deterministic optimization problem that

remains when the SF technique is applied to the generated reference sample of life histories is solved

using the standard Quasi-Newton algorithm [14].

The precision of a solution vSF resulting from the optimization using the SF method is measured by the

error of the goodness of fit of this solution compared to the goodness of fit of the analytical optimum:

)()( *22 vvSF χχε −=

where the goodness of fit for both v* and vSF is evaluated using the analytical model.

There are 5 models in our analysis:

1. Only the length Yλ of the DPCP is simulated, optimization of parameter λ

2. Simulation of life histories Zλ,β,r = ( )βλ ,,, rAXY , where r, r=1,..,4, is the number of screenings

attended, optimization of parameter λ.

3. Simulation of life histories Zλ,β,r = ( )βλ ,,, rAXY , optimization of parameters λ and β.

4. Simulation of life histories Zλ,β,r = ( )βλ ,,, rAXY , optimization of parameters λ, β and J.

5. Simulation of life histories Zλ,β,r = ( )βλ ,,, rAXY , simulation of stochastic variable QJ, representing

the incidence, from a Weibull distribution with fixed shape parameter α=3, optimization of

parameters λ, β and J.

The first model arises from the analytical model, where β and J are determined analytically. Only the

length of the DPCP is simulated. In the second model, the complete life histories Zλ,β,r are simulated,
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but β and J are assumed to be known. Thus, the life histories Zλ,β,r are generated with the optimal

parameter values β*=0.129 and J*=0.00213. The optimal value of λ is determined with the SF – Quasi

Newton technique. In model 3 (4) the parameter value β (β and J) is also included in the optimization.

Finally, in model 5 is the ‘push-out’ implementation, where the parameter J is replaced by the

stochastic variable QJ with a Weibull distribution with fixed shape parameter α=3.

The SF technique includes the choice of a reference sample. This sample is related to the reference

parameter values v0= ( )000 ,, Jβλ . We compare the performance of the models for two reference

parameters. The first reference parameters are close to the optimal solution and are set to

v0=( )000 ,, Jβλ =(0.6, 0.1, 0.0025), and the second reference parameters are located farther from the

optimum, v0=( )000 ,, Jβλ =(0.4, 0.4, 0.003). We test how the precision and the computational effort

depend on the value of the reference parameters.

To test the impact of the simulation size on precision and computational effort, the parameters are

estimated with simulation size equal to N =10,000 and N =100,000 life histories. The simulation is

repeated 20 times for each combination of reference parameters and simulation size and the average

results are recorded together with the standard deviation. The computation time is measured in average

number of seconds needed before the Quasi-Newton algorithm terminates. The tests are performed on

a stand alone Pentium 3 PC, 550 MHz with 256 MB internal memory. Table ** a shows the results for

the five models, with 10,000 simulated life histories. The columns show the reference parameters

v0=( )000 ,, Jβλ , the average value of the optimal parameters ( )SFSFSFSF Jv ,,βλ=  resulting from the

SF-Quasi Newton method, the average error, and the average running times (in seconds).  The

averages are taken over the 20 simulation runs. Table 1b shows the same results for 100,000 simulated

life histories.
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Table 1a  Simulation size 10,000
Reference parameters Average SF solution

(st. dev.)
Average error
(st. dev.)

Average running
time (st. dev.)

0λ =0.6
(model 1)

0.614
(0.005)

0.007
(0.007)

3
(1)

0λ =0.6
(model 2)

(0.614)
(0.008)

0.016
(0.017)

3
(1)

( )00 , βλ =(0.6, 0.1)
(model 3)

(0.628, 0.113)
(0.026, 0.033)

0.076
(0.083)

4
(1)

( )000 ,, Jβλ =(0.6, 0.1, 0.0025)

(model 4)

(0.622, 0.119, 0.00213)
(0.039, 0.044, 0.00002)

0.092
 (0.134)

6
(1)

( )000 ,, Jβλ =(0.6, 0.1, 0.0025)

(model 5)
(0.620, 0.127, 0.00213)
(0.044, 0.051, 0.00002)

0,129
 (0,145)

16
(1)

0λ =0.4

(model 1)

0.614
(0.005)

0.008
(0.011)

6
(1)

0λ =0.4
(model 2)

(0.614)
(0.008)

0.015
(0.017)

5
(1)

( )00 , βλ =(0.4, 0.4)
(model 3)

(0.607, 0.135)
(0.026, 0.024)

0.055
(0.039)

6
(1)

( )000 ,, Jβλ =(0.4, 0.4, 0.003)
(model 4)

(0.610, 0.135, 0.00213)
(0.034, 0.035, 0.00002)

0.102
(0.091)

10
(1)

( )000 ,, Jβλ =(0.4, 0.4, 0.003)
(model 5)

(0.630, 0.117, 0.00214)
(0.039, 0.041, 0.00002)

0.124
(0.093)

26
(3)

Table 1b Simulation size 100,000
Reference parameters Average SF solution

(st. dev.)
Average error
(st. dev.)

Average running
time (st. dev.)

0λ =0.6
(model 1)

0.615
(0.002)

0.001
(0.001)

34
(7)

0λ =0.6
(model 2)

0.613
(0.003)

0.002
(0.003)

26
(5)

( )00 , βλ =(0.6, 0.1)
(model 3)

(0.614, 0.130)
(0.007, 0.009)

0.006
(0.005)

38
(7)

( )000 ,, Jβλ =(0.6, 0.1, 0.0025)
(model 4)

(0.608, 0.136, 0.00213)
(0.012, 0.014, 0.00001)

0.012
(0.017)

65
(3)

( )000 ,, Jβλ =(0.6, 0.1, 0.0025)
(model 5)

(0.613, 0.130, 0.00213)
(0.013, 0.013, 0.00001)

0.008
(0.010)

158
(14)

0λ =0.4
(model 1)

0.613
(0.002)

0.001
(0.002)

61
(6)

0λ =0.4

(model 2)
0.613
(0.003)

0.002
(0.003)

53
(7)

( )00 , βλ =(0.4, 0.4)

(model 3)
(0.614, 0.129)
(0.009, 0.009)

0.007
(0.005)

62
(7)

( )000 ,, Jβλ =(0.4, 0.4, 0.003)
(model 4)

(0.612, 0.131, 0.00213)
(0.010, 0.011, 0.00000)

0.008
(0.007)

112
(8)

( )000 ,, Jβλ =(0.4, 0.4, 0.003)
(model 5)

(0.614, 0.130, 0.00213)
(0.010, 0.010, 0.00001)

0.012
(0.007)

245
(47)

The results clearly show that the score function technique combined with the Quasi-Newton method

can optimize the model parameters with very small error. Including more parameters in the

optimization decreases the precision of the parameter estimates and increases the average
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computational time. However, the estimates stay within close range of the optimal values. The method

never finds a value far away from the optimum, both for the reference parameter close to the optimum

and for the reference parameter further from the optimal value. The computational times increase

when more parameters are included in the optimization, and including an extra stochastic process in

the simulation slows the optimization method down significantly.

Parameter J is very close to its optimal value for all models and every test setup. Notice the different

performance between model 4 where J is estimated directly and model 5 where J is estimated through

the parameter of the push-out distribution. The computational time increases significantly but the

estimate of the parameter J is equally good for both models. The optimization of parameter λ is

strongly influenced by the model under consideration, especially for the simulation size 10,000. The

variance in the parameter estimate grows with the complexity of the model, and a larger simulation

size is preferred for parameter λ. The parameter estimates for β also benefit from a larger simulation

size. All parameter estimates seem unaffected by the chosen reference parameter with respect to

precision of the estimates. However the computational effort is higher for the reference parameters

further from the optimum. A tenfold increase in the simulation size will lead to a similar increase in

computational time but also to an error that is tenfold smaller. These results suggest that both

relationships are linear in the size of the simulation.

In our analysis we use a Quasi-Newton algorithm to estimate the parameters. The Quasi-Newton

algorithm is a search method that determines a search direction based on the gradient and an

approximation of the Hessian, and uses a line search to determine the stepsize in the search direction.

The Newton algorithm uses the gradient and the Hessian to determine an alternative for the current

point in the feasible region. The Newton algorithm therefore also needs the Hessian of the objective

function. Although the Hessian is not given for our application in an analytical form, the SF technique

can also provide an estimate of the Hessian based on the reference parameters. To test whether the

precision or computational effort could be improved by using the Newton algorithm instead of the

Quasi-Newton algorithm, we estimated parameters (λ, β, J) for model 5 on the basis of 20

optimization runs for both reference values and simulation size equal to N=100,000 life histories.

For reference values ( )000 ,, Jβλ =(0.6, 0.1, 0.0025), i.e. the values close to the optimum, the Newton

algorithm performs as good as the Quasi-Newton algorithm regarding the precision, but is twice as

fast. But for the reference parameters ( )000 ,, Jβλ =(0.4, 0.4, 0.003) located further from the optimum

the Newton algorithm can not find a solution in 12 of the 20 optimization runs. The Newton method is

thus very sensitive to the choice of the reference parameter and seems to be suitable only if there is

some information on the approximate optimal value of the parameters.



17

We also considered the influence of the parameters of the Weibull distribution on the performance of

the optimization procedure. In model 5 the incidence parameter J is replaced by a stochastic variable

QJ  that has a Weibull distribution with fixed shape parameter α=3. To test the impact of this choice

for α on the solution, we estimate (λ,β,J) for model 5 with α=1, which means that the Weibull

distribution reduces to an exponential distribution. The shape of the exponential distribution will result

in a higher probability to sample smaller and larger values of J compared to the Weibull distribution

with shape parameter α=3 that has a higher probability to sample values close to the average. On the

basis of 20 optimization runs for both reference values and a simulation size equal to N=100,000 life

histories we tested the sensitivity of the performance to the choice of α. For the reference parameters

( )000 ,, Jβλ =(0.6, 0.1, 0.0025) close to the optimum the average precision was worse (0.014) for α=1

than for α=3, but for the reference values ( )000 ,, Jβλ =(0.4, 0.4, 0.003) located further from the

optimum the average precision was better (0.09). For both reference values the computational effort

was similar to those for α=3, but we must conclude that the shape parameter can have some influence

on the precision. Without any knowledge on the values of the model parameters that one wants to

estimate a low value of the shape parameter α seems to be preferable.

4. Discussion

The Score Function technique in combination with the Quasi-Newton algorithm appears to be an

efficient method for fitting a simple microsimulation cancer screening model to data. The results show

that the precision of the derived optimal value can be improved by taking a larger sample of simulated

life histories: the error in the performance (goodness of fit) function is approximately 10 times smaller

if the sample is 10 times larger. For a given sample size, the precision will decrease when more

parameters are fitted simultaneously. The simple model considered can completely be modeled

analytically or can be modeled partly through stochastic processes. When the simulation includes more

stochastic processes the precision of the parameter estimates also decreases. A special case is the

application of the ‘push-out’ technique, which implies that a parameter that influences the

performance measures directly (instead of indirectly through the underlying pdf ) is pushed out of the

performance measures into a convenient pdf, so that the standard SF method can be applied to

estimate such a parameter. The incidence parameter J is such a parameter in the cancer-screening

model. This parameter has a relatively simple relation with the goodness of fit measure, and we

therefore used direct estimates of gradients with respect to J in the optimization procedure in model 4.

In model 5, we explored use of the push-out technique for this parameter J, and found that the

precision of the parameter estimates were similar, but that the computational effort is about two times

higher for the push-out technique.
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The Score Function method comes with a nice bonus: it will produce an (approximate) confidence

area for the model parameters at only little extra expense. Using the SF method a second order

approximation for ),(2 βλχ  is estimated in the analytical optimum (λ=0.614, β=0.129) and this

approximation is used to estimate the 95% confidence region for (λ,β), see Figure 2. The figure shows

that the HIP data still leave room for uncertainty: a proportion of up to β=0.45 of pre-clinical breast

cancers could be missed by the screening tests used around 1970, and the mean duration of the screen-

detectable phase (DPCP) can be between 1.17 years (λ=0.858) and 3.17 years (λ=0.315). Note that the

quality of mammography has improved considerably since then: much smaller tumors can now be

detected, resulting in a longer (average) duration of the DPCP, and the sensitivity of the screening test

has increased.

==Insert Figure 2==

The same breast cancer microsimulation model has been used to investigate the performance of

different versions of the Nelder and Mead Simplex method (NMSM) [6]. Model 4 of the SF-Quasi

Newton technique for a reference sample of 100,000 has a mean error that is 100x smaller than the

mean error of the original setting of the NMSM (benchmark version). The benchmark NMSM will on

average evaluate 15.105 function values during an optimization run; the reference sample of 100,000

life histories used in the SF method led to an average of 36.105 function evaluations during an

optimization run. An adapted version of the NMSM, in which the number of life histories per

simulation run increases during the optimization, has a smaller average error but needs a total of

50.105 function evaluations. Still the error is 25x larger than the mean error based on the SF method.

Clearly, the SF method gives a more precise estimate of the parameters using approximately the same

computational effort.

The simple optimization problem of fitting the one-stage breast cancer model to the HIP trial data was

chosen as test problem for exploring the feasibility and efficiency of the SF approach for cancer

screening models for two reasons: the model and the data are typical for cancer screening, and the true

optimum can be derived from an analytical version of the model. The implementation of this analytical

model to the HIP data is not too difficult, but when extensions to the model are required the

implementation will rapidly become complicated, and microsimulation will be a more feasible approach.

The effort for constructing an efficient microsimulation version is relatively large for this simple one-

stage breast cancer model. The incidence hazard (J) can in principle give rise to a long-lasting DPCP that

starts many years before a first screening test. This problem was resolved by reversing the order in which
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model variables are generated: first generate the duration of the DPCP, then generate when this DPCP

will start.

A typical extension to the simple model is to add a dimension to model the age of the woman. Several

characteristics of breast cancer are age-dependent: the incidence increases with age, the (mean) duration

of the DPCP increases with age, the stage distribution of clinically diagnosed cancers, and the survival

probability of breast cancer patients vary with age. Similar age-specific screening models can be

developed for cancer of the cervix, colon, prostate and lung [2]. Such models can e.g. address the

important question of finding the optimal ages for screening [15],[16]. In age-specific models, there is no

need to reverse the simulation procedure: the age at which DPCP starts has a natural lower limit (age 0).

The age for the start of the DPCP can be generated from a postulated age-specific incidence hazard

function, and then the duration of the DPCP can be generated, possibly from an age-dependent sojourn

time distribution. Hence, the microsimulation procedure is more straightforward for an age-dependent

one-stage breast cancer than for the simpler age-independent one-stage model considered in this paper.

Implementation of the SF method to the age-dependent breast cancer model is expected to be

straightforward. Implementation of further refinements to the model are also expected to be relatively

easy, but will of course lead to further reductions in the precision of the estimated optimum. Larger

sample runs can compensate for the loss in precision at the cost of increased computational effort.

The SF method is now being used in developing and testing a more detailed breast-cancer-screening

model.

Our results show that the SF method is useful in optimizing parameters of pdfs that govern the

simulation of life histories including the impact of screening. An initial sample of life histories is

generated which is used throughout the optimization procedure. For each new set of parameter values, a

likelihood ratio is applied to adapt the contribution of each history to the overall performance measure

(in our case the goodness of fit), and the score function will produce the corresponding gradients and, if

desired, the Hessian matrix. The random nature of the sample will result in deviations from the true

optimum value, which can be decreased by taking a larger sample. Once the sample is generated, the

optimization problem is no longer stochastic and can be solved numerically by using derivative-based

optimization methods for deterministic problems that use the gradients and Hessians derived with the SF

method.

Other perturbation methods such as the quasi-gradient approach will derive estimates of the gradient by

investigating how a small change in the parameter value will change the generation of life histories and

thus affect the performance measure. This can be combined with a Stochastic Approximation type of

optimization routine (using a small number of simulated histories per optimization step) to find the

optimum. A condition for applying this method is that perturbations in the parameter estimates should

not lead to sudden large changes in the performance measure, i.e. no discontinuities should occur in the
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contribution of a history to the performance function [17]. This approach has been tested for a relatively

simple model for cervical cancer screening with good results [18]. However, meeting the continuity

condition required adaptations to the simulation procedure that are specific for the model used; each

extension to the model would require a complete re-investigation of the model.

The SF method is expected to be very useful for other medical decision models than the breast cancer-

screening model presented here. Models for clinical decision making typically consider life histories

where symptoms and complaints occur at a certain point in time. A decision has to be made regarding a

diagnostic strategy or a therapy has to be chosen. Increasingly, microsimulation is being used in

evaluating these models [19], again by generating large numbers of individual clinical histories, and the

SF method could be explored as a method for finding the optimal policy.

A condition for using the using the SF method for microsimulation medical decision making models is

that life histories are mutually independent. This is not the case for infectious disease models such as

ONCHOSIM [20] and LYMFASIM [21]. For these models we will still have to rely on direct search

methods such as the NMSM approach or the Response Surface methodology [21].
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           G1,2          G1,3            G1,4      G1,5

 1.03 (7)         0.31 (1)        1.16 (3)       2.25 (5)

        G1,1          G2,3 G2,4     G2,5
      0.65 (13)                           1.13 (5)        1.26 (2)      3.80 (4)

G1,

2.73 G2,2  G3,4    G3,5
(55)             0.50 (8)              1.31 (5)     1.82 (2)

     G2
    2.01      G3,3
    (32)            0.73 (10)

           G3

          1.24        G4,4       G4,5
          (17)           0.84 (10)       1.34 (10)

    G4

   1.92
   (23)

 t1           t2  t3  t4=tS                t5             t6=tFU     

        Screening

        Not screened

Figure 1: Data for the first five years of the HIP trial of breast cancer
screening. There are 4 screenings and 14 follow up interval groups (S=4, I=5).
For each screening we list the detection rates (per 1000 women examined) and
between brackets the number of cancers detected in the HIP trial. For each
interval group we list the incidence (per 1000 women-years) and between
brackets the number of cancers diagnosed in the HIP trial.
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Figure 2: estimated 95% confidence region for (λ,β)
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