
Logic Program Synthesis via ProofPlanningIna Kraan, David Basin and Alan BundyDAI Research Paper No.February 17, 1993
Accepted at LOPSTR-92

Department of Arti�cial IntelligenceUniversity of Edinburgh80 South BridgeEdinburgh EH1 1HNScotlandc
 Ina Kraan, David Basin and Alan Bundy

Logic Program Synthesis via Proof PlanningIna Kraan David Basin� Alan Bundy yAbstractWe propose a novel approach to automating the synthesis of logic programs: Logicprograms are synthesized as a by-product of the planning of a veri�cation proof. Theapproach is a two-level one: At the object level, we prove program veri�cation conjecturesin a sorted, �rst-order theory. The conjectures are of the form 8args����!: prog(args����!) $spec(args����!). At the meta-level, we plan the object-level veri�cation with an unspeci�edprogram de�nition. The de�nition is represented with a (second-order) meta-level variable,which becomes instantiated in the course of the planning.This technique is an application of the CLAM proof planning system [Bundy et al 90c].CLAM is currently powerful enough to plan veri�cation proofs for given programs. We showthat, if CLAM's use of middle-out reasoning is extended, it will also be able to synthesizeprograms.1 IntroductionThe aim of the work presented here is to automate the synthesis of logic programs. Thisis done by adapting techniques from areas such as middle-out reasoning in explicit proofplans [Bundy 88, Bundy et al 90a], proofs-as-programs [Bates & Constable 85] and deductivesynthesis [Bibel 80]. We synthesize pure logic programs [Bundy et al 90b] from speci�cationsin sorted, �rst-order theories. The approach encompasses two levels of reasoning: An objectlevel, which is a sorted, �rst-order predicate logic with equality, and a meta-level, which reasonsexplicitly with object-level proofs. At the object level, we prove that the speci�cation and theprogram are logically equivalent, which ensures the partial correctness and completeness of theprogram [Hogger 81]. At the meta-level, we construct a plan for the object-level proof. Whileplanning, we represent the body of the program we are synthesizing with a meta-level variable.The use of meta-level variables in proof planning is called middle-out reasoning. Synthesistakes place when, in the course of planning, the meta-level variable representing the body of theprogram is instantiated to an object-level term. However, this term may not always correspondto a pure logic program. If it does not, an auxiliary synthesis is required.The approach is embedded within the framework of the CLAM proof planner [Bundy et al 90c].CLAM is currently powerful enough to conduct veri�cation proofs for conjectures containing nometa-level variables. To synthesize programs in the way we are proposing here, however, CLAM'suse of middle-out reasoning will have to be extended.The remainder of this paper is organized as follows: Section 2 discusses related work. Section 3contains a de�nition of pure logic programs. Section 4 provides a brief introduction to proofplanning, middle-out reasoning and rippling. Section 5 shows how veri�cation proofs for a givenspeci�cation and a given program can be planned, and Section 6 shows how programs can be�Current a�liation: Max-Planck-Institut f�ur Informatik, Im Stadtwald, W-6600 Saarbr�ucken, Germany. Sup-ported by the German Ministry for Research and Technology (BMFT) under grant ITS 9102. Responsibility forthe contents of this publication lies with the authors.ySupported by SERC grant GR/E/44598, Esprit BRA grant 3012, Esprit BRA grant 3245, and an SERCSenior Fellowship. 1

synthesized by leaving the program unspeci�ed when planning a veri�cation proof. Section 7contains a summary and suggestions for future work.2 Related WorkIn program synthesis from speci�cations1, there are two main approachs, i.e., proofs-as-programs[Bates & Constable 85] and deductive synthesis [Bibel 80, Biundo 88].Proofs-as-programs is based on what is known as the Curry-Howard isomorphism [Howard 80],whereby a proposition is identi�ed with a type of terms in the �-calculus that represent evid-ence for its truth. Under this isomorphism, a proposition is true if and only if the correspondingtype has members. A proof of a proposition will construct such a member. Since terms in the�-calculus may be evaluated, proofs give rise to functional programs. For example, given theproposition2 8input������!:9output: spec(input������!; output)a proof of the proposition will construct a program f such that, for all inputs, f yields an outputthat satis�es the speci�cation, i.e., spec(input������!; f(input������!)) holds. These ideas underlie the Nuprlsystem [Constable et al 86] and its Edinburgh reimplementation Oyster [Bundy et al 90c], whichare interactive proof development systems for a variant of Martin-L�of type theory[Martin-L�of 79].Adapting proofs-as-programs to logic program synthesis is not straightforward. The main prob-lem is that proofs-as-programs synthesizes total functions. Logic programs, however, are partialand multivalued [Bundy et al 90b]. They may return no value, i.e., fail, or they may returnmore than one value on backtracking. Moreover, they may not terminate.One adaptation of proofs-as-programs to logic program synthesis is presented in [Fribourg 90].Fribourg synthesizes programs from Prolog-style proofs. He extends standard Prolog goals togoals of the form 8x�!:9y�!: q(x�!; y�!)(r(x�!), where q(x�!; y�!) and r(x�!) are conjunctions of atoms, and heextends standard Prolog SLD-resolution to the rules of de�nite clause inference, simpli�cationand restricted structural induction, each of which is associated with a program constructionrule. Given an appropriate speci�cation, extended Prolog execution returns a program to com-pute y�! in terms of x�!. However, the program is only correct if it is called with the variablesx�! ground and the variables y�! unbound. Also, it will return exactly one answer. It is thus afunctional program in the guise of a logic program.To overcome these disadvantages, [Bundy et al 90b] suggests viewing logic programs in all-ground mode as functions returning a boolean value. A speci�cation of a logic program is then:8args����!:9boole: spec(args����!) = booleIf such speci�cation theorems are proved in type theory, e.g., with the Oyster system, theprograms are higher-order and functional. Such programs are di�cult to translate into equivalentlogic programs. Therefore, [Bundy et al 90b] suggests working with a constructive �rst-orderlogic in which the extract terms are pure logic programs.This idea was pursued in [Wiggins et al 91] and has been implemented in Whelk, an interactiveproof editor for logic program synthesis. The Whelk system distinguishes between the logicof the speci�cation and the logic of the program. The two are related by a mapping from theprogram logic to the speci�cation logic. Each inference rule in the speci�cation logic correspondsto a program construction rule in the program logic. A major concern is proving the correctnessof the rules [Wiggins 92].In deductive synthesis, a set of transformation rules is applied to a given speci�cation to derive aprogram. For instance, [Biundo 88] starts with a speci�cation formula 8x�!:9y:8z�!: �[x�!; y; z�!], where1As opposed to synthesis from input-output tuples, for example.2Here, and in the following, we often omit sort or type information to avoid notational clutter.2

� is a quanti�er-free �rst-order formula. Biundo Skolemizes the formula to 8x�!:8z�!: �[x�!; f(x�!); z�!]and applies transformation rules to the Skolemized speci�cation until a program is obtained thatcomputes the Skolem function f(x�!). Her rules include evaluation, substitution, case analysisand induction. Transformation rules must be proved sound if the correctness of the program isto be guaranteed.Our approach to synthesis can be related both to proof-as-programs and deductive synthesis.On one hand, we are proving 8args����!: prog(args����!)$ spec(args����!)where the de�nition of prog is unknown. This is similar to proving the (higher-order) speci�c-ation 8args����!:9prog: prog(args����!)$ spec(args����!)constructively, since a constructive proof requires showing how a witness for an existentiallyquanti�ed variable can be constructed. Thus our approach can be seen as proofs-as-programs.On the other hand, proof planning consists of the successive application of methods to a con-jecture, where each method transforms the conjecture into another one. Each method can thusbe perceived as a transformation rule.3 Pure Logic ProgramsOur notion of pure logic programs is similar to pure logic programs as de�ned in [Bundy et al 90b]and to logic descriptions as de�ned in [Deville 90]. In Deville's approach, logic program devel-opment is a two-stage process. First, a pure logic description is obtained from a speci�cation ina subset of natural language. Then, the program is derived from the logic description. Deville'sreasons for choosing logic descriptions as an intermediate representation are the same as ours forsynthesizing pure logic programs. Pure logic programs are a subset of �rst-order predicate logicand thus share its purely declarative semantics. Pure logic programs are not meant to be directlyexecuted, yet their syntax is su�ciently restricted that they are straightforward to translate intoexecutable programs in logic programming languages, e.g., Prolog or G�odel [Hill & Lloyd 91].We are thus not restricted to any particular logic programming language.For the purpose of this paper, pure logic programs are collections of sentences of the form8x1 :t1; : : : ; xn :tn: pred(x1; : : : ; xn)$ bodywhere pred is a predicate symbol, the xi are distinct variables of sorts ti and body is a purelogic program body. Only one de�nition per predicate symbol is allowed. Pure logic programbodies are de�ned recursively:� The predicates true and false are pure logic program bodies.� A member of a prede�ned set of decidable atomic relations is a pure logic program body3.� A call to a previously de�ned predicate is a pure logic program body.� If P and Q are pure logic program bodies, then{ P ^Q{ P _Q{ 9x: Pare pure logic program bodies.3For the purpose of this paper, the set consists of equality (=) and inequality (6=).3

Other connectives such as negation or implication can be added. Avoiding those, however,largely eliminates
oundering, without restricting the expressive power of the language.An example of a pure logic program is:8x; l: member(x; l) $ 9h; t: l = [hjt]^ (x = h _member(x; t))8i; j: subset(i; j) $ i = []_9h; t: i = [hjt]^member(h; j) ^ subset(t; j)The predicate member(x; l) is true if x is a member of the list l, the predicate subset(i; j) istrue if i is a subset of j. Translated into Prolog, for instance, they become:member(X; [Xj]):member(X; [jT]) member(X; T):subset([];):subset([HjT]; J) member(H; J); subset(T; J):The pure logic program is the completion of the Prolog program.4 Proof PlanningThe central problem of automated theorem proving is the enormous search space for proofs.Some theorem provers, e.g., NQTHM [Boyer & Moore 88], use heuristics to decide when toapply which inference rule. These heuristics are often built-in, which makes them in
exible anddi�cult to understand. To avoid this, [Bundy 88] suggests using a meta-logic to reason aboutand to plan proofs. Proof plans are combinations ofmethods, which are speci�cations of tactics.A tactic is a program that applies a number of object-level inference rules to a goal formula.A method is a speci�cation of a tactic in the sense of the assertion: If a goal formula matchesthe input pattern and if the preconditions are met, the tactic is applicable, and, if the tacticsucceeds, the output conditions (or e�ects) will be true of the resulting goal formulae. Theseideas are the basis of the proof planner CLAM [Bundy et al 90c]. CLAM constructs proof plansthat can be executed in Oyster.Middle-out reasoning [Bundy et al 90a] extends the meta-level reasoning of proof planning inthat it allows the meta-level representation of object-level entities to contain meta-level variables.This allows proof planning to proceed even though an object-level entity is not fully speci�ed.Thus, it is possible to postpone a decision about the entity's real identity. CLAM currently usesmiddle-out reasoning to synthesize tail-recursive programs from non-tail-recursive speci�cationsand to generalize inductive theorems. We will extend CLAM's use of middle-out reasoningsigni�cantly. In particular, we will use meta-level variables to represent unspeci�ed parts oflogic programs.CLAM is particularly good at proving theorems by induction. Its power stems from the ripplingmethod, which is central to proving the step case(s) of inductive proofs. In the step case, theoverall strategy is to manipulate the induction conclusion in such a way that it is possible toexploit the induction hypothesis. Rippling does this by keeping track of the di�erences betweenthe induction hypothesis and the induction conclusion and applying rewrites to the inductionconclusion to reduce these di�erences.Rippling is best illustrated by an example. CLAM would represent the step case of the proof ofthe associativity of plus as (x+ y) + z = x+ (y+ z)(̀ s(x) " + y) + z = s(x) " + (y+ z)4

where s represents the successor function. The boxes and underlining are meta-level annotations.The non-underlined parts in the boxes are wave fronts|they do not appear in the inductionhypothesis. The underlined parts in the boxes are wave holes. The wave holes and the remainingparts of the induction conclusion are called the skeleton|strung together they form the inductionhypothesis. The arrows indicate the direction in which the wave fronts are moving, in this caseup the term tree of the induction conclusion. Rippling is the exhaustive application of a set ofrewrite rules called wave rules. Wave rules are also annotated. They are applied only if thewave rule and a subexpression of the induction conclusion match, including annotations. Theannotation on the wave rule ensures that applying it will move the wave front up in the termtree of the induction conclusion. Often, all wave fronts can be rippled to the top of the termtree of the induction conclusion, which means that the induction hypothesis can be exploited.The wave rules required for our example proof ares(M) " +N) s(M +N) " (1)s(M) " = s(N) ") M = N (2)where M and N are free variables. CLAM generates these wave rules automatically from thede�nition of + and the substitution axiom for s. The rippling of the example consists of threeapplications of wave rule (1) (two on the left- and one on the right-hand side) and one of waverule (2): (s(x) " + y) + z = s(x) " + (y+ z)s(x+ y) " + z = s(x) " + (y+ z)s((x + y) + z) " = s(x) " + (y+ z)s((x + y) + z) " = s(x+ (y+ z)) "(x+ y) + z = x+ (y+ z)Not only has the wave front moved to the top of the induction conclusion, but it has alsodisappeared. The induction conclusion is now identical to the induction hypothesis, and thestep case is complete. This �nal step is called strong fertilization.Rippling will be the key method in planning the step cases of the veri�cations proofs. Othermethods we will use in the following sections are induction, symbolic evaluation, tautologychecking and unblocking. What these methods do will become apparent in the discussion of theproofs.5 Veri�cationIn this section, we show how CLAM's existing methods can be used to plan the veri�cation prooffor a given program. Our veri�cation conjectures, which we prove classically, are �rst-ordersentences of the form: 8args����!: prog(args����!)$ spec(args����!)The logical equivalence of the speci�cation and the program guarantees the partial correctnessand completeness of the program with respect to the speci�cation [Hogger 81].We show how CLAM plans proofs for such conjectures using the example conjecture8i; j: subset(i; j) $ (8x: member(x; i)!member(x; j)) (3)5

where the program subset is de�ned as8i; j: subset(i; j) $ i = []_9h; t: i = [hjt]^member(h; j)^ subset(t; j)and member in the program and the speci�cation is de�ned as:8x; l: member(x; l) $ 9h; t: l = [hjt]^ (x = h _member(x; t))The de�nitions of subset and member give rise to the following wave rules:subset([HjT] "; J)) member(H; J)^ subset(T; J) " (4)member(X; [HjT] ")) X = H_member(X; T) " (5)We also need the following wave rules, which are derived from lemmas:P _Q " ! R) P! R ^Q! R " (6)8x: P ^Q ") 8x: P ^ 8x: Q " (7)P ^Q " $ P ^ R ") Q$ R (8)Wave rules such as (6){(8) that are stated in terms of logical connectives only are called pro-positional wave rules.For conjecture (3), based on wave rules (4){(8), CLAM suggests one-step structural induction onthe list i4. The annotated step case is then:subset(t; j)$ 8x: member(x; t)!member(x; j)s̀ubset([hjt] "; j)$ 8x: member(x; [hjt] ")!member(x; j)Rippling with wave rules (4) and (5) on the left and right, respectively, gives us:member(h; j) ^ subset(t; j) " $8x: x = h _member(x; t) " !member(x; j)Rippling with wave rule (6) on the right results in:member(h; j)^ subset(t; j) " $8x: x = h!member(x; j) ^member(x; t)!member(x; j) "Rippling with wave rule (7) on the right gives us:member(h; j)^ subset(t; j) " $8x: x = h!member(x; j) ^ 8x: member(x; t)!member(x; j) "4CLAM uses a technique called recursion analysis [Bundy et al 89] to choose an induction schema. Explainingrecursion analysis is beyond the scope of this paper. 6

Now, we cannot continue rippling because none of the wave rules applies, but we cannot yetexploit the induction hypothesis either. We say that the rippling is blocked. We can unblockthe rippling by simplifying the wave front on the right-hand side, i.e., by rewriting 8x: x = h!member(x; j) to member(h; j):member(h; j)^ subset(t; j) " $member(h; j)^ 8x: member(x; t)!member(x; j) "Wave rule (8) applies and yields:subset(t; j)$ 8x: member(x; t)!member(x; j)We strong fertilize to complete the step case. The base case is:` subset([]; j)$ 8x: member(x; [])!member(x; j)Symbolic evaluation of subset([]; j) and member(x; []) gives us:` true$ 8x: false!member(x; j)which further simpli�es to the tautology: ` trueOur proof plan is thus complete. It is identical to the proof plan that CLAM produces automat-ically, except that CLAM does the base case before the step case.In the following section, we will show how the planning of veri�cation proofs carries over to thesynthesis of logic programs.6 SynthesisVeri�cation can be extended to synthesis by introducing middle-out reasoning in the proof plan-ning. Middle-out reasoning involves representing object-level entities with meta-level variables,thus enabling the proof planning to continue even though the identity of the object-level entityis unknown. We will represent the body of the program to be synthesized with a meta-levelvariable. One might expect that middle-out reasoning would signi�cantly increase the amountof search in planning, but we will show that this is not case, due to the tight control that ripplingprovide.If we inspect the planning of Section 5 to determine which steps depend directly on the de�nitionof the program, we see that there are only two: The application of wave rule (4), since the rulewas derived from the program, and the symbolic evaluation of subset([]; j). Not having waverule (4) means that, in the step case, the rippling would be blocked after the application of waverules (5){(7). It is precisely the use of middle-out reasoning which will allow us to continueplanning even though we do not have wave rule (4).We begin our synthesis with the same conjecture, wave rules (5){(8), and with a program whosebody is unde�ned, i.e., 8i; j: subset(i; j)$ P(i; j)(P is a second-order meta-level variable representing the program body). As before, we proceedby one-step structural induction on the list i. Because of the duality between induction andrecursion, we know what the recursive structure of the body of the program will be: A base case7

where the list i will be empty, and a step case where the list i consists of a head and a tail andwhich may contain a recursive call. Thus P(i; j) can already be partially instantiated such that8i; j: subset(i; j) $ i = []^ B(j) _9h; t: i = [hjt]^ S(h; t; j; subset(t; j))(B and S are again second-order meta-level variables). Moreover, if the step case contains arecursive call, there will be a wave rule for subset of the form:subset([HjT] "; J)) S(H;T; J; subset(T; J)) " (9)The rippling proceeds as in Section 5 using wave rule (9) instead of (4). Applying wave rules (5)and (9) yields: S(h; t; j; subset(t; j)) " $8x: x = h _member(x; t) " !member(x; j)Applying wave rules (6), (7) and the unblocking step to the right-hand side of the equivalenceas before gives: S(h; t; j; subset(t; j)) " $member(h; j)^ 8x: member(x; t)!member(x; j) "We now apply wave rule (8), which instantiatesS(h; t; j; subset(t; j))with: member(h; j) ^ S 0(h; t; j; subset(t; j))We obtain the subgoal:S0(h; t; j; subset(t; j)) " $ 8x: member(x; t)!member(x; j)Finally, strong fertilization, which is now applicable, matches the conclusion with the inductionhypothesis, which was subset(t; j)$ 8x: member(x; t)!member(x; j)thus instantiating S 0(h; t; j; subset(t; j)) with subset(t; j).To complete the proof plan, we need to deal with the base case:` subset([]; j)$ 8x: member(x; [])!member(x; j)Symbolic evaluation of subset([]; j) and member(x; []) gives us` B(j)$ 8x: false!member(x; j)which simpli�es to: ` B(j)$ trueThis is a tautology if we take B(j) to be true. 8

The proof plan is complete, and the fully instantiated subset program is:8i; j: subset(i; j) $ i = []^ true _9h; t: i = [hjt]^member(h; j)^ subset(t; j)To summarize the synthesis process, we can say that synthesis equals planning veri�cation proofsusing middle-out reasoning. Whether we are doing veri�cation or synthesis, the schema of theproof plan is the same:1. Choosing an induction schema2. Base case(s): Symbolic evaluation and tautology checking3. Step case(s): Rippling and strong fertilizationIn the subset example, the instantiation of the initial meta-level variable representing the pro-gram body met the de�nition of a pure logic program in Section 3. However, this is not neces-sarily true of all instantiations in general. We discuss this problem brie
y in the following.Auxiliary Syntheses In the course of planning, a meta-level variable may become instanti-ated with a program body that violates the de�nition of pure logic programs of Section 3. Thus,we must check the synthesized program. We need to run an auxiliary synthesis for any part ofthe program that constitutes a violation; the part itself becomes the speci�cation. We replaceany part for which we run an auxiliary synthesis with a call to the auxiliary predicate, and weadd the auxiliary predicate to our program.An example where an auxiliary synthesis is necessary is the speci�cation:8m; l: max(m; l)$m 2 l ^ (8x: x 2 l! x � m)The element m is the maximum element of the list l. The initial synthesized program is:8m; l: max(m; l) $ l = []^ false _9h; t: l = [hjt]^ ((m = h ^ 8x: x 2 t! x � m) _(h �m ^max(m; t)))The part 8x: x 2 t! x � m in the program body violates the de�nition of pure logic programbodies, since it contains a universal quanti�er and an implication. We therefore run the auxiliarysynthesis: 8m; l: aux(m; l)$ (8x: x 2 l! x � m)The auxiliary speci�cation states that m is greater than any element of the list l. Unlike theoriginal max speci�cation, however, m does not have to be an element of l. The �nal programwith the auxiliary predicate is:8m; l: max(m; l)$l = []^ false _9h; t: l = [hjt]^ ((m = h ^ aux(m; t)) _ (h � m ^max(m; t)))8m; l: aux(m; l)$l = []^ true _9h; t: l = [hjt]^ h � m ^ aux(m; t)9

7 Summary and Future WorkWe have shown how pure logic programs can be synthesized by using middle-out reasoning inthe planning of veri�cation proofs. The approach provides a basis for the automatic synthesis ofpartially correct and complete programs from speci�cations in sorted, �rst-order predicate logic.The only synthesis step that lies outside of the proof planning proper is the syntactic checkwhether the instantiation of the body of the program is acceptable as a pure logic program.The current methods of the proof planner CLAM are a solid foundation to start with. A versionof CLAM which works with sorted �rst-order predicate logic with equality (the original CLAMwas written for a variant of Martin-L�of type theory) is able to verify the subset and maxprograms in Sections 5 and 6. The main change to CLAM to enable the corresponding synthesesis the extension of middle-out reasoning.There are other extensions to CLAM which are needed to cope with problems that arise insynthesis proofs. One problem is posed by nested quanti�ers in the body of the speci�cation.This occurs, for example, in the proof planning for:8k: no duplicates(k) $ (8l;m: append(l;m) = k! (8x: x 2 l! x 62 m))The annotated induction conclusion is:no duplicates([hjt] ")$(8l;m: append(l;m) = [hjt] " ! (8x: x 2 l! x 62m))Here, the rippling on the right-hand side of the equivalence is immediately blocked. The waverule we would like to apply is[H1jT1] " = [H2jT2] ") H1 = H2^ T1= T2 "but in order to do so we need to unfold the append �rst. This is obstructed by the universalquanti�cation of l. CLAM's current unblocking techniques will have to be extended to deal withsuch cases.Another di�cult problem arises, for example, in the proof planning for:8x: even(x)$ (9y: y � s(s(0)) = x)Here, the problem is that CLAM is unable to suggest the appropriate type of induction, namelytwo-step induction on x. CLAM's technique to choose an induction schema, i.e., recursion analysis[Bundy et al 89], works well for conjectures containing universal quanti�ers only, but breaksdown in the presence of existential quanti�ers. The alternative to recursion analysis is again touse middle-out reasoning, this time to postpone the choice of induction schema until the ripplingin the step case determines the type of induction.Finally, in Sections 5 and 6, we assumed that CLAM had available the lemmas necessary toderive the propositional wave rules (6){(8). Given the large number of conceivable propositionalwave rules, CLAM should be able to generate the lemmas and wave rules on demand.References[Bates & Constable 85] Joseph L. Bates and Robert L. Constable. Proofs as programs. ACMTransactions on Programming Languages and Systems, 7(1):113{136, January 1985. 10

[Bibel 80] W. Bibel. Syntax-directed, semantics-supported program synthesis. Ar-ti�cial Intelligence, 14:243{261, 1980.[Biundo 88] S. Biundo. Automated synthesis of recursive algorithms as a theoremproving tool. In Y. Kodrato�, editor, Eighth European Conference onArti�cial Intelligence, pages 553{8. Pitman, 1988.[Boyer & Moore 88] R.S. Boyer and J.S. Moore. A Computational Logic Handbook. Aca-demic Press, 1988. Perspectives in Computing, Vol 23.[Bundy 88] A. Bundy. The use of explicit plans to guide inductive proofs. In R. Luskand R. Overbeek, editors, 9th Conference on Automated Deduction,pages 111{120. Springer-Verlag, 1988. Longer version available fromEdinburgh as DAI Research Paper No. 349.[Bundy et al 89] A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, and A. Stevens. Arational reconstruction and extension of recursion analysis. In N.S. Srid-haran, editor, Proceedings of the Eleventh International Joint Con-ference on Arti�cial Intelligence, pages 359{365. Morgan Kaufmann,1989. Also available from Edinburgh as DAI Research Paper 419.[Bundy et al 90a] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calcula-tions in automatic program synthesis. In S.L.H. Clarke, editor, Proceed-ings of UK IT 90, pages 221{6, 1990. Also available from Edinburghas DAI Research Paper 448.[Bundy et al 90b] A. Bundy, A. Smaill, and G. A. Wiggins. The synthesis of logic pro-grams from inductive proofs. In J. Lloyd, editor, Computational Logic,pages 135{149. Springer-Verlag, 1990. Esprit Basic Research Series. Alsoavailable from Edinburgh as DAI Research Paper 501.[Bundy et al 90c] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clamsystem. In M.E. Stickel, editor, 10th International Conference onAutomated Deduction, pages 647{648. Springer-Verlag, 1990. LectureNotes in Arti�cial Intelligence No. 449. Also available from Edinburghas DAI Research Paper 507.[Constable et al 86] R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Math-ematics with the Nuprl Proof Development System. Prentice Hall,1986.[Deville 90] Y. Deville. Logic Programming. Systematic Program Development.International Series in Logic Programming. Addision-Wesley, 1990.[Fribourg 90] L. Fribourg. Extracting logic programs from proofs that use exten-ded Prolog execution and induction. In Proceedings of Eighth Inter-national Conference on Logic Programming, pages 685 { 699. MITPress, June 1990.[Hill & Lloyd 91] P. Hill and J. Lloyd. The G�odel Report. Technical Report TR-91-02,Department of Computer Science, University of Bristol, March 1991.Revised in September 1991.[Hogger 81] C.J. Hogger. Derivation of logic programs. JACM, 28(2):372{392, April1981. 11

[Howard 80] W.A. Howard. The formulae-as-types notion of construction. In J.P.Seldin and J.R. Hindley, editors, To H.B. Curry; Essays on Com-binatory Logic, Lambda Calculus and Formalism, pages 479{490.Academic Press, 1980.[Martin-L�of 79] Per Martin-L�of. Constructive mathematics and computer programming.In 6th International Congress for Logic, Methodology and Philo-sophy of Science, pages 153{175, Hanover, August 1979. Published byNorth Holland, Amsterdam. 1982.[Wiggins 92] G. A. Wiggins. Synthesis and transformation of logic programs in theWhelk proof development system. In K. R. Apt, editor, Proceedings ofJICSLP-92, 1992.[Wiggins et al 91] G. A. Wiggins, A. Bundy, H. C. Kraan, and J. Hesketh. Synthesis andtransformation of logic programs through constructive, inductive proof.In K-K. Lau and T. Clement, editors, Proceedings of LoPSTr-91, pages27{45. Springer Verlag, 1991. Workshops in Computing Series.

12

