Automatic Identification of Patients Eligible for a Pneumonia Guideline:
Comparing the Diagnostic Accuracy of Two Decision Support Models

Charles Lagor, Dominik Aronsky, Marcelo Fiszman, Peter J. Haug

Department of Medical Informatics, LDS Hospital/University of Utah, Salt Lake City, Utah, USA

Abstract

Background: In busy clinical settings, physicians often do not have enough time to identify patients for specific therapeutic guidelines. As a solution, decision support systems could automatically identify eligible patients and trigger computerized guidelines for specific diseases. Applying this idea to community-acquired pneumonia (CAP), we developed a Bayesian network (BN) and an artificial neural network (ANN) for identifying patients who have CAP and are eligible for a pneumonia guideline. Objective: The aim of this study was to determine whether the diagnostic accuracy of these two decision support models differs in terms of identifying CAP patients. Methods: We trained and tested the networks with a data set of 32,662 adult patients. For each network, we (1) calculated the specificity, the positive predictive value (PPV), and the negative predictive value (NPV) at a sensitivity of 95%, and (2) determined the area under the receiver operating characteristic curve (AUC) as a measure of overall accuracy. We tested for statistical difference between the AUCs using the correlated area z statistic. Results: At a sensitivity of 95%, the respective values for specificity, PPV, and NPV were: 92.3%, 15.1%, and 99.9% for the BN, and 94.0%, 18.6%, and 99.9% for the ANN. The BN had an AUC of 0.9795 (95% CI: 0.9736, 0.9843), and the ANN had an AUC of 0.9855 (95% CI: 0.9805, 0.9894). The difference between the AUCs was statistically significant (p=0.0044). Conclusions: The networks achieved high overall accuracies on the testing data set. Because the difference in accuracies is statistically significant but not clinically significant, both networks are equally suited to drive a guideline.

Keywords:
Diagnosis, Computer-Assisted; Decision Support Techniques; Expert Systems; Artificial Intelligence; Bayes Theorem; Models, Statistical; Neural Networks (Computer)

Introduction

Medical decision support systems have existed since 1945 [1]. The applied methodologies of these systems are diverse: rule-based systems, fuzzy logic, decision trees, Bayesian networks, and artificial neural networks, to name a few. Of these, Bayesian networks (BN) and artificial neural networks (ANN) have been increasingly used in the past decade. Both networks can model the uncertainty inherent in medical reasoning [2] and make decisions based on incomplete data. Their clinical applications include diagnosis, imaging, signal processing, analysis of laboratory data, and pharmacology [3-6]. In view of this broad range of applications, comparisons between different models may be helpful in understanding the characteristics of different methodologies in specific clinical domains. Comparisons between BNs and ANNs [7] or between BNs, ANNs, and other decision support systems [8, 9] have been made, but such comparisons are still scarce.

In this paper, we compare a BN and an ANN, which were both designed to identify patients with community-acquired pneumonia (CAP). Cooper has also compared BNs and ANN in the domain of pneumonia [10]. The models in his study, however, predict the mortality of pneumonia, whereas the models in our study predict the likelihood of CAP. Implemented in a routine clinical setting, our models could use routinely available electronic data that are present during a patient encounter to automatically identify patients eligible for a computerized pneumonia guideline, and thereby save physicians the effort of identifying the patients themselves. In view of this utility, we examined the diagnostic behavior of the networks, the diagnoses of patients who were misclassified as having CAP, and the overall diagnostic accuracy of the networks.

Background

Community-Acquired Pneumonia

Pneumonia is a common and potentially life-threatening lung infection that is either acquired within the hospital or outside in the community. It has been reported as the sixth leading cause of death in the United States, with CAP having an incidence of 2.66 cases per 1000 adults per year [11]. Its annual costs have been estimated to be $23 billion...
Although most patients with CAP present only with respiratory symptoms, a proportion of patients may present with additional non-respiratory symptoms such as abdominal pain. A few patients may even lack respiratory symptoms [12]. Consequently, some cases of CAP may be challenging to diagnose.

Bayesian Networks

Bayesian networks are probabilistic systems that model a clinical problem with nodes, directed links, and conditional probability tables [13, 14]. The nodes represent variables; of these variables, one or more represent the output variable. The directed links connect the nodes and capture the dependencies among the variables. A conditional probability table is associated with each node. When the BN processes new information, the probability at each node is revised using the information stored in the conditional probability tables.

Although the structures of simple BNs can now be created automatically, experts have traditionally created complex BNs “manually”. Once the structure is established, a network’s conditional probability distributions can be trained using a clinical data set. As one of their main advantages, properly designed BNs can offer clinicians explicit explanations for their decisions.

Artificial Neural Networks

Artificial neural networks are connectionist systems consisting of interconnected nodes [15]. The nodes are organized into an input layer that captures the variables of interest, an output layer that gives the result, and one or more hidden layers that connect the two. ANNs learn automatically from clinical data by encoding the knowledge as numeric weights between the nodes.

The main strength of ANNs is their ability to learn autonomously. Their weakness is their inability to offer explanations for a particular decision, because they are black boxes. Nevertheless, ANNs have been applied to clinical problems that do not require specific explanations [16].

Materials and Methods

Data

We used an existing database from the emergency department at LDS Hospital, a tertiary care hospital with 520 beds. The database contained data on 32,662 adult patients (18 years or older) collected over a two-year period (May 26, 1995 to June 14, 1997). It captured 81 variables, which are routinely available in the hospital information system known as the HELP (Health Evaluation through Logical Processing) system [17]. The proportions of missing values for each variable varied considerably. For example, 94.9% of values for paO\textsubscript{2} were absent, because only few patients require an arterial blood gas. The data set reflects the large variation of available data typical of an adult emergency department population. The target disease of the database was CAP (ICD-9 code: 480-486). Of the 32,662 patients, 498 patients (1.5%) had a discharge diagnosis of CAP. We randomly assigned two-thirds of the data (21,775 patients) to a training set and one-third to an independent testing set (10,887 patients).

Networks

We took a manually derived structure of a diagnostic BN for CAP [18] (Figure 1) and trained it with the software tool Netica™. The 25 variables of the BN are listed in Table 1. Using the same 25 variables, we developed an ANN (Figure 1) with the software tool STATISTICA™ Neural Networks (Release 4.0 C). For the ANN, we randomly assigned two-thirds of the training set (14,517 patients) to a learning set and one-third to an internal verification set (7,258 patients) to prevent over-fitting.
Chapter 6: Decision Support

Statistical Analysis

We evaluated the ability of the BN and the ANN to identify CAP patients in the independent testing set. For each testing case, the BN generated a probability, and the ANN generated an activation value. Both output types require thresholds to decide whether CAP is present or absent. As the thresholds change, the classification of a case having CAP might change. The test characteristics of the networks reflect this behavior. In this study, we used sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) as test characteristics (Table 2).

To determine the accuracies of the networks, we calculated the AUC with the 95% confidence intervals for each ROC curve using the software tool ROCKET (version 0.9.1 BETA). To investigate if the AUCs were significantly different, we used the correlated area z statistic [20].

Results

At a sensitivity of 95%, the specificities and the NPVs of the networks were high, and the PPVs were low (Table 3).

The ROC curves of both networks are shown in Figure 2. The AUC of the BN was 0.9795 with a 95% confidence interval of (0.9736, 0.9843). The AUC of the ANN was 0.9855 with a 95% confidence interval of (0.9805, 0.9894). The correlated area z statistic was statistically significant (p=0.0044), indicating a difference between the AUCs.
Table 4 - Most frequent diagnoses of patients, who were misclassified as having community-acquired pneumonia

<table>
<thead>
<tr>
<th>Artificial neural network (N=936 false positives)</th>
<th>Bayesian network (N=861 false positives)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td>Count</td>
</tr>
<tr>
<td>asthma</td>
<td>88</td>
</tr>
<tr>
<td>acute and chronic bronchitis</td>
<td>81</td>
</tr>
<tr>
<td>congestive heart failure</td>
<td>51</td>
</tr>
<tr>
<td>upper respiratory infection</td>
<td>39</td>
</tr>
<tr>
<td>fever of unknown origin</td>
<td>37</td>
</tr>
<tr>
<td>chest pain</td>
<td>36</td>
</tr>
<tr>
<td>painful respiration</td>
<td>30</td>
</tr>
<tr>
<td>dyspnea</td>
<td>27</td>
</tr>
<tr>
<td>coronary artery disease</td>
<td>22</td>
</tr>
<tr>
<td>aspiration pneumonia</td>
<td>20</td>
</tr>
<tr>
<td>acute myocardial infarction</td>
<td>20</td>
</tr>
<tr>
<td>cough</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Both the BN, with an AUC of 0.9795, and the ANN, with an AUC of 0.9855, achieved a high overall accuracy in discriminating pneumonia patients in our data set. These good results might seem astonishing considering the incompleteness of the data. Still, we were able to construct sensitive networks, because we had a large number of cases. The following example illustrates the effect of large numbers. Only 5.1% of the cases had a value for the partial pressure of oxygen (PaO₂). With a smaller data set, this percentage is probably insufficient for PaO₂ to help predict CAP. With our data set of 32,662 cases, however, 5.1% corresponds to 1,669 cases. This large number was sufficient for PaO₂ to have an effect.

Despite the statistically significant difference between the AUCs, we do not conclude that the ANN is more accurate than the BN. We interpret the results as follows. First, the large sample size contributed to the statistically significant correlated area Z statistic. Second, a difference in the overall accuracy of 0.9855 – 0.9795 = 0.006 may be statistically significant, but compared to the overall accuracy of either network it probably plays a minor role.

For the purpose of driving a clinical guideline, both models must detect as many cases as possible. Therefore, we investigated the behavior of the networks at a high sensitivity of 95%. At this sensitivity, both networks had low PPVs. The PPVs of 15.1% and 18.6% indicate that out of 100 pneumonia classifications made by the network, approximately 17 are appropriate, whereas 83 are false. This high number of misclassifications is justifiable for two reasons. First, in a system designed to screen patients for CAP, missing patients with CAP is worse than misclassifying patients without CAP. Second, 50% of false positively diagnosed patients had a pulmonary, cardiac, or infectious disease (Table 4). The false positive classifications are, thus, clinically plausible suggestions, consistent with the differential diagnosis of CAP.

Our study had limitations. First, we used a testing set of retrospective cases. We are about to complete a validation of both networks on a prospectively collected data set. A preliminary prospective study on the BN [21] gives reason to believe that the performance will not drop substantially. Second, we used the ICD-9 discharge codes as a gold standard for CAP. In view of the variability in physicians’ agreement on physical examinations [22] and chest radiographs [23], however, an objective gold standard for CAP does not exist, and the ICD-9 codes were a feasible and economic approach for this pilot study. Third, with a different graphical structure or with a restructuring of select nodal values, the BN may show significantly better...
accuracy. Therefore, we plan to evaluate the two decision support methods in greater depth with the complete data set.

Conclusion

We detected a statistically significant difference of 0.006 between the areas under the receiver operating characteristic curves (AUC) of the two decision support models. Nevertheless, we consider this difference to be clinically insignificant and conclude that both models are equally accurate. In view of the high AUCs of the ANN and BN (0.9855 and 0.9795 respectively) and the clinically plausible false positive classifications, we believe that both networks are equally suited to drive a pneumonia guideline.

Acknowledgements

The first author (CL) is supported with a postgraduate grant from the Austrian Federal Ministry Science and Transport (GZ 558.011/103-L/19a/98).

References

Address for correspondence

Charles Lagor, M.D.
Department of Medical Informatics, LDS Hospital
8th Avenue and C Street
Salt Lake City, Utah 84143, USA
ldclagor@ihc.com