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Abstract. Every Newton step in an interior-point method for optimization requires a solution of a symmetric
indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task.
The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems
and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Two types of
preconditioners which use some form of incomplete Cholesky factorization for indefinite systems are proposed in
this paper. Although they involve significantly sparser factorizations than those used in direct approaches they still
capture most of the numerical properties of the preconditioned system. The spectral analysis of the preconditioned
matrix is performed: for convex optimization problems all the eigenvalues of this matrix are strictly positive.
Numerical results are given for a set of public domain large linearly constrained convex quadratic programming
problems with sizes reaching tens of thousands of variables. The analysis of these results reveals that the solution
times for such problems on a modern PC are measured in minutes when direct methods are used and drop to
seconds when iterative methods with appropriate preconditioners are used.
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1. Introduction

Every iteration of the interior point method for linear, quadratic or nonlinear programming
requires the solution of a possibly large and almost always sparse linear system

I MR ®
A o' ILay] Lot

In this system, ®; € R"*" and ®, € R™*™ are diagonal scaling matrices with strictly

positive elements. Depending on the problem type one or both matrices ®; and ®, may be

present in this system. For linear and quadratic programs with equality constraints ®, =o.

For nonlinear programs with inequality constraints (and variables without sign restriction)
@1_1 = 0. The matrices ®; and ®, are well-known to display undesirable properties: as the
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optimal solution of the problem is approached some elements of ® tend to zero while others
tend to infinity. For ease of the presentation we assume that we deal with convex programs
hence the Hessian Q € R™" is a symmetric positive definite matrix. A € R™*" is the
matrix of linear constraints (or the linearization of nonlinear constraints); we assume it has
a full rank. The reader interested in interior point methods may consult [30] for an excellent
explanation of their theoretical background and [2] for a discussion of implementation
issues.

Most of interior point solvers use direct methods and factorize the matrix of (1) into
LDLT form with a unit lower triangular L and an easily invertible D. Since the matrix of (1)
is indefinite, D should allow 2 x 2 pivots [3, 10]. An alternative is to transform the system
to a quasidefinite one [28]. Quasidefinite matrix has the form [_AG *}T ], where G and F are
symmetric positive definite matrices and A has full rank. As shown in [28], quasidefinite
matrices are strongly factorizable, i.e., a Cholesky-like factorization LDL” with a diagonal
D exists for any symmetric row and column permutation of the quasidefinite matrix. The
diagonal matrix D has n negative and m positive pivots.

Following the method of [ 1] implemented in the HOPDM interior point code we transform
the indefinite matrix involved in (1) to a quasidefinite matrix by the use of primal and dual
regularization method. Consequently, we deal with the matrix

—0-071 AT —-R, O
0 IR S I
A 0, 0 Ry

where diagonal positive definite matrices R, € R"*" and R; € R™*™ can be interpreted
as adding proximal terms to the primal and dual objective functions, respectively. In the
method of [1] the entries of the regularizing matrices are chosen dynamically: the negligibly
small terms are used for all acceptable pivots and the stronger regularization terms are used
whenever a dangerously small pivot candidate appears. The use of dynamic regularization
introduces little perturbation to the original system because the regularization concentrates
uniquely on potentially unstable pivots.

Although direct approach offers a number of advantages such as an easy control of
accuracy, it is in some cases prohibitively expensive. This happens, for example, whenever
Cholesky-like factor L gets significantly denser than the matrix in (1). In this paper we
concentrate on these cases and propose an alternative approach that consists in the use of
preconditioned iterative method. For the linear programming case with equality constraints
the system (1) is often reduced to normal equations. This produces the symmetric positive
definite matrix for which a number of preconditioners have been developed, see for example
[4, 29] and the references therein. Following Fletcher [12] we apply an iterative method to
the indefinite augmented system. We are aware of the associated breakdown risk at least for
some of the iterative methods. However, by dealing with the augmented system we expect
to gain more freedom in the design of the sparsity exploiting preconditioner.

The presence of diagonal matrices @fl and O, Uin the system (1) makes it very ill-
conditioned and hence difficult for an iterative approach. The elements of matrices ®; and
®, display a drastic difference of magnitude: some of them tend to zero while others go to
infinity. The iterative approach has no chance to converge unless carefully preconditioned.
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To be successful the preconditioner should:

e capture most of the numerical properties of (1); and
e be computable at a far lower cost than that of the factorization of (1).

To meet these requirements we propose to keep the matrices @1_1 and ©5 "in the precon-
ditioner but we simplify the system (1) by dropping out all off-diagonal elements in the
matrix Q. Namely, instead of the augmented system

_Q _ @71 AT
H = [ | _1} @)
A 0,
we will use
E AT
P=l4 o) 3)

where E = —diag(Q) — ®1_1. By dropping all off-diagonal elements from Q we open
the possibility of reducing the system with the matrix (3) further to the form of normal
equations —AETAT 4+ @;1. In some cases, such as for example when m < n, this is a
viable alternative.

Matrix P of (3) belongs to a wide class of block-preconditioners that have been studied
in numerous applications in the context of partial differential equations, see for example
[15,24] and the references therein, and in the context of optimization [11, 14, 19,21, 22]. We
perform the spectral analysis of P~! H and conclude, as in [19], that for convex optimization
problems all the eigenvalues of this matrix are strictly positive. This feature offers much
promise for computations. Then we show that the presence of primal and dual regularizations
in the matrix Hg and in its preconditioner Pr improves the spectral properties of the
preconditioned matrix Py i

We have implemented a number of most widely used iterative approaches for indefi-
nite system including BiICGSTAB [27], GMRES [26] and a simplified variant of QMR
[13], together with the classical Conjugate Gradient. We have tested the performance of
two variations of the preconditioner (3) one using its indefinite Cholesky-like factorization
and another reducing it to the normal equations and using the Cholesky factorization of
—AET'AT + 05 !, The computational experience has confirmed that the iterative methods
preconditioned with (3) behave well for a class of (convex) quadratic programming prob-
lems. In a moderate number of iterations that usually varies between 10 and 20, the iterative
methods provide sufficient accuracy in the solution of linear systems to guarantee the prac-
tical convergence to the optimal solution of the problem. In some cases when matrix Q has
a considerable number of off-diagonal entries our preconditioned iterative solver runs two
orders of magnitude faster than the direct approach.

The paper is organized as follows. In Section 2 we briefly recall the linear algebra issues
in the implementation of interior point methods for convex optimization. In Section 3 we
recall some basic properties of iterative methods used to solve systems of linear equations. In
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Section 4 we introduce the indefinite preconditioner and perform the spectral analysis of the
preconditioned matrix. We also discuss the influence of the use of primal-dual regularization
method on the properties of the preconditioner. Further we consider two variants of the
preconditioner and give arguments that they are both useful in some situations. In Section 5
we discuss the computational experience of the use of preconditioned iterative solvers to
solve a number of large convex quadratic programming problems. In Section 6 we give the
conclusions and discuss possible further developments of our approach.

2. Linear algebra in interior point methods

Interior point methods for linear, quadratic and nonlinear optimization differ obviously in
many details but they rely on the same linear algebra kernel. We discuss briefly two cases
of quadratic and nonlinear programming.

2.1. Quadratic programming

Consider the convex quadratic programming problem

1

min  c’x + ExTQx
s.t. Ax =0b,
x>0,

where Q € R™" is positive semidefinite matrix, A € R™*" is the full rank matrix of linear
constraints and vectors x, ¢ and b have appropriate dimensions. The usual transformation
in interior point methods consists in replacing inequality constraints with the logarithmic
barriers to get

1 n
: T T
min ¢ x—i—zx Qx—y,jgzl Inx;

s.t. Ax =0b,

where © > 0 is a barrier parameter. The Lagrangian associated with this problem has the
form:

1 n
Lx,y,p)=c'x+ =x"Qx — yT(Ax —b) — /LZ Inx;
2 =

and the conditions for a stationary point write

ViLx,y,p)=c— ATy —uX'le4+0x=0
VyL(x,y,u) = Ax —b =0,
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where X! = diag{xl_l, xz_l, el xn’l}. Having denoted

s = /LX_le, ie. XSe = e,

where S = diag{s;, s2,...,s,Jande =(1,1, ..., D7, the first order optimality conditions
(for the barrier problem) are:

Ax = b,

ATy +s— 0x =c,
XSe = e “4)

(x,5) > 0.

Interior point algorithm for quadratic programming [30] applies Newton method to solve this
system of nonlinear equations and gradually reduces the barrier parameter p to guarantee
the convergence to the optimal solution of the original problem. The Newton direction is
obtained by solving the system of linear equations:

A 0 0 Ax &
-0 AT I Ay | =156 |, &)
S 0 X As &,
where
&, =b— Ax,
EdZC—ATy_S+Qxa
&, = pe — XSe.

By elimination of
As =X '(g, — SAx) = —X"'SAx + X '¢,,

from the second equation we get the symmetric indefinite augmented system of linear
equations

B R
A 0 |lay] £, '

where ©; = XS~ is a diagonal scaling matrix. By eliminating Ax from the first equation
we can reduce (6) further to the form of normal equations

(A(Q+ 07" AT) Ay = bop.
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2.2.  Nonlinear programming

Consider the convex nonlinear optimization problem

min  f(x)
s.t.  gx) <0,

where x € R",and f : R" — R and g : R" — R™ are convex, twice differentiable.

Having replaced inequality constraints with an equality g(x) 4+ z = 0, where z € R™ is a
nonnegative slack variable, we can formulate the associated barrier problem

min  f(x)—u Zln Zi
i=1
st. gx)4+z=0.

and write the Lagrangian for it
Lix,y, 2, W)= f)+y (@) +2)—p ) Inz.
i=1

The conditions for a stationary point write

ViL(x,y,2,1) = Vf(x) + Vgx)'y =0
VyL(x,y,z, 1) = g(x) +2=0
V.L(x,y,z,p) =y —pnZ 'e=0,

where Z~! = diag{zfl, 25 1, R z;l}. The first order optimality conditions (for the barrier
problem) have thus the following form

V )+ Vgx)y =0,

gx)+z=0,
YZe = e @)
(y.2) =20,
where Y = diag{y;, y2, ..., yn}. Interior point algorithm for nonlinear programming [30]

applies Newton method to solve this system of equations and gradually reduces the barrier
parameter u to guarantee the convergence to the optimal solution of the original problem.
The Newton direction is obtained by solving the system of linear equations:

0(x,y) A" 0 Ax —Vfx)—Ax)"y
A(x) 0 I Ay | = —glx)—z , 8)
0 Z Y Az ue —YZe,
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where

A(x) = Vg(x) e R™"

Ox,y) = sz(x) + Zyivzg[(x) c R

i=1
Using the third equation we eliminate
Az=puY 'e—Ze—ZY Ay,

from the second equation and get
[—Q(x,y) A(x)TM Ax }_ [Vf(x)+A(x)Ty} o
Ax)  zy 'l -Ay] | —gx)—puYle |

The matrix involved in this set of linear equations is symmetric and indefinite. For convex
optimization problem (when f and g are convex), the matrix Q is positive semidefinite and
if f is strictly convex, Q is positive definite and the matrix in (9) is quasidefinite. Similarly
to the case of quadratic programming by eliminating Ax from the first equation we can
reduce this system further to the form of normal equations

(A Q. ) A" + ZY ") Ay = buzp.

The two systems (6) and (9) have many similarities. The main difference is that in (6) only
the diagonal scaling matrix ®; changes from iteration to iteration, while in the case of
nonlinear programming not only the matrix ®, = Z~'Y but also the matrices Q(x, y) and
A(x) in (9) change in every iteration. Both these systems are indefinite. However, to avoid
the need of using 2 x 2 pivots in their factorization we transform them to quasidefinite ones
by the use of primal and dual regularization [1].

Our analysis in the following sections is concerned with the quadratic optimization
problems, and hence A and Q are constant matrices. However, the major conclusions can
be generalized to the nonlinear optimization case.

3. Iterative methods

Direct methods used to compute the Newton direction from the system like (5) or (8) are
supposed to produce accurate solutions. In the case of quadratic programming, for example,
one would compute (Ax, Ay, As) from (5) and then verify that the residuals:

rp &y A 0 0 Ax
ra |=|& |—-|—-Q A" 1 Ay |, (10)
Ty &, S 0 X As
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are small compared with the right-hand-side of (5). Of course, due to the presence of nu-
merical errors and possible ill-conditioning of the linear system involved in these equations,
the accuracy may occasionally by lost. However, such situations are rare and can usually
be cured for example by the use of iterative refinement method. It is common to ask for the
error (the infinity norm of the residuals) to be below the threshold of € = 1073 [16].

Interior point methods work with a particular perturbation of the optimality conditions in
the optimization problems. The perturbation originates from the use of logarithmic barrier
functions to handle inequality constraints. Let us write the system (5), where we set © = 0,
as:

G(x,y,s)

F(x’y’s)z[ XSe

} =0, (x,5)>0. (11)

The interior point algorithm can be viewed as an inexact Newton method [9] applied to
system (11). A more general perturbation could be used and the same framework of inexact
interior point method would apply in which the linear equation system (11) is solved only
to an approximate solution [5, 6]. Iterative methods are well suited to such a framework.
They gradually reduce the error in (10) and they are usually asked for a significantly less
accurate solutions than that delivered by the direct approach.

Using the Newton method, the interior point algorithm for (11) requires to solve at every
iteration a linear system of the form

VF)(Av) = —F(vg) + oy e, 12)

wherev = (x, y,s) € RHM e = (kask)/n, or€(0,and g =(0,...,0,1,... DT €
R*'+™ An interior point method in which the linearized system is solved approximately
(by means of an iterative method) may be considered as an inexact (or truncated) interior
point method [6, 7]. In this framework, the system (12) becomes

VFp) (kg1 — vp) = —F(v) + oxueo + 1, (13)

where ry is the residual of the iterative method applied to the linear system. This resid-
ual satisfies ||r¢|| < ni e, where n; is, for every k, the forcing term of the inexact Newton
method [9]. Global convergence of such a scheme may be achieved by means of
backtracking.

We have implemented several iterative approaches for indefinite system including
BiCGSTAB [12, 27], GMRES [26] and a simplified variant of QMR, QMRs [13], which
is particularly suited for symmetric indefinite systems. The reader interested in more
detail in the iterative methods for solving nonlinear equations is referred to Kelley
[20].

We have also added the classical Conjugate Gradient (PCG). The conjugate gradient
method is not guaranteed to converge when applied to an indefinite matrix. However, the
particular choice of the preconditioner, which will be presented in the next section, makes
the preconditioned matrix very similar to a positive definite one with all eigenvalues strictly
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positive. In spite of the indefiniteness of the preconditioned system, it is shown in [25]
that CG can be efficiently applied to this problem and its asymptotic rate of convergence
is approximately the same as that obtained for a positive definite matrix with the same
eigenvalues as the original system. In [17] a variant of the PCG is proposed based on the
projection of the augmented system onto a basis Z which spans the null space of A.

4. Preconditioners

In this section we shall discuss the properties of the preconditioned matrices involved in (1).
For ease of the presentation we shall focus on the quadratic programming case with linear
equality constraints hence we will assume that ®; "= 0 (we also drop the subscript in ©,).
In Section 4.2 we shall show how our results can be extended to the nonlinear programming
case.

Due to the presence of matrix ®~!, the augmented system

_ _ m-! T
H:[ QAO f:)}. (14)

is very ill-conditioned. Indeed, some elements of ® tend to zero while others tend to infinity
as the optimal solution of the problem is approached. The performance of any iterative
method critically depends on the quality of the preconditioner in this case.

We apply the iterative method to the indefinite augmented system and hence define the
preconditioner also for this system. We use a block-type preconditioner. Such precondition-
ers are widely used in linear systems obtained from a discretization of partial differential
equations [15, 24]. The preconditioners for the augmented system have also been used in
the context of linear programming [14, 23] and in the context of nonlinear programming
[11, 19, 21, 22, 25]. As was shown in [23], the preconditioners for indefinite augmented
system offer more freedom than those for the normal equations. Moreover, the factorization
of the augmented system is sometimes much easier than that of the normal equations [2]
(this is the case, for example, when A contains dense columns). Hence even in the case
of linear programming (in which normal equations is a viable approach) augmented sys-
tem offers important advantages. For quadratic and nonlinear programming the use of the
augmented system is a must and so we deal with the augmented system preconditioners in
this paper. On the other hand, we realize that for some specially structured problems such
as multicommodity network flows, very efficient preconditioners for the normal equations
[8, 18] can also be designed.

The preconditioner needs to involve matrix ®~! to capture the key numerical properties
of (14). However, we need to make it significantly less expensive than the direct factorization
of this matrix so we drop out all off-diagonal elements in the matrix Q. Thus, instead of
the augmented system (14) we use

E AT
P:[A ) ] (15)



158 BERGAMASCHI, GONDZIO AND ZILLI

Table 1. Values of m, n, nonzeros in A, off-diagonal nonzeros in Q and in the triangular factors L: for augmented
matrix nz(L), for preconditioner 1 nz(L)-AS, and for preconditioner 2 nz(L)-NE.

Problem m n nz(A) nz(Q) nz(L) nz(L)-AS nz(L)-NE
qp500-1 1100 500 56750 89071 181999 181999 604375
qp500-2 1000 500 51788 89071 177037 177037 499438
qp500-3 100 500 5614 89071 128837 10058 4944
qp1000-1 700 1000 15753 68762 491059 248824 231199
CVXQP1 7500 15000 22497 44981 6619618 104659 123450
CVXQP2 3750 15000 11249 44981 5225664 15665 5140
cvxqgpl-l 5000 10000 14998 29984 3725045 71833 89241
cvxqp2-1 2500 10000 7499 29984 2754141 10579 3379
cvxqp3-1 7500 10000 22497 29984 4291057 149488 271780
sqp2500_1 2000 2500 52321 738051 3124093 2029613 1909672
sqp2500_2 2000 2500 52319 14345 3504910 2055283 1909275
sqp2500-3 4500 2500 115073 738051 3219994 3186754 9874267
q25fv47 820 1571 11127 59053 111760 51816 31102
gpilotnov 975 2172 13129 391 55741 54757 47015

where E = —diag(Q) — ®~!. By dropping all off-diagonal elements from Q we expect
an important gain in the sparsity of the Cholesky-like factor, see for example the statis-
tics of CVXQP test problems in Table 1. Indeed, by removing the off-diagonal elements
from Q we increase the number of columns in P with the small numbers of nonzero
elements: such columns become more attractive candidates for the minimum degree heuris-
tic applied to P. Moreover, we open the possibility of reducing the augmented system
to the normal equations form whenever the latter offers any advantages. The precon-
ditioner has one general algebraic form (15) but we may compute it in two equivalent
ways.

Preconditioner 1 (AS): Compute the Cholesky-like factorization:

E AT .
P = =LDL". (16)
A0

Preconditioner 2 (NE): Reduce the system to normal equations AE~'A”, compute the
Cholesky factorization

AE'AT = LyDyL],
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and use:

» E AT I 01T E 0 I E-'AT
Tla o |aE 1llo —aE'AT|lo 1

_ I OTFTE O I E'AT 7
_[AEI LOMO —Do][o L§ } a7

The two forms differ only in the implementation, being mathematically equivalent. We can
therefore carry out the spectral analysis of the preconditioned matrix for both.

Block preconditioners have been widely used and analyzed in the literature. In particular,
in [19, 21, 25] the preconditioner similar to the one used in this paper has been analyzed.
We have decided to recall the spectral analysis (Theorem 4.1) because it indicates the ways
of improving the numerical properties of the preconditioner. We then extend the spectral
analysis for the preconditioned quasidefinite matrix which includes regularization (see
Theorem 4.2 and the subsequent Corollaries).

4.1. Spectral analysis

The (left) preconditioned matrix reads

g _[E ATY'TC AT] _TET'C—ET'ATMT'AT 0
LA o A 0| M~'AJ I,

= X 0 18
_[Y Im] (1%

where

M=AE'AT, J=E'Cc-1, C=-0"'-0Q, E =diag).
We now prove a theorem which establishes the well-conditioning of preconditioned matrix
P~'H relating its non-unit eigenvalues to those of the matrix E~'C, whose spectrum
is strictly positive. In fact E~'C is similar to (—E)~Y2(=C)(—E)~'/? which is trivially

symmetric positive definite under the hypothesis that C is negative definite.

Theorem 4.1. Assume that A has maximum rank. Then, if m < n at least 2m eigenvalues
of P~V H are unit, and the other eigenvalues are positive and satisfy

-1
Amax(P H)SK(E_1C).
)"min(PilH)

If m > n all the eigenvalues are unit.
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Proof: Matrix P~ H in (18) is block lower triangular. It has m unit eigenvalues and the
remaining n eigenvalues are those of matrix

X=E'C—E'"ATM'A(E"'C - D).

We will now consider two cases: m < n and m > n.

Casem <n

Matrix X has at least m other unit eigenvalues. In fact write X as
X=I+U—-—E'"ATM'AE'C—D=1+U—-E'ATM'A)J

then for every vector x € R™
XTATx =(U+JTU —ATMTAE")ATx = ATx + JT(ATx — ATx) = ATx

so that AT x is (left) eigenvector of X with 1 as eigenvalue. The remaining n — m eigenvalues
and eigenvectors of P~! H must satisfy

[i /ﬂm:k[f AOT}[;C] (19)

Cx+ ATy = LEx +AATy
Ax = LAx '

or
(20)

If . # 1 the second equation provides Ax = 0 (with x # 0). Let us multiply the first
equation by x7. Recalling that x” AT = 0 we obtain

r - xT'Cx .
X' Cx=M"Ex,=>A=—=q(E"C). 2n
X

xTE

The last expression is the Rayleigh quotient of the generalized eigenproblem Cv = pwEv.
Since both E and C are negative definite we have for every x € R”

xTCx
T

0 < Amin(E"'C) < < dmax(E7'C)

x'Ex

and finally

Amin(E7'C) < A < Ama(E7'C). (22)
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Casem >n

From the previous analysis we get that every vector of the form A7 x is the left eigenvector
of X. Since A has maximum rank, the space spanned by AT x, x € R™ has exactly size n,
so that there are n eigenvectors corresponding to the unit eigenvalue. Summarizing, there
are m + n eigenvectors corresponding to the unit eigenvalue in this case. O

The claim that P! H has 2m unit eigenvalues was already proved in [19].

In the most interesting case (more often met in the computational practice) when m < n,
the 2m eigenvalues of P~!'H have value 1 and the remaining n — m eigenvalues satisfy
Amin(E7'C) < A < Amax(E~'C).Itis worth noting that the case when 6; is very small (hence
Qj_l is very large), the preconditioner brings the corresponding eigenvalues of P~' H close

to unit. In the case when 6; is very large (and 9]?1 is very small), the conditioning of matrix
Q plays more important role. Indeed, in this case the preconditioner behaves like the simple
Jacobi preconditioner for matrix Q.

In any case the iterative method is very sensitive to the quality of the preconditioner and it
is crucial to ensure the best possible accuracy of the factorization used in the computations
of the preconditioner. In our implementation the system (15) is regularized at the time of
factorization. Following [1] we use both primal and dual regularization and instead of (15)
we use the regularized preconditioner

» |:E AT}+|:—R,, 0}
B=1a o 0 Ryl

In the computations of the Newton step we replace the matrix (14) with the regularized one

—0-©"" AT R, 0
o IS |
A 0 0 Ry

The diagonal positive definite matrices R, € R"*" and R; € R™*™ are chosen during the
factorization process. For all pivots that accept stability criteria the negligibly small terms
are used while for unstable pivots the stronger regularization terms are used. The reader
interested in more detail in this approach is referred to [1]. The regularization technique
was shown to be successful in the implementation of the direct approach of the HOPDM
interior point solver and it also plays the key role in the stability of our iterative approach.
The following theorem provides an insight into its role in the computations.

Theorem 4.2. Assume that A has maximum rank. Then at least m eigenvalues of Py "Hy
are unit, and the other eigenvalues are positive and satisfy

—xTCx +3$§

— >0
—xTEx+$

1Py He) =

for some 6 > 0, x # 0.
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Proof: It can easily be shown that left preconditioned matrix has the same block form as
the preconditioned matrix without regularization (Theorem 4.1):

B X 0
PelHR= | |

As in Theorem 4.1 it follows that Py ' Hg have m linearly independent eigenvectors asso-
ciated to the unit eigenvalue.
The other eigenpairs of Py ' H must satisfy

=1 (23)
A Rd y A Rd y

(C—Ry)x+ ATy =ME — R,))x +2ATy
Ax+ R;y =AAx + ARy y.

or
(24

If L # 1 the second equation provides Ax + R;y = 0 (with x # 0). Let us multiply the
first equation by x7. Recalling that x” AT = —yT R; we obtain

x"(C - R)x —y ' Ryy =2x"(E—R,)x —y" AR, y
whence, setting § = x” R, x + y" Ry y (= 0)

xTCx —x"R,x —y"R;y —x"Cx+3$
— = >
xTEx —xTR,x —yTR;y —xTEx+3$

0.

The last inequality follows from the negative definiteness of C and E. O
In the proof of the next Corollary we will use the Lemma:

Lemma 4.3. If A is a symmetric positive definite matrix and D = diag(A) then the
eigenvalues of matrix D™'A are either all ones or are contained in a nontrivial interval
[a, Blwith0 < < 1 < B.

Proof: See for example [25]. O

Corollary 4.4. The eigenvalues of Py YHy satisfy

min{Amin(E~'C), 1} < Amin(Pr ' Hr) < Amax (P Hr) < max{Amax(E~'C), 1}.
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Proof: Forany o > 0, 8 > Oand ¢t > 0, the function i(t) = /‘;—ii is increasing if £ <1

and decreasing if £ > 1. Now let (x,,, y,») and (xj, yu) be the eigenvectors of Py YHe
related to the smallest and the largest eigenvalue, respectively, then

)\min(PEIHR) =

—xI'Cxpy +8 — xI Cxp
—xIExy + 8 xI Expy
—x},Cxy + 68

—x,{,,ExM +34

} > min{Amin(E~'C), 1}

T
XMC)CM

Amax(PElHR) = < max{l, } < max{Am (E~'C), 1}

x,TVI Expy
and hence the thesis. O

Corollary 4.4 indicates that the use of primal and dual regularization improves the clus-
tering of the eigenvalues in the preconditioned matrix.

By a similar argument to that in Corollary 4.4 we prove that the eigenvalues of E~'C
and hence those of Py 'Hy are bounded away from zero.

Corollary 4.5. Let Q be a symmetric positive definite matrix and define D = diag(Q).
The eigenvalues of E~'C satisfy

min{Amin(D ™' 0), 1} < Ain(E™'C) < Amax(E7'C) < max{Anax(D™' Q) 1}
Proof: We write

xT(Q+ 0 Hx _ xT(Q+ 0 hHx . xTOx +xTO _ xTOx+6
xTEx T xT(D+0"YHx  xTDx4+xTO'x  xTDx 46’

where § = xT®~!x, and use similar arguments to those in the proof of Corollary 4.4. O

Letus define p = Apin(D~' Q). Clearly p > Obecause Q is positive definite. This number
does not depend on ® and provides a strictly positive lower bound for the eigenvalues of
E~'C. By combining Corollaries 4.4 and 4.5 we conclude that min{p, 1} is also a positive
lower bound for the eigenvalues of P'Hy and the condition number of matrix Py ' Hpg
satisfies the following bound

)\.maX(PR_]HR) {)‘*max(D_]Q) . » y }
homin(Pg " Hg) — oy Fmin(PT Q) Amax(D ,
)Lmin(PR_1 HR) =m Amin(D~1Q)° A min( 0), Amax( Q)

The preconditioner analyzed above yields a preconditioned matrix which has actually
a large part of the spectrum clustered around one. The following two figures, which are
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Figure 1. Values of k(Py 'H #) and k(E~'C) vs nonlinear iteration number for the q25£v47 test problem.

related to the q25£v47 problem with n = 1571, m = 820 (see the tables in Section 5) give
an example of this behavior.

In figure 1 the ratio k between the largest and the smallest eigenvalue is plotted for the
PR_IHR and E~!C matrices. From the figure we note that K(PR_1 Hpg)is lower than k (E~'C)
for every nonlinear iteration, as stated in Corollary 4.4. Moreover « (Pg 'Hp) is smaller than
five with the only exception of the second iteration.

In figure 2 we report the number of eigenvalues in the preconditioned matrices which
are outside the interval [0.9, 1.1]. When this number is small or even zero it means that
the eigenvalues are clustered around one and fast convergence of Krylov solvers can be
expected. The figure shows that once again the eigenvalues of Py "Hp, are better clustered
than those of £~'C. In 19 nonlinear iterations out of 29 P, ' Hy has at most one eigenvalue
outside [0.9, 1.1].

4.2.  Spectral analysis for the nonlinear case

The augmented matrix in the nonlinear case reads

_ AT
i= [ AQ Zy-l]' 2
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Figure 2. Number of eigenvalues of PR_l Hy and E~'C outside the interval [0.9, 1.1] vs nonlinear iteration
number for the q25£v47 test problem.

The preconditioner is defined by substituting the matrix Q with its diagonal, namely Dy
getting

_ T
Do 4 } (26)

P:
[ A zy!

The following theorem establishes the well-conditioning of preconditioned matrix P~'H
relating its non-unit eigenvalues to those of the matrix Dél 0.

Theorem 4.6. Assume that A has maximum rank. Then at least m eigenvalues of P~'H
are unit, and the other eigenvalues are positive and satisfy

xTOx+6

MP ' Hy= —=—
( ) xTDQx—|—8>

0

with 8 = yT ZY 'y, for some x, y, x # 0. Moreover,
min{Amin(Dg' Q). 1} < Anin(P™'H) < Amax(P ™' H) < max{Amw (D' Q). 1}.

Proof: The proof of this theorem is analogous to the proofs of Theorem 4.2 and
Corollary 4.4. O
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5. Numerical results

The method discussed in this paper has been implemented in the context of HOPDM
code [16]. HOPDM is an LP/QP solver that uses the higher order primal dual algorithm
[1] and contains two factorization methods implemented: the normal equations and the
augmented system. The accuracy is controlled in HOPDM through the use of primal
and dual regularization. These features have contributed to the ease of the implementa-
tion of our preconditioner. All tests have been run on a dual 1.55 GHz Athlon with 1
GB RAM. We have used the pure FORTRAN version of the solver and we have com-
piled it with the Portland Group £77 compiler with -fast -pc 64 -Mvect=prefetch
options.

‘We have implemented four iterative approaches for indefinite system: BICGSTAB [27],
GMRES [26], QMRs [13], and the classical Conjugate Gradient. We have tested them with
both preconditioners P; and P, from (16) and (17), respectively. We have solved a number of
public domain quadratic programs. Some of them come from the three different directories:
brunel, cute and misc available via the anonymous ftp from: ftp://ftp.sztaki.
hu/pub/oplab/QPDATA/. Other examples have been made available to us by Professor
Hans Mittelmann. The reader interested in them can retrieve AMPL files that generate
these examples from ftp addresses: ftp://plato.la.asu.edu/pub/vliggp.txt and
ftp://plato.la.asu.edu/pub/randqp.txt. To avoid reporting excessive numerical
results, we have selected a subset of 14 representative quadratic programs for which we
give detailed solution statistics.

We start the analysis from the statistics of problems used in our computations. In Table 1
we report problem sizes m, n, the number of nonzero elements in matrix A, nz(A), the
number of off-diagonal nonzero elements in Q, nz(Q), and in the three different fac-
torizations: for the complete matrix H, nz(L), for the preconditioner P;, nz(L)-AS, and
for the preconditioner P,, nz(L)-NE. The matrices Q, H and the preconditioners P; and
P, are symmetric. Therefore we report the number of off-diagonal nonzero elements in
the triangular parts stored by the solver. The analysis of results collected in Table 1 re-
veals that after removing the off-diagonal elements from matrix Q, spectacular gains in
the sparsity of factorizations can sometimes be obtained. This is the case, for example,
when problems cvxqgpi_1, gp500-3, or CVXQPi are solved. Clearly, the more important
the reductions in the fill-in of Cholesky factors the faster the computations of the pre-
conditioner are. We would like to draw the reader’s attention to the fact that the large
number of off-diagonal nonzero elements in Q is not necessarily the only factor that
contributes to the fill-in in the triangular factorization. Indeed, the randomly generated
problems gp500_i have all the same density of Q and yet removing off-diagonal ele-
ments from Q leads to dramatic improvement in the factorization only in the case of
qp500_3 problem. It is also worth mentioning that there is no clear winner between the
augmented system and the normal equations factorizations. Both approaches are worth to
be implemented and a heuristic to make an automatic choice between them incorporated in
HOPDM is a useful technique. However, we have disabled this automatic choice and we
have forced the solver to use a specific factorization and produce either the preconditioner
P 1 or Pz.
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Table 2. Solution Statistics: comparisons between direct and iterative (PCG) solver.

Direct PCG-AS PCG-NE
Problem Its Time Its Time LinIt Avr  Its Time LinIt Avr
qp500-1 14 8.03 17 14.24 347 10 17 83.27 347 10
qp500-2 16 873 20 15.45 404 10 20 70.51 404 10
qp500-3 7 288 42 6.24 1052 12 42 6.12 1052 12
qp1000-1 14 4145 22 32.05 851 19 22 30.56 851 19
CVXQP1 7 877.32 12 9.55 397 15 12 9.91 397 15
CVXQP2 9  736.67 11 5.74 399 17 11 5.39 399 17
cvxqpl-l 11 551.51 13 6.41 439 16 13 6.82 439 16
cvxqp2-1 8 26898 10 3.03 354 16 10 2.92 354 16
cvxqp3-1 8  488.68 10 7.50 332 15 10 10.64 354 16
sqp2500-1 15 804.52 18 486.85 749 20 18 535.56 749 20
sqp2500-2 16  913.82 19 457.43 748 19 19 485.55 748 19
sqp2500-3 18 961.62 24 1147.87 567 11 24 6099.37 567 11
q25fv47 21 357 29 3.64 359 6 28 2.82 317 5
gpilotnov 19 .02 27 1.72 190 3 27 1.60 170 3

Getting a sparse preconditioner is clearly encouraging but it is not yet the guarantee of
success. This depends on how many iterations are needed by the iterative method to obtain
sufficiently accurate solutions in the linear systems solved for Newton directions. Table 2
collects the results of HOPDM runs on all test examples for three different methods: direct
approach (factorization of H) and the preconditioned conjugate gradient method with two
different preconditioners P; and P», respectively.

In all these runs we have used the preconditioned conjugate gradient method with a fixed
termination criteria on the relative residual % < € = 1072 and the limit of iterations
set to 20. We report in Table 2 the number of interior point iterations, Its, CPU time and
for two variants of the preconditioned gradient method, we additionally report the overall
number of iterations in the iterative solver, Linlt, and the average number of PCG iterations
per backsolve, Avr. The multiple centrality correctors [1] are allowed only with the direct
approach: one interior point iteration may then require the solution of several systems of
equations. When iterative approach is used each interior point iteration needs the solution
of two linear systems: one for the predictor direction and one for the centrality corrector
direction [1]. The initialization procedure solves two additional linear systems. Hence if the
problem is solved in k iterations with the iterative solver (the number reported in column
Its in Table 2), then 2k + 2 linear systems need to be solved. The analysis of results leads
to the following conclusions:

e The preconditioned conjugate gradient method behaves well even with fixed tolerance.
There are no failures due to lack of precision in the Newton directions although rather
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loose tolerance is used. There is certainly room for improvement of these results by
tuning this tolerance and adjusting it closer to the needs of the interior point
algorithm.

e The use of less precise directions usually increases the number of interior point iterations
by no more than 50% (qp500-3 displays an exceptional increase).

e The iterative method is advantageous whenever the factorization of the preconditioner
is significantly less expensive than that of the complete augmented system (the problem
classes cvxqpi_1 and CVXQP1i are spectacular examples of it).

Our preconditioners replace matrix Q with its diagonal part. Hence there is no interest
in using the preconditioner if the problem is separable (i.e., Q is diagonal). We have also
noticed that for problems with a small number of constraints or problems in which matrix Q
has only a few off-diagonal entries, the savings resulting from the use of the factorization of
the preconditioner (which is only slightly sparser than the KKT system) are insignificant and
do not compensate for additional operations required by the iterative method. Therefore in
the production code we do not allow to use the iterative method if m < 500 or nz(Q) < 10,
where nz(Q) denotes the number of off-diagonal nonzero elements in the triangular part of
the (symmetric) matrix Q.

‘We have run the solver on a collection of public domain quadratic programs available from
ftp://ftp.sztaki.hu/pub/oplab/QPDATA/ and ftp://plato.la.asu.edu/pub/
vlggp.txt. These test sets contain 46 brunel, 76 cute, 16 misc and 27 vlgqp prob-
lems. The numbers of nonseparable problems in these four sets are: 46, 33, 4 and 16,
respectively. However, many of them (especially those in the brunel and cute collections)
do not meet the criteria to call the iterative solver. The iterative method was used to solve
40 problems overall: 15, 10, 2 and 13 problems from these sets, respectively.

The overall solution time for the 40 test examples is 49909 seconds with the direct method
and 4413 seconds with the iterative method. This gives the average time reduction by a factor
of 11.3.

We have also tested other iterative methods: BICGSTAB, GMRES and a simplified
variant of QMR. In Table 3 we report these results for the same fixed tolerance on the
relative residual % < € = 1072 and the same limit of iterations ITMAX set to 20 for three
test problems: qp500-3, cvxqpl-1 and CVXQP1.

The CG solver is the fastest (or very close to the fastest) among the four solvers in 13
problems out of 14. However, there are slight differences in terms of CPU time and linear-
nonlinear iterations among the solvers. The qp500-3 problem is the only one in which the
CG solver is surprisingly slow, since it requires a number of interior point iterations which
varies from two to six times more than that of a direct approach.

The tolerance € and the maximum number of iterations (ITMAX) can dramatically affect
the nonlinear convergence and the overall CPU time. In Tables 4 and 5 we report the
statistics of qp500-3 and cvxqpl_1 problems solved with PCG-AS and BiCGSTAB-AS,
respectively, with different choices of these two parameters. We note that “oversolving”,
that is solving the linear system to a high precision, is not necessary since it produces a
slight reduction of the number of nonlinear iterations at the price of a drastic increase of
the total linear iterations and hence the CPU time.
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Table 3. Comparison of four iterative methods.

AS preconditioner NE preconditioner
Problem Solver Its LinIt Time Its Linlt Time
cvxqpl 1 GMRES 13 547 9.07 12 508 8.96
BiCGstab 13 313 8.58 13 314 9.20
QMRs 13 420 9.96 13 420 10.89
CG 13 439 6.41 13 439 6.82
CVXQP1 GMRES 32 601 21.02 34 591 21.67
BiCGstab 12 286 12.67 12 285 13.27
QMRs 11 353 13.59 11 353 14.28
CG 12 397 9.55 12 397 9.91
qp500_3 GMRES 22 571 3.45 23 592 3.51
BiCGstab 15 406 4.19 12 340 3.44
QMRs 22 583 3.72 22 583 3.60
CG 42 1052 6.24 42 1052 6.12

Table 4. Performance of PCG with AS preconditioner.

€ ITMAX Its Linlt Time € ITMAX Its Linlt Time
107! 10 44 606 4.60 107! 2 20 79 3.06
1072 20 42 1052 6.24 107! 10 13 287 5.18
10-8 100 10 1548 8.27 1072 20 13 439 6.41

10-8 1000 13

11125

55.73

10~

8

100

13

782 23.04

Influence of tolerance € and maximum number of iterations ITMAX on the nonlinear

qp500-3 problem (left) and cvxqp1_1 problem (right).

Table 5. Performance of BiCGstab with AS preconditioner.

convergence for

€ ITMAX Its LinlIt Time € ITMAX Its LinlIt Time
107! 10 16 247 3.01 107! 2 14 59 3.24
10~ 20 15 406 4.19 107! 10 13 241 7.56
10-8 100 10 1376 13.70 1072 20 13 313 8.58
10-8 1000 10 6504 64.70 10-8 100 13 770 21.73

Influence of tolerance € and maximum number of iterations ITMAX on the nonlinear convergence for
qp500-3 problem (left) and cvxqpl_1 problem (right).

6. Conclusions

We have discussed in this paper the use of iterative approaches for the solution of Newton
equation system arising in interior point method for quadratic and nonlinear optimization.
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The crucial issue in the implementation of such approaches is the use of an appropriate
preconditioner that can be computed with a small cost compared with a direct approach
and can capture the key numerical properties of the linear system. We have designed such
a preconditioner by dropping off-diagonal elements from the Hessian matrix. The precon-
ditioner has well clustered eigenvalues and this clustering can further be improved by the
use of the primal and dual regularization method.

‘We have provided computational evidence that our preconditioner works well for nontriv-
ial quadratic programming problems. In some cases, the use of the preconditioned iterative
solver reduces the solution time by a factor of 100 compared with a direct approach.
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