
Improving Functional Logic Programs byDi�erence-ListsElvira Albert1, C�esar Ferri1, Frank Steiner2, and Germ�an Vidal11 DSIC, UPV, Camino de Vera s/n, E-46022 Valencia, Spain2 Institut f�ur Informatik, CAU Kiel, GermanyAbstract. Modern multi-paradigm declarative languages integrate featuresfrom functional, logic, and concurrent programming. In this work, we considerthe adaptation of the logic programming transformation based on the intro-duction of di�erence-lists to an integrated setting. Unfortunately, the use ofdi�erence-lists is impractical due to the absence of non-strict equality in lazy(call-by-name) languages. Despite all, we have developed a novel, stepwisetransformation which achieves a similar e�ect over functional logic programs.We also show a simple and practical approach to incorporate the optimiza-tion into a real compiler. Finally, we have conducted a number of experimentswhich show the practicality of our proposal.Keywords: functional logic programming, program transformation, compileroptimization1 IntroductionIn recent years, several proposals have been made to amalgamate functional andlogic programming languages. These languages combine features from functional pro-gramming (nested expressions, lazy evaluation) logic programming (logical variables,partial data structures), and concurrent programming (concurrent evaluation of con-straints with synchronization on logical variables). The operational semantics of mod-ern multi-paradigm languages is based on needed narrowing, which is currently thebest narrowing strategy for lazy functional logic programs due to its optimality prop-erties [4]. Needed narrowing provides completeness in the sense of logic programming(computation of all solutions) as well as functional programming (computation ofvalues), and it can be e�ciently implemented by pattern matching and uni�cation.Example 1. Consider the function isShorter which is de�ned by the equations:isShorter([]; ys) = TrueisShorter(x : xs; []) = FalseisShorter(x : xs; y : ys) = isShorter(xs; ys)where \[]" and \:" are the constructors of lists. The expression isShorter (x : xs) zcan be evaluated, for instance, by instantiating z to (y:ys) to apply the third equation,followed by the instantiation of xs to [] to apply the �rst equation:isShorter (x : xs) z ;fz7!y:ysg isShorter xs ys ;fxs7![]g True

In general, given a term like isShorter l1 l2, it is always necessary to evaluate l1 (tosome head normal form) since all three equations in Example 1 have a non-variable�rst argument. On the other hand, the evaluation of l2 is only needed if l1 is ofthe form (:). Thus, if l1 is a free variable, needed narrowing instantiates it to aconstructor term, here [] or (:). Depending on this instantiation, either the �rstequation is applied or the second argument l2 is evaluated.In this work, we consider a well-known list-processing optimization from the logicprogramming community. Most Prolog programmers know how to use di�erence-lists to improve the e�ciency of list-processing programs signi�catively. Informally,a di�erence-list is a pair of lists whose second component is a su�x of the �rst. Forexample, the list 1:2:[] is encoded as a pair h1:2:xs; xsi, where xs is a logical variable.The key to succeed in optimizing programs by di�erence-lists is the use of a constant-time concatenation: append(hx; yi ; hy; zi ; hx; zi): Unfortunately, if we try to adaptthis technique to a functional logic context, we �nd several problems. In particular,a common restriction in lazy functional logic languages is to require left-linear rules,i.e., the left-hand sides of the rules cannot contain several occurrences of the samevariable. In principle, this restriction does not permit the encoding of concatenation ofdi�erence-lists as: append� hx; yi hy; zi = hx; zi and, consequently, prevents us fromhaving di�erence-lists in lazy functional languages (at least, at runtime). Therefore,we are interested in a transformation process in which the �nal program does notcontain occurrences of di�erence-lists. To achieve this goal, we considered that, insome cases, programs using di�erence-lists are structurally similar to programs writtenusing \accumulating parameters" [12]. Compare, for instance, an optimized versionof quicksort by di�erence-lists (see Sect. 4):qs�([]; hys; ysi):qs�(x:xs; hys; ys0i) : � split(x; xs; l; r); qs�(l; hys; x:wi); qs�(r; hw; ys0i):and by introducing accumulating parameters:qsacc([]; ys; ys):qsacc(x:xs; ys0; ys) : � split(x; xs; l; r); qsacc(r; ys0; w); qsacc(l; x:w; ys):We will show that this idea can be generalized, giving rise to an optimization techniquewhich achieves a similar e�ect over functional logic programs and always returns aprogram without di�erence-lists.The structure of the paper is as follows. After some preliminary de�nitions in thenext section, Sect. 3 describes the language syntax and the operational semantics ref-erenced in our approach. Section 4 introduces a transformation technique (based onthe use of di�erence-lists) which improves a certain class of list-processing programsand shows its correctness and e�ectiveness. An experimental evaluation of our opti-mization is shown in Sect. 5. Finally, Sect. 6 presents some related work and Sect. 7concludes. An extended version of this abstract can be found in [1].2 PreliminariesIn this section we recall some basic notions from term rewriting [5] and functional logicprogramming [6]. We consider a (many-sorted) signature � partitioned into a set C2

of constructors and a set F of (de�ned) functions or operations. There is at least onesort Bool containing the constructors True and False. The set of constructor termswith variables (e.g., x; y; z) is obtained by using symbols from C and X . The set ofvariables occurring in a term t is denoted by Var(t). A term t is ground if Var(t) = ;.A term is linear if it does not contain multiple occurrences of one variable. We writeon for the list of objects o1; : : : ; on.A pattern is a term of the form f(dn) where f=n 2 F and d1; : : : ; dn are constructorterms. A term is operation-rooted if it has an operation symbol at the root. A positionp in a term t is represented by a sequence of natural numbers (� denotes the emptysequence, i.e., the root position). tjp denotes the subterm of t at position p, and t[s]pdenotes the result of replacing the subterm tjp by the term s (see [5] for details).We denote by fx1 7! t1; : : : ; xn 7! tng the substitution � with �(xi) = ti fori = 1; : : : ; n (with xi 6= xj if i 6= j), and �(x) = x for all other variables x. Theset Dom(�) = fx 2 X j �(x) 6= xg is called the domain of �. A substitution �is (ground) constructor, if �(x) is (ground) constructor for all x 2 Dom(�). Theidentity substitution is denoted by id. Given a substitution � and a set of variablesV � X , we denote by �j�V the substitution obtained from � by restricting its domainto V . We write � = � [V] if �j�V = �j�V , and � � � [V] denotes the existence of asubstitution such that � � = � [V].A set of rewrite rules l = r such that l 62 X , and Var(r) � Var(l) is called aterm rewriting system (TRS). The terms l and r are called the left-hand side and theright-hand side of the rule, respectively. A TRS R is left-linear if l is linear for alll = r 2 R. A TRS is constructor-based (CB) if each left-hand side is a pattern. Arewrite step is an application of a rewrite rule to a term, i.e., t !p;R s if there is aposition p in t, a rewrite rule R = (l = r) and a substitution � with tjp = �(l) ands = t[�(r)]p. In the following, a functional logic program is a left-linear CB-TRS.In order to evaluate terms containing variables, narrowing non-deterministicallyinstantiates the variables so that a rewrite step is possible. Formally, t ;p;R;� t0 isa narrowing step if p is a non-variable position in t and �(t) !p;R t0. We denote byt0 ;�� tn a sequence of narrowing steps t0 ;�1 : : : ;�n tn with � = �n � � � � � �1(if n = 0 then � = id). Due to the presence of free variables, an expression maybe reduced to di�erent values after instantiating free variables to di�erent terms.In functional programming, one is interested in the computed value whereas logicprogramming emphasizes the di�erent bindings (answers). In our integrated setting,given a narrowing derivation t;�� d to a constructor term d (possibly with variables),we say that d is the computed value and � is the computed answer for t.3 The LanguageModern functional logic languages are based on needed narrowing and inductivelysequential programs. Needed narrowing extends the Huet and L�evy's notion of aneeded reduction [9]. A precise de�nition of this class of programs and the needednarrowing strategy is based on the notion of a de�nitional tree [3]. Roughly speaking,a de�nitional tree for a function symbol f is a tree whose leaves contain all (andonly) the rules used to de�ne f and the inner nodes contain information to guide the3

sh([]; b) = True sh(x : xs; b)sh(x : xs; []) = False sh(x : xs; y:ys) = sh(xs; ys)
sh(a ; b)���� QQQQ��� QQQ

Fig. 1. De�nitional tree for isShorterpattern matching during the evaluation of expressions. Each inner node has a patternand a variable position in this pattern (the inductive position) which is further re�nedin the patterns of its immediate children by using di�erent constructor symbols. Thepattern of the root node is simply f(xn), where xn are di�erent variables. A graphicrepresentation of de�nitional trees, where each inner node is marked with a pattern,the inductive position in branches is surrounded by a box, and the leaves contain thecorresponding rules is often used to illustrate this notion (see, e.g., the de�nitionaltree for the function isShorter of Ex. 1 in Fig. 1, here abbreviated as sh).A de�ned function is called inductively sequential if it has a de�nitional tree.A rewrite system R is called inductively sequential if all its de�ned functions areinductively sequential. Note that inductively sequential programs are a particularcase of left-linear CB-TRSs.In order to compute needed narrowing steps for an operation-rooted term t, wetake a de�nitional tree P for the root of t and compute �(t;P). Here, � is a narrowingstrategy which returns triples (p;R; �) containing a position, a program rule, anda substitution. Then, for all (p;R; �) 2 �(t;P), t ;p;R;� t0 is a needed narrowingstep. Informally, needed narrowing applies a rule, if possible, otherwise checks thesubterm corresponding to the inductive position of the branch: if it is a variable, weinstantiate it to the constructor of a child; if it is already a constructor, we proceedwith the corresponding child; �nally, if it is a function, we evaluate it by recursivelyapplying needed narrowing. For inductively sequential programs, needed narrowing issound and complete w.r.t. strict equations (i.e., both sides must reduce to the sameground constructor term) and constructor substitutions as solutions [4].4 Optimization by Accumulating ParametersIn this section, we introduce a new transformation for optimizing functions that in-dependently build di�erent sections of a list to be later combined together [12]. Thedevelopment of this section is inspired by the well-known di�erence-list transformationfrom the logic programming community [11, 12].The idea behind the di�erence-list transformation of [11] is to replace certain listsby terms called di�erence-lists in order to expose opportunities for a faster concate-nation. A di�erence-list is represented as a pair of lists whose second component is asu�x of the �rst. For example, the list 1:2:[] is encoded as a pair h1:2:xs; xsi, where xsis a logical variable. Therefore, a di�erence-list represents the list which results from4

removing the su�x from the �rst component. Informally, a di�erence-list can be seenas a \list plus a pointer to its tail". By virtue of the new representation, such a pointermay avoid traversing some lists represented by di�erence-lists, since the concatena-tion of di�erence-lists is a constant-time operation: append dl(hx; yi ; hy; zi ; hx; zi):Therefore, predicates using append dl take advantage from its improved runtime, aswe now illustrate by considering the quicksort algorithm:qs([]; []):qs(x:xs; ys) : � split(x; xs; l; r); qs(l; z); qs(r; w); append(z; x:w; ys):The de�nition of the predicate split is not relevant here, it is su�cient to knowthat, given a call split(x; xs; l; r) it returns in l all the elements of the list xs whichare lesser than x and in r those which are greater than x. Following [11], the secondargument of qs and all the arguments of append need to be changed to di�erence-listsby using the equivalences:[] ! hy; yit1: : : : :tn:[]! ht1: : : : :tn:y; yix ! hx; yiwhere y is a fresh variable. Thus, we obtain the program:qs(xs; ys) : � qs�(xs; hys; []i):qs�([]; hys; ysi):qs�(x:xs; hys; ys0i) : � split(x; xs; l; r); qs�(l; hz; zsi); qs�(r; hw; wsi);append dl(hz; zsi ; hx:w; wsi ; hys; ys0i):Note that the �rst rule is introduced to relate the new predicate qs� and the originalqs (since the di�erence-list hys; []i is equivalent to the standard list ys). By unfoldingthe call to append dl, we get an improved de�nition of qs:qs(xs; ys) : � qs�(xs; hys; []i):qs�([]; hys; ysi):qs�(x:xs; hys; ys0i) : � split(x; xs; l; r); qs�(l; hys; x:wi); qs�(r; hw; ys0i):In an attempt to adapt this technique to a functional logic context, we �nd severalproblems. In particular, a common restriction in lazy functional logic languages is torequire left-linear rules, i.e., the left-hand sides of the rules cannot contain severaloccurrences of the same variable. In principle, this restriction prevents us from encod-ing the concatenation of di�erence-lists as a rule of the form: append�(hx; yi ; hy; zi) =hx; zi : Of course, we can transform it into:append dl(hx; yi ; hw; zi) j y == w = hx; ziby using a guarded expression. However, in order to keep the e�ectiveness of thetransformation, the equality symbol \==" should be interpreted as syntactic uni�ca-tion, which is not allowed in lazy functional logic programs where only strict equalityis permitted. In general, the manipulation of di�erence-lists requires the use of non-strict equality in order to assign terms to the pointers of di�erence-lists. Therefore,we are interested in a transformation process in which the �nal program does notcontain occurrences of di�erence-lists (nor calls to append�).5

To achieve this goal, we considered that, in some cases, programs using di�erence-lists are structurally similar to programs written using accumulators. For instance,quicksort can be de�ned using accumulators as follows:qs(xs; ys) : � qsacc(xs; []; ys):qsacc([]; ys; ys):qsacc(x:xs; ys0; ys) : � split(x; xs; l; r); qsacc(r; ys0; w); qsacc(l; x:w; ys):There are only two di�erences between this program and the di�erence-list version.The �rst di�erence is syntactic: the di�erence-list is represented as two independentarguments, but in reverse order, the tail preceding the head. The second di�erence isthe goal order in the body of the recursive clause of qsacc. The net e�ect is that thesorted list is built bottom-up from its tail, rather than top-down from its head [12].Now we show, by means of an example, an adaptation of the di�erence-list trans-formation to a functional logic language.4.1 An Example of the Di�erence-lists TransformationConsider again the quicksort algorithm, but now with a functional (logic) syntax:qs([]) = []qs(x:xs) = append(qs(l); x:qs(r)) where (l; r) = split(x; xs)Here, both qs and split are the functional counterpart of the predicates used in theprevious section.As dictated by the method of [11], the three arguments of the predicate appendas well as the second argument of the predicate qs should be changed by di�erence-lists. Similarly, in our functional syntax, we will replace the arguments of the functionappend and the result of both functions by di�erence-lists. From the previous section,we know how to transform di�erent kinds of standard lists into di�erence-lists; now,however, we are faced with a new situation which arises the question: how can wetransform an operation-rooted term into a di�erence-list? To solve this problem, weallow the attening of some calls by using a sort of conditional expressions. The maindi�erence with standard guarded expressions is that, in order to preserve the seman-tics, we use a syntactic (non-strict) equality \�" for the equations in the condition.In this way, we get the following transformed program:qs(x) = y (hy; []i � qs�(x)qs�([]) = hx; xiqs�(x:xs) = append�(hz; zsi ; hx:w; wsi) (hz; zsi � qs�(l); hw; wsi � qs�(r)where (l; r) = split(x; xs)By de�ning the constant-time append� by the rule: append�(hx; yi ; hy; zi) = hx; zi,we can unfold the calls to append� as follows:qs(x) = y (hy; []i � qs�(x)qs�([]) = hx; xiqs�(x:xs) = hz; wsi (hz; x:wi � qs�(l); hw; wsi � qs�(r)where (l; r) = split(x; xs)In contrast to [11], now we want to remove di�erence-lists from the program. Intu-6

itively, the idea is to detect that, since we only allow di�erence-lists in the result offunctions, the second argument of the di�erence-list is somehow used to construct the�nal result progressively and, thus, we can change it by an \accumulating parameter".Also, since the calls to qs� are attened using a conditional expression, we needto move the second argument of the di�erence-list to the corresponding call to qs�:qs(x) = y (y � qsacc(x; [])qsacc([]; x) = xqsacc(x:xs; ws) = z (z � qsacc(l; x:w); w � qsacc(r; ws)where (l; r) = split(x; xs)where qs� is renamed as qsacc. Finally, by simplifying the equations in the conditions(i.e., by unifying them), we achieve the desired optimization:qs(x) = qsacc(x; [])qsacc([]; x) = xqsacc(x:xs; ws) = qsacc(l; x:qsacc(r; ws)) where (l; r) = split(x; xs)which gives a similar improvement as the optimized predicate qs� above. Indeed,thanks to the use of accumulating parameters, we avoid the traversal of the list com-puted by qs(l) on each recursive call. In general, this optimization is able to producesuperlinear speedups [11, 12].4.2 The Stepwise Transformation(a) Marking Algorithm:Given a function to be optimized, a marking algorithm is applied in order to deter-mine which expressions need to be replaced by di�erence-lists.1. Input: a program R and a function f whose result type is a list2. Initialization: M0 = ffg, i = 03. Repeat{ for each function in Mi, mark the right-hand sides of the rules de�ning f{ propagate marks among expressions by applying the following rules:append(t1; t2)! append(t1; t2)t1 : t2 ! t1 : t2g(t1; : : : ; tn) ! g(t1; : : : ; tn)where g 2 F is a de�ned function symbol di�erent from append.{ if there is a marked expression t such that t is a variable, then return FAIL;else Mi+1 = fh j h(t1; : : : ; tk) appears in Rguntil Mi =Mi+1(b) Introduction of Di�erence-lists:If the marking algorithm does not return FAIL, then we use the function � to trans-form expressions rooted by a marked symbol into di�erence-lists:�([]) = hy; yi�(t1:t2) = ht1:s; s0i where hs; s0i := �(t2)�(f(tn)) = hy; y0i (hy; y0i � f(tn) 7

where y; y0 are fresh variables not appearing in the program and those occurrencesof append whose arguments have been replaced by di�erence-lists are renamed asappend�. Furthermore, we consider that all marked function symbols f in the result-ing program are replaced by f�. For instance, a rule of the form f(cn) = t1 : t2 : f(sn)is transformed into:f�(cn) = ht1 : t2 : y; y0i (hy; y0i � f�(sn)As illustrated in the example of Sect. 4.1, when the transformation of several termsgives rise to conditional expressions, all the equations are joined into a single condi-tion. The following equation replaces the original de�nition of f:f(xn) = y (hy; []i � f�(xn)Let us remark that the introduction of non-strict equalities does not destroy the cor-rectness of the transformation, since they can be seen as a technical arti�ce in thisstage but will be removed from the program in stage (e).(c) Unfolding of append�:The next step consists in unfolding1 the calls to append� using the following rule:append�(hx; yi ; hy; zi) = hx; zi :Note that this rule is not legal in a functional logic language. It is used during thetransformation but no calls to append� appear in the �nal program.(d) Use of Accumulating Parameters:Then, we move the second argument of di�erence-lists to the corresponding functioncall as indicated by these rules:[f�(tn) = hy; y0i (C]! [facc(tn; y0) = y (C][t (hs; s0i � f�(tn)] ! [t (s � facc(tn; s0)]This corresponds to the idea of converting the second argument of the di�erence-listsin an accumulating parameter of the function in which the result will be computed.(e) Simpli�cation:The �nal step of the transformation simpli�es further the program by unfolding the(non-strict) equations in the conditional expressions (i.e., by unifying them). In thisway, we guarantee that all conditional expressions are removed from the program,since the �rst argument of di�erence-lists is always a free variable.Let us illustrate how our strategy proceeds with two examples. As an example ofcomplete transformation, consider the following contrived example, which we use toillustrate the actions taken by each stage:f([]; y) = y:[]f(x:xs; y) = append(f(xs; y); x:g(xs))g([]) = []g(x:xs) = x:g(xs)1 In particular, we use an unfolding similar to [13], but using (needed) narrowing instead ofSLD-resolution (as de�ned in [2]). 8

If we start the marking algorithm with function f, we get the marked program:f([]; y) = y : []f(x:xs; y) = append(f(xs; y); x : g(xs))g([]) = []g(x:xs) = x : g(xs)After replacing the marked expressions by di�erence-lists:f(x; y) = z (hz; []i � f�(x; y)f�([]; y) = hy:z; zif�(x:xs; y) = append�(hz; z0i ; hx:w; w0i) (hz; z0i � f�(xs; y); hw; w0i � g�(xs)g(x) = y (hy; []i � g�(x)g�([]) = hy; yig�(x:xs) = hx:y; y0i (hy; y0i � g�(xs)By unfolding the call to append�:...f�(x:xs; y) = hz; w0i (hz; x:wi � f�(xs; y); hw; w0i � g�(xs)...By introducing accumulating parameters:f(x; y) = z (z � facc(x; y; [])facc([]; y; z) = y:zfacc(x:xs; y; w0) = z (z � facc(xs; y; x:w); w � gacc(xs; w0)g(x) = y (y � gacc(x; [])gacc([]; y) = ygacc(x:xs; y0) = x:y (y � gacc(xs; y0)Finally, by unfolding the conditions, we get:f(x; y) = facc(x; y; [])facc([]; y; z) = y:zfacc(x:xs; y; w0) = facc(xs; y; x:gacc(xs; w0))g(x) = gacc(x; [])gacc([]; y) = ygacc(x:xs; y0) = x:gacc(xs; y0)Intuitively, the e�ect of the transformation is that, in the resulting program, theoperations over the input list to f are mixed up, while in the original program theywere built independently (and then combined by the function append).As an example of program to which the transformation cannot be applied, considerthe double append program:dapp(x; y; z) = append(append(x; y); z)If we start the marking algorithm with the function dapp, in the �rst iteration we getthe following marked program:dapp(x; y; z) = append(append(x; y); z)Therefore, stage (a) incurs into FAIL since the variables x, y, and z have been marked.9

Note that by allowing stage (b) (as it actually happens in the original di�erence-listtransformation), we would obtain the following de�nition of dapp:dapp(hx; xsi ; hxs; ysi ; hys; zi) = hx; zi :However, stage (c) could not remove the di�erence-lists of the arguments of dapp and,thus, we would produce a non-legal program.Notice that, even if the marking algorithm does not return FAIL, improvement isnot guaranteed (although there is no signi�cant loss of e�ciency in these cases, see thefunction g in the example above). In order to always guarantee runtime improvement,stage (a) is only started with functions whose de�nitions are of the form append(t1; t2);this way we ensure that, if the method is actually applied, at least one call to appendfrom each of them will be removed and, consequently, some gain will be achieved.4.3 CorrectnessThe correctness of the transformation can be derived from the correctness of stages(b) and (d), since the remaining stages do not modify the program |stage (a)| orare instances of the fold/unfold framework of [2] |stages (c) and (e). In the following,we develop a proof sketch for stages (b) and (d) under certain conditions on the formof di�erence-lists (i.e., only lazily regular lists are allowed in the �rst argument ofappend�, see below).To prove the correctness of stage (b), we �rst need to de�ne an adequate semanticsfor conditional expressions in transformed programs. Basically, it can be provided asfollows. Let us consider an initial (marked) programRa and the programRb obtainedfrom applying stage (b) to Ra. Now, we introduce the following function � 0:� 0([]) = []� 0(t1:t2) = t1:� 0(t2)� 0(f(tn)) = y (y � f(tn)which is used to transform the initial program Ra into a modi�ed version R0a withthe same structure than Rb (but without di�erence-lists). It should be clear that eachneeded narrowing derivation in Ra can be mimicked in R0a, since the only di�erenceis that some expressions containing nested function symbols have been attened into(non-strict) equalities. This way, we can de�ne the semantics of conditional expressionsin Rb in terms of the associated needed narrowing steps in the original program Ra(via the equivalence with R0a). Furthermore, when evaluating terms in Rb, we allowthe attening of expressions, as well as the unfolding of equations, in order to preservethe equivalence with the computations in Ra.Once the interpretation of conditional expressions is �xed, we can establish thefollowing equivalence between derivations in Ra and Rb where no call to append oc-curs. Given an operation-rooted term e = f(t1; : : : ; tn) such that f is marked by thealgorithm in stage (a), thene;�� d:[] in Ra i� e0 ;��0 hd:y; yi in Rb (�)where e0 = f�(t1; : : : ; tn), � = �0 [Var(e)], and d represents a (possibly empty) se-quence of elements of the form d1: : : : :dk , k � 0. Note that, by the de�nition of10

the marking algorithm, the terms t1; : : : ; tn cannot contain marked function symbols.This equivalence can be easily stated by induction on the length of the derivations,by considering these three facts: i) no calls to append (resp. append�) are producedin the �rst (resp. the second) derivation; ii) the left-hand sides of the applied rulesare the same in both derivations since they are not changed by stage (b); and iii)the modi�cations in the right-hand sides can be easily proven from the equivalencebetween lists and di�erence-lists and the interpretation of conditional expressions.Therefore, we center the discussion on the correctness of the function append�.In [11], the notion of regular di�erence-list is introduced to ensure the correct-ness of append�; namely, only calls to append� with a regular di�erence-list in the�rst argument are allowed. Essentially, a di�erence-list is regular if it is of the formht1: : : : :tn:y; yi and y does not appear in t1; : : : ; tn, i.e., if it denotes a �nite list (heret1: : : : :tn:[]). This notion of regularity is not appropriate in our context due to lazyevaluation, since we can have calls to append� with a non-regular di�erence-list in the�rst argument, and still preserve correctness if this argument is evaluated to a regulardi�erence-list afterwards. To overcome this restriction (which drastically would reducethe number of programs amenable to be transformed), we introduce a lazy versionof regular list as follows. Given an expression e[d1]p containing a di�erence-list d1 atsome position p, we say that d1 is lazily regular in a derivation e[d1]p ;�� e0 i� �(d1)is regular (i.e., of the form ht1: : : : :tn:y; yi). Now, by using the notion of lazily regularlists, we can state the correctness of append� as follows.2 Let e1; e2 be expressionswith no calls to append and let e01; e02 be the corresponding expressions which resultfrom replacing each call to a marked function f by the corresponding call f�. Then,append(e1; e2);�� d:�(e2) in Rai�append�(hx; xsi ; hy; ysi) (hx; xsi � e01; hy; ysi � e02;��0 hd:y; ysi (hy; ysi � �0(e02) in Rbwhere e1 is lazily regular in the second derivation, � = �0 [Var(fe1; e2g)], and drepresents a (possibly empty) sequence of elements of the form d1: : : : :dk, k � 0.Let us prove the claim by considering both implications:()) Consider the derivation append(e1; e2);�� d:�(e2) in Ra. By de�nition of needednarrowing, it is immediate that e1 ;�� d:[]. By equivalence (�), we have e01 ;��0 hd:z; ziin Rb, where � = �0 [Var(e1)]. Therefore,append�(hx; xsi ; hy; ysi)(hx; xsi � e01; hy; ysi � e02;fxs7!yg hx; ysi (hx; yi � e01; hy; ysi � e02;��0 hx; ysi (hx; yi � hd:z; zi ; hy; ysi � �0(e02);fx7!d:y;z 7!yg hd:y; ysi (hy; ysi � �0(e02)and the claim follows.(() Consider the derivationappend�(hx; xsi ; hy; ysi)(hx; xsi � e01; hy; ysi � e02;��0 hd:y; ysi (hy; ysi � �0(e02)2 Here we do not consider nested occurrences of append, although the proof scheme can beextended to cover this case by using an appropriate induction.11

Since e01 is lazily regular, we have e01 ;�0 hd:z; zi in Rb. Hence, by equivalence (*),e1 ;� d:[] inRa, where � = �0 [Var(e1)]. Although the evaluation of e1 and the calls toappend are interleaved due to the laziness of append, we know that append(e1; e2);��d:�(e2) by de�nition of needed narrowing, which completes the proof.Note that requiring e01 to be lazily regular is not a real restriction in our context,since terminating functions ful�ll this condition by the manner in which we introducedi�erence-lists in the base cases of recursive functions. On the other hand, if we wereonly interested in proving an equivalence w.r.t. head normal forms, we conjecture thatthis restriction could be safely dropped.Now we concentrate on stages (d) and (e). Let Rc be the program obtained fromstage (c) and Re be the output of stage (e). In order to prove the correctness of thisstep, we prove that for each function symbol f in Rc (de�ned in terms of some f�)we have a semantically equivalent function f in Re (de�ned in terms of facc). For thesake of simplicity, let us consider a recursive function of the form:f(xn) = y (hy; []i � f�(xn)f�(an) = hd:y; yif�(bn) = hd0:z; yi (hz; e:yi � f�(sn)in Rc, where d; d0; e represent a (possibly empty) sequence of elements of the formd1: : : : :dk, k � 0. According to the transformation rules in stages (d) and (e), weproduce the following de�nition:f(xn) = facc(xn; [])facc(an; y) = d:yfacc(bn; y) = d0:facc(sn; e:y)in Re. Given a (�nite) list c1:::::ck:[], in order to prove that f(cn) ;�� c1:::::ck:[] inRc i� f(cn) ;�� c1:::::ck:[] in Re, it su�ces to prove that f�(cn) ;�� hc1:::::ck:y; yiin Rc i� facc(cn; []) ;�� c1:::::ck:[] in Re. To prove this claim by induction, we �rstgeneralize it as follows:ht:z; yi (hz; r:yi � f�(cn) ;�� ht0:l:r0:y; yi in Rci� t:facc(cn; r:[]) ;��0 t0:l:r0:[] in Rewhere � = �0 [Var(ff�(cn); t; rg)], the expressions t; r; l represent (possibly empty)sequences of elements of the form t1: : : : :tk, k � 0, and t0; r0 are constructor instancesof t; r (in particular, t0 = �(t); r0 = �(r)). Now we proceed by induction on the lengthof the former derivation. The base case is immediate by applying the �rst rules of f�and facc, respectively. Let us consider the inductive case. By applying the second ruleof f�, we have:ht:z; yi (hz; r:yi � f�(cn) ;� ht0:z; yi (hz; r0:yi � hd0:z0; y0i ; hz0; e:y0i � f�(sn)and, by unfolding the �rst equation in the condition:ht0:d0:z0; yi (hz0; e:r0:yi � f�(sn)On the other hand, by applying the second rule of facc to t:facc(cn; r:[]), we have:t:facc(cn; r:[]) ;�0 t0:d0:facc(sn; e:r0:[])where � = �0 [Var(ff�(cn); t; rg)]. The claim follows by the inductive hypothesis.12

f(xn) = facc(xn; [])f(sn) = [] =) facc(sn; y) = yf(tn) = m1 : append(f(t0n); m2 : [])) facc(tn; y) = m1 : facc(t0n; m2 : y))f(xn) = facc(xn; [])f(sn) = [] =) facc(sn; y) = yf(tn) = m1 : append(f(t0n); m2 : f(t00n)) facc(tn; y) = m1 : facc(t0n; m2 : facc(t00n ; y))f(sn) = []f(tn) = m1 : append(append(f(t0n); m2 : f(t00n)); m3 : [])=) f(xn) = facc(xn; [])facc(sn; y) = yfacc(tn; y) = m1 : facc(t0n; m2 : facc(t00n ; m3 : y))where m1; m2; m3 are (possibly empty) sequences of the form d1 : d2 : : : : : dk, with k � 0.Fig. 2. Matching scheme4.4 E�ectiveness of the TransformationThroughout this section, our aim has been to de�ne an automatic method for achiev-ing the e�ect of the di�erence-list transformation over functional logic programs. Wehave not been concerned with the e�ciency of its implementation. It turns out thatsome of the stages that we have introduced appear to be expensive to implement.Thus, for a �rst attempt of integrating the method into a real compiler, we have de-�ned a matching scheme which is both simple and e�ective. For our transformation,we discovered that, in practice, many doubly recursive functions ensure a gain in ef-�ciency from the transformation (also some single recursive functions, provided theyuse append to concatenate some elements to the result of the recursive call). Thesefunctions are matched by three simple, local transformation rules depicted in Fig. 2and, thus, replaced by equivalent functions without calls to append.As an example, we consider the towers of Hanoi:hanoi(0; a; b; c) = []hanoi(S(n); a; b; c) = append(hanoi(n; a; c; b); (a; b) : hanoi(n; c; b; a))where the �rst argument is of type Nat = 0 j S(Nat); a, b and c represent the threetowers, and (a; b) a movement of a plate from a to b. By considering that m1 isan empty sequence and m2 = (a; b), the second rule of the scheme matches andtransforms the program into the following optimized version without concatenations:hanoi(n; a; b; c) = han(n; a; b; c; [])han(0; a; b; c; y) = yhan(S(n); a; b; c; y) = han(n; a; c; b; (a; b) : han(n; c; b; a; y))where all the concatenations have actually disappeared.5 Experimental EvaluationIn order to evaluate experimentally our transformation, we have incorporated theoptimization based on the matching scheme of Fig. 2 into the PACS compiler for Curry13

[8] as an automatic source-to-source transformation which is transparent to the user.The language Curry is an international initiative to provide a common platform forthe research, teaching and application of integrated functional logic languages [7]. Toimplement the optimization, we have used the standard intermediate representationof Curry programs: FlatCurry [8].3To show the usefulness of our approach, we considered programs which are usedin the literature to illustrate the bene�ts of di�erence-lists in Prolog (adapted to afunctional logic syntax). The complete code of the benchmarks and a detailed de-scription of the implementation can be found in [1]. The following table shows theperformances of original programs (Original) w.r.t. the improved versions (Optimized)by the introduction of accumulating parameters:Benchmarks Original Optimized Speeduprev2000 3470 65 53.38qsort2000 1010 850 1.18pre�order2000 104 17 6.11in�order2000 105 16 6.56post�order2000 132 16 8.25hanoi17 4100 2160 1.89Times are expressed in milliseconds and are the average of 10 executions. Runtimeinput goals were chosen to give a reasonably long overall time. In particular, goalsubindices show the number of elements in the input lists or trees. Column Speedupshows the relative improvements achieved by the transformation, obtained as theratio Original � Optimized, respectively. Results are encouraging, achieving signi�cantspeedups for some of the examples.6 Related WorkThe development of list-processing optimizations has been an active research topicboth in functional and logic programming for the last decades. A related approachto di�erence-lists appeared early in [10], where Hughes introduced an optimized rep-resentation of lists, the so-called abstract lists, which are specially de�ned for a fastconcatenation in functional programming. The idea behind their use is similar to thatof logic di�erence-lists, although they are formulated in a di�erent way. As oppositeto our approach, the objective of [10] is not to provide an automatic algorithm toreplace standard lists by abstract lists, but to introduce an e�cient data structureto be used by the programmer. The idea of optimizing concatenations was taken onestep forward by Wadler in [14], where he described local transformations for removingsome concatenations from a program. The formalization of our stepwise process tointroduce accumulating parameters is, apparently, not related with Wadler's transfor-mation. Nevertheless, we strongly believe that over many examples both approachesproduce a similar e�ect. A formal comparison between them could be useful. For in-stance, we think that our marking algorithm could be used within Wadler's technique3 A prototype implementation, together with some examples and documentation of thesystem is publicly available at: http://www.dsic.upv.es/users/elp/soft.html.14

to identify those functions from which concatenations will be successfully removed.On the other hand, we could bene�t from the simplicity of Wadler's rules in somesteps of our transformation.7 Conclusions and Future WorkWe have presented a novel transformation for improving list-processing functions inthe context of a multi-paradigm functional logic language: an automatic transfor-mation based on the introduction of accumulating parameters. It has been shownpractical and e�ective by testing it within a real functional logic compiler, the PACScompiler for Curry [8].A promising direction for future work is the generalization of our stepwise transfor-mation to arbitrary (algebraic) data types. Another interesting topic is the de�nitionof abstract measures to quantify the performance of functional logic programs, i.e.,measures independent of concrete implementations. We expect that these measuresalso shed some light to �nd new optimizations and to determine their power.References1. E. Albert, C. Ferri, F. Steiner, and G. Vidal. List-Processing Optimizations in a Multi-Paradigm Declarative Language. Technical Report DSIC, UPV, 2000. Available fromURL: http://www.dsic.upv.es/users/elp/papers.html.2. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. A Transformation System for LazyFunctional Logic Programs. In A. Middeldorp and T. Sato, editors, Proc. of FLOPS'99,pages 147{162. Springer LNCS 1722, 1999.3. S. Antoy. De�nitional trees. In Proc. of the 3rd Int'l Conference on Algebraic and LogicProgramming, ALP'92, pages 143{157. Springer LNCS 632, 1992.4. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st ACMSymp. on Princ. of Prog. Languages, Portland, pages 268{279, 1994.5. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics,pages 243{320. Elsevier, Amsterdam, 1990.6. M. Hanus. The Integration of Functions into Logic Programming: From Theory toPractice. Journal of Logic Programming, 19&20:583{628, 1994.7. M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available athttp://www.informatik.uni-kiel.de/~curry, 2000.8. M. Hanus (ed.), S. Antoy, J. Koj, R. Sadre, and F. Steiner. PACS 1.0: User Manual.Technical report, RWTH Aachen, Germany, 1999.9. G. Huet and J.J. L�evy. Computations in orthogonal rewriting systems, Part I + II. InJ.L. Lassez and G.D. Plotkin, editors, Computational Logic { Essays in Honor of AlanRobinson, pages 395{443, 1992.10. J. Hughes. A Novel representation of Lists and its Application to the Function reverse.Technical Report PMG-38, Programming Methodology Group, Department of ComputerScience, Chalmers Institute of Technology, Sweden, 1984.11. K. Marriott and H. S�ndergaard. Di�erence-list Transformation for Prolog. New Gen-eration Computing, 11(2):125{157, October 1993.15

12. L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques. MITPress, 1986.13. H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In Proc. ofSecond Int'l Conf. on Logic Programming, pages 127{139, 1984.14. P.L. Wadler. The Concatenate Vanishes. Technical report, Department of ComputingScience, University of Glasgow, UK, 1987.

16

