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CHIP (Constraint Handling in Prolog) [9, 1] is a constraint logic programming language designed
to tackle real world “constrained search” problems with a short development time and a good
efficiency. Constraint logic programming [16, 17] combines logic, used to specify a set of possi-
bilities explored using a very simple built-in search method, with constraints, used to minimise
the size of the search by eliminating impossible alternatives in advance. Unlike conventional
programming languages where one uses specific algorithms and data structures adapted to the
problem, all the current constraint logic programming languages offer a very restricted set of
basic primitive constraints and control structures for expressing new constraints. However, our

Introducing Global Constraints in CHIP*

Nicolas Beldiceanu Evelyne Contejean
COSYTEC, LRI, CNRS URA 410,
Parc Club Orsay-Université, Université Paris Sud,
4, rue Jean-Rostand, Batiment 490,
91893 ORSAY CEDEX 91405 ORSAY CEDEX
FRANCE FRANCE
Abstract

The purpose of this paper is to show how the introduction of new primitive constraints
(e.g. among, diffn, cycle) over finite domains in the constraint logic programming system
CHIP result in finding very rapidly good solutions for a large class of difficult sequencing,
scheduling, geometrical placement and vehicle routing problems. The among constraint
allows to specify sequencing constraints in a very concise way. For the first time, the diffn
constraint allows to express and to solve directly multidimensional placement problems
where one has to consider non overlapping constraints between n-dimensional objects (e.g.
rectangles, parallelepipeds). The cycle constraint makes possible to specify a wide range of
graph partitioning problems that could not yet be expressed by using current constraint logic
programming languages. One of the main advantage of all these new primitives is to take
into account more globally a set of elementary constraints. Finally, we point out that all the
previous primitive constraints enhance the power of the CHIP system significantly, allowing
to solve real life problems that were not within reach of constraint technology before.

Introduction

practical experience has shown that this can sometimes lead to inefficiencies because:

e in many problems most of the constraints are conditional.
not be stated initially, but they depend of some previous choices that occur during the

e very often there is a large gap between the constraints of the original problem and the

constraints available in the language,

enumeration procedure,

e some constraints of the application express a kind of global conditions which can hardly

be expressed with elementary constraints or control structures of the language,
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This means that they can



e sometimes, basic constraint propagation schemes like arc or path consistency [6] are not
powerful enough to take into consideration the interaction between elementary constraints.
This means that, in terms of deduction and execution time, general propagation techniques
can be very inefficient when compared to specific algorithms that use appropriate data
structures.

In order to partially overcome the previous lack of expression and deductive power of con-
ventional constraint logic programming languages, we use the following processes. Our purpose
1s to identify suitable abstractions that enable, at the same time, a declarative statement of the
problem and an operational behaviour matching the best available pruning techniques. This
paper describes these new abstractions: the among, diffn and cycle global constraints. It points
out that these global constraints are major abstraction common to a large class of sequencing,
scheduling [3], geometrical placement [12, 11] and vehicle routing problems [7].

The paper is structured as follows: in section 2 we give a brief overview of the CHIP system.
In section 3 we present the among constraint and its declarative semantics. In section 4 we show
how to use the among constraint in order to solve the car sequencing problem [10]. In section
5 we present the diffn constraint, its declarative semantics and its extensions. In section 6 we
describe a difficult three-dimensional packing problem given in [5] page 50, where one has to pack
17 parallelepipeds in a cube in such a way that no hole occurs and that none of them overlaps
each other. In section 7 we describe how to use the diffn constraint to solve an assignment and
scheduling problem where a specific constraint related to a pipelining process occurs (see [18],
page 260). In section 8 we present the cyele constraint and its extensions. Finally, in the last
section, we describe a vehicle routing problem for which we use the cumulative [2] and cycle
constraints together.

2 Brief overview of CHIP

CHIP is a constraint logic programminglanguage combining the declarative aspect of Prolog with
the efficiency of constraint solving techniques. It extends conventional Prolog-like logic languages
by introducing three new computation domains: finite domains, booleans and rationals. For each
of them CHIP uses specialised constraint solving techniques: consistency checking techniques for
finite domains, equation solving in Boolean algebra for booleans and a symbolic simplex-like
algorithm for rationals. CHIP has been successfully applied to a large number of industrial
problems especially in the area of planning, manufacturing, logistics, circuit design and finan-
cial planning [8]. Originally designed at ECRC, CHIP is further developed and marketed by
COSYTEC.

Constraint logic programming is based on a combination of Artificial Intelligence, Operations
Research and Mathematical methods. One of the basic extensions of CHIP is the introduction of
finite domains. A constraint in finite domains is a relation between a set of domain variables. A
domain variable is a variable that ranges over a finite set of natural numbers. Among constraints
over finite domains, one can find usual arithmetic constraints, symbolic constraints and higher-
order optimisation predicate that implements a kind of branch and bound search.

In order to tackle more efficiently scheduling and placement problems, a new symbolic con-
straint was recently introduced in CHIP: the cumulative constraint [2]. Because this constraint
will be used in the rest of this paper in conjunction with the diffn and cycle constraint, let us
recall shortly its definition

cumulative([O1,...,0m],[D1,. .., D], [R1,. .., Rn], L),

where [O4,...,0,],[D1,..., D] and [Ry, ..., R;] are non-empty lists of domain variables
that have the same length m, and where L is a natural number. The constraint cumulative holds
if the following condition is true:

Vie N > Ry <L
J105<i<0+ D51



From an interpretation point of view the cumulative constraint matches directly the single
resource scheduling problem, where Oy, ..., O,, correspond to the start of the tasks, Dy,..., D,
to the duration of the tasks, and Rj, ..., R, to the amount of resource used by each task. The
natural number L is the total amount of available resource that must be shared at any instant
by the different tasks. The cumulative constraint states that, at any instant ¢ of the schedule,
the summation of the amount of resource of the tasks that overlap ¢, does not exceed the upper
limit L.

As an introductory example to the CHIP language, we present how a very small scheduling
problem can be expressed in CHIP. We consider seven tasks where each task is characterised by
a duration and an amount of used resource (see Table 1). The aim is to find a schedule that
minimises the general end while not exceeding the capacity 13 of the resource.

task t1 | t2 | t3 | td | th | t6 | t7
duration |16 | 6| 13| 7| 5| 18| 4
resource | 2| 9| 3| 710 1|11

Table 1: Data for the scheduling problem

The following program outlines a CHIP program over finite domains solving the previous
example.

top(LO,End) :- % line 1
L0 = [01,02,03,04,05,06,07], % line 2
LD = [16, 6,13, 7, 5,18, 4], % line 3
IR=1[2, 9, 3, 7,10, 1,11], % line 4
LE = [E1,E2,E3,E4,E5,E6,E7], % line 5
End :: 1..30, % line 86
LO :: 1..30, % line 7
LE :: 1..30, % line 8
01 + 16 #= E1, % line 9
02 + 6 #= E2, % line 10
03 + 13 #= E3, % line 11
04 + 7 #= E4, % line 12
05 + 5 #= Eb, % line 13
06 + 18 #= E6, % line 14
07 + 4 #= E7, % line 15
maximum(End,LE), % line 16
cumulative(LO,LD,LR,13), % line 17
min_max(label(LO),End). % line 18
label([]). % line 19
label([XIY]) :- % line 20
indomain(X), % line 21
label(Y). % line 22

The predicate top/2 (see line 1) corresponds to the main predicate to compute the schedule.
The arguments of top/2 are a list of variables that represents the starting date of each task and
a domain variable that corresponds to the end of the schedule. Lines 2 to b make explicit the
origin, duration, amount of resource and end of the different tasks of the problem. As described
by the domain declarations (see lines 6-8), the domain of the general end ranges from 1 to 30
and the domain of the origin and end of the tasks ranges from 1 to 30. The link between the
origin and the end of a task ¢ (see lines 9-15) is expressed as

O; + Di#= FE;,

where #= 1s the equality constraint symbol over finite domain, where O;, D; and E; are
respectively the origin, the duration and the end of task i. The mazimum constraint (see line 16)



We can see all the intermediate results of respective cost 28, 27 and the optimal solution
[1,17,10,10,5,5,1] of cost 23 (see Figure 1). After this short introduction of the CHIP lan-
guage, we will now present in the next sections the among, diffn and cycle constraints.

3 Among constraint

The among constraint was introduced in CHIP in order to specify the way values can be as-
signed to variables. The among constraint can be seen as an extension of the atleast and atmost
constraints (at least, at most N variables take value V). One of the most interesting feature of
the among constraint is that it allows to express directly a set of “overlapping” atleast, atmost
constraints. This constraint occurs in many time table problems where one atleast, atmost con-
straint has to be verified for each period of n consecutive time units. There exists five different
variants of the among constraint. We now give the declarative semantics of the first variant

among(N, [ X1, ..., X, [C1y .-, Cs], VA, -+, Vinl)s

where N is a domain variable, [Xy, ..., X] is a list of domain variables, [C4,...,C;] and
[Vi,..., V] are lists of natural numbers. The constraint holds if the following conditions are
both true:

(1) Yie[l,m—1]:V; < Vi,
(2) exactly N terms among X, +C, ..., X;+C; take their value in the list of values [V, ..., V]

One of the main advantages of the first variant of the among constraint is the fact that the
first parameter 1s a domain variable. It can be used when it is required to know the exact number
of times that a set of values is taken by a set of variables or when this parameter has to be used



in some other constraints. The second variant of the among constraint is used when it is required
to specify a lower and upper bound for the number of times that a set of values is taken by a set
of variables. More precisely, we give the declarative semantics of the second variant

among([Low, Up|, [X1, ..., X5, [C1, ..., Cs], [V, -, Vinl),

where Low and Up are natural numbers, [X1, ..., X,] is a list of domain variables, [C1, ..., C;]
and [V1, ..., Vin] are lists of natural numbers. The constraint holds if the following conditions
are both true:

(1) Yie[l,m—1]:V; < Vi,

(2) at least Low and at most Up terms among X1 + C, ..., X + C; take their value in the list
of values [V, ..., V]

The last three variants allow to state directly a set of “overlapping” among constraints. From
a semantic point of view, these variants can be expressed directly by using the second variant of
the among constraint. However from an efficiency point of view in terms of memory utilisation
and pruning, these last three variants are much more powerful. We now give the declarative
semantics of the third variant

among([Low, Up, Seq], [X1, ..., X, [C1y- -, Cs], [Vi, .o, Vinl)s

where Low, Up and Seq are natural numbers, [Xi,..., X;] is a list of domain variables,
[Ch,...,C5] and [Vi,..., V] are lists of natural numbers. The constraint holds if the following
conditions are all true:

(1) Yie[l,m—1]:V; < Vi,
(2) 0< Seg<s,
(3) Vie[l,s— Seqg+ 1], let j =i+ Seq— 1.

at least Low terms and at most Up terms among the list of Seq consecutive terms
Xi+ Gy, ..., X; + C; take their value in the list of values [V1,...,V},].

The next variant combines the second and the third variant in order to improve the propa-
gation

among([Low, Up, Seq, Least, Most], [ X1, ..., X;|, [C1, ..., Cs], [V, .-, Vin]),

where Low, Up, Seq, Least, Most are natural numbers, [X1,..., X ] is a list of domain vari-
ables, [C4,...,C5] and [Vi,...,V,,] are lists of natural numbers. The constraint holds if the
following conditions are all true:

(1) Yie[l,m—1]:V; < Vi,
(2) 0 < Seg<s,

(3) Vie[l,s— Seqg+1],let j =i+ Seqg— 1
at least Low terms and at most Up terms among the list of Seq consecutive terms
Xi+ Gy, ..., X; + C; take their value in the list of values [V1,..., V],

(4) at least Least and at most Most terms among Xy + C1, ..., X + C; take their value in the
list of values [V, ..., V]

Finally the last variant allows to state directly a set of “included” among constraints. We
now give the declarative semantics of the last variant

among([Low, Up, Seq, Lowlne, UpIne, Seqlne], [ X1, ..., Xs],[C1, ..., Cs], [V, ..., Vinl),

where Low, Up, Seq, Lowlnc, UplInc and Seqlnc are natural numbers, [X1,..., X,] is a list
of domain variables, [C1,...,C;] and [Vi,...,V,,] are lists of natural numbers. The constraint
holds if the following conditions are all true:



(1) Yie[l,m—1]:V; < Vi,
(2) 0< Seg<s,
(3) 0 < Seqlne, s — Seq = 0[Seqlnd],

(4) Vi€ [l,((s — Seq)/Seqlnc) + 1] : let j = Seq+ (i — 1) % Seglnc
at least Low 4+ (i — 1) x LowInc and at most Up + (i — 1) * Uplnc terms among
X1+ Ch, ..., X; + C; take their value in the list of values [V4,..., V]

In the next section, we show how to combine the different variants of the among constraint
in order to solve the car sequencing problem [10].

4 The car sequencing problem revisited

Problem Purpose

The purpose of this example is to show how to use the among constraint in order to model,
in a very efficient way in terms of the number of variables and constraints, the car sequencing
problem presented in [10].

Problem Statement

The car sequencing problem occurs in assembly line scheduling within car manufacturing. The
problem consists of sequencing a set of cars that require a set of options on an assembly line.
For each possible option, the line has a capacity constraint which dictates how frequently it can
occur on the line. We will consider the example given in [10] with 10 cars and 5 options. Table
2 gives, for each option the capacity of the assembly line, and the fact that a given car uses the
option or not. The capacity of an option corresponds to an integer ratio n/m which tells that at
most n cars among m consecutive cars on the assembly line could take this option.

capacity |car 1 |car 2 |car 3 car4|car b car 6 |car 7 car 8 |car 9 car 10
option 1 1/2 1 0 0 0 0 0 1 1 1 1

option 2 2/3
option 3 1/3
option 4 2/5
option 5 1/5

0 0
1 0
1 1
0 0

_ o O =
_ o O =
OO O =
OO O =

1 1 0 0
0 0 1 1
1 1 0 0
0 0 0 0

Table 2: Data for the car sequencing problem

Problem Solution

We describe how to express the basic constraints of the problem, and how to improve the be-
haviour of the program by adding redundant constraints which allow to detect inconsistency
earlier.

Problem Representation

The cars are clustered in 6 classes {1}, {2}, {3,4}, {5,6}, {7,8}, {9, 10}, each class containing
all the cars requiring the same set of options. For each position of the assembly line we create a
domain variable that corresponds to the class of cars handled at this position. All the previous
variables are grouped in the list of variables LV.



Constraint Statement

We express the fact that for each class we have to produce a fixed number of cars by giving
for each value (i.e. class) the number of times it should occur in the variables (i.e. slot of the
assembly line). This is directly expressed as one among constraint for each class. For example
the constraint among(2,LV,L0, [6]) states that the value 6 (i.e. car of class 6) should occur
exactly 2 times in the list of variables LV. LO corresponds to a list of 0’s of same length as list
LV. We look now how to express the capacity constraints associated to each option. We find out
for each option which classes effectively use this option and how many cars require this option.
For example the first option is required by b cars of class 1, 5 and 6. The capacity constraint “1
car out of 2”7 is directly expressed by among([0,1,2,5,5],LV,L0,[1,5,6]) which enforce the
following conditions:

e at least 0 and at most 1 out of 2 consecutive variables of the list of variables LV take their
value in the set {1,5,6},

e at least 5 and at most 5 of the list of variables LV take their value in the set {1,5,6}.

Finally, it is possible to increase the performance of the program by adding redundant con-
straints derived from the total number of cars that use a given option and from the capacity
constraint associated with this option. More precisely, if we have to sequence N cars, M of
them requiring a given option O for which we have the capacity constraint A/B, then we know
that the slots from 1 to C' must contain at least M — A.((N — C)divB) — (N — C'YymodB) cars
having option O. This redundant constraint is expressed by one among constraint for each class.
We now give the corresponding CHIP program that states all the previous among constraints
associated to the problem.

top(L) :- % line 1
ro=r[0,0,0,0,0,0,0,0,o0, oI, % line 2
LV = [S1,S2,53,54,55,56,57,58,59,510], % line 3
LV :: 1..86, % line 4
among(1,LV,L0, [1]), % line 5
among(1,LV,L0, [2]), % line 6
among(2,LV,L0, [3]), % line 7
among(2,LV,L0, [4]), % line 8
among(2,LV,L0, [6]), % line 9
among(2,LV,L0, [6]), % line 10
among([0,1,2,5,5],LV,L0,[1,5,6]), % line 11
among([0,2,3,6,6],LV,L0,[3,4,6]), % line 12
among([0,1,3,3,3],LV,L0,[1,5 1), % line 13
among([0,2,5,4,4],LV,L0,[1,2,4]), % line 14
among([0,1,5,2,2],LV,L0, [3 D, % line 15
among([1,2,2,1,2,2],LV,L0,[1,5,6]), % line 16
among([2,4,4,2,3,3],LV,L0, [3,4,6]), % line 17
among([1,4,4,1,3,3],LV,L0,[1,5 1), % line 18
among([2,5,5,2,5,5],LV,L0, [1,2,4]), % line 19
among([1,5,5,1,5,5],LV,L0, [3 D, % line 20
labelling(LV). % line 21

Lines 3 to 4 are used to create the slot variables, lines 5 to 10 specify the number of cars to
produce, lines 11 to 15 state the capacity constraint for each option and lines 16 to 20 express
the redundant constraints. Finally line 21 calls an enumeration procedure that tries to assign
values to the list of slot variables. In Figure 2 we give explicitly the correspondence between
the among constraint, used at each line of the previous CHIP program, and elementary among
constraint. Each arrow, ranging from variable S; to variable S; with constants Low, Up, Values,
corresponds to the constraint among([Low, Upl, [S;, ..., S;],[0,...,0], Values). For example the
constraint among([2,4,4,2,3,3],LV,L0,[3,4,6]) used at line 17 corresponds to the conjunc-
tion of the three following elementary among constraints:



Figure 2: Elementary among constraints associated to the car sequencing problem.

Computation results

In order to test the efficiency of this approach we have performed the following experiment. As
in the original paper [10], we assume that the assembly line supports five different options with
capacity constraints 1 out of 2, 2 out of 3, 1 out of 3, 2 out of 5 and 1 out of 5. We ask for an
overall percentage of utilisation of the resource of 90% and test for different number of cars. The

Table 3 gives the time needed for finding a first solution on a SUN/SPARC station IPC (24MB).

Number of cars 100 200
CPU-Time in milli-seconds 590 1100

Table 3: Results for the car sequencing problem

5 Diffn constraint

The diffn constraint was introduced in CHIP in order to handle multidimensional placement
problems [12] that occur in scheduling, cutting or geometrical placement problems. The intuitive
idea is to extend the alldifferent constraint which works on a set of domain variables to a non
overlapping constraint between a set of objects defined in an n-dimensional space. The basic diffn
constraint takes as arguments a list of n-dimensional rectangles that are defined in the following



way. We call an n-dimensional rectangle a tuple of domain variables (Oy,...,0,, L1, ..., Ly); O;
and L; are respectively called the origin and the length of the previous n-dimensional rectangle
in ¢** dimension. Other parameters of the diffn constraint will be introduced later. We now give
the declarative semantics of the basic diffn/1 constraint

dlﬁn([[olla .. 'aOlnaLlla .. 'aLln]a ceey [Omla .. 'aOmnaLmla .. aLmn]])

The constraint diffn/1 holds if we have an empty list or if the following conditions are all
true:

(1) Yie[l,m],Vje[l,n]: O;; is a domain variable or a natural number,

(2) Vie

],
1,m],Vj€[l,n]: L;; is a domain variable or a natural number,
] 1, n] : Lij 3& 0,

[
[
[
[ Lym]j#i, 3k e[l,n]| O > O+ Ljp VO > O + Ly

(4) Vi€ [l,m],Vje

From an interpretation point of view, the last condition corresponds to the fact that for each
pair ¢, j(i # j) of n-dimensional rectangles, there exists at least one dimension k where ¢ is after
j or jis after ¢. In Figure 3, we sketch five different cases of the diffn constraint. The first case
(A) corresponds to a non overlapping constraint among three segments. The second and third
cases (B, C) correspond to a non overlapping constraint between rectangles [21] where (B) is a
special case where the lengths of all the rectangles in the second dimension are equal to 1; it can
be interpreted as a machine assignment problem where each rectangle corresponds to a task that
has to be placed in time and assigned to a specific machine [4]. The forth case (D) corresponds
to a non overlapping constraint between parallelepipeds [19]. The fifth case can be interpreted
as a non overlapping constraint between parallelepipeds that are assigned to the same box [14];
the first dimension corresponds to the number of the box, while the three next dimensions give
the position of a parallelepiped inside the box.

Other constraints occurring in geometrical placement problems concern the “volume” of the
objects that are involved in a diffn constraint. In this paragraph we extend the previous diffn/1
in order to deal with such kinds of constraint. For this purpose we introduce two additional
parameters

dlﬁn([[olla .. 'aOlnaLlla .. 'aLln]a .. 'a[Omla .. 'aOmnaLmla .. 'aLmn]]a
[Miny, ..., Ming], [Mazy, . .., Mazy,]),

where [Miny, ..., Min,,] and [Maz,, ..., Maz,,] are non-empty list of natural numbers which
correspond respectively to the minimum and maximum volume attached to each object. The
constraint diffn/3 holds if the previous conditions hold and if the following condition is also true:

(5) Vie[l,m] : Min; <Ly x ...x Lj < Mag;

These parameters can also be used in conjunction with the among/4 constraint in order to
specify that we have an object for which the orientation is not yet fixed. For example, if we have
to place two parallelepipeds of respective size (5,6,17) and (7,7,10) in such a way that they do
not overlap, we would use the following CHIP program.

top :-
P1 = [0x1,0y1,0z1,Lx1,Lyl,Lz1], % line 1
P2 = [0x2,0y2,0z2,Lx2,Ly2,Lz2], % line 2
P1 :: 0..100, % line 3
P2 :: 0..100, % line 4
among(1,[Lx1,Ly1,Lz1],[0,0,0]1,[ 51), % line &
among(1,[Lx1,Ly1,Lz1],[0,0,01,[ 61), % line 6
among (1, [Lx1,Ly1,Lz1],[0,0,0],[17]1), % line 7
among(2, [Lx2,Ly2,Lz2],[0,0,0]1,[ 71), % line 8
among (1, [Lx2,Ly2,L=z2],[0,0,0],[10]), % line 9
diffn([P1,P2], [510,490], [510,490]). % line 10



diffn(] [1,1], [3,2], [5,3] 1) diffn(] [1,2,1,1], [3,1,2,1], [4,3,3,1] ])

diffn([ [1,2,2,2], [3,1,2,1], [4,2,3,3] ]) diffn([ [1,1,1,1,2,4], [2,1,1,2,2,3], [4,2,1,2.4,1] ])

diffn([ [1,1,1,2,1,1,1,1], [2,1,1,1,1,1,1,1], [2,2,2,1,1,1,1,1] )

Figure 3: Five examples of use of the diffn constraint
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diﬂn([ [1’3’2’2]’ [3’1’2’1]’ [6’1’3’3] ]’ [6’2’9]’ [6’2’9]’[9’5])
Figure 4: Example of utilisation of the end variables

The end parameter can be used for placement problems in order to give explicitly the limits
of the placement space. This is especially useful when the lengths of the objects are not initially
fixed: in this case, considering only the origin and length of an object, would give an over
estimation of these limits. The end parameter can also be used in scheduling problems where
it is required to assign tasks in time and on machines, while minimising the general end of the
schedule or the number of machines used.

The next parameter of the diffn constraint is used in order to state distance constraints
between two given objects

dlﬁn([[olla .. 'aOlnaLlla .. 'aLln]a .. 'a[Omla .. 'aOmnaLmla .. 'aLmn]]a
[Miny, ..., Ming)], [Mazy, ..., Maz,,],
[Endy, ..., End,],
([{11, I21, D1, . . ., 14, 124, Dd]]),

where [[I11, Io1, D1], . . ., [I14, I24, D4]] is a list of distance constraints. The constraint diffn/5
holds if the previous conditions hold and if the list of distance constraints is empty or if the
following additional conditions are true.

(1) Vie[l,d:1<ha<m,

(8) Vie[l,d:1< Ia<m,

(9) Vie[l,d]: D;is a domain variable or a natural number,
(10) Vi€ [1,d]: let @ = I;,b = I5; then we have

D; = Z mazimum(0, Ogq; — Op; — Lpj, Opj — Oaj — Laj)
j=1

11



diffn([ [1,3,2,2], [3,1,2,1], [6,1,3,1] ], [4,2,3], [4,2,3], [9,5], [[1,2,1],[1,3,4],[2,3,1]])
Figure 5: Example of utilisation of the distance constraint

Finally, the last parameter of the diffn constraint i1s used in order to restrict the utilisation
of a region by the objects

dzﬁn([[OH, .. .,Oln,Lll, .. .,Lln], ceey [Omla .. .,Omn,Lml, .. .,Lmn]],
[Min, ..., Miny,], [Maxy, ..., Maz,,],
[Endy, ..., End,],
([{11, 121, D1], ..., 1a, 124, Dd]],
[[R11, .- Riny Si1, - S, T, Un)y o [[Bp1s - o3 Rpny Spts - -+, Sonls T, Upll),

Where [[[Rlla ey Rlna 511, ey Sln]aTla Ul], ceey [[Rpla ey an, Spl; ey Spn]an; Up]] iS a hSt
of region constraints. The constraint diffn/6 holds if the list of region constraints is empty or if
the following additional conditions are all true.

(11) Vie[1,p],Vj€[1,n] : R;; is a natural number,

(12) Vie[l,p],Vji€[1,n]: Sj; is a natural number different from 0,
(13) Vie[l,p] : 1<T; <n,
(14) Vie[l,p] . let E; be the set of integers e such that :

Vi€ [1,n] : Oej + Lej > Rij A Rij —|—Sl'j > Oej
if By is empty then U; = 0
else let soon; = minimumeep, (maximum(R; r,, Oc T,))
let late; = mazimumeeg, (minimum(R; 7, + Siz, — 1,0cr, + Lo, — 1))
then U; = late; — soon; + 1

Each region ¢ is described by it origins R;1, ..., R, and it sizes S;1, . . ., Sin 1n each dimension.
The parameter T; gives the dimension in which we want to get the utilisation U; of the region
1. U; corresponds to the difference between the last and the first use of the region in a given
dimension. The Figure 6 gives an example of utilisation of region constraints.

In the next two sections we will show how to use the diffn constraint in order to solve a
three-dimensional packing problem and an assignment scheduling problem.

6 Solving a three-dimensional packing problem

Problem Purpose

The purpose of this example is to show how to use the diffn constraint in order to solve a three-
dimensional packing problem. This problem also illustrates how the cumulative constraint can
be used to express redundant constraints and how to build a constructive placement enumeration
procedure that takes into account the fact that all placement space has to be completely filled.
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diffn( |

[1,1,2,2], [4,3,2,1], [6,5,3,1]], [4,2,3], [4,2,3], [9,6]
[[1,2,1]],[ [[2,2,5,3],1

41, [12,2,5,31,2,2], [18,1,1,3],1,0]))

Figure 6: Example of utilisation of the region constraint

Problem Statement

The problem was presented by J. H. Conway [5], a mathematician from the university of Cam-
bridge. It consists to find out how to pack 17 parallelepipeds of given sizes into a b x 5 x 5
cube, in such a way that none of them overlaps each other. The fact that the summation of the
volumes of the different parallelepipeds is equal to the volume of the cube makes the problem
quite hard. Table 4 gives the size of the different parallelepipeds of the problem.

P1 P2 P3 P4 P5 P6 P7 P& P9 P10 P11 P12 P13 P14 P15 P16 P17
1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
4 4 4 4 4 4 3 3 3 3 3 3 1 1 1 1 1

Table 4: Size of the parallelepipeds

Problem Representation and Constraint Statement

Let OX;,0Y;,0Z; (i = 1...17) be the coordinate of the origin of parallelepiped ¢ on the #,
y and z-axes, let DX;, DY;, DZ; (i = 1...17) be the size of the parallelepiped ¢ on the z, y
and z-axes, and let SX;, SY;,SZ; (¢ = 1...17) the surfaces of the projection of parallelepiped
¢ on the planes yz, xz and zy. From the packing constraint, we can derive the following three
necessary conditions corresponding to cumulative conditions on the planes yz, zz and zy :

> SX; <25 > SY; <2 > SZ; <25

JlOX;<i<OX;4+DX,;—1 jlOY;<i<OY;4DY;—1 jl0Z;<i<0Z;+DZ;-1

vie[l,5):

We now give the corresponding CHIP program. It creates the origin, duration and comple-
mentary surface variables associated to the parallelepipeds in the different dimensions and sets
up one cumulative constraint for each dimension and one diffn constraint.

top(LP) :-

% COMPLEMENTARY SURFACE
SX = [SXoi,..,SX12,1,1,1,1,1],

% ORIGIN IN THE <> DIMENSIONS
0xX = [0Xxo01,..,0X17],

oy

[oyvoi,..,0v17],
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0z = [0ZO1,..,0Z17], sz = [szoi,..,SZ12,1,1,1,1,1],

0X :: 1..5, [sX01,..,SX06] :: 2..8,
oY :: 1..5, [SX07,..,SX12] :: 4..8,
0Z :: 1..5, [syo1,..,SY06] :: 2..8,

[syo7,..,SY12] :: 4..86,
% DURATION IN THE <> DIMENSIONS [szo1,..,8206] :: 2..8,
DX = [DX0i1,..,DX12,1,1,1,1,1], [sz07,..,8212] :: 4..86,
DY = [DYO1,..,DY12,1,1,1,1,1],

DZ = [Dzo0i,..,DZ12,1,1,1,1,1], % LINK BETWEEN COMPLEMENTARY
[DX01,..,DX06] :: 1..4, % SURFACE AND DURATION
[DX07,..,DX12] : , SX01#DX01= 8,..,SX06*DX06= 8,
[DYO1,..,DY06] , SX07*DX07=12, ..,SX12#DX12=12,
[DYO7,..,DY12] , SYO1#DYO1= 8,..,SY06*DY06= 8,
[DZO1,..,DZ06] , SYO7#DY07=12, ..,SY124#DY12=12,
[DZ07,..,DZ12] , SZ01*DZ01= 8,..,SZ06*DZ06= 8,
SZO7*DZ07=12, ..,SZ12%#DZ12=12,

N =~ NP N
W Wk w

% PARALLELEPIPEDS

P01 = [0X01,0Y01,0Z01,DX01,DY01,DZ01], % CUMULATIVE AND DIFFN CONSTRAINT
..................................... cumulative(0X,DX,SX,25),

P12 = [0X12,0Y12,0Z12,DX12,DY12,DZ12], cumulative(0Y,DY,SY,25),

P13 = [0X13,0Y13,0Z13, 1, 1, 1], cumulative(0Z,DZ,SZ,25),
..................................... diffn(LP,LV,LV,[6,6,6]),

P17 = [0X17,0Y17,0Z17, 1, 1, 11,

LP = [PO1,..,P17], %, ENUMERATION PROCEDURE
Enum = [PO1,..,P17],
% VOLUMES OF THE PARALLELEPIPEDS place_parallelepipeds(Enum,1,[]).

Lw=1_[s, 8, 8, 8, 8, 8,
12,12,12,12,12,12,
1, 1, 1, 1, 11,

Enumeration procedure

Because all the placement space has to be occupied, the idea of the enumeration procedure is to
try to fill systematically the space. Thus, the enumeration procedure is based on the following
idea; at each choice, we compute the deepest valley and select a parallelepiped for which we
fix its z-origin at the bottom of the deepest valley and we fix its z-size. When the level of the
deepest valley increase, we place the parallelepipeds already fixed at the bottom of the previous
deepest valley: this corresponds to a rectangle placement problem (i.e. we have to fix the y and
z coordinates of the parallelepipeds). The enumeration procedure is as follows:

place_parallelepipeds([],PreviousValley,PreviousSelect) :-—
check_if_deepest_valley_change(PreviousValley,999999,PreviousSelect,_).

place_parallelepipeds([P|Rest],PreviousValley,PreviousSelect) :-—
find_deepest_valley([P|Rest] ,NewValley,999999),
check_if_deepest_valley_change(PreviousValley,NewValley,PreviousSelect,NewSelect),
fix_to_bottom_of_deepest_valley([P|Rest],NewValley,Chosen,NewRest),
place_parallelepipeds(NewRest,NewValley, [Chosen|NewSelect]).

find_deepest_valley([],Valley,Valley).
find_deepest_valley([[X|_]|Rest],Result,Valley) :-
domain_info(X,Min,_,_,_,_),

Min < Valley,

|
’

find_valley(Rest,Result,Min).
find_deepest_valley([_|Rest],Result,Valley) :-
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find_valley(Rest,Result,Valley).

check_if_deepest_valley_change(Valley,Valley,Select,Select).
check_if_deepest_valley_change(PreviousValley,NewValley,PreviousSelect,Select) :-
PreviousValley < NewValley,
place_rectangles(PreviousSelect),
remove_previous_valley(PreviousSelect,Select,NewValley).

remove_previous_valley([],[],_).
remove_previous_valley([P|R],[PIS],F) :-

P=I[X,_,_,DX,_,_1,

E is X + DX,

E>F,

',

remove_previous_valley(R,S,F).
remove_previous_valley([_[R],S,F) :-

remove_previous_valley(R,S,F).

fix_to_bottom_of_deepest_valley([[Valley,Y,Z,DX|R] |Rest],Valley,
[Valley,Y,Z,DX|R],Rest) :-—
indomain(DX).
fix_to_bottom_of_deepest_valley([[X|R] |Rest],Valley,Chosen, [[X|R] |NewRest]) :-
X #> Valley,
fix_to_bottom_of_deepest_valley(Rest,Valley,Chosen,NewRest).

The predicate find_deepest_valley computes the level of the deepest valley in the first
dimension; it corresponds to the earliest start in the first dimension of the not yet fixed pa-
rallelepipeds. The predicate check_if_deepest_valley_change checks if the earliest start in
the first dimension changed: if so, it first calls the predicate place_rectangles which fixes all
the parallelepipeds that where fixed at the bottom of the previous valley, and finally calls the
predicate remove_previous_valley that filters out all the parallelepipeds that are above the
current earliest start in the first dimension. The predicate fix_to_bottom_of_deepest_valley
selects a parallelepiped and fixes its origin and size in the first dimension; the origin is fixed at
the earliest start in the first dimension.

Computation result

The program develops 830 nodes in order to find a first solution after 17 seconds on a SUN/SPARC
station TPC (24MB). Figure 7 gives an example of a placement obtained by the previous CHIP
program.

7 Solving an assignment and scheduling problem

Problem Purpose

The purpose of this example is to show how to use the diffn constraint to solve an assignment
and scheduling problem that is situated in the context of a silicon compiler. The compiler takes
a mathematical formula as entry and produces the corresponding integrated circuit in the three
following steps; it first generates an operation graph, then assigns a set of components to the
previous operations, and finally generates a sequencer that controls the circuit. We will focus on
the main part of the compiler which corresponds to a non standard assignment and scheduling
problem where it is required to take into account very specific constraints coming from the
electronic part.
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Figure 7: A solution for the Conway pack problem

Problem Statement

The input of our problem is a directed acyclic graph of elementary operations. Each vertex
of the graph corresponds to an operation, while each edge represents a precedence constraint
between two given operations. Each operation of the graph has to be assigned to a component.
Each component is characterised by its surface, the list of operations it can implement and
their corresponding duration. Assignment constraints correspond to the fact that an operation
can only be associated to a component which can handle this kind of operation. Scheduling
constraints correspond to the fact that two operations that are assigned to the same component
can not overlap in time. Electronic functioning constraints deal with the pipelining of the circuit
and the use of synchronisation points. Because of the introduction of the pipelining [20], each
component can not be used more than the associated latency time of the pipeline. The latency
of a pipeline is a measure of how long it takes a single data to pass through the pipeline.
The latency constraint corresponds to the fact that the difference between the last and the
first use of each component should not exceed the latency time of the circuit. To make the
design of the sequencer of the circuit easier, synchronisation points are set at regular periods.
The corresponding constraint states that operations should not intersect synchronisation points.
Finally, the optimisation criterion i1s a linear term a x L 4+ b x S where variables L and §
correspond respectively to the latency time of the circuit and to the summation of the surface of
the components effectively used for implementing the circuit; a and b are non negative integers
that one can choose in order to favour the speed or the surface of the circuit: using more
components would decrease the latency time but increase the surface of the circuit.

Constraint Statement

In this paragraph, we explain how all the constraints of the problem can be stated in a straight-
forward way. Let n be the number of operations to schedule, let m be the number of available
components for implementing the circuit. To each operation ¢ (¢ = 1,...,n) we associate three
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domain variables corresponding respectively to the start of the operation O;, to the duration of
the operation D; and to the component assigned to the operation Cj.

In order to state the link between the component C; effectively assigned to an operation i
and the duration D; of that operation we use the following element constraint

element(C;, [d1, ..., dw), Dy)

The meaning of this constraint is that the Cf* element of the list [dy,...,d;] is D;. The
integer de (¢ = 1,...,m) corresponds to the duration of operation ¢ when it is implemented by
component c¢. For each vertex between operations ¢ and j of the operation graph we create the
following precedence constraint

0; > 0; + D

In order to state the fact that an operation ¢ can not overlap the synchronisation point of each
cycle, we introduce a domain variable K; which corresponds to the cycle where the operation
occurs. Using this variable K, the synchronisation constraint is directly expressed as

K; x Cycle < Oy
O;+D; < ([\72 + 1) x Cycle

For the scheduling constraint (i.e. two operations that are assigned to the same component
can not overlap in time) we use a diffn constraint in which we put together all the operations to
schedule. The first and second dimension of this constraint corresponds respectively to the time
and to the components.

diffn([[O1, C1, D1, 1], ..., [On, Cy, Dp, 1]])

We express the latency constraint (i.e. the difference between the last and the first utilisation
of a component should not exceed the latency time of the circuit) with the region constraint
parameter associated to the diffn constraint. To each component ¢ (¢ = 1,...,m), we associate
a domain variable U,, which corresponds to the utilisation of the component (i.e. the difference
between the last and the first use of that component), and we create a fixed region of origins 0, ¢
sizes Up, 1 where Up corresponds to an upper bound of the completion time. Thus, we complete
the previous diffn constraint by adding the following list of region constraints

diﬁn([[olaclaDla 1]a sy [OnacnaDna 1]]a

[0, 1, Up, 1], 1, U], .. ., [[0,m, Up, 1], 1, Up]])

In order to link the latency time L of the circuit to the utilisation of the different components
we use the following mazimum constraint

mazimum(L, [Uy, ..., Uny])

Finally, we have to link the total surface S of the circuit with the components effectively
chosen for implementing the circuit. For this purpose we associate a 0-1 domain variable B,
(¢ = 1,...,m) to each component ¢. We link variables B, and U, (¢ = 1,...,m) with the
following mintmum constraint

minimum(Be, [1, Uc])

Using the previous 0-1 variables and the surface surf, of each component ¢, we can now state
the total surface S of the circuit as the following equality constraint

S = surfy x By +...4 surf, x B,

Figure 8 illustrates for a very simple graph of operations (A), the corresponding representation
(B), and the different associated constraints (C).
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Figure 8: Representation for the assignment scheduling problem

Computation result

We test the previous approach on a well-known benchmark of circuit synthesis: the elliptic filter
[18] of order five (see Figure 9). Part (A) gives the graph of operations, where the available
components are adders and multipliers that have a respective execution time of 50 and 70 ns.
With a cycle of 100 and a maximum latency time of 750 we find an optimal solution that minimises
the number of used components. This solution uses only three adders and one multiplier. Each
component is represented by a line where we put all the operations handled by the component

(B).

8 Cycle constraint

The cycle constraint was introduced in CHIP to tackle complex vehicle routing problems [7] that
could not yet be expressed with current constraint logic programming systems. Also, experiments
in solving complex decision making problems have shown the possibility to use together the
cycle and the cumulative constraint in order to solve scheduling problems. The cycle constraint
has a set of parameters. For clarity, we start describing the basic cycle/2 constraint. The
other parameters will be introduced later in the next paragraphs. We now give the declarative
semantics and the interpretation of the basic cyele/2 constraint

eycle(N,[S1, ..., Sm]),

where N is a domain variable, and [Sy, ..., S,,] is a non-empty list of domain variables. The
constraint cyele/2 holds if the following conditions are true:

(1) Vie[l,m]: 1<5;<m
(2) Vie[l,m],Vi#£iec[l,m]: S; # 5

(3) Vie[l,m]:
let C; be the set of integers defined in the following way:
1eCy if j € C; then S; € (5 ;

then the previous scheme defines exactly N distinct sets.
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Figure 10: Representation of a directed graph and two examples of use of the cycle constraint
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In a second interpretation, the cycle/2 constraint can be considered as the number N of
cycles of a permutation < S1,...,5, >!. For example, the constraint cyele(3,[1,3,4,2,6,5])
is verified since the permutation < 1,3,4,2,6,5 > contains three distinct cycles. Following this
interpretation, one can note that, if the domain of the variables S1, ..., .S, range from 1 to m,
then the total number of solutions of eycle(N,[Sy,. .., Sn]) corresponds to the number of way
to arrange m objects into NV cycles. These numbers are called the Stirling number of first kind
(see [15], page 243). Let us show a CHIP program that does the previous counting.

stirling(N,M) :-
setval(nsol,0), % initialise a global variable for counting number of solutions
length(Ls LN, % generate a list of N free variables
Ls :: 1..N, % declare the previous list as a list of domain variables
cycle(M,Ls), % set up the fact that want a permutation that contains M cycles
labelling(Ls) s % generate the search space
incval(nsol,_), % update number of solutions
fail. % fail in order to enforce backtracking for finding next solution
stirling(N,M) :-
getval(nsol,Nsol) s % get number of solutions and print it out
writeln(stirling(N,M,Nsol)).
labell ing( 1. % succeed if no more variables
labelling([SIRs]) :- % if at least one variable S
indomain(s), % then try to assign the different possible value of S
labell ing(Rs) . % and continue with the remaining variables

The query stirling(8,3) prints out stirling(8,3,13132).

From a procedural point of view, even the simplest case, where the first parameter N is equal
to one, corresponds to an NP-hard [13] problem: namely, the existence of a Hamiltonian circuit
in a given directed graph. This is why a partial lookahead procedure is used to reduce the domain
of variables S1, ..., Sn.

Weighted cycle

One of the first constraints that appears when looking at vehicle routing problems concerns the
number or “amount” of nodes that can be put together in the same cycle. In this paragraph we
extend the previous cycle/2 in order to deal with this constraint. For this purpose we introduce
three additional parameters

eycle(N,[S1, ..., Sm], [Wh, ..., Wn], Min, Maz),

where [Wy, ..., W,,] is a non-empty list of domain variables which correspond respectively to
the weight attached to each node, and where Min and Maz are natural numbers. The constraint
cycle/5 holds if the previous conditions hold and if the following additional condition is true:

(4) Vie[l,m]:
let C; be the set of integers defined in the following way:
1€y, if j € C; then S; € (5 ;
let €;,,..., e, be the integers occuring in Cj,
then we have: Min < W, +---+ Welk, < Maz

From an interpretation point of view the cycle/5 constraint can be viewed as the problem
of finding N distinct cycles of a given minimum and maximum weight Min and Maz, where the
weight of a given cycle corresponds to the summation of the weights of the nodes occurring in
the cycle. In Figure 11, we give an example of weighted cycles. For each node (A) we give
the index of the node and its weight. We show a solution (B) where we have three cycles of
respective weight 8, 7149=80 and 9+412=21; all the previous weights belong to the interval [5,

LIf we consider the first interpretation where we deal with directed graphs then it seems more natural to call
the constraint “circuit”; however when we consider permutation then “cycle” is a more appropriate name.
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Figure 11: Example of weighted cycles

Incompatible nodes

In this paragraph we extend the previous cycle/5 constraint in order to express the fact that
some nodes have to be in distinct cycles. For this purpose we introduce one additional parameter

cyele(N, [S1, ..., Sm], [Wh, ..., Wn], Min, Maz,[D., ..., D)),

where [Dq, ..., D,] is a list of natural numbers. The constraint cycle/6 holds if the previous
conditions hold and if the following conditions are both true:

(5) ¥de[l,p]: 1< Dy<m

(6) Vie[l,m]:
let C; be the set of integers defined in the following way:
1eCy if j € C; then S; € (5 ;
then Yk € [D1, ..., D]Vl # k€ [Dr,...,Dp] : CNCr =0

From an interpretation point of view one can partition the nodes into two distinct sets:

e nodes that occur in the list [D,..., D,]; according to the original problem, these nodes
can be seen as a pool of resources, ¢.e. peoples, vehicles, or machines.

e nodes that do not occur in the list [Dy, ..., D,]; these nodes can be seen as tasks that have
to be performed by one of the previous resources.

In Figure 12, we give an example where nodes 1 and 2 are incompatible nodes; each node occurs
in one distinct cyele of weight 4.

The previous interpretation is extremely useful in many practical applications. As we will
see later in the next paragraphs, incompatible nodes are the key point for further extensions
that make it possible to express constraints on specific cycles. This specificity allows to handle
problems where the resources have different characteristics (skills, capacities) that have to be
considered while building each cycle. Following this idea, the next section will introduce the
notion of weight associated to the cyele of an incompatible node.

Weight of a specific cycle

In this paragraph we extend the previous cycle/6 constraint in order to express constraints about
the weight of the cycle associated to a given incompatible node. For this purpose we introduce
one additional parameter

cyele(N, [S1, ..., Sm], W1, ..., Wy], Min, Maz, [D1, ..., D], [L1,..., L)),
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Figure 12: Example of cycles with incompatible nodes

where [L1,...,Lp] is a list of domain variables. The constraint cycle/7 holds if the previous
conditions hold and if the following additional condition is true:

(7) Viell,p]:

let d = Di,

let C'y be the set of integers defined in the following way:
deCy, if j € Cq then S; € Oy ;

Let €4, , ..., €4, be the integers occurring in (g,

then we have: L; = W, +"'+Wedk
1 d

This parameter i1s useful in many practical applications: according to the type of resources
that we are dealing with, it can be used to specify constraints on the minimum and maximum
amount of work of a specific machine, capacity of a specific lorry or number of towns that
should be visited. Let us take a simple example where we wish to generate three cycles that
hold respectively 3, 4 and 2 nodes. Here 1s a simple CHIP program that produces such kind of
configuration.

cycles(LS) :-
W=1>[t,1,1,1,1,1,1,1,11,
Ls = [S1,S2,53,54,55,56,57,58,59],
LS :: 1..9,
cycle(3,LS,LW,1,9,[1,2,3],[3,4,2])
labelling(LS).

The query cycles(L) returns [4,6,9,5,1,7,8,2,3] as a first answer. In the next paragraph we
introduce a new parameter which allows to name specific cycles.

Name associated to a given node

In this paragraph we extend the previous cycle/7 constraint in order to be able to name the cycle
which is associated to a given node. For this purpose we introduce one additional parameter

cyele(N,[S1, ..., Sn], W1 ..., Wn], Min, Maz,[D+, ..., Dp], L1, ..., Lp], [Ma, ..., My)]),

where [My, ..., M;,] is a non empty list of domain variables. The constraint cycle/8 holds if
the previous conditions hold and if the following additional conditions are both true:
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Figure 13: Example of cycles with name variables

This parameter can be used for expressing a wide range of compatibility /incompatibility
constraints such as:

e compatibility constraint between tasks and resource nodes: initially when the cycle cons-
traint is set, the domain value of the name variable M; associated to a given task node ¢ is
set to the resources that can effectively handle this task.

e enforce two tasks nodes to be done by the same resource: this is simply done by unifying
the two names variables associated to the two tasks.

e conditional incompatibility among resources: if a given task is to be performed by a given
resource then other tasks should not be performed by other given resources.

e minimum “skill” of the resources associated to a given set of tasks: let us consider a set
of 3 elementary tasks that have to be done by 3 distinct resources. Suppose each resource
has a known level, namely 1 or 2. We can use the name variables to express the fact that
we want at least 2 resources of level 2 for handling the 3 given tasks.

In the next paragraph we will present the last extension which consists of associating an
origin variable to the task nodes in order to express the fact that they should be done within a
given period.
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Figure 14: Example of cycles with origin variables

In the next paragraph we show an example of use of the cycle constraint for solving a vehicle
tour planning problem.

9 Solving a vehicle tour planning problem

Problem Purpose

The purpose of this example is to show how to use the cycle constraint in order to solve a vehicle
tour planning problem. We also show how to use the cumulative constraint as a redundant
constraint to enhance the propagation.
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Problem Statement

The problem is to plan the tours of a fleet of vehicles in order to deliver specific quantity of
goods to a set of locations. Each vehicle has a maximum capacity and can only go to specific
locations. The goal is to balance all the locations for the different vehicles, while minimising
the total travelling cost associated to the fleet of vehicles. We define the cost of a vehicle to be
the sum of the travel costs between all the locations successively visited by this vehicle. We will
consider an example where we have 20 locations to supply with 3 vehicles of respective capacity
10, 20 and 20; each vehicle should visit between 6 and 7 locations. The tables 5 and 6 give the
travel cost matrix between the different locations and the locations that can not be visited by
specific vehicle.

99 36 12 34 23 99 45 12 65 45 78 02 43 71 08 30 81 38 41 31
56 99 87 98 27 19 34 09 82 34 52 86 32 58 21 45 63 26 89 96
65 34 99 98 78 54 53 21 78 67 53 45 90 21 34 52 67 89 52 39
03 34 05 99 45 13 25 26 82 09 76 65 03 04 01 93 45 34 23 63
92 08 23 56 99 54 23 74 80 40 32 51 48 92 98 71 73 45 69 43
84 56 12 35 89 99 32 16 09 05 83 48 14 16 73 46 89 73 25 94
65 48 73 24 26 54 99 65 93 65 41 14 37 76 90 94 63 58 32 35

83 81 94 67 95 45 34 99 80 81 84 60 57 53 24 53 43 52 67 62 i § 2
65 67 23 47 54 38 98 76 99 34 65 45 80 98 76 37 82 61 13 64 7 9
45 63 25 89 76 54 23 89 37 99 16 89 01 23 56 85 24 59 83 26 41

34 76 12 32 45 86 59 91 42 50 99 34 72 52 12 43 71 06 70 23 12 18 i;
45 64 23 89 07 05 63 25 31 47 63 99 10 19 81 25 72 54 35 45

46 86 82 42 60 25 82 63 34 71 70 80 99 41 45 68 53 27 90 72 20 19

45 73 25 17 09 06 54 31 12 63 75 69 24 99 32 79 42 34 52 76
76 43 21 31 43 26 68 54 30 20 89 21 32 56 99 23 15 26 73 23
43 25 76 90 80 73 41 23 65 79 87 54 32 14 50 99 12 41 69 75
76 44 26 78 92 54 34 11 36 94 26 80 95 78 63 24 99 63 26 87
65 24 53 17 99 76 56 34 37 41 20 74 07 54 23 76 83 99 77 34
87 45 23 53 21 80 98 11 45 76 09 78 54 13 16 68 53 20 99 73
62 14 89 09 02 56 87 43 23 56 43 66 54 19 94 74 24 43 18 99

Table 6: Forbidden locations
Table 5: Travel cost between the different locations assoclated to each vehicle

Problem Solution

The problem is modelled in terms of a graph covering problem. The directed graph is defined
in the following way: for each location and for each vehicle we create a node; for each pair of
nodes (except when both nodes correspond to a vehicle), we create a link. We label the location
nodes from 1 to 20 and the vehicle nodes from 21 to 23. The basic problem is now to find three
distinct circuits in such a way that each node of the graph is visited exactly once. For each node
¢t of the graph, we create three domain variables S;, C;, and A; that correspond respectively to
the successor of node i, to the travel cost between node ¢ and node S; and to the vehicle which
visits node ¢. We express the fact that we want to have three circuits that go through six or
seven locations by using the following cycle constraint

cycle(3, [Sl, ey 523], [1, ceey 1, 0, 0, 0],6,7, [21,22, 23],_, [Al, .. .,Azg])

The third argument of the previous cycle constraint corresponds to the weight of the nodes.
Because we want to constrain the number of location nodes in a given circuit to be between
six and seven, we associate a weight of one to each location node and a weight of zero to each
vehicle node. The sixth argument of the cycle constraint indicates the set of vehicle nodes and
specifies that they should not belong to the same circuit. Finally we use also the name variables
Ay, ..., Asz to specify the compatibility constraint between vehicles and locations. For doing this
we just have to remove from the name variables the values that are forbidden using the following
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inequality constraints
Api#\= 21 Agstt\=22 Aps#\= 23
A04#\: 21 A17#\: 22 Aog#\: 23
Aps#\= 21 As#t\=122 A #\= 23
Ae#t\= 21 Az#\= 23
Aqott\= 21 Aqg#t\= 23

For example, the first column specifies that locations 1, 4, 5, 16 and 20 can not be visited by
vehicle number one. In order to express the maximum capacity constraint of each vehicle we use
another cycle constraint

[S1,...,523],[5,1,3,2,1,6,2,2,1,4,1,1,5,1,2,1,3,1,1,2,0,0,0],0, 100, [21, 22, 23],

eycle(3,
[K1, Ko, K3],[A1, ..., Aag])

The third argument of the previous cycle constraint corresponds to the quantity to bring to
each location, while the seventh argument is a list of domain variables which correspond to the
total quantity conveyed by each vehicle. In order to express that the maximum capacities of the
vehicles are respectively 10, 20 and 20, we declare the domain of the variables K1, K5, K3 from
0 to 10, 0 to 20 and 0 to 20. For each location node i of the graph, we link the successor and
cost variables S; and C; by the following element constraint

element(S;, [Line;|0,0,0],C})

where Line; corresponds to the ¢ line of the travel cost matrix (see Table 5). The meaning of
this constraint is that the Si® element of the list [Line;]0,0,0]is C;. The fact that the last three
values of the second argument are equal to zero means that there is no cost between location
and vehicle nodes. Using the following linear equality constraint, we link the cost variables Cj
to the total travelling cost C' associated to the fleet of vehicles

Ct=C1+Cy+ -+ Cy

We now state two cumulative constraints that correspond respectively to the maximum num-
ber of location that can be visited by a vehicle and to the maximum capacity of each vehicle.
These conditions were already expressed by the two previous cycle constraints. However, these
conditions correspond to bin-packing problems and one can use the cumulative constraint to
improve the propagation.

cumulative([A, ..., Ao, [1, ..., 1], [1, ..., 1],7)
cumulative([Ay, . .., Ago|21],[1, ..., 1|1],[B,. .., 2]10], 20)

in the second cumulative constraint we introduced a fixed task of origin, duration and high
21, 1 and 10. This is done in order to express that the maximum capacity of the first vehicle
is equal to the limit of the cumulative constraint 20 minus the high 10 of the dummy task we
introduced.

Computation result

The program finds a first solution of cost 349 and a solution of cost 237 where the first, second
and third vehicle visits respectively 7, 7 and 6 locations with a load of 9, 20 and 16.

10 Conclusion

In this paper, we have introduced the among, diffn and cycle constraints which have been im-
plemented in CHIP in order to improve the efficiency of constraint logic programming languages
for solving difficult sequencing, scheduling, placement and vehicles routing problems. We have
provided a set of parameters that allow to express directly a wide range of constraints. The main
originality of the among constraint is to allow to express directly a set of “overlapping” constraints
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on sequence of domain variables in a very concise way. The originality of the diffn constraint is to
extend the disequality constraint between domain variables to a disequality constraint between
rectangles or parallelepipeds without introducing any new type of variables as in [11]. This is
specially important when it is required to combine the diffn constraint with the other constraints
of CHIP. Finally the cycle constraint allows to express directly graph covering constraints that
could not easily be expressed with current constraint logic programming languages. One of the
main advantages of these new constraints is to take into account more globally a set of elemen-
tary constraints. This makes it possible to reduce the efficiency gap between highly specialised
algorithms, tailored just for one problem, and constraint logic programming, while preserving the
declarative aspect of constraint logic programming. Another main advantage is the fact that all
these new constraints can be combined to solve complex problems where placement, scheduling
and routing constraints occurs simultaneously.
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