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� sometimes, basic constraint propagation schemes like arc or path consistency [6] are notpowerful enough to take into consideration the interaction between elementary constraints.This means that, in terms of deduction and execution time, general propagation techniquescan be very ine�cient when compared to speci�c algorithms that use appropriate datastructures.In order to partially overcome the previous lack of expression and deductive power of con-ventional constraint logic programming languages, we use the following processes. Our purposeis to identify suitable abstractions that enable, at the same time, a declarative statement of theproblem and an operational behaviour matching the best available pruning techniques. Thispaper describes these new abstractions: the among, di�n and cycle global constraints. It pointsout that these global constraints are major abstraction common to a large class of sequencing,scheduling [3], geometrical placement [12, 11] and vehicle routing problems [7].The paper is structured as follows: in section 2 we give a brief overview of the CHIP system.In section 3 we present the among constraint and its declarative semantics. In section 4 we showhow to use the among constraint in order to solve the car sequencing problem [10]. In section5 we present the di�n constraint, its declarative semantics and its extensions. In section 6 wedescribe a di�cult three-dimensional packing problem given in [5] page 50, where one has to pack17 parallelepipeds in a cube in such a way that no hole occurs and that none of them overlapseach other. In section 7 we describe how to use the di�n constraint to solve an assignment andscheduling problem where a speci�c constraint related to a pipelining process occurs (see [18],page 260). In section 8 we present the cycle constraint and its extensions. Finally, in the lastsection, we describe a vehicle routing problem for which we use the cumulative [2] and cycleconstraints together.2 Brief overview of CHIPCHIP is a constraint logic programming language combining the declarative aspect of Prolog withthe e�ciency of constraint solving techniques. It extends conventional Prolog-like logic languagesby introducing three new computation domains: �nite domains, booleans and rationals. For eachof them CHIP uses specialised constraint solving techniques: consistency checking techniques for�nite domains, equation solving in Boolean algebra for booleans and a symbolic simplex-likealgorithm for rationals. CHIP has been successfully applied to a large number of industrialproblems especially in the area of planning, manufacturing, logistics, circuit design and �nan-cial planning [8]. Originally designed at ECRC, CHIP is further developed and marketed byCOSYTEC.Constraint logic programming is based on a combination of Arti�cial Intelligence, OperationsResearch and Mathematical methods. One of the basic extensions of CHIP is the introduction of�nite domains. A constraint in �nite domains is a relation between a set of domain variables. Adomain variable is a variable that ranges over a �nite set of natural numbers. Among constraintsover �nite domains, one can �nd usual arithmetic constraints, symbolic constraints and higher-order optimisation predicate that implements a kind of branch and bound search.In order to tackle more e�ciently scheduling and placement problems, a new symbolic con-straint was recently introduced in CHIP: the cumulative constraint [2]. Because this constraintwill be used in the rest of this paper in conjunction with the di�n and cycle constraint, let usrecall shortly its de�nitioncumulative([O1; : : : ; Om]; [D1; : : : ; Dm]; [R1; : : : ; Rm]; L);where [O1; : : : ; Om]; [D1; : : : ; Dm] and [R1; : : : ; Rm] are non-empty lists of domain variablesthat have the same length m, and where L is a natural number. The constraint cumulative holdsif the following condition is true:8i 2 IN XjjOj�i�Oj+Dj�1Rj � L2



From an interpretation point of view the cumulative constraint matches directly the singleresource scheduling problem, where O1; : : : ; Om correspond to the start of the tasks, D1; : : : ; Dmto the duration of the tasks, and R1; : : : ; Rm to the amount of resource used by each task. Thenatural number L is the total amount of available resource that must be shared at any instantby the di�erent tasks. The cumulative constraint states that, at any instant i of the schedule,the summation of the amount of resource of the tasks that overlap i, does not exceed the upperlimit L.As an introductory example to the CHIP language, we present how a very small schedulingproblem can be expressed in CHIP. We consider seven tasks where each task is characterised bya duration and an amount of used resource (see Table 1). The aim is to �nd a schedule thatminimises the general end while not exceeding the capacity 13 of the resource.task t1 t2 t3 t4 t5 t6 t7duration 16 6 13 7 5 18 4resource 2 9 3 7 10 1 11Table 1: Data for the scheduling problemThe following program outlines a CHIP program over �nite domains solving the previousexample.top(LO,End) :- % line 1LO = [O1,O2,O3,O4,O5,O6,O7], % line 2LD = [16, 6,13, 7, 5,18, 4], % line 3LR = [ 2, 9, 3, 7,10, 1,11], % line 4LE = [E1,E2,E3,E4,E5,E6,E7], % line 5End :: 1..30, % line 6LO :: 1..30, % line 7LE :: 1..30, % line 8O1 + 16 #= E1, % line 9O2 + 6 #= E2, % line 10O3 + 13 #= E3, % line 11O4 + 7 #= E4, % line 12O5 + 5 #= E5, % line 13O6 + 18 #= E6, % line 14O7 + 4 #= E7, % line 15maximum(End,LE), % line 16cumulative(LO,LD,LR,13), % line 17min_max(label(LO),End). % line 18label([]). % line 19label([X|Y]) :- % line 20indomain(X), % line 21label(Y). % line 22The predicate top/2 (see line 1) corresponds to the main predicate to compute the schedule.The arguments of top/2 are a list of variables that represents the starting date of each task anda domain variable that corresponds to the end of the schedule. Lines 2 to 5 make explicit theorigin, duration, amount of resource and end of the di�erent tasks of the problem. As describedby the domain declarations (see lines 6-8), the domain of the general end ranges from 1 to 30and the domain of the origin and end of the tasks ranges from 1 to 30. The link between theorigin and the end of a task i (see lines 9-15) is expressed asOi +Di#= Ei;where #= is the equality constraint symbol over �nite domain, where Oi; Di and Ei arerespectively the origin, the duration and the end of task i. The maximum constraint (see line 16)3



expresses the fact that the end of the schedule corresponds to the end of the latest �nishing task.The capacity constraint (see line 17) is expressed with a cumulative constraint. Its argumentscorrespond respectively to the origin, the duration, the amount of used resource of the di�erenttasks and to the total capacity of the resource. Finally, the built-in optimisation predicatemin_max/2 (see line 18) minimises the end of the schedule. min_max/2 is a higher-order predicatethat implements a branch and bound search exploiting the non-determinismmechanisms of CHIP.Its �rst argument is a non-deterministic goal over which the search space is de�ned, and its secondargument is a cost function. In this example, the goal is the predicate label/1, while the costfunction is the domain variable End. The predicate label/1 (see lines 19-20) try to �x all theorigins of the tasks using the built-in non-deterministic predicate indomain/1 (see line 21), whichis a generator of values for domain variables. The query top(L,E) prints out the result displayedon the Figure 1.THE SOLUTION IS  
label([1, 1, 7, 7, 19, 1, 24])
ITS COST IS 28
------------------------------------

THE SOLUTION IS  
label([1, 17, 6, 6, 1, 1, 23])
ITS COST IS 27
------------------------------------

THE SOLUTION IS  
label([1, 17, 10, 10, 5, 5, 1])
ITS COST IS 23
------------------------------------

min_max -> proven optimality
L = [1, 17, 10, 10, 5, 5, 1]
E = 23 ?  

Figure 1
Optimal solution corresponding to [1,17,10,10,5,5,1]
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We can see all the intermediate results of respective cost 28, 27 and the optimal solution[1,17,10,10,5,5,1] of cost 23 (see Figure 1). After this short introduction of the CHIP lan-guage, we will now present in the next sections the among, di�n and cycle constraints.3 Among constraintThe among constraint was introduced in CHIP in order to specify the way values can be as-signed to variables. The among constraint can be seen as an extension of the atleast and atmostconstraints (at least, at most N variables take value V ). One of the most interesting feature ofthe among constraint is that it allows to express directly a set of \overlapping" atleast, atmostconstraints. This constraint occurs in many time table problems where one atleast, atmost con-straint has to be veri�ed for each period of n consecutive time units. There exists �ve di�erentvariants of the among constraint. We now give the declarative semantics of the �rst variantamong(N; [X1; : : : ; Xs]; [C1; : : : ; Cs]; [V1; : : : ; Vm]);where N is a domain variable, [X1; : : : ; Xs] is a list of domain variables, [C1; : : : ; Cs] and[V1; : : : ; Vm] are lists of natural numbers. The constraint holds if the following conditions areboth true:(1) 8i 2 [1;m� 1] : Vi < Vi+1,(2) exactly N terms amongX1+C1; : : : ; Xs+Cs take their value in the list of values [V1; : : : ; Vm].One of the main advantages of the �rst variant of the among constraint is the fact that the�rst parameter is a domain variable. It can be used when it is required to know the exact numberof times that a set of values is taken by a set of variables or when this parameter has to be used4



in some other constraints. The second variant of the among constraint is used when it is requiredto specify a lower and upper bound for the number of times that a set of values is taken by a setof variables. More precisely, we give the declarative semantics of the second variantamong([Low;Up]; [X1; : : : ; Xs]; [C1; : : : ; Cs]; [V1; : : : ; Vm]);where Low and Up are natural numbers, [X1; : : : ; Xs] is a list of domain variables, [C1; : : : ; Cs]and [V1; : : : ; Vm] are lists of natural numbers. The constraint holds if the following conditionsare both true:(1) 8i 2 [1;m� 1] : Vi < Vi+1,(2) at least Low and at most Up terms among X1 +C1; : : : ; Xs +Cs take their value in the listof values [V1; : : : ; Vm].The last three variants allow to state directly a set of \overlapping" among constraints. Froma semantic point of view, these variants can be expressed directly by using the second variant ofthe among constraint. However from an e�ciency point of view in terms of memory utilisationand pruning, these last three variants are much more powerful. We now give the declarativesemantics of the third variantamong([Low;Up; Seq]; [X1; : : : ; Xs]; [C1; : : : ; Cs]; [V1; : : : ; Vm]);where Low, Up and Seq are natural numbers, [X1; : : : ; Xs] is a list of domain variables,[C1; : : : ; Cs] and [V1; : : : ; Vm] are lists of natural numbers. The constraint holds if the followingconditions are all true:(1) 8i 2 [1;m� 1] : Vi < Vi+1,(2) 0 < Seq � s,(3) 8i 2 [1; s� Seq + 1], let j = i+ Seq� 1.at least Low terms and at most Up terms among the list of Seq consecutive termsXi + Ci; : : : ; Xj +Cj take their value in the list of values [V1; : : : ; Vm].The next variant combines the second and the third variant in order to improve the propa-gation among([Low;Up; Seq;Least;Most]; [X1; : : : ; Xs]; [C1; : : : ; Cs]; [V1; : : : ; Vm]);where Low, Up, Seq, Least, Most are natural numbers, [X1; : : : ; Xs] is a list of domain vari-ables, [C1; : : : ; Cs] and [V1; : : : ; Vm] are lists of natural numbers. The constraint holds if thefollowing conditions are all true:(1) 8i 2 [1;m� 1] : Vi < Vi+1,(2) 0 < Seq � s,(3) 8i 2 [1; s� Seq + 1], let j = i+ Seq� 1at least Low terms and at most Up terms among the list of Seq consecutive termsXi + Ci; : : : ; Xj +Cj take their value in the list of values [V1; : : : ; Vm],(4) at least Least and at most Most terms among X1 + C1; : : : ; Xs + Cs take their value in thelist of values [V1; : : : ; Vm].Finally the last variant allows to state directly a set of \included" among constraints. Wenow give the declarative semantics of the last variantamong([Low;Up; Seq;LowInc;UpInc; SeqInc]; [X1; : : : ; Xs]; [C1; : : : ; Cs]; [V1; : : : ; Vm]);where Low, Up, Seq, LowInc, UpInc and SeqInc are natural numbers, [X1; : : : ; Xs] is a listof domain variables, [C1; : : : ; Cs] and [V1; : : : ; Vm] are lists of natural numbers. The constraintholds if the following conditions are all true: 5



(1) 8i 2 [1;m� 1] : Vi < Vi+1,(2) 0 < Seq � s,(3) 0 < SeqInc, s � Seq � 0[SeqInc],(4) 8i 2 [1; ((s� Seq)=SeqInc) + 1] : let j = Seq + (i � 1) � SeqIncat least Low + (i � 1) � LowInc and at most Up + (i � 1) � UpInc terms amongX1 + C1; : : : ; Xj + Cj take their value in the list of values [V1; : : : ; Vm].In the next section, we show how to combine the di�erent variants of the among constraintin order to solve the car sequencing problem [10].4 The car sequencing problem revisitedProblem PurposeThe purpose of this example is to show how to use the among constraint in order to model,in a very e�cient way in terms of the number of variables and constraints, the car sequencingproblem presented in [10].Problem StatementThe car sequencing problem occurs in assembly line scheduling within car manufacturing. Theproblem consists of sequencing a set of cars that require a set of options on an assembly line.For each possible option, the line has a capacity constraint which dictates how frequently it canoccur on the line. We will consider the example given in [10] with 10 cars and 5 options. Table2 gives, for each option the capacity of the assembly line, and the fact that a given car uses theoption or not. The capacity of an option corresponds to an integer ratio n=m which tells that atmost n cars among m consecutive cars on the assembly line could take this option.capacity car 1 car 2 car 3 car 4 car 5 car 6 car 7 car 8 car 9 car 10option 1 1/2 1 0 0 0 0 0 1 1 1 1option 2 2/3 0 0 1 1 1 1 0 0 1 1option 3 1/3 1 0 0 0 0 0 1 1 0 0option 4 2/5 1 1 0 0 1 1 0 0 0 0option 5 1/5 0 0 1 1 0 0 0 0 0 0Table 2: Data for the car sequencing problemProblem SolutionWe describe how to express the basic constraints of the problem, and how to improve the be-haviour of the program by adding redundant constraints which allow to detect inconsistencyearlier.Problem RepresentationThe cars are clustered in 6 classes f1g; f2g; f3; 4g; f5; 6g; f7; 8g; f9; 10g; each class containingall the cars requiring the same set of options. For each position of the assembly line we create adomain variable that corresponds to the class of cars handled at this position. All the previousvariables are grouped in the list of variables LV.6



Constraint StatementWe express the fact that for each class we have to produce a �xed number of cars by givingfor each value (i.e. class) the number of times it should occur in the variables (i.e. slot of theassembly line). This is directly expressed as one among constraint for each class. For examplethe constraint among(2,LV,L0,[6]) states that the value 6 (i.e. car of class 6) should occurexactly 2 times in the list of variables LV. LO corresponds to a list of 0's of same length as listLV. We look now how to express the capacity constraints associated to each option. We �nd outfor each option which classes e�ectively use this option and how many cars require this option.For example the �rst option is required by 5 cars of class 1, 5 and 6. The capacity constraint \1car out of 2" is directly expressed by among([0,1,2,5,5],LV,L0,[1,5,6]) which enforce thefollowing conditions:� at least 0 and at most 1 out of 2 consecutive variables of the list of variables LV take theirvalue in the set f1; 5; 6g,� at least 5 and at most 5 of the list of variables LV take their value in the set f1; 5; 6g.Finally, it is possible to increase the performance of the program by adding redundant con-straints derived from the total number of cars that use a given option and from the capacityconstraint associated with this option. More precisely, if we have to sequence N cars, M ofthem requiring a given option O for which we have the capacity constraint A=B, then we knowthat the slots from 1 to C must contain at least M � A:((N � C)divB) � ((N � C)modB) carshaving option O. This redundant constraint is expressed by one among constraint for each class.We now give the corresponding CHIP program that states all the previous among constraintsassociated to the problem.top(L) :- % line 1L0 = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], % line 2LV = [S1,S2,S3,S4,S5,S6,S7,S8,S9,S10], % line 3LV :: 1..6, % line 4among(1,LV,L0,[1]), % line 5among(1,LV,L0,[2]), % line 6among(2,LV,L0,[3]), % line 7among(2,LV,L0,[4]), % line 8among(2,LV,L0,[5]), % line 9among(2,LV,L0,[6]), % line 10among([0,1,2,5,5],LV,L0,[1,5,6]), % line 11among([0,2,3,6,6],LV,L0,[3,4,6]), % line 12among([0,1,3,3,3],LV,L0,[1,5 ]), % line 13among([0,2,5,4,4],LV,L0,[1,2,4]), % line 14among([0,1,5,2,2],LV,L0,[3 ]), % line 15among([1,2,2,1,2,2],LV,L0,[1,5,6]), % line 16among([2,4,4,2,3,3],LV,L0,[3,4,6]), % line 17among([1,4,4,1,3,3],LV,L0,[1,5 ]), % line 18among([2,5,5,2,5,5],LV,L0,[1,2,4]), % line 19among([1,5,5,1,5,5],LV,L0,[3 ]), % line 20labelling(LV). % line 21Lines 3 to 4 are used to create the slot variables, lines 5 to 10 specify the number of cars toproduce, lines 11 to 15 state the capacity constraint for each option and lines 16 to 20 expressthe redundant constraints. Finally line 21 calls an enumeration procedure that tries to assignvalues to the list of slot variables. In Figure 2 we give explicitly the correspondence betweenthe among constraint, used at each line of the previous CHIP program, and elementary amongconstraint. Each arrow, ranging from variable Si to variable Sj with constants Low, Up, V alues,corresponds to the constraint among([Low;Up]; [Si; : : : ; Sj ]; [0; : : : ; 0]; V alues). For example theconstraint among([2,4,4,2,3,3],LV,L0,[3,4,6]) used at line 17 corresponds to the conjunc-tion of the three following elementary among constraints:7



among([2, 4],[S1,..,S4 ],[0,0,0,0],[3,4,6])among([4, 7],[S1,..,S7 ],[0,0,0,0,0,0,0],[3,4,6])among([6,10],[S1,..,S10],[0,0,0,0,0,0,0,0,0,0],[3,4,6]) 1,1,[1]
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Figure 2: Elementary among constraints associated to the car sequencing problem.Computation resultsIn order to test the e�ciency of this approach we have performed the following experiment. Asin the original paper [10], we assume that the assembly line supports �ve di�erent options withcapacity constraints 1 out of 2, 2 out of 3, 1 out of 3, 2 out of 5 and 1 out of 5. We ask for anoverall percentage of utilisation of the resource of 90% and test for di�erent number of cars. TheTable 3 gives the time needed for �nding a �rst solution on a SUN/SPARC station IPC (24MB).Number of cars 100 200CPU-Time in milli-seconds 590 1100Table 3: Results for the car sequencing problem5 Di�n constraintThe di�n constraint was introduced in CHIP in order to handle multidimensional placementproblems [12] that occur in scheduling, cutting or geometrical placement problems. The intuitiveidea is to extend the alldi�erent constraint which works on a set of domain variables to a nonoverlapping constraint between a set of objects de�ned in an n-dimensional space. The basic di�nconstraint takes as arguments a list of n-dimensional rectangles that are de�ned in the following8



way. We call an n-dimensional rectangle a tuple of domain variables (O1; : : : ; On; L1; : : : ; Ln); Oiand Li are respectively called the origin and the length of the previous n-dimensional rectanglein ith dimension. Other parameters of the di�n constraint will be introduced later. We now givethe declarative semantics of the basic di�n/1 constraintdi�n([[O11; : : : ; O1n; L11; : : : ; L1n]; : : : ; [Om1; : : : ; Omn; Lm1; : : : ; Lmn]])The constraint di�n/1 holds if we have an empty list or if the following conditions are alltrue:(1) 8i 2 [1;m]; 8j 2 [1; n] : Oij is a domain variable or a natural number,(2) 8i 2 [1;m]; 8j 2 [1; n] : Lij is a domain variable or a natural number,(3) 8i 2 [1;m]; 8j 2 [1; n] : Lij 6= 0,(4) 8i 2 [1;m]; 8j 2 [1;m] j 6= i, 9k 2 [1; n] j Oik � Ojk + Ljk _Ojk � Oik + LikFrom an interpretation point of view, the last condition corresponds to the fact that for eachpair i; j(i 6= j) of n-dimensional rectangles, there exists at least one dimension k where i is afterj or j is after i. In Figure 3, we sketch �ve di�erent cases of the di�n constraint. The �rst case(A) corresponds to a non overlapping constraint among three segments. The second and thirdcases (B, C) correspond to a non overlapping constraint between rectangles [21] where (B) is aspecial case where the lengths of all the rectangles in the second dimension are equal to 1; it canbe interpreted as a machine assignment problem where each rectangle corresponds to a task thathas to be placed in time and assigned to a speci�c machine [4]. The forth case (D) correspondsto a non overlapping constraint between parallelepipeds [19]. The �fth case can be interpretedas a non overlapping constraint between parallelepipeds that are assigned to the same box [14];the �rst dimension corresponds to the number of the box, while the three next dimensions givethe position of a parallelepiped inside the box.Other constraints occurring in geometrical placement problems concern the \volume" of theobjects that are involved in a di�n constraint. In this paragraph we extend the previous di�n/1in order to deal with such kinds of constraint. For this purpose we introduce two additionalparameters di�n([[O11; : : : ; O1n; L11; : : : ; L1n]; : : : ; [Om1; : : : ; Omn; Lm1; : : : ; Lmn]];[Min1; : : : ;Minm]; [Max1; : : : ;Maxm]);where [Min1; : : : ;Minm] and [Max1; : : : ;Maxm] are non-empty list of natural numbers whichcorrespond respectively to the minimum and maximum volume attached to each object. Theconstraint di�n/3 holds if the previous conditions hold and if the following condition is also true:(5) 8i 2 [1;m] : Mini � Li1 � : : :� Lin � MaxiThese parameters can also be used in conjunction with the among/4 constraint in order tospecify that we have an object for which the orientation is not yet �xed. For example, if we haveto place two parallelepipeds of respective size (5,6,17) and (7,7,10) in such a way that they donot overlap, we would use the following CHIP program.top :-P1 = [Ox1,Oy1,Oz1,Lx1,Ly1,Lz1], % line 1P2 = [Ox2,Oy2,Oz2,Lx2,Ly2,Lz2], % line 2P1 :: 0..100, % line 3P2 :: 0..100, % line 4among(1,[Lx1,Ly1,Lz1],[0,0,0],[ 5]), % line 5among(1,[Lx1,Ly1,Lz1],[0,0,0],[ 6]), % line 6among(1,[Lx1,Ly1,Lz1],[0,0,0],[17]), % line 7among(2,[Lx2,Ly2,Lz2],[0,0,0],[ 7]), % line 8among(1,[Lx2,Ly2,Lz2],[0,0,0],[10]), % line 9diffn([P1,P2],[510,490],[510,490]). % line 109
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di�n([ [1,1], [3,2], [5,3] ]) di�n([ [1,2,1,1], [3,1,2,1], [4,3,3,1] ])
di�n([ [1,2,2,2], [3,1,2,1], [4,2,3,3] ]) di�n([ [1,1,1,1,2,4], [2,1,1,2,2,3], [4,2,1,2,4,1] ])

di�n([ [1,1,1,2,1,1,1,1], [2,1,1,1,1,1,1,1], [2,2,2,1,1,1,1,1] ])Figure 3: Five examples of use of the di�n constraint
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The lines 1 to 4 declare the origin and the length of each parallelepiped. The lines 5 to 7and 8 to 9 specify the length of the parallelepipeds; for example lines 8 and 9 specify that values7 and 10 are respectively taken exactly 2 and 1 times by the length variables [Lx2,Ly2,Lz2]associated to the second parallelepiped. Finally, line 10 states the non overlapping constraintand gives the volume of each parallelepiped.The next parameter of the di�n constraint is used in order to give the limits of the placementspace di�n([[O11; : : : ; O1n; L11; : : : ; L1n]; : : : ; [Om1; : : : ; Omn; Lm1; : : : ; Lmn]];[Min1; : : : ;Minm]; [Max1; : : : ;Maxm];[End1; : : : ; Endn]);where [End1; : : : ; Endn] is a non-empty list of domain variables or natural numbers whichcorresponds to the general end in the di�erent dimensions. The constraint di�n/4 holds if theprevious conditions hold and if the following condition is also true:(6) 8i 2 [1; n] : Endi = maximumk21::m(Oki + Lki)In Figure 4, we give an example of utilisation of this parameter where the limits in the �rstand second dimension are respectively 9 and 5.
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di�n([ [1,3,2,2], [3,1,2,1], [6,1,3,3] ], [6,2,9], [6,2,9],[9,5])Figure 4: Example of utilisation of the end variablesThe end parameter can be used for placement problems in order to give explicitly the limitsof the placement space. This is especially useful when the lengths of the objects are not initially�xed: in this case, considering only the origin and length of an object, would give an overestimation of these limits. The end parameter can also be used in scheduling problems whereit is required to assign tasks in time and on machines, while minimising the general end of theschedule or the number of machines used.The next parameter of the di�n constraint is used in order to state distance constraintsbetween two given objectsdi�n([[O11; : : : ; O1n; L11; : : : ; L1n]; : : : ; [Om1; : : : ; Omn; Lm1; : : : ; Lmn]];[Min1; : : : ;Minm]; [Max1; : : : ;Maxm];[End1; : : : ; Endn];[[I11; I21; D1]; : : : ; [I1d; I2d; Dd]]);where [[I11; I21; D1]; : : : ; [I1d; I2d; Dd]] is a list of distance constraints. The constraint di�n/5holds if the previous conditions hold and if the list of distance constraints is empty or if thefollowing additional conditions are true.(7) 8i 2 [1; d] : 1 � I1d � m,(8) 8i 2 [1; d] : 1 � I2d � m,(9) 8i 2 [1; d] : Di is a domain variable or a natural number,(10) 8i 2 [1; d] : let a = I1i; b = I2i then we haveDi = nXj=1maximum(0; Oaj � Obj � Lbj ; Obj � Oaj � Laj)11



From an interpretation point of view, each distance constraint corresponds to the Manhattandistance between two given objects. The domain variable of a distance constraint can be usedto enforce a minimum or a maximum distance constraint between two objects. In Figure 5, wegive an example of the utilisation of the distance constraint: the last parameter of the di�nconstraint states that the Manhattan distances between rectangles 1 and 2, 1 and 3, 2 and 3 arerespectively 1, 4 and 1.
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➀di�n([ [1,3,2,2], [3,1,2,1], [6,1,3,1] ], [4,2,3], [4,2,3], [9,5], [[1,2,1],[1,3,4],[2,3,1]])Figure 5: Example of utilisation of the distance constraintFinally, the last parameter of the di�n constraint is used in order to restrict the utilisationof a region by the objectsdi�n([[O11; : : : ; O1n; L11; : : : ; L1n]; : : : ; [Om1; : : : ; Omn; Lm1; : : : ; Lmn]];[Min1; : : : ;Minm]; [Max1; : : : ;Maxm];[End1; : : : ; Endn];[[I11; I21; D1]; : : : ; [I1d; I2d; Dd]];[[[R11; : : : ; R1n; S11; : : : ; S1n]; T1; U1]; : : : ; [[Rp1; : : : ; Rpn; Sp1; : : : ; Spn]; Tp; Up]]);where [[[R11; : : : ; R1n; S11; : : : ; S1n]; T1; U1]; : : : ; [[Rp1; : : : ; Rpn; Sp1; : : : ; Spn]; Tp; Up]] is a listof region constraints. The constraint di�n/6 holds if the list of region constraints is empty or ifthe following additional conditions are all true.(11) 8i 2 [1; p]; 8j 2 [1; n] : Rij is a natural number,(12) 8i 2 [1; p]; 8j 2 [1; n] : Sij is a natural number di�erent from 0,(13) 8i 2 [1; p] : 1 � Ti � n,(14) 8i 2 [1; p] : let Ei be the set of integers e such that :8j 2 [1; n] : Oej + Lej > Rij ^ Rij + Sij > Oejif Ei is empty then Ui = 0else let sooni = minimume2Ei (maximum(Ri;Ti ; Oe;Ti))let latei = maximume2Ei (minimum(Ri;Ti + Si;Ti � 1; Oe;Ti + Le;Ti � 1))then Ui = latei � sooni + 1Each region i is described by it origins Ri1; : : : ; Rin and it sizes Si1; : : : ; Sin in each dimension.The parameter Ti gives the dimension in which we want to get the utilisation Ui of the regioni. Ui corresponds to the di�erence between the last and the �rst use of the region in a givendimension. The Figure 6 gives an example of utilisation of region constraints.In the next two sections we will show how to use the di�n constraint in order to solve athree-dimensional packing problem and an assignment scheduling problem.6 Solving a three-dimensional packing problemProblem PurposeThe purpose of this example is to show how to use the di�n constraint in order to solve a three-dimensional packing problem. This problem also illustrates how the cumulative constraint canbe used to express redundant constraints and how to build a constructive placement enumerationprocedure that takes into account the fact that all placement space has to be completely �lled.12
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di�n( [ [1,1,2,2], [4,3,2,1], [6,5,3,1] ], [4,2,3], [4,2,3], [9,6],[[1,2,1]],[ [[2,2,5,3],1,4], [[2,2,5,3],2,2], [[8,1,1,3],1,0]])Figure 6: Example of utilisation of the region constraintProblem StatementThe problem was presented by J. H. Conway [5], a mathematician from the university of Cam-bridge. It consists to �nd out how to pack 17 parallelepipeds of given sizes into a 5 � 5 � 5cube, in such a way that none of them overlaps each other. The fact that the summation of thevolumes of the di�erent parallelepipeds is equal to the volume of the cube makes the problemquite hard. Table 4 gives the size of the di�erent parallelepipeds of the problem.P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P171 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 12 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 14 4 4 4 4 4 3 3 3 3 3 3 1 1 1 1 1Table 4: Size of the parallelepipedsProblem Representation and Constraint StatementLet OXi; OYi; OZi (i = 1 : : :17) be the coordinate of the origin of parallelepiped i on the x,y and z-axes, let DXi; DYi; DZi (i = 1 : : :17) be the size of the parallelepiped i on the x, yand z-axes, and let SXi; SYi; SZi (i = 1 : : :17) the surfaces of the projection of parallelepipedi on the planes yz, xz and xy. From the packing constraint, we can derive the following threenecessary conditions corresponding to cumulative conditions on the planes yz, xz and xy :8i 2 [1; 5] : XjjOXj�i�OXj+DXj�1SXj � 25 XjjOYj�i�OYj+DYj�1SYj � 25 XjjOZj�i�OZj+DZj�1SZj � 25We now give the corresponding CHIP program. It creates the origin, duration and comple-mentary surface variables associated to the parallelepipeds in the di�erent dimensions and setsup one cumulative constraint for each dimension and one di�n constraint.top(LP) :-% ORIGIN IN THE <> DIMENSIONS % COMPLEMENTARY SURFACEOX = [OX01,..,OX17], SX = [SX01,..,SX12,1,1,1,1,1],OY = [OY01,..,OY17], SY = [SY01,..,SY12,1,1,1,1,1],13



OZ = [OZ01,..,OZ17], SZ = [SZ01,..,SZ12,1,1,1,1,1],OX :: 1..5, [SX01,..,SX06] :: 2..8,OY :: 1..5, [SX07,..,SX12] :: 4..6,OZ :: 1..5, [SY01,..,SY06] :: 2..8,[SY07,..,SY12] :: 4..6,% DURATION IN THE <> DIMENSIONS [SZ01,..,SZ06] :: 2..8,DX = [DX01,..,DX12,1,1,1,1,1], [SZ07,..,SZ12] :: 4..6,DY = [DY01,..,DY12,1,1,1,1,1],DZ = [DZ01,..,DZ12,1,1,1,1,1], % LINK BETWEEN COMPLEMENTARY[DX01,..,DX06] :: 1..4, % SURFACE AND DURATION[DX07,..,DX12] :: 2..3, SX01*DX01= 8,..,SX06*DX06= 8,[DY01,..,DY06] :: 1..4, SX07*DX07=12,..,SX12*DX12=12,[DY07,..,DY12] :: 2..3, SY01*DY01= 8,..,SY06*DY06= 8,[DZ01,..,DZ06] :: 1..4, SY07*DY07=12,..,SY12*DY12=12,[DZ07,..,DZ12] :: 2..3, SZ01*DZ01= 8,..,SZ06*DZ06= 8,SZ07*DZ07=12,..,SZ12*DZ12=12,% PARALLELEPIPEDSP01 = [OX01,OY01,OZ01,DX01,DY01,DZ01], % CUMULATIVE AND DIFFN CONSTRAINT..................................... cumulative(OX,DX,SX,25),P12 = [OX12,OY12,OZ12,DX12,DY12,DZ12], cumulative(OY,DY,SY,25),P13 = [OX13,OY13,OZ13, 1, 1, 1], cumulative(OZ,DZ,SZ,25),..................................... diffn(LP,LV,LV,[6,6,6]),P17 = [OX17,OY17,OZ17, 1, 1, 1],LP = [P01,..,P17], % ENUMERATION PROCEDUREEnum = [P01,..,P17],% VOLUMES OF THE PARALLELEPIPEDS place_parallelepipeds(Enum,1,[]).LV = [ 8, 8, 8, 8, 8, 8,12,12,12,12,12,12,1, 1, 1, 1, 1],Enumeration procedureBecause all the placement space has to be occupied, the idea of the enumeration procedure is totry to �ll systematically the space. Thus, the enumeration procedure is based on the followingidea; at each choice, we compute the deepest valley and select a parallelepiped for which we�x its x-origin at the bottom of the deepest valley and we �x its x-size. When the level of thedeepest valley increase, we place the parallelepipeds already �xed at the bottom of the previousdeepest valley: this corresponds to a rectangle placement problem (i.e. we have to �x the y andz coordinates of the parallelepipeds). The enumeration procedure is as follows:place_parallelepipeds([],PreviousValley,PreviousSelect) :-check_if_deepest_valley_change(PreviousValley,999999,PreviousSelect,_).place_parallelepipeds([P|Rest],PreviousValley,PreviousSelect) :-find_deepest_valley([P|Rest],NewValley,999999),check_if_deepest_valley_change(PreviousValley,NewValley,PreviousSelect,NewSelect),fix_to_bottom_of_deepest_valley([P|Rest],NewValley,Chosen,NewRest),place_parallelepipeds(NewRest,NewValley,[Chosen|NewSelect]).find_deepest_valley([],Valley,Valley).find_deepest_valley([[X|_]|Rest],Result,Valley) :-domain_info(X,Min,_,_,_,_),Min < Valley,!,find_valley(Rest,Result,Min).find_deepest_valley([_|Rest],Result,Valley) :-14



find_valley(Rest,Result,Valley).check_if_deepest_valley_change(Valley,Valley,Select,Select).check_if_deepest_valley_change(PreviousValley,NewValley,PreviousSelect,Select) :-PreviousValley < NewValley,place_rectangles(PreviousSelect),remove_previous_valley(PreviousSelect,Select,NewValley).remove_previous_valley([],[],_).remove_previous_valley([P|R],[P|S],F) :-P = [X,_,_,DX,_,_],E is X + DX,E > F,!,remove_previous_valley(R,S,F).remove_previous_valley([_|R],S,F) :-remove_previous_valley(R,S,F).fix_to_bottom_of_deepest_valley([[Valley,Y,Z,DX|R]|Rest],Valley,[Valley,Y,Z,DX|R],Rest) :-indomain(DX).fix_to_bottom_of_deepest_valley([[X|R]|Rest],Valley,Chosen,[[X|R]|NewRest]) :-X #> Valley,fix_to_bottom_of_deepest_valley(Rest,Valley,Chosen,NewRest).The predicate find_deepest_valley computes the level of the deepest valley in the �rstdimension; it corresponds to the earliest start in the �rst dimension of the not yet �xed pa-rallelepipeds. The predicate check_if_deepest_valley_change checks if the earliest start inthe �rst dimension changed: if so, it �rst calls the predicate place_rectangles which �xes allthe parallelepipeds that where �xed at the bottom of the previous valley, and �nally calls thepredicate remove_previous_valley that �lters out all the parallelepipeds that are above thecurrent earliest start in the �rst dimension. The predicate fix_to_bottom_of_deepest_valleyselects a parallelepiped and �xes its origin and size in the �rst dimension; the origin is �xed atthe earliest start in the �rst dimension.Computation resultThe program develops 830 nodes in order to �nd a �rst solution after 17 seconds on a SUN/SPARCstation IPC (24MB). Figure 7 gives an example of a placement obtained by the previous CHIPprogram.7 Solving an assignment and scheduling problemProblem PurposeThe purpose of this example is to show how to use the di�n constraint to solve an assignmentand scheduling problem that is situated in the context of a silicon compiler. The compiler takesa mathematical formula as entry and produces the corresponding integrated circuit in the threefollowing steps; it �rst generates an operation graph, then assigns a set of components to theprevious operations, and �nally generates a sequencer that controls the circuit. We will focus onthe main part of the compiler which corresponds to a non standard assignment and schedulingproblem where it is required to take into account very speci�c constraints coming from theelectronic part. 15



Figure 7: A solution for the Conway pack problemProblem StatementThe input of our problem is a directed acyclic graph of elementary operations. Each vertexof the graph corresponds to an operation, while each edge represents a precedence constraintbetween two given operations. Each operation of the graph has to be assigned to a component.Each component is characterised by its surface, the list of operations it can implement andtheir corresponding duration. Assignment constraints correspond to the fact that an operationcan only be associated to a component which can handle this kind of operation. Schedulingconstraints correspond to the fact that two operations that are assigned to the same componentcan not overlap in time. Electronic functioning constraints deal with the pipelining of the circuitand the use of synchronisation points. Because of the introduction of the pipelining [20], eachcomponent can not be used more than the associated latency time of the pipeline. The latencyof a pipeline is a measure of how long it takes a single data to pass through the pipeline.The latency constraint corresponds to the fact that the di�erence between the last and the�rst use of each component should not exceed the latency time of the circuit. To make thedesign of the sequencer of the circuit easier, synchronisation points are set at regular periods.The corresponding constraint states that operations should not intersect synchronisation points.Finally, the optimisation criterion is a linear term a � L + b � S where variables L and Scorrespond respectively to the latency time of the circuit and to the summation of the surface ofthe components e�ectively used for implementing the circuit; a and b are non negative integersthat one can choose in order to favour the speed or the surface of the circuit: using morecomponents would decrease the latency time but increase the surface of the circuit.Constraint StatementIn this paragraph, we explain how all the constraints of the problem can be stated in a straight-forward way. Let n be the number of operations to schedule, let m be the number of availablecomponents for implementing the circuit. To each operation i (i = 1; : : : ; n) we associate three16



domain variables corresponding respectively to the start of the operation Oi, to the duration ofthe operation Di and to the component assigned to the operation Ci.In order to state the link between the component Ci e�ectively assigned to an operation iand the duration Di of that operation we use the following element constraintelement(Ci; [d1; : : : ; dm]; Di)The meaning of this constraint is that the Cthi element of the list [d1; : : : ; dm] is Di. Theinteger dc (c = 1; : : : ;m) corresponds to the duration of operation i when it is implemented bycomponent c. For each vertex between operations i and j of the operation graph we create thefollowing precedence constraint Oj � Oi +DiIn order to state the fact that an operation i can not overlap the synchronisation point of eachcycle, we introduce a domain variable Ki which corresponds to the cycle where the operationoccurs. Using this variable Ki, the synchronisation constraint is directly expressed asKi � Cycle � OiOi +Di � (Ki + 1)�CycleFor the scheduling constraint (i.e. two operations that are assigned to the same componentcan not overlap in time) we use a di�n constraint in which we put together all the operations toschedule. The �rst and second dimension of this constraint corresponds respectively to the timeand to the components. di�n([[O1; C1; D1; 1]; : : :; [On; Cn; Dn; 1]])We express the latency constraint (i.e. the di�erence between the last and the �rst utilisationof a component should not exceed the latency time of the circuit) with the region constraintparameter associated to the di�n constraint. To each component c (c = 1; : : : ;m), we associatea domain variable Uc, which corresponds to the utilisation of the component (i.e. the di�erencebetween the last and the �rst use of that component), and we create a �xed region of origins 0; csizes Up; 1 where Up corresponds to an upper bound of the completion time. Thus, we completethe previous di�n constraint by adding the following list of region constraintsdi�n([[O1; C1; D1; 1]; : : :; [On; Cn; Dn; 1]];_, _, _, _,[[[0; 1;Up; 1]; 1; U1]; : : : ; [[0;m;Up; 1]; 1; Um]])In order to link the latency time L of the circuit to the utilisation of the di�erent componentswe use the following maximum constraintmaximum(L; [U1; : : : ; Um])Finally, we have to link the total surface S of the circuit with the components e�ectivelychosen for implementing the circuit. For this purpose we associate a 0-1 domain variable Bc(c = 1; : : : ;m) to each component c. We link variables Bc and Uc (c = 1; : : : ;m) with thefollowing minimum constraint minimum(Bc; [1; Uc])Using the previous 0-1 variables and the surface surfc of each component c, we can now statethe total surface S of the circuit as the following equality constraintS = surf1 � B1 + : : :+ surfm � BmFigure 8 illustrates for a very simple graph of operations (A), the corresponding representation(B), and the di�erent associated constraints (C).17
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Figure 8: Representation for the assignment scheduling problemComputation resultWe test the previous approach on a well-known benchmark of circuit synthesis: the elliptic �lter[18] of order �ve (see Figure 9). Part (A) gives the graph of operations, where the availablecomponents are adders and multipliers that have a respective execution time of 50 and 70 ns.With a cycle of 100 and a maximumlatency time of 750 we �nd an optimal solution that minimisesthe number of used components. This solution uses only three adders and one multiplier. Eachcomponent is represented by a line where we put all the operations handled by the component(B).8 Cycle constraintThe cycle constraint was introduced in CHIP to tackle complex vehicle routing problems [7] thatcould not yet be expressed with current constraint logic programming systems. Also, experimentsin solving complex decision making problems have shown the possibility to use together thecycle and the cumulative constraint in order to solve scheduling problems. The cycle constrainthas a set of parameters. For clarity, we start describing the basic cycle/2 constraint. Theother parameters will be introduced later in the next paragraphs. We now give the declarativesemantics and the interpretation of the basic cycle/2 constraintcycle(N; [S1; : : : ; Sm]);where N is a domain variable, and [S1; : : : ; Sm] is a non-empty list of domain variables. Theconstraint cycle/2 holds if the following conditions are true:(1) 8i 2 [1;m] : 1 � Si � m(2) 8i 2 [1;m]; 8j 6= i 2 [1;m] : Si 6= Sj(3) 8 i 2 [1;m] :let Ci be the set of integers de�ned in the following way:i 2 Ci , if j 2 Ci then Sj 2 Ci ;then the previous scheme de�nes exactly N distinct sets.18
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Figure 9: Graph of operations associated to the elliptic �lter of order 5 and corresponding optimalassignmentFrom an interpretation point of view the cycle/2 constraint can be seen as the problem of�nding N distinct circuits in a directed graph in such a way that each node is visited exactlyonce. Initially each domain variable Si corresponds to the possible successors of the ith node ofthe graph. Finally when a solution is found, each domain variable Si is �xed to a value j thatgives the chosen link. The set Ci de�ned in the third condition corresponds to all the nodes thatbelong to the same circuit as node i. In Figure 10, we give an example of a directed graph andtwo possible coverings of the graph. The �rst part (A) represents the description of the initialgraph, where for each node i, we associate a domain variable Si. Possible values of Si correspondto the successors of node i. For example, possible successors of node 1 are nodes 1, 3 and 4.The �rst covering (B) gives an example of solution where we have one circuit that goes exactlyonce through all di�erent nodes. The second covering (C) shows a solution where we have threedistinct circuits.
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In a second interpretation, the cycle/2 constraint can be considered as the number N ofcycles of a permutation < S1; : : : ; Sm >1. For example, the constraint cycle(3; [1; 3; 4; 2; 6; 5])is veri�ed since the permutation < 1; 3; 4; 2; 6;5 > contains three distinct cycles. Following thisinterpretation, one can note that, if the domain of the variables S1; : : : ; Sm range from 1 to m,then the total number of solutions of cycle(N; [S1; : : : ; Sm]) corresponds to the number of wayto arrange m objects into N cycles. These numbers are called the Stirling number of �rst kind(see [15], page 243). Let us show a CHIP program that does the previous counting.stirling(N,M) :-setval(nsol,0), % initialise a global variable for counting number of solutionslength(Ls,N), % generate a list of N free variablesLs :: 1..N, % declare the previous list as a list of domain variablescycle(M,Ls), % set up the fact that want a permutation that contains M cycleslabelling(Ls), % generate the search spaceincval(nsol,_), % update number of solutionsfail. % fail in order to enforce backtracking for �nding next solutionstirling(N,M) :-getval(nsol,Nsol), % get number of solutions and print it outwriteln(stirling(N,M,Nsol)).labelling([]). % succeed if no more variableslabelling([S|Rs]) :- % if at least one variable Sindomain(S), % then try to assign the di�erent possible value of Slabelling(Rs). % and continue with the remaining variablesThe query stirling(8; 3) prints out stirling(8; 3; 13132).From a procedural point of view, even the simplest case, where the �rst parameter N is equalto one, corresponds to an NP-hard [13] problem: namely, the existence of a Hamiltonian circuitin a given directed graph. This is why a partial lookahead procedure is used to reduce the domainof variables S1; : : : ; Sm.Weighted cycleOne of the �rst constraints that appears when looking at vehicle routing problems concerns thenumber or \amount" of nodes that can be put together in the same cycle. In this paragraph weextend the previous cycle/2 in order to deal with this constraint. For this purpose we introducethree additional parameterscycle(N; [S1; : : : ; Sm]; [W1; : : : ;Wm];Min;Max);where [W1; : : : ;Wm] is a non-empty list of domain variables which correspond respectively tothe weight attached to each node, and where Min and Max are natural numbers. The constraintcycle/5 holds if the previous conditions hold and if the following additional condition is true:(4) 8 i 2 [1;m] :let Ci be the set of integers de�ned in the following way:i 2 Ci , if j 2 Ci then Sj 2 Ci ;let ei1 ; : : : ; eiki be the integers occuring in Ci,then we have: Min � Wei1 + � � �+Weiki � MaxFrom an interpretation point of view the cycle/5 constraint can be viewed as the problemof �nding N distinct cycles of a given minimum and maximum weight Min and Max, where theweight of a given cycle corresponds to the summation of the weights of the nodes occurring inthe cycle. In Figure 11, we give an example of weighted cycles. For each node (A) we givethe index of the node and its weight. We show a solution (B) where we have three cycles ofrespective weight 8, 71+9=80 and 9+12=21; all the previous weights belong to the interval [5,1If we consider the �rst interpretation where we deal with directed graphs then it seems more natural to callthe constraint \circuit"; however when we consider permutation then \cycle" is a more appropriate name.20



81]. According to these minimum and maximumweights of a cycle, nodes 3 and 5 could not bein the same cycle, because the sum of their respective weight 83, is greater than the maximumpossible weight 81.
node 
index
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1
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9

cycle(3,[1,3,4,2,6,5],[8,0,71,9,12,9],5,81)

(B)Figure 11: Example of weighted cyclesIncompatible nodesIn this paragraph we extend the previous cycle/5 constraint in order to express the fact thatsome nodes have to be in distinct cycles. For this purpose we introduce one additional parametercycle(N; [S1; : : : ; Sm]; [W1; : : : ;Wm];Min;Max; [D1; : : : ; Dp]);where [D1; : : : ; Dp] is a list of natural numbers. The constraint cycle/6 holds if the previousconditions hold and if the following conditions are both true:(5) 8d 2 [1; p] : 1 � Dd � m(6) 8 i 2 [1;m] :let Ci be the set of integers de�ned in the following way:i 2 Ci , if j 2 Ci then Sj 2 Ci ;then 8k 2 [D1; : : : ; Dp]; 8l 6= k 2 [D1; : : : ; Dp] : Ck \Cl = ;From an interpretation point of view one can partition the nodes into two distinct sets:� nodes that occur in the list [D1; : : : ; Dp]; according to the original problem, these nodescan be seen as a pool of resources, i.e. peoples, vehicles, or machines.� nodes that do not occur in the list [D1; : : : ; Dp]; these nodes can be seen as tasks that haveto be performed by one of the previous resources.In Figure 12, we give an example where nodes 1 and 2 are incompatible nodes; each node occursin one distinct cycle of weight 4.The previous interpretation is extremely useful in many practical applications. As we willsee later in the next paragraphs, incompatible nodes are the key point for further extensionsthat make it possible to express constraints on speci�c cycles. This speci�city allows to handleproblems where the resources have di�erent characteristics (skills, capacities) that have to beconsidered while building each cycle. Following this idea, the next section will introduce thenotion of weight associated to the cycle of an incompatible node.Weight of a speci�c cycleIn this paragraph we extend the previous cycle/6 constraint in order to express constraints aboutthe weight of the cycle associated to a given incompatible node. For this purpose we introduceone additional parametercycle(N; [S1; : : : ; Sm]; [W1; : : : ;Wm];Min;Max; [D1; : : : ; Dp]; [L1; : : : ; Lp]);21
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cycle(2,[3,5,7,1,9,2,8,4,10,6],[0,0,1,1,1,1,1,1,1,1],4,4,[1,2])

means or incompatibles nodes

tasks nodesFigure 12: Example of cycles with incompatible nodeswhere [L1; : : : ; Lp] is a list of domain variables. The constraint cycle/7 holds if the previousconditions hold and if the following additional condition is true:(7) 8 i 2 [1; p] :let d = Di,let Cd be the set of integers de�ned in the following way:d 2 Cd , if j 2 Cd then Sj 2 Cd ;Let ed1 ; : : : ; edkd be the integers occurring in Cd,then we have: Li = Wed1 + � � �+WedkdThis parameter is useful in many practical applications: according to the type of resourcesthat we are dealing with, it can be used to specify constraints on the minimum and maximumamount of work of a speci�c machine, capacity of a speci�c lorry or number of towns thatshould be visited. Let us take a simple example where we wish to generate three cycles thathold respectively 3, 4 and 2 nodes. Here is a simple CHIP program that produces such kind ofcon�guration.cycles(LS) :-LW = [1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ],LS = [S1,S2,S3,S4,S5,S6,S7,S8,S9],LS :: 1..9,cycle(3,LS,LW,1,9,[1,2,3],[3,4,2])labelling(LS).The query cycles(L) returns [4,6,9,5,1,7,8,2,3] as a �rst answer. In the next paragraph weintroduce a new parameter which allows to name speci�c cycles.Name associated to a given nodeIn this paragraph we extend the previous cycle/7 constraint in order to be able to name the cyclewhich is associated to a given node. For this purpose we introduce one additional parametercycle(N; [S1; : : : ; Sm]; [W1; : : : ;Wm];Min;Max; [D1; : : : ; Dp]; [L1; : : : ; Lp]; [M1; : : : ;Mm]);where [M1; : : : ;Mm] is a non empty list of domain variables. The constraint cycle/8 holds ifthe previous conditions hold and if the following additional conditions are both true:22



(8) 8 i 2 [1; p] :let d = Di,let Cd be the set of integers de�ned in the following way:d 2 Cd , if j 2 Cd then Sj 2 Cd ;then 8e 2 Cd : Me = d(9) let Cd be the sets de�ned in the previous condition,let E = f1; 2; : : : ;mg �CD1 [CD2 [ : : :[CDp ,then 8e 2 E : Me = 0Let us callMi, the name of node i. The �rst condition states that the names of the nodes of agiven cycle that contains an incompatible node are bound to this incompatible node. The secondcondition states that the name of the nodes of a cycle that do not contain an incompatible nodeare bound to zero. Figure 13 shows an example of use of the name parameter.
(B)

cycle(3,[2,3,4,5,1,7,8,9,10,6,12,11],[0,9,7,2,4,0,1,1,2,1,1,1],0,25,[1,6],[22,7],[1,1,1,1,1,6,6,6,6,6,0,0])

a node

(A)

node 
index

node 
weigth

node 
name

incompatibles nodes

tasks nodes

12

1 0

11

1 0

1

0 1

2

9 1

3

7 1

4

2 1

5

4 1

6

1 6

7

2 6

8

1 6

9

2 6

10

1 6

Figure 13: Example of cycles with name variablesThis parameter can be used for expressing a wide range of compatibility/incompatibilityconstraints such as:� compatibility constraint between tasks and resource nodes: initially when the cycle cons-traint is set, the domain value of the name variable Mi associated to a given task node i isset to the resources that can e�ectively handle this task.� enforce two tasks nodes to be done by the same resource: this is simply done by unifyingthe two names variables associated to the two tasks.� conditional incompatibility among resources: if a given task is to be performed by a givenresource then other tasks should not be performed by other given resources.� minimum \skill" of the resources associated to a given set of tasks: let us consider a setof 3 elementary tasks that have to be done by 3 distinct resources. Suppose each resourcehas a known level, namely 1 or 2. We can use the name variables to express the fact thatwe want at least 2 resources of level 2 for handling the 3 given tasks.In the next paragraph we will present the last extension which consists of associating anorigin variable to the task nodes in order to express the fact that they should be done within agiven period. 23



Time windowIn this paragraph we extend the previous cycle/8 constraint by introducing the notion of time.For this purpose we introduce one additional parametercycle(N; [S1; : : : ; Sm]; [W1; : : : ;Wm];Min;Max; [D1; : : : ; Dp]; [L1; : : : ; Lp];[M1; : : : ;Mm]; [O1; : : : ; Om]);where [O1; : : : ; Om] is a list of domain variables or the atoms unused. The constraint cycle/9holds if the previous conditions hold and if the following additional condition is true:(10) 8i 2 [1; : : : ;m] :if Si = j and Oi 6= unused and Oj 6= unused then Oi +Wi � OjThis parameter can be interpreted as the origin in time of a task node. Moreover in this casethe weights W1; : : : ;Wm are considered as the durations of the tasks. The related constraintstates that two consecutive nodes of a given cycle are linked by a precedence constraint. Notethat from the previous de�nition it is not possible that all the nodes of a given cycle have a nondummy origin variable (origin 6= unused) and a non zero weight. These associated precedenceconstraints would build a loop which would cause the constraint propagation to fail. Figure 14shows an example of the use of the origin parameter.
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cycle(
[1,1,1,1,1,6,6,6,6,6,0,0],[unused,0,9,16,18,unused,5,10,11,22,40,40])
3,[2,3,4,5,1,7,8,9,10,6,12,11],[0,9,7,2,4,0,1,1,2,1,1,1],0,25,[1,6],[22,7],

Figure 14: Example of cycles with origin variablesIn the next paragraph we show an example of use of the cycle constraint for solving a vehicletour planning problem.9 Solving a vehicle tour planning problemProblem PurposeThe purpose of this example is to show how to use the cycle constraint in order to solve a vehicletour planning problem. We also show how to use the cumulative constraint as a redundantconstraint to enhance the propagation. 24



Problem StatementThe problem is to plan the tours of a 
eet of vehicles in order to deliver speci�c quantity ofgoods to a set of locations. Each vehicle has a maximum capacity and can only go to speci�clocations. The goal is to balance all the locations for the di�erent vehicles, while minimisingthe total travelling cost associated to the 
eet of vehicles. We de�ne the cost of a vehicle to bethe sum of the travel costs between all the locations successively visited by this vehicle. We willconsider an example where we have 20 locations to supply with 3 vehicles of respective capacity10, 20 and 20; each vehicle should visit between 6 and 7 locations. The tables 5 and 6 give thetravel cost matrix between the di�erent locations and the locations that can not be visited byspeci�c vehicle.99 36 12 34 23 99 45 12 65 45 78 02 43 71 08 30 81 38 41 3156 99 87 98 27 19 34 09 82 34 52 86 32 58 21 45 63 26 89 9665 34 99 98 78 54 53 21 78 67 53 45 90 21 34 52 67 89 52 3903 34 05 99 45 13 25 26 82 09 76 65 03 04 01 93 45 34 23 6392 08 23 56 99 54 23 74 80 40 32 51 48 92 98 71 73 45 69 4384 56 12 35 89 99 32 16 09 05 83 48 14 16 73 46 89 73 25 9465 48 73 24 26 54 99 65 93 65 41 14 37 76 90 94 63 58 32 3583 81 94 67 95 45 34 99 80 81 84 60 57 53 24 53 43 52 67 6265 67 23 47 54 38 98 76 99 34 65 45 80 98 76 37 82 61 13 6445 63 25 89 76 54 23 89 37 99 16 89 01 23 56 85 24 59 83 2634 76 12 32 45 86 59 91 42 50 99 34 72 52 12 43 71 06 70 2345 64 23 89 07 05 63 25 31 47 63 99 10 19 81 25 72 54 35 4546 86 82 42 60 25 82 63 34 71 70 80 99 41 45 68 53 27 90 7245 73 25 17 09 06 54 31 12 63 75 69 24 99 32 79 42 34 52 7676 43 21 31 43 26 68 54 30 20 89 21 32 56 99 23 15 26 73 2343 25 76 90 80 73 41 23 65 79 87 54 32 14 50 99 12 41 69 7576 44 26 78 92 54 34 11 36 94 26 80 95 78 63 24 99 63 26 8765 24 53 17 99 76 56 34 37 41 20 74 07 54 23 76 83 99 77 3487 45 23 53 21 80 98 11 45 76 09 78 54 13 16 68 53 20 99 7362 14 89 09 02 56 87 43 23 56 43 66 54 19 94 74 24 43 18 99
1 2 31 3 84 17 95 18 1216 1320 19Table 6: Forbidden locationsTable 5: Travel cost between the di�erent locations associated to each vehicleProblem SolutionThe problem is modelled in terms of a graph covering problem. The directed graph is de�nedin the following way: for each location and for each vehicle we create a node; for each pair ofnodes (except when both nodes correspond to a vehicle), we create a link. We label the locationnodes from 1 to 20 and the vehicle nodes from 21 to 23. The basic problem is now to �nd threedistinct circuits in such a way that each node of the graph is visited exactly once. For each nodei of the graph, we create three domain variables Si, Ci, and Ai that correspond respectively tothe successor of node i, to the travel cost between node i and node Si and to the vehicle whichvisits node i. We express the fact that we want to have three circuits that go through six orseven locations by using the following cycle constraintcycle(3; [S1; : : : ; S23]; [1; : : :; 1; 0; 0; 0];6;7; [21;22; 23];_; [A1; : : : ; A23])The third argument of the previous cycle constraint corresponds to the weight of the nodes.Because we want to constrain the number of location nodes in a given circuit to be betweensix and seven, we associate a weight of one to each location node and a weight of zero to eachvehicle node. The sixth argument of the cycle constraint indicates the set of vehicle nodes andspeci�es that they should not belong to the same circuit. Finally we use also the name variablesA1; : : : ; A23 to specify the compatibility constraint between vehicles and locations. For doing thiswe just have to remove from the name variables the values that are forbidden using the following25



inequality constraints A01#\= 21 A03#\= 22 A08#\= 23A04#\= 21 A17#\= 22 A09#\= 23A05#\= 21 A18#\= 22 A12#\= 23A16#\= 21 A13#\= 23A20#\= 21 A19#\= 23For example, the �rst column speci�es that locations 1, 4, 5, 16 and 20 can not be visited byvehicle number one. In order to express the maximum capacity constraint of each vehicle we useanother cycle constraintcycle(3; [S1; : : : ; S23]; [5; 1; 3;2;1;6; 2; 2;1;4;1; 1; 5;1;2;1; 3; 1;1;2;0; 0; 0]; 0; 100; [21;22;23];[K1;K2;K3]; [A1; : : : ; A23])The third argument of the previous cycle constraint corresponds to the quantity to bring toeach location, while the seventh argument is a list of domain variables which correspond to thetotal quantity conveyed by each vehicle. In order to express that the maximum capacities of thevehicles are respectively 10, 20 and 20, we declare the domain of the variables K1, K2, K3 from0 to 10, 0 to 20 and 0 to 20. For each location node i of the graph, we link the successor andcost variables Si and Ci by the following element constraintelement(Si; [Lineij0; 0; 0];Ci)where Linei corresponds to the ith line of the travel cost matrix (see Table 5). The meaning ofthis constraint is that the Sthi element of the list [Lineij0; 0; 0] is Ci. The fact that the last threevalues of the second argument are equal to zero means that there is no cost between locationand vehicle nodes. Using the following linear equality constraint, we link the cost variables Cito the total travelling cost C associated to the 
eet of vehiclesC#= C1 +C2 + � � �+C20We now state two cumulative constraints that correspond respectively to the maximumnum-ber of location that can be visited by a vehicle and to the maximum capacity of each vehicle.These conditions were already expressed by the two previous cycle constraints. However, theseconditions correspond to bin-packing problems and one can use the cumulative constraint toimprove the propagation.cumulative([A1; : : : ; A20]; [1; : : :; 1]; [1; : : :; 1]; 7)cumulative([A1; : : : ; A20j21]; [1; : : :; 1j1]; [5; : : : ; 2j10]; 20)in the second cumulative constraint we introduced a �xed task of origin, duration and high21, 1 and 10. This is done in order to express that the maximum capacity of the �rst vehicleis equal to the limit of the cumulative constraint 20 minus the high 10 of the dummy task weintroduced.Computation resultThe program �nds a �rst solution of cost 349 and a solution of cost 237 where the �rst, secondand third vehicle visits respectively 7, 7 and 6 locations with a load of 9, 20 and 16.10 ConclusionIn this paper, we have introduced the among, di�n and cycle constraints which have been im-plemented in CHIP in order to improve the e�ciency of constraint logic programming languagesfor solving di�cult sequencing, scheduling, placement and vehicles routing problems. We haveprovided a set of parameters that allow to express directly a wide range of constraints. The mainoriginality of the among constraint is to allow to express directly a set of \overlapping" constraints26
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