Improving Functional Logic Programs by
Difference-Lists

Elvira Albert!, César Ferri!, Frank Steiner?, and Germén Vidal®

! DSIC, UPV, Camino de Vera s/n, E-46022 Valencia, Spain
2 Institut fiir Informatik, CAU Kiel, Germany

Abstract. Modern multi-paradigm declarative languages integrate features
from functional, logic, and concurrent programming. In this work, we consider
the adaptation of the logic programming transformation based on the intro-
duction of difference-lists to an integrated setting. Unfortunately, the use of
difference-lists is impractical due to the absence of non-strict equality in lazy
(call-by-name) languages. Despite all, we have developed a novel, stepwise
transformation which achieves a similar effect over functional logic programs.
We also show a simple and practical approach to incorporate the optimiza-
tion into a real compiler. Finally, we have conducted a number of experiments
which show the practicality of our proposal.

Keywords: functional logic programming, program transformation, compiler
optimization

1 Introduction

In recent years, several proposals have been made to amalgamate functional and
logic programming languages. These languages combine features from functional pro-
gramming (nested expressions, lazy evaluation) logic programming (logical variables,
partial data structures), and concurrent programming (concurrent evaluation of con-
straints with synchronization on logical variables). The operational semantics of mod-
ern multi-paradigm languages is based on needed narrowing, which is currently the
best narrowing strategy for lazy functional logic programs due to its optimality prop-
erties [4]. Needed narrowing provides completeness in the sense of logic programming
(computation of all solutions) as well as functional programming (computation of
values), and it can be efficiently implemented by pattern matching and unification.

Ezample 1. Consider the function isShorter which is defined by the equations:

isShorter([],ys) = True
isShorter(x: xs,[]) = False
isShorter(x:xs,y:ys) = isShorter(xs,ys)
where “[]” and “” are the constructors of lists. The expression isShorter (x : xs) z

can be evaluated, for instance, by instantiating z to (y:ys) to apply the third equation,
followed by the instantiation of xs to [] to apply the first equation:

isShorter (X :Xs) Z ~(z,yiys} iSShorter xs ys ~s(y,[} True



In general, given a term like isShorter 1; 1,, it is always necessary to evaluate 1; (to
some head normal form) since all three equations in Example 1 have a non-variable
first argument. On the other hand, the evaluation of 1, is only needed if 1; is of
the form (_:_). Thus, if 1 is a free variable, needed narrowing instantiates it to a
constructor term, here [] or (_:.). Depending on this instantiation, either the first
equation is applied or the second argument 1, is evaluated.

In this work, we consider a well-known list-processing optimization from the logic
programming community. Most Prolog programmers know how to use difference-
lists to improve the efficiency of list-processing programs significatively. Informally,
a difference-list is a pair of lists whose second component is a suffix of the first. For
example, the list 1:2:[] is encoded as a pair (1:2:xs, xs), where xs is a logical variable.
The key to succeed in optimizing programs by difference-lists is the use of a constant-
time concatenation: append((x,y),(y,z),(x,z)). Unfortunately, if we try to adapt
this technique to a functional logic context, we find several problems. In particular,
a common restriction in lazy functional logic languages is to require left-linear rules,
i.e., the left-hand sides of the rules cannot contain several occurrences of the same
variable. In principle, this restriction does not permit the encoding of concatenation of
difference-lists as: appendx (x,y) (y,z) = (x,2z) and, consequently, prevents us from
having difference-lists in lazy functional languages (at least, at runtime). Therefore,
we are interested in a transformation process in which the final program does not
contain occurrences of difference-lists. To achieve this goal, we considered that, in
some cases, programs using difference-lists are structurally similar to programs written
using “accumulating parameters” [12]. Compare, for instance, an optimized version
of quicksort by difference-lists (see Sect. 4):

qs*([], (ys,ys)).
qe(x:xs, (s, ys')) : — split(x,xs,1,r), gs+(L, (ys,xw)), gss(r, (w,ys')).
and by introducing accumulating parameters:

qsacc([], ys, ys)-

QSacc(x:x8,ys’,ys) : — split(x,xs,1,r), qSace(T, y8', W), qSacc(l,x:w,ys).

We will show that this idea can be generalized, giving rise to an optimization technique
which achieves a similar effect over functional logic programs and always returns a
program without difference-lists.

The structure of the paper is as follows. After some preliminary definitions in the
next section, Sect. 3 describes the language syntax and the operational semantics ref-
erenced in our approach. Section 4 introduces a transformation technique (based on
the use of difference-lists) which improves a certain class of list-processing programs
and shows its correctness and effectiveness. An experimental evaluation of our opti-
mization is shown in Sect. 5. Finally, Sect. 6 presents some related work and Sect. 7
concludes. An extended version of this abstract can be found in [1].

2 Preliminaries

In this section we recall some basic notions from term rewriting [5] and functional logic
programming [6]. We consider a (many-sorted) signature X partitioned into a set C



of constructors and a set F of (defined) functions or operations. There is at least one
sort, Bool containing the constructors True and False. The set of constructor terms
with variables (e.g., x,y,2) is obtained by using symbols from C and X. The set of
variables occurring in a term ¢ is denoted by Var(t). A term t is ground if Var(t) = 0.
A term is linear if it does not contain multiple occurrences of one variable. We write
on, for the list of objects o1,...,0y,.

A pattern is a term of the form f(d,,) where f/n € F and dy, ..., d, are constructor
terms. A term is operation-rooted if it has an operation symbol at the root. A position
p in a term ¢ is represented by a sequence of natural numbers (A denotes the empty
sequence, i.e., the root position). t|, denotes the subterm of ¢ at position p, and t[s],
denotes the result of replacing the subterm t|, by the term s (see [5] for details).

We denote by {z1 — t1,...,2, — t,} the substitution o with o(z;) = t; for
i=1,...,n (with z; # z; if i # j), and o(z) = z for all other variables z. The
set Dom(oc) = {z € X | o(z) # z} is called the domain of o. A substitution o
is (ground) constructor, if o(z) is (ground) constructor for all x € Dom(co). The
identity substitution is denoted by id. Given a substitution # and a set of variables
V C X, we denote by 6}, the substitution obtained from 6 by restricting its domain
to V. We write § = o [V] if Oy = oy, and 6 < o [V] denotes the existence of a
substitution vy such that yo 8 = o [V].

A set of rewrite rules | = r such that | ¢ X, and Var(r) C Var(l) is called a
term rewriting system (TRS). The terms [ and r are called the lefi-hand side and the
right-hand side of the rule, respectively. A TRS R is left-linear if [ is linear for all
I =r € R. A TRS is constructor-based (CB) if each left-hand side is a pattern. A
rewrite step is an application of a rewrite rule to a term, i.e., t =, g s if there is a
position p in ¢, a rewrite rule R = (I = r) and a substitution o with ¢/, = o(l) and
s = t[o(r)]p. In the following, a functional logic program is a left-linear CB-TRS.

In order to evaluate terms containing variables, narrowing non-deterministically
instantiates the variables so that a rewrite step is possible. Formally, ¢ ~ ), g, t' is
a narrowing step if p is a non-variable position in ¢ and o(t) =, g t'. We denote by
to ~% t, a sequence of narrowing steps tg ~4, ... ~4, t, With 0 = 0, 0--- 004
(if n = 0 then o = id). Due to the presence of free variables, an expression may
be reduced to different values after instantiating free variables to different terms.
In functional programming, one is interested in the computed wvalue whereas logic
programming emphasizes the different bindings (answers). In our integrated setting,
given a narrowing derivation ¢ ~% d to a constructor term d (possibly with variables)
we say that d is the computed value and o is the computed answer for ¢.

3 The Language

Modern functional logic languages are based on needed narrowing and inductively
sequential programs. Needed narrowing extends the Huet and Lévy’s notion of a
needed reduction [9]. A precise definition of this class of programs and the needed
narrowing strategy is based on the notion of a definitional tree [3]. Roughly speaking,
a definitional tree for a function symbol f is a tree whose leaves contain all (and
only) the rules used to define f and the inner nodes contain information to guide the



sh([a], b)
sh([],b) = True sh(x : xs, E )

sh(x : xs,[]) = False sh(x: xs,y:ys) = sh(xs,ys)

Fig. 1. Definitional tree for isShorter

pattern matching during the evaluation of expressions. Each inner node has a pattern
and a variable position in this pattern (the inductive position) which is further refined
in the patterns of its immediate children by using different constructor symbols. The
pattern of the root node is simply f(Z;), where T,, are different variables. A graphic
representation of definitional trees, where each inner node is marked with a pattern,
the inductive position in branches is surrounded by a box, and the leaves contain the
corresponding rules is often used to illustrate this notion (see, e.g., the definitional
tree for the function isShorter of Ex. 1 in Fig. 1, here abbreviated as sh).

A defined function is called inductively sequential if it has a definitional tree.
A rewrite system R is called inductively sequential if all its defined functions are
inductively sequential. Note that inductively sequential programs are a particular
case of left-linear CB-TRSs.

In order to compute needed narrowing steps for an operation-rooted term ¢, we
take a definitional tree P for the root of ¢ and compute A(¢,P). Here, A is a narrowing
strategy which returns triples (p, R, o) containing a position, a program rule, and
a substitution. Then, for all (p,R,0) € A(t,P), t ~p ro t' is a needed narrowing
step. Informally, needed narrowing applies a rule, if possible, otherwise checks the
subterm corresponding to the inductive position of the branch: if it is a variable, we
instantiate it to the constructor of a child; if it is already a constructor, we proceed
with the corresponding child; finally, if it is a function, we evaluate it by recursively
applying needed narrowing. For inductively sequential programs, needed narrowing is
sound and complete w.r.t. strict equations (i.e., both sides must reduce to the same
ground constructor term) and constructor substitutions as solutions [4].

4 Optimization by Accumulating Parameters

In this section, we introduce a new transformation for optimizing functions that in-
dependently build different sections of a list to be later combined together [12]. The
development of this section is inspired by the well-known difference-list transformation
from the logic programming community [11,12].

The idea behind the difference-list transformation of [11] is to replace certain lists
by terms called difference-lists in order to expose opportunities for a faster concate-
nation. A difference-list is represented as a pair of lists whose second component is a
suffix of the first. For example, the list 1:2:[] is encoded as a pair (1:2:xs, xs), where xs
is a logical variable. Therefore, a difference-list represents the list which results from



removing the suffix from the first component. Informally, a difference-list can be seen
as a “list plus a pointer to its tail”. By virtue of the new representation, such a pointer
may avoid traversing some lists represented by difference-lists, since the concatena-
tion of difference-lists is a constant-time operation: append d1({x,y),(y, z), (x,2)).
Therefore, predicates using append_dl take advantage from its improved runtime, as
we now illustrate by considering the quicksort algorithm:

as([, [)-

gs(x:xs,ys) : — split(x,xs,1,r), qs(1,2), qs(r,w), append(z, x:w, ys).
The definition of the predicate split is not relevant here, it is sufficient to know
that, given a call split(x,xs,1,r) it returns in 1 all the elements of the list xs which
are lesser than x and in r those which are greater than x. Following [11], the second
argument of gs and all the arguments of append need to be changed to difference-lists
by using the equivalences:

I = (y.y)
toottgif] = (B ttaty,y)
X — <X=Y>

where y is a fresh variable. Thus, we obtain the program:

gs(xs,ys) : — gs*(xs, (ys,[])).

qs*([], (ys, ys))-

asx(xxs, (8, y")) : — split(x,xs,1,1), qss(l, (z,28), qex(r, (v, ws),
Note that the first rule is introduced to relate the new predicate gs* and the original
gs (since the difference-list (ys, []) is equivalent to the standard list ys). By unfolding

the call to append_dl, we get an improved definition of gs:

gs(xs,ys) : — gs*(xs, (ys,[])).

qsx([], (ys, ys)).

gs*(x:xs, (ys,ys')) : — split(x,xs,1,r), gs*(1, (ys,xw)), gsx(r, (w,ys’)).
In an attempt to adapt this technique to a functional logic context, we find several
problems. In particular, a common restriction in lazy functional logic languages is to
require left-linear rules, i.e., the left-hand sides of the rules cannot contain several
occurrences of the same variable. In principle, this restriction prevents us from encod-
ing the concatenation of difference-lists as a rule of the form: append*((x,y), (y,z)) =
(x,z). Of course, we can transform it into:

append d1((x,y),(w,2)) | y==w = (x,2)

by using a guarded expression. However, in order to keep the effectiveness of the
transformation, the equality symbol “==" should be interpreted as syntactic unifica-
tion, which is not allowed in lazy functional logic programs where only strict equality
is permitted. In general, the manipulation of difference-lists requires the use of non-
strict equality in order to assign terms to the pointers of difference-lists. Therefore,
we are interested in a transformation process in which the final program does not
contain occurrences of difference-lists (nor calls to appendx).



To achieve this goal, we considered that, in some cases, programs using difference-
lists are structurally similar to programs written using accumulators. For instance,
quicksort can be defined using accumulators as follows:

qs(xs,ys) : — QSacc(xs, [],78)-

qSacc([], ys, ys)-

QSacc(x:x8,ys’,ys) : — split(x,xs,1,r), qSace(r,y8', W), qSacc(l, x:w,ys).
There are only two differences between this program and the difference-list version.
The first difference is syntactic: the difference-list is represented as two independent
arguments, but in reverse order, the tail preceding the head. The second difference is
the goal order in the body of the recursive clause of gsac.. The net effect is that the
sorted list is built bottom-up from its tail, rather than top-down from its head [12].

Now we show, by means of an example, an adaptation of the difference-list trans-
formation to a functional logic language.

4.1 An Example of the Difference-lists Transformation

Consider again the quicksort algorithm, but now with a functional (logic) syntax:

as(l) =1
gs(x:xs) = append(qs(1),x:qs(r)) where (1,r) = split(x,xs)

Here, both gs and split are the functional counterpart of the predicates used in the

previous section.

As dictated by the method of [11], the three arguments of the predicate append
as well as the second argument of the predicate gs should be changed by difference-
lists. Similarly, in our functional syntax, we will replace the arguments of the function
append and the result of both functions by difference-lists. From the previous section,
we know how to transform different kinds of standard lists into difference-lists; now,
however, we are faced with a new situation which arises the question: how can we
transform an operation-rooted term into a difference-list? To solve this problem, we
allow the flattening of some calls by using a sort of conditional expressions. The main
difference with standard guarded expressions is that, in order to preserve the seman-
tics, we use a syntactic (non-strict) equality “a” for the equations in the condition.
In this way, we get the following transformed program:

as(x) =y < (v,[) ~asx(x)

as¥([l) = (xx)

gs*(x:xs) = appendx((z,zs) , (x:w,ws)) < (2,2zs) ~ qs*(1), (w,ws) = qs*(r)
where (1,r) = split(x, xs)

By defining the constant-time appends by the rule: append«*({x,y),(y,z)) = (x,z),
we can unfold the calls to appendx as follows:

as(x) =y < (. [)) ~asxx)

asx([)) = (xx)

gs*(x:xs) = (z,us) < (z,xw) & gs*(1), (w,ws) ~ qs*(r)
where (1,r) = split(x,xs)

3

In contrast to [11], now we want to remove difference-lists from the program. Intu-



itively, the idea is to detect that, since we only allow difference-lists in the result of
functions, the second argument of the difference-list is somehow used to construct the
final result progressively and, thus, we can change it by an “accumulating parameter”.
Also, since the calls to gs#* are flattened using a conditional expression, we need
to move the second argument of the difference-list to the corresponding call to gsx*:

gs(x) =y < ¥~ qsacc(x,[])
qSacc([]; %) =X
QSacc (X1X8,WS) = 2 < 2 R QSace(l, X:W), W R gSacc(T,Ws)
where (1,r) = split(x,xs)
where gsx* is renamed as qs,c.. Finally, by simplifying the equations in the conditions
(i.e., by unifying them), we achieve the desired optimization:

gs(x) = QSacc (%, [])

qsacc([], %) =X

QSacc(X:X8,WS) = gSacc(1l, X:9Sacc(r, ws)) where (1,r) = split(x,xs)
which gives a similar improvement as the optimized predicate gs* above. Indeed,
thanks to the use of accumulating parameters, we avoid the traversal of the list com-
puted by gqs(1) on each recursive call. In general, this optimization is able to produce
superlinear speedups [11,12].

4.2 The Stepwise Transformation

(a) Marking Algorithm:
Given a function to be optimized, a marking algorithm is applied in order to deter-
mine which expressions need to be replaced by difference-lists.

1. Input: a program R and a function £ whose result type is a list

2. Initialization: Mo = {f},i =0

3. Repeat
— for each function in M;, mark the right-hand sides of the rules defining f
— propagate marks among expressions by applying the following rules:

append(t;,ts) — append(ty,ts)
t : ts — 1ty
gt stn) = gltr,. o tn)

where g € F is a defined function symbol different from append.
— if there is a marked expression ¢ such that ¢ is a variable, then return FAIL;
else M;y1 = {h|h(t1,...,t;) appears in R}
until M; = ./\/li+1

(b) Introduction of Difference-lists:
If the marking algorithm does not return FAIL, then we use the function 7 to trans-
form expressions rooted by a marked symbol into difference-lists:

() =
T(t1:t2) = (t1:s,5') where
T(£(tn)) = (y,¥") <= (v,9")




where y,y’ are fresh variables not appearing in the program and those occurrences
of append whose arguments have been replaced by difference-lists are renamed as
appendx. Furthermore, we consider that all marked function symbols £ in the result-
ing program are replaced by fx*. For instance, a rule of the form f(¢;) = t1 : ty : £(55)
is transformed into:

£x(Ca) = (t1: 21y, ¥) < (v.¥) ~ £x(50)
As illustrated in the example of Sect. 4.1, when the transformation of several terms

gives rise to conditional expressions, all the equations are joined into a single condi-
tion. The following equation replaces the original definition of f:

t(Tn) =y < () = x(T)

Let us remark that the introduction of non-strict equalities does not destroy the cor-
rectness of the transformation, since they can be seen as a technical artifice in this
stage but will be removed from the program in stage (e).

(c) Unfolding of appendsx:

The next step consists in unfolding® the calls to appends using the following rule:

appendx((x,y), (y,2z)) = (x.2) .
Note that this rule is not legal in a functional logic language. It is used during the
transformation but no calls to append* appear in the final program.

(d) Use of Accumulating Parameters:
Then, we move the second argument of difference-lists to the corresponding function
call as indicated by these rules:

[£x(t2) = (.y") < C] = [facc(tn.y') =y < C]

[t < (s,8) mtx(l,)] = [t € s~ facc(ln,s)]
This corresponds to the idea of converting the second argument of the difference-lists
in an accumulating parameter of the function in which the result will be computed.

(e) Simplification:

The final step of the transformation simplifies further the program by unfolding the
(non-strict) equations in the conditional expressions (i.e., by unifying them). In this
way, we guarantee that all conditional expressions are removed from the program,
since the first argument of difference-lists is always a free variable.

Let us illustrate how our strategy proceeds with two examples. As an example of
complete transformation, consider the following contrived example, which we use to
illustrate the actions taken by each stage:

£([y) =yl
f(x:xs,y) = append(f(xs,y), x:g(xs))
g(l) = []
g(xixs) =

! Tn particular, we use an unfolding similar to [13], but using (needed) narrowing instead of
SLD-resolution (as defined in [2]).



If we start the marking algorithm with function £, we get the marked program:
t((y)y=y:l
£ (xixs,y) = append(£(xs, ), x : g(xs))
gl =1
g(xxs) = x : g(xs)
After replacing the marked expressions by difference-lists:
f(X,y) =z < <27 []) ~ f*(XaY)

£x([],y) = (y:z, 2)
fx(x:xs,y) = append*((z z') (xw,w')) < (z,2') = fx(xs,y), (w,w') =~ gx(xs)
g(x) =y < (v.[]) = gx(x)
gx([) = (v,y)
g*(X-XS) = (xi7,y) < (1) ~ ge(xs)
By unfolding the call to appends:

fx(x:xs,y) - (z,w') < (z,xw) =~ fx(xs,y), (w,w') =~ gx(xs)

By introducing accumulating parameters:
f(x,y) =2z <2z~ fae(x, 7, [])
—yz
=2z <z faee(X8,¥,XW), W R Zace(x8, W)

acc([] %
(xg =y €V R Gace(x,[])

face(x:x8,y,w

Bace ([l
Bacc(x:x8,y') = X-y <Y N gace(x8,¥')
Finally, by unfolding the conditions, we get:

f(X, y) = facc(xz Y7 [])

facc([]7Y= Z) =Yz
facc(x:x8, 7, W) = facc (XS, ¥, Xiacc (X8, %))
(%) = Zace(%,[])
gacc([l,¥) =¥

Bace(x:x8,¥') = Xi€ace(x8,¥')
Intuitively, the effect of the transformation is that, in the resulting program, the
operations over the input list to £ are mixed up, while in the original program they
were built independently (and then combined by the function append).
As an example of program to which the transformation cannot be applied, consider
the double append program:

dapp(x,y,z) = append(append(x, y), z)
If we start the marking algorithm with the function dapp, in the first iteration we get
the following marked program:

dapp(x,y,z) = append(append(x,y),z)

Therefore, stage (a) incurs into FAIL since the variables x, y, and z have been marked.



Note that by allowing stage (b) (as it actually happens in the original difference-list
transformation), we would obtain the following definition of dapp:

dapp((x,xs), (xs,ys),(ys,2)) = (x,2) .

However, stage (c) could not remove the difference-lists of the arguments of dapp and,
thus, we would produce a non-legal program.

Notice that, even if the marking algorithm does not return FAIL, improvement is
not guaranteed (although there is no significant loss of efficiency in these cases, see the
function g in the example above). In order to always guarantee runtime improvement,
stage (a) is only started with functions whose definitions are of the form append(¢1, t2);
this way we ensure that, if the method is actually applied, at least one call to append
from each of them will be removed and, consequently, some gain will be achieved.

4.3 Correctness

The correctness of the transformation can be derived from the correctness of stages
(b) and (d), since the remaining stages do not modify the program stage (a) or
are instances of the fold/unfold framework of [2]  stages (c) and (e). In the following,
we develop a proof sketch for stages (b) and (d) under certain conditions on the form
of difference-lists (i.e., only lazily regular lists are allowed in the first argument of
appendx, see below).

To prove the correctness of stage (b), we first need to define an adequate semantics
for conditional expressions in transformed programs. Basically, it can be provided as
follows. Let us consider an initial (marked) program R, and the program R; obtained
from applying stage (b) to R,. Now, we introduce the following function 7'

o) =1

T’(tlltg) = tl:T’(tQ)

T(ftn) =y <« y= f(tn)
which is used to transform the initial program R, into a modified version R} with
the same structure than R, (but without difference-lists). It should be clear that each
needed narrowing derivation in R, can be mimicked in R}, since the only difference
is that some expressions containing nested function symbols have been flattened into
(non-strict) equalities. This way, we can define the semantics of conditional expressions
in R in terms of the associated needed narrowing steps in the original program R,
(via the equivalence with R} ). Furthermore, when evaluating terms in Ry, we allow
the flattening of expressions, as well as the unfolding of equations, in order to preserve
the equivalence with the computations in R, .

Once the interpretation of conditional expressions is fixed, we can establish the
following equivalence between derivations in R, and R, where no call to append oc-

curs. Given an operation-rooted term e = £(¢1,...,¢,) such that £ is marked by the
algorithm in stage (a), then

e~ d:] in R, iff ' ~¥% (dy,y) inRy (%)
where €' = £x(t1,...,t,), 0 = o' [Var(e)], and d represents a (possibly empty) se-

10



the marking algorithm, the terms ¢y, ..., ¢, cannot contain marked function symbols.
This equivalence can be easily stated by induction on the length of the derivations,
by considering these three facts: i) no calls to append (resp. appendx) are produced
in the first (resp. the second) derivation; ii) the left-hand sides of the applied rules
are the same in both derivations since they are not changed by stage (b); and iii)
the modifications in the right-hand sides can be easily proven from the equivalence
between lists and difference-lists and the interpretation of conditional expressions.
Therefore, we center the discussion on the correctness of the function appendx.

In [11], the notion of regular difference-list is introduced to ensure the correct-
ness of appendx; namely, only calls to append* with a regular difference-list in the
first argument are allowed. Essentially, a difference-list is regular if it is of the form
(t1:...:tn:y,y) and y does not appear in ¢1,...,t,, i.e., if it denotes a finite list (here
t1:...:ty:[]). This notion of regularity is not appropriate in our context due to lazy
evaluation, since we can have calls to appendx with a non-regular difference-list in the
first argument, and still preserve correctness if this argument is evaluated to a regular
difference-list afterwards. To overcome this restriction (which drastically would reduce
the number of programs amenable to be transformed), we introduce a lazy version
of regular list as follows. Given an expression e[d;], containing a difference-list d; at
some position p, we say that d; is lazily regular in a derivation e[d;], ~% €' iff o(d;)
is regular (i.e., of the form (¢1:...:t,:y,y)). Now, by using the notion of lazily regular
lists, we can state the correctness of append* as follows.2 Let e;,es be expressions
with no calls to append and let €}, e}, be the corresponding expressions which result
from replacing each call to a marked function f by the corresponding call £x. Then,

append(eg, e3) ~% d:o(ez) in R,
iff
appendx((z,xs), (y,ys)) < (z,15) 2 el (y,ys) ~ €
~p (diy,ys) << (y,ys) mo'(ey) in Ry

where e; is lazily regular in the second derivation, o0 = o' [Var({e1,ez2})], and d

Let us prove the claim by considering both implications:
(=) Consider the derivation append(e;, e3) ~% d:o(e2) in R,. By definition of needed
narrowing, it is immediate that e; ~7 d:[]. By equivalence (*), we have e ~*, (d:z, z)
in Ry, where 0 = o' [Var(ey)]. Therefore,

append+((z, z5) , (y,y5)) < (z,25) = €1, (y,ys) = e,

M lrs—y} <T yS) <= <T7’U> ~ ell ) <’U Us> ~ 6{2
M:" <.’1’5,y5) = <T7’U> ~ <d Z,Z>,<y,1}9) %UI(PZ)
M lrediy, 2y} <d:y,yS> <= <’U 1/5) ~ (TI(PIQ)

and the claim follows.

(<) Consider the derivation

appendx((z,ws), (y,ys)) < (z,z5) ~ €}, (y,ys) ~ e
~r (dy,ys) < (y,ys) = o'(ey)

2 Here we do not consider nested occurrences of append, although the proof scheme can be
extended to cover this case by using an appropriate induction.

11



Since e} is lazily regular, we have e} ~,: (d:z,z) in R;. Hence, by equivalence (*),
€1~ d:[]in R,, where 0 = o' [Var(er)]. Although the evaluation of e; and the calls to

append are interleaved due to the laziness of append, we know that append(e;, e2) ~*
d:o(es) by definition of needed narrowing, which completes the proof.

Note that requiring e} to be lazily regular is not a real restriction in our context,
since terminating functions fulfill this condition by the manner in which we introduce
difference-lists in the base cases of recursive functions. On the other hand, if we were
only interested in proving an equivalence w.r.t. head normal forms, we conjecture that
this restriction could be safely dropped.

Now we concentrate on stages (d) and (e). Let R, be the program obtained from
stage (c) and R, be the output of stage (e). In order to prove the correctness of this
step, we prove that for each function symbol £ in R, (defined in terms of some fx)
we have a semantically equivalent function £ in R, (defined in terms of £,..). For the
sake of simplicity, let us consider a recursive function of the form:

£7) =y < (]~ £x(@)
£4(im) = (d:y, )

fx(by) = (d:z,y) < (z,ey) = £x(5,)

in R., where d,d’, e represent a (possibly empty) sequence of elements of the form

produce the following definition:

1(Tn) = Tace(@us [])

facc(a__ruy) = dy

facc(bruy) = dlzfacc(ﬁ7e:y)
in R.. Given a (finite) list ¢y:...:¢x:[], in order to prove that £(¢;) ~% ci:...:.cp:[] in
Re iff £(c,) ~5

in R iff facc(n,[]) ~2% c1iiep:[] in Re. To prove this claim by induction, we first

generalize it as follows:
(t:z,y) < (z,ry) = £x(C,) ~% (tlr'y,y) in R,
iff t:facc(Cn,r[]) ~% t:lo':]] in Re

o

where ¢ = o' [Var({£x(¢,),t,7})], the expressions t,r,] represent (possibly empty)
sequences of elements of the form #;:...:t;, K > 0, and #',r' are constructor instances
of t,r (in particular, ' = o(t),r' = o(r)). Now we proceed by induction on the length
of the former derivation. The base case is immediate by applying the first rules of fx
and f,.., respectively. Let us consider the inductive case. By applying the second rule
of £x, we have:

(t:z,y) < (2,ry) = £x(T,;) ~a (thz,y) < (z,7y) = {d:2",y"),{z', exy)) =~ £x(357,)
and, by unfolding the first equation in the condition:
(thd':2y) < (2 ery) ~ £x(5,)
On the other hand, by applying the second rule of f,cc to t:facc(Cn,7:[]), we have:
t:face(Cn,m:[]) ~o thid' i facc (5, er’:]])
where 8 = 0" [Var({£x(¢;),t,r})]. The claim follows by the inductive hypothesis.

12



(%) = face (%, [])

£(sa) =[] _ = fac(Say) =y _
f(ta) = my : append(£(t}), m; : [])) face(Bn, y) = mp @ facc(th,m 1 y))

(%) = face(¥a, [])
£(sa) = (] . = fuc(Gay) =y . .
£(%a) = m : append(£(t}),mo : £(t))) face(Ta,y) = m1 ¢ face(th, mo : face(tY,y))
t(s5) = [ -
$(B) = mi : append(append(£ (%), ma < £(3)),ms : )

— £(F) = face(®,[])

face(Sm,y) =y - o
facc(tnyy) = m : facc (t;”mz . facc(tgamS : y))

where m;, mp, ms are (possibly empty) sequences of the form d; : d2 : ... : di, with & > 0.

Fig. 2. Matching scheme
4.4 Effectiveness of the Transformation

Throughout this section, our aim has been to define an automatic method for achiev-
ing the effect of the difference-list transformation over functional logic programs. We
have not been concerned with the efficiency of its implementation. It turns out that
some of the stages that we have introduced appear to be expensive to implement.
Thus, for a first attempt of integrating the method into a real compiler, we have de-
fined a matching scheme which is both simple and effective. For our transformation,
we discovered that, in practice, many doubly recursive functions ensure a gain in ef-
ficiency from the transformation (also some single recursive functions, provided they
use append to concatenate some elements to the result of the recursive call). These
functions are matched by three simple, local transformation rules depicted in Fig. 2
and, thus, replaced by equivalent functions without calls to append.
As an example, we consider the towers of Hanoi:

hanoi(0,a,b,c) =]
hanoi(S(n),a,b, c) = append(hanoi(n,a,c,b),(a,b): hanoi(n,c,b,a))
where the first argument is of type Nat = 0 | S(Nat); a, b and c represent the three

towers, and (a,b) a movement of a plate from a to b. By considering that m; is
an empty sequence and ms = (a,b), the second rule of the scheme matches and

3

transforms the program into the following optimized version without concatenations:

hanoi(n,a,b,c) = han(n,a,b,c,]])
han(0,a,b,c,y) =y
han(S(n),a,b,c,y) = han(n, a, c,b, (a,b) : han(n, c, b, a,y))

where all the concatenations have actually disappeared.

5 Experimental Evaluation

In order to evaluate experimentally our transformation, we have incorporated the
optimization based on the matching scheme of Fig. 2 into the PACS compiler for Curry

13



[8] as an automatic source-to-source transformation which is transparent to the user.
The language Curry is an international initiative to provide a common platform for
the research, teaching and application of integrated functional logic languages [7]. To
implement the optimization, we have used the standard intermediate representation
of Curry programs: FlatCurry [8].3

To show the usefulness of our approach, we considered programs which are used
in the literature to illustrate the benefits of difference-lists in Prolog (adapted to a
functional logic syntax). The complete code of the benchmarks and a detailed de-
scription of the implementation can be found in [1]. The following table shows the
performances of original programs (Original) w.r.t. the improved versions (Optimized)
by the introduction of accumulating parameters:

[Benchmarks [[Original[[Optimized||Speedup]
revaooo 3470 65 53.38
qSOI‘t2000 1010 850 1.18
pre—orderaggo 104 17 6.11
in—orderyggg 105 16 6.56
post—ordersggo|| 132 16 8.25
hanoi;z 4100 2160 1.89

Times are expressed in milliseconds and are the average of 10 executions. Runtime
input goals were chosen to give a reasonably long overall time. In particular, goal
subindices show the number of elements in the input lists or trees. Column Speedup
shows the relative improvements achieved by the transformation, obtained as the
ratio Original < Optimized, respectively. Results are encouraging, achieving significant
speedups for some of the examples.

6 Related Work

The development of list-processing optimizations has been an active research topic
both in functional and logic programming for the last decades. A related approach
to difference-lists appeared early in [10], where Hughes introduced an optimized rep-
resentation of lists, the so-called abstract lists, which are specially defined for a fast
concatenation in functional programming. The idea behind their use is similar to that
of logic difference-lists, although they are formulated in a different way. As opposite
to our approach, the objective of [10] is not to provide an automatic algorithm to
replace standard lists by abstract lists, but to introduce an efficient data structure
to be used by the programmer. The idea of optimizing concatenations was taken one
step forward by Wadler in [14], where he described local transformations for removing
some concatenations from a program. The formalization of our stepwise process to
introduce accumulating parameters is, apparently, not related with Wadler’s transfor-
mation. Nevertheless, we strongly believe that over many examples both approaches
produce a similar effect. A formal comparison between them could be useful. For in-
stance, we think that our marking algorithm could be used within Wadler’s technique

3 A prototype implementation, together with some examples and documentation of the
system is publicly available at: http://www.dsic.upv.es/users/elp/soft.html.

14



to identify those functions from which concatenations will be successfully removed.
On the other hand, we could benefit from the simplicity of Wadler’s rules in some
steps of our transformation.

7 Conclusions and Future Work

We have presented a novel transformation for improving list-processing functions in
the context of a multi-paradigm functional logic language: an automatic transfor-
mation based on the introduction of accumulating parameters. It has been shown
practical and effective by testing it within a real functional logic compiler, the PACS
compiler for Curry [8].

A promising direction for future work is the generalization of our stepwise transfor-
mation to arbitrary (algebraic) data types. Another interesting topic is the definition
of abstract measures to quantify the performance of functional logic programs, i.e.,
measures independent of concrete implementations. We expect that these measures
also shed some light to find new optimizations and to determine their power.

References

1. E. Albert, C. Ferri, F. Steiner, and G. Vidal. List-Processing Optimizations in a Multi-
Paradigm Declarative Language. Technical Report DSIC, UPV, 2000. Available from
URL: http://www.dsic.upv.es/users/elp/papers.html.

2. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. A Transformation System for Lazy
Functional Logic Programs. In A. Middeldorp and T. Sato, editors, Proc. of FLOPS’99,
pages 147 162. Springer LNCS 1722, 1999.

3. S. Antoy. Definitional trees. In Proc. of the 8rd Int’l Conference on Algebraic and Logic
Programming, ALP’92, pages 143-157. Springer LNCS 632, 1992.

4. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st ACM
Symp. on Princ. of Prog. Languages, Portland, pages 268-279, 1994.

5. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics,
pages 243 320. Elsevier, Amsterdam, 1990.

6. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, 198&20:583—-628, 1994.

7. M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at
http://www.informatik.uni-kiel.de/"curry, 2000.

8. M. Hanus (ed.), S. Antoy, J. Koj, R. Sadre, and F. Steiner. PACS 1.0: User Manual.
Technical report, RWTH Aachen, Germany, 1999.

9. G. Huet and J.J. Lévy. Computations in orthogonal rewriting systems, Part I + II. In
J.L. Lassez and G.D. Plotkin, editors, Computational Logic — Essays in Honor of Alan
Robinson, pages 395 443, 1992.

10. J. Hughes. A Novel representation of Lists and its Application to the Function reverse.
Technical Report PMG-38, Programming Methodology Group, Department of Computer
Science, Chalmers Institute of Technology, Sweden, 1984.

11. K. Marriott and H. Sgndergaard. Difference-list Transformation for Prolog. New Gen-
eration Computing, 11(2):125 157, October 1993.

15



12. L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques. MIT
Press, 1986.

13. H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In Proc. of
Second Int’l Conf. on Logic Programming, pages 127 139, 1984.

14. P.L. Wadler. The Concatenate Vanishes. Technical report, Department of Computing
Science, University of Glasgow, UK, 1987.

16



