Activation of Transcription by Metabolic Intermediates of the Pyrimidine Biosynthetic Pathway

Paul J. Flynn and Richard J. Reece
Activation of Transcription by Metabolic Intermediates of the Pyrimidine Biosynthetic Pathway

PAUL J. FLYNN AND RICHARD J. REECE*

School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom

Received 25 August 1998/Returned for modification 1 October 1998/Accepted 19 October 1998

Saccharomyces cerevisiae responds to pyrimidine starvation by increasing the expression of four URA genes, encoding the enzymes of de novo pyrimidine biosynthesis, three- to eightfold. The increase in gene expression is dependent on a transcriptional activator protein, Ppr1p. Here, we investigate the mechanism by which the transcriptional activity of Ppr1p responds to the level of pyrimidine biosynthetic intermediates. We find that purified Ppr1p is unable to promote activation of transcription in an in vitro system. Transcriptional activation by Ppr1p can be observed, however, if either dihydroorotic acid (DHO) or orotic acid (OA) is included in the transcription reactions. The transcriptional activation function and the DHO/OA-responsive element of Ppr1p localize to the carboxyl-terminal 134 amino acids of the protein. Thus, Ppr1p directly senses the level of early pyrimidine biosynthetic intermediates within the cell and activates the expression of genes encoding proteins required later in the pathway. These results are discussed in terms of (i) regulation of the pyrimidine biosynthetic pathway and (ii) a novel mechanism of regulating gene expression.

In Saccharomyces cerevisiae, the biosynthesis of pyrimidines involves the de novo synthesis of UMP from glutamine (Fig. 1). Carbamoyl phosphate, derived from glutamine, undergoes a condensation reaction with aspartic acid, resulting in the formation of N-carbamoyl aspartic acid. Both the formation and subsequent condensation of carbamoyl phosphate are performed by Ura2p. The pyrimidine ring of N-carbamoyl aspartic acid is closed by the elimination of water to form dihydroorotic acid (DHO), which is subsequently oxidized to form orotic acid (OA), and a ribose-phosphate group is then added to form orotidine 5’-monophosphate (OMP). The formation of OMP is performed by two isoenzymes, Ura5p and Ura10p (2). OMP is then decarboxylated to yield UMP, which may subsequently be processed to form other pyrimidines (3). Regulation of this pathway occurs at several levels. First, UTP down-regulates the enzymatic activity of Ura2p (1) and transcription of the URA2 gene (22). Second, under conditions of pyrimidine starvation, transcription of the URA1, URA3, URA4, and URA10 genes (the URA4 genes) is increased some three-to eightfold (24). This increase in transcription is dependent on a transcriptional activator, Ppr1p (16).

Ppr1p is a 904-amino-acid protein that bears a Zn$_2$Cys$_6$ binuclear cluster DNA binding motif within its amino-terminal domain—amino acids 29 to 123 (8). The crystal structure of the DNA binding domain of Ppr1p complexed with its cognate DNA motif site has been solved (17). Like other members of this family of proteins, Ppr1p has a conserved C-terminal domain which may, as in the other family members, represent the transcriptional activation domain (25). The protein binds to defined sites (CGGN$_6$CCG) found approximately 100 to 200 bp upstream of the translational start sites of the URA genes (10, 24). In the absence of Ppr1p, these genes are transcribed at a constitutive, basal level. A single constitutive and several noninducible mutations of the PPR1 gene have been identified (15, 16). The noninducible mutations map to the C$_s$ zinc cluster of the DNA binding domain of Ppr1p (amino acids 43, 57, and 64) (11), while the constitutive mutation maps to amino acid 233 (ppr1-1 changes leucine 233 to serine [24a]). The non-inducible mutations are therefore likely to be defective in DNA binding, but the effect of L233S invoking constitutive expression is more difficult to interpret.

The elegant genetic analysis of Lacroute (9) clearly demonstrated induction of the enzymes of the pyrimidine pathway by biosynthetic intermediates of the pathway itself. A yeast strain mutated in ura2, and thereby unable to synthesize DHO, will not induce the pathway in response to pyrimidine starvation. Also, a yeast strain mutated in ura1, resulting in an accumulation of DHO, induces the pathway (9). The increase in activity of the pathway enzymes in response to pyrimidine starvation is due to increased expression of the URA genes themselves (14). Altering the levels of DHO within the cell affects the induced but not the constitutive levels of URA expression (3). It has thus been speculated that DHO may act together with Ppr1p as an inducer of URA gene expression under conditions of pyrimidine starvation. To understand this phenomenon further, we have undertaken a biochemical investigation of the transcriptional properties of Ppr1p.

We begin by describing the construction of a recombinant baculovirus expressing full-length yeast Ppr1p in insect cells. We show that while purified Ppr1p interacts only weakly with DNA, strong DNA binding can be promoted by an as yet unidentified small molecule present in extracts of insect and yeast cells. Once bound to DNA, Ppr1p is transcriptionally inert in vitro. Transcriptional activity can be induced, however, by the addition of either DHO or OA to transcription reactions containing Ppr1p. We define the DHO/OA-responsive domain of Ppr1p to the carboxyl-terminal 134 amino acids of the protein, coincident with the activation domain of the protein. Thus, we envisage a model for the activation of the URA1 and URA3 genes in which DNA-bound Ppr1p directly senses the level of DHO and/or OA. Once the concentration of these molecules reaches a certain threshold, Ppr1p activates the URA genes to promote the biosynthesis of UMP.
followed by the elimination of a water molecule to form DHO. DHO is subsequently formed by the condensation of carbamoyl phosphoric acid and aspartic acid, forming urea and CO₂. The pyrimidine ring is then incorporated into CTP. Ppr1p is a transcriptional activator of the genes shown in bold typeface during conditions of pyrimidine starvation.

FIG. 1. Pyrimidine biosynthetic pathway of *S. cerevisiae*. The pyrimidine ring is formed by the condensation of carbamoyl phosphoric acid and aspartic acid, followed by the elimination of a water molecule to form DHO. DHO is subsequently oxidized to OA by the product of the *URA1* gene. A phosphoribose moiety, provided by 5-phosphoribosyl 1-pyrophosphate (PRPP), is added to OA to form OMP, which is then decarboxylated to form UMP by the product of the *URA4* gene. UMP is subsequently converted to UDP and UTP before its conversion into CTP. Ppr1p is a transcriptional activator of the genes shown in bold typeface during conditions of pyrimidine starvation.

MATERIALS AND METHODS

Media and strains. *Escherichia coli* DH5a was used for all DNA manipulations, and strain XA90 was used for protein expression from the tac promoter (23). Yeast nuclear extract was prepared from *S. cerevisiae* BJ2168 (ura3 leu2 pep4 prc1) grown in YPD medium (20). *Spodoptera frugiperda* SP and High Five insect cells (Invitrogen) were grown in Grace’s insect medium (Invitrogen) supplemented with 10% fetal calf serum at 27°C.

Construction of recombinant baculovirus. The coding region of PPR1 was amplified from pUC8-PPR1 (a gift of Stanley Liang) by PCR using oligonucleotides 1317 (5’-GGGCGGATCCGATGACGAAAGAAAAAATTTAATCTC-3’) and 1318 (5’-GGGCGGATCCCTAAAATATCCCAACGGATTACG-3’). The PCR product (∼3 kb) was cleaved with BamHI and HindIII (underlined) and cloned into the BamHI/HindIII sites of pBlueBacHisB (Invitrogen). The majority of the *PPR1* coding sequence in the resulting plasmid (pJR236) was replaced by a 2.5-kb *Eco*RI fragment of pUC8-PPR1. Sequencing of the remainder of the *PPR1* coding sequence confirmed that no mutations had arisen (data not shown). Thus, pJR236 contains the entire coding sequence for Ppr1p, fused to an N-terminal RGSH6 tag, under the control of the polyhedrin promoter. Plasmid pJR236 was cotransfected with wild-type, linearized Autographa californica nuclear polyhedrosis virus DNA into *S. frugiperda* Sf9 cells (1.25 × 10⁶ PFU/ml).

Protein purification. Full-length Ppr1p was purified from High Five insect cells grown in monolayer culture in 225-cm² tissue culture flasks (Costar) infected with Ppr1p recombinant baculovirus at a multiplicity of infection of 5 and harvested 2 days postinfection. High Five cells gave increased yields of Ppr1p compared with those in SP9 cells. Cell pellets were resuspended in buffer A (1 ml/10⁷ infected cells; 20 mM HEPES [pH 7.8], 300 mM NaCl, 10% glycerol) containing a complete protease inhibitor cocktail (Boehringer Mannheim), sonicated, and centrifuged at 30,000 × g for 20 min at 4°C. Ppr1p was purified by nickel affinity (Ni²⁺-nitritolriacetic acid [NTA]) chromatography using Pro-Bond resin (Invitrogen) equilibrated with buffer A. Following washes with buffer A and with buffer A containing 500 mM NaCl, 10 mM β-mercaptoethanol, and 300 mM imidazole, protein was eluted from the column with buffer A containing 250 mM imidazole.

The DNA binding domain of Ppr1p (residues 29 to 123) was purified as described elsewhere (17). The fusion protein Gal4p(1-93)-Ppr1p(770-904) was constructed by PCR amplification of the *PPR1* coding sequence (5’-CCCGGATCCCTAAAATATTCCACC-3’) and 3072 (5’-CCCCAGCTGACCGCATGCTCAG-3’). The amplified DNA (414 bp) was cleaved with SacI and BamHI (underlined) and cloned into the SacI/BamHI sites of pJR1 (23). The resulting plasmid, pJR369, expressed Gal4p(1-93)-Ppr1p(770-904) from the tac promoter. Cells containing the plasmid were grown and induced, and the protein was purified as described elsewhere (23).

Mobility shift assay. The PPR1 probe used was a double-stranded oligonucleotide (5’-TCTCTGCTTAAAATCCGAAGC-3’). The PCR product (414 bp) was cleaved with SacI and BamHI and cloned into the SacI/BamHI sites of pJR1 (23). The resulting plasmid, pJR369, expressed Gal4p(1-93)-Ppr1p(770-904) from the tac promoter. Cells containing the plasmid were grown and induced, and the protein was purified as described elsewhere (23).

Protein binding assay. The PPR1 probe used was a double-stranded oligonucleotide (5’-CCCGGATCCCTAAAATATTCCACC-3’) representing the high-affinity binding site. Mobility shift analysis was performed with an oligonucleotide complementary to the E4 coding sequence (5’-GGGCGGATCCCTAAAATATTCCACC-3’) (12, 13). The extension products were separated on a 10% polyacrylamide gel and stained with SYBR Green I.
POLYCHROMATIC INFUSIONS

RESULTS

Purification of Prp1p. A recombinant baculovirus expressing full-length PPR1 from the polyhedrin promoter was constructed and used to infect High Five insect cells. Protein expression was monitored by Western blotting (Fig. 2A). While Prp1p could not be detected in uninfected insect cells (Fig. 2A, lanes 1 and 2) or in cells infected with a wild-type virus (data not shown), at 2 days postinfection, the Prp1p recombinant virus gave rise to a band of approximately 106 kDa, corresponding to the expected size of the full-length protein. The Prp1p protein accumulated within the cells 24 to 48 h postinfection (Fig. 2A, lanes 5 and 7). At later times, the amount of full-length Prp1p within the cells diminished, and a number of degradation products could be observed (Fig. 2A, lane 11). Based on these data, cells were harvested 2 days postinfection, before the onset of cell lysis. Prp1p was purified from infected cells by nickel affinity chromatography (Fig. 2B). Buffer containing 30 mM imidazole (Fig. 2B, lanes 5 to 7) eluted a significant number of contaminants from the purification column, while Prp1p was eluted from the column with buffer containing 250 mM imidazole (Fig. 2B, lanes 8 to 15). Prp1p produced in this way is estimated to be >95% pure, with 2.25 mg of protein being obtained from 10^8 insect cells in adherent cell culture. Western blot analysis of the purified protein (Fig. 2C) shows that a number of degradation products of Prp1p are present in the purified material (Fig. 2C, lane 4). However, a comparison of these lower-molecular-weight bands with the Coomassie-stained gel (Fig. 2B, lane 12) suggests that they are of low abundance.

DNA binding activity of purified Prp1p. The DNA binding activity of full-length Prp1p was initially analyzed in crude extracts of insect cells infected with a baculovirus producing Prp1p. Using electrophoretic mobility shift assays, we were unable to detect binding of proteins to DNA bearing a Prp1p binding site from uninfected Sf9 or High Five cells (Fig. 3A, lane 4, and data not shown) or from Sf9 or High Five cells infected with wild-type baculovirus (data not shown). However, extracts made from insect cells infected with recombinant Prp1p-producing baculovirus resulted in the formation of a specific DNA-protein complex (Fig. 3A, lane 2). While detection of a Prp1p-DNA complex in cell extracts was straightforward, detection of DNA binding by purified Prp1p proved to be much more difficult. The purified protein (Fig. 3A, lane 9) formed a weak complex with DNA, even though there was considerably more Prp1p in these reactions than in the samples prepared with the crude cell extracts. Efficient DNA binding by Prp1p was recovered by supplementing the binding reactions with various cell extracts. For example, wild-type Sf9 cells did not contain a Prp1p binding activity (Fig. 3A, lanes 4 and 5). However, the Sf9 extract, either the untreated material or the supernatant resulting from boiling and subsequent centrifugation, promoted high-affinity DNA binding of purified Prp1p (Fig. 3A; compare lanes 9 to 11). The ability to promote purified Prp1p DNA binding was not limited to insect cell extracts. Heat-inactivated yeast cell extracts grown in either uracil-rich or uracil-lacking medium, which exhibit no Prp1p DNA binding activity in their own right, also promoted the formation of a Prp1p-DNA complex (Fig. 3A, lanes 13 and 14). Yeast nuclear extracts prepared for in vitro transcription reactions (see below) also supported high-level Prp1p DNA binding activity (data not shown).

The ability of these extracts to promote high-affinity DNA binding of Prp1p does not appear to be the function of a protein. The extracts could be heat treated (Fig. 3A) or treated with proteinase K (data not shown), and their ability to aid high-affinity DNA binding of Prp1p was not diminished. Analysis of the extracts, however, significantly impaired their ability to promote high-affinity Prp1p DNA binding. We therefore speculate that a small molecule may be involved. The DNA binding-promoting factor was also resistant to high levels of EDTA (up to 0.1 M [final concentration]). We tested the ability of metabolic intermediates of the pyrimidine biosynthetic pathway (these shown in Fig. 1, including DHU and OA)
Materials and Methods. Reactions contained 32P-labelled DNA comprising a single Ppr1p binding site and, where indicated, 100 nM purified Ppr1p. The reactions were supplemented with cell extracts from S9 insect cells infected with a baculovirus producing Ppr1p (lanes 2, 3, and 10), S9 insect cells (lanes 4, 5, and 11), the flowthrough of a Ni2+ column purification of Ppr1p from S9 insect cells infected with a baculovirus producing Ppr1p (lanes 6 and 12), or yeast cells (strain JPY5) grown in either medium containing uracil (lanes 7 and 13) or medium lacking uracil (lanes 8 and 14). Where indicated, the supplemented extract was placed in a boiling water bath for 5 min and centrifuged. The supernatant was then added to the binding reactions. Positions of the free DNA and the protein-DNA complexes are indicated.

The effect of extracts on the DNA binding activity was not limited to the full-length protein. Figure 3B shows the results of a heat-treated yeast cell extract on the DNA binding activity of full-length Ppr1p and on the isolated DNA binding domain, amino acids 29 to 123 (10). At low concentrations of Ppr1p(29-123), the extract increased the amount of the protein-DNA complex approximately threefold (compare Fig. 3B, lanes 4 and 5). At higher concentrations of Ppr1p(29-123), the effect of the extract was less obvious (Fig. 3B, lanes 8 and 9). Thus, we believe that the extracts provide a small molecule involved in the stabilization of the Ppr1p-DNA complex.

Transcriptional activity of purified Ppr1p. The transcriptional activity of Ppr1p was investigated in a yeast nuclear extract-based in vitro transcription system (28). Plasmid DNA bearing seven consensus Ppr1p binding sites (10) upstream of the E4 gene, shown at the top in Fig. 4, was incubated with purified Ppr1p and yeast nuclear extract. Transcripts from the E4 gene were then analyzed by primer extension. In the absence of other added factors, Ppr1p was found to be unable to promote transcription of the E4 gene (Fig. 4; compare lanes 1 and 2).

To investigate the effect of pyrimidine biosynthetic intermediates on the transcriptional activity of Ppr1p, in vitro transcription reactions were performed in the presence of the intermediates. Figure 4 shows that either DHO or OA allows transcriptional activation in the presence of Ppr1p (Fig. 4, lanes 8 and 9). Other intermediates of the pyrimidine biosynthetic pathway had no effect on the ability of Ppr1p to activate transcription (Fig. 4, lanes 3 to 7 and 10 to 14).

The ability of DHO and OA to promote transcriptional activation is specific to Ppr1p. DHO had no effect on the basal level of transcription in vitro (Fig. 5A, lanes 1 and 2) or on the levels of activated transcription derived from a Gal4p-based activator (Fig. 5A, lanes 3 and 4). Titration of Ppr1p into the transcription reactions in the absence of DHO (Fig. 5A, lanes 6 to 10) showed that even at high concentrations, Ppr1p alone did not activate transcription. At high concentrations, Ppr1p actually seemed to repress the basal level of transcriptional activity. In the presence of DHO, Ppr1p activated transcription (Fig. 5A, lanes 12 to 16). Under the conditions used in this experiment, activation increased as the level of Ppr1p increased. However, above a concentration of 50 nM Ppr1p (Fig. 5A, lane 14), the level of activation decreased. To investigate this phenomenon further, we set up transcription reactions containing fixed concentrations of Ppr1p and then titrated in either DHO or OA (Fig. 5B and C). At relatively low concentrations of Ppr1p (50 nM [Fig. 5B]), DHO and OA were both able to promote transcriptional activation. OA was approximately twofold more efficient than DHO at activating Ppr1p (Fig. 5B; compare lanes 5 and 10). At high concentrations of either inducer molecule, however, transcriptional activity was inhibited (Fig. 5B, lanes 7 and 12). Higher concentrations of Ppr1p (200 nM [Fig. 5C]) overcome the effect of transcriptional inhibition by high concentrations of either DHO or OA (Fig. 5C, lanes 6 and 11). OA remained more efficient at promoting transcription mediated by Ppr1p (Fig. 5C; compare lanes 3 and 8) at this higher concentration of protein. The decrease in transcriptional activity at high concentrations of DHO and OA cannot be attributed to loss of Ppr1p DNA binding. Results of electrophoretic mobility shift assays indicated that DNA binding by Ppr1p in the presence of cell extract is not affected by either DHO or OA (data not shown).

Transcriptional activity of purified Ppr1p. In vitro transcription reactions contained 50 nM purified Ppr1p where indicated and were supplemented with the compounds indicated, each at a final concentration of 1 mM, except for aspartic acid (1.6 mM) and carbamoyl aspartic acid (0.8 mM). Transcription products from the template shown at the top were analyzed by primer extension. Positions of the primer and the E4 extension products are indicated.

FIG. 3. DNA binding properties of purified Ppr1p. (A) DNA binding by full-length Ppr1p. Electrophoretic mobility shift assays were performed as described in Materials and Methods. Reactions contained 32P-labelled DNA comprising a single Ppr1p binding site and, where indicated, 100 nM purified Ppr1p. The reactions were supplemented with cell extracts from S9 insect cells infected with a baculovirus producing Ppr1p (lanes 2, 3, and 10), S9 insect cells (lanes 4, 5, and 11), the flowthrough of a Ni2+ column purification of Ppr1p from S9 insect cells infected with a baculovirus producing Ppr1p (lanes 6 and 12), or yeast cells (strain JPY5) grown in either medium containing uracil (lanes 7 and 13) or medium lacking uracil (lanes 8 and 14). Where indicated, the supplemented extract was placed in a boiling water bath for 5 min and centrifuged. The supernatant was then added to the binding reactions. Positions of the free DNA and the protein-DNA complexes are indicated. (B) DNA binding properties of Ppr1p(29-123). Electrophoretic mobility shift assays were performed as described above, and Ppr1p or Ppr1p(29-123) was added at the concentrations indicated. Where indicated, a heat-treated extract of yeast cells (strain JPY5) was added to the reactions. Positions of the free DNA and the protein-DNA complexes are indicated.

FIG. 4. Transcriptional activity of purified Ppr1p. In vitro transcription reactions contained 50 nM purified Ppr1p where indicated and were supplemented with the compounds indicated, each at a final concentration of 1 mM, except for aspartic acid (1.6 mM) and carbamoyl aspartic acid (0.8 mM). Transcription products from the template shown at the top were analyzed by primer extension. Positions of the primer and the E4 extension products are indicated.
extracts was unaffected by either DHO or OA present at concentrations of up to 10 mM (data not shown).

Localization of the DHO/OA-responsive domain of Ppr1p. To define the activation domain of Prp1p, we constructed a number of chimeric proteins in which the carboxyl-terminal end of Ppr1p was fused to the DNA binding domain of Gal4p. The transcriptional properties of one of these chimeric proteins, Gal4p(1-93)–Ppr1p(770-904), measured from a template containing Gal4p binding sites is shown in Fig. 6. The chimera had no transcriptional activity on its own (Fig. 6, lane 2), but transcriptional activity of the protein was observed in the presence of OA (Fig. 6, lane 3 to 5 and 7 to 9). As we observed for full-length Ppr1p, the inhibition of transcriptional activity of the Gal4p-Ppr1p fusion at high levels of OA (Fig. 6, lane 5) was overcome by increasing the protein concentration (Fig. 6, lane 9). These data provide strong evidence that both the transcriptional activation domain of Ppr1p and the DHO-OA interaction region are localized within the C-terminal 134 amino acids of the protein.

DISCUSSION
The regulation of de novo pyrimidine biosynthesis in yeast is complex and occurs at several levels. The enzymatic activities of the proteins of the pathway are subject to endpoint inhibition, e.g., the inhibition of Ura2p activity by UTP (1, 22). High levels of UTP also down-regulate URA2 gene expression (22). Elegant genetic and biochemical experiments (9) have led to the suggestion that an accumulation of certain early intermediates of the pyrimidine biosynthetic pathway (DHO) increase the activity of enzymes further down the pathway. This increased activity has been attributed to increased expression of the genes encoding those enzymes (14). Here we show that DHO and OA convert a transcription factor, Ppr1p, from a transcriptionally inert to an active state. Thus, the regulation of the pyrimidine biosynthetic pathway may be considered as occurring in the following manner.

In conditions of pyrimidine abundance, the URA genes (Fig. 1) are transcribed at a basal constitutive level. The enzymatic activity of Ura2p, and the expression of the URA2 gene itself, is down-regulated by UTP (1, 7, 22). As the levels of pyrimidines become limiting, the negative effects on Ura2p are alleviated, leading to a buildup of N-carbamoyl aspartic acid, presumably within the nucleus since Ura2p is exclusively a nuclear enzyme (19). N-Carbamoyl aspartic acid will then be converted to DHO by the action of Ura4p. The role of DHO is twofold. First, it serves as a substrate for Ura1p-mediated conversion to OA in the cytoplasm (18). Second, DHO will activate Ppr1p bound constitutively upstream of the URA genes (24) (Fig. 7). Activation of Ppr1p will lead to increased production of the enzymes of the pyrimidine biosynthetic pathway and will promote the synthesis of UMP and eventually UTP. High levels of DHO and OA may have the effect of inhibiting the transcriptional activity of Ppr1p and consequently down-regulate the pathway.

We find that both DHO and OA are capable of converting Ppr1p from a transcriptionally inactive state to an active one. It is possible that this effect is mediated through a component of the nuclear extract used in the in vitro transcription assays rather than a direct effect on Ppr1p itself. We believe that a direct effect is more likely since the nuclear extract is produced from yeast cells grown in rich (uracil-containing) medium, under which conditions Ppr1p should not be active. Further biochemical experiments will be required to determine if Ppr1p...

FIG. 5. Concentration effects of Ppr1p, DHO, and OA. (A) In vitro transcription reactions contained pG5E4 (lanes 1 to 4) or pPPR-E4 (lanes 5 to 16) as template DNA. Reactions contained Gal4p (amino acids 1 to 93 fused to 768 to 881) or Ppr1p at the levels indicated. DHO was added to the reactions as indicated. (B and C) In vitro transcription reactions were performed with pPPR-E4 as the template DNA. Reactions contained Ppr1p and either DHO or OA at the concentrations indicated. Positions of the primer and the E4 extension products in each case are indicated.

FIG. 6. The C-terminal region of Ppr1p is responsive to OA-induced stimulation of transcriptional activity. Transcription reactions contained plasmid pG5-E4 and Gal4p(1-93)–Ppr1p(770-904) at either 250 nM (lanes 2 to 5) or 450 nM (lanes 6 to 9). The reactions were supplemented with OA at the concentrations indicated. Positions of the primer and the E4 extension products are indicated.
polymerase II transcriptional machinery. Activating the Ppr1p to release the activation domain and allow it to interact with the RNA
a (26). The precise effect of intermediate of the pathway it controls, Leu3p, the activator of the branched-chain amino acid meta-
domain, thereby promoting transcription. Parallels can be
drawn between our results with Ppr1p and those obtained for
the absence of DHO or OA, the activation domain of Ppr1p is
constrained in such a way that it is not visible to the transcrip-
tional machinery. Upon binding of either DHO or OA, Ppr1p are large. In the absence of the extract, high concentra-
ions involved in feedback inhibition by UTP. J. Mol. Biol.
7:208–217.
or OA inhibit the transcriptional activity of Ppr1p. This inhibi-
tion can be relieved by higher concentrations of Ppr1p. High
levels of DHO or OA have no effect on other activators (Fig.
5A), and so it appears that this effect is specific for Ppr1p. We
have no evidence that this inhibition is physiologically signifi-
ant, but it is possible that Ppr1p contains two binding sites for
DHO and OA. Binding to the first site induces Ppr1p activity,
while binding at both sites—presumably requiring a higher
concentration of DHO and OA—inhibits Ppr1p activity.
This may provide another mechanism for controlling the flux
through the pyrimidine biosynthetic pathway. The intracellular
levels of DHO, OA, and Ppr1p within yeast have not yet been
experimentally determined.

It has previously been shown that DNA binding by Ppr1p is
independent of DHO (24). We also observe constitutive Ppr1p
DNA binding in vitro, but high-affinity binding of the full-
length protein is dependent on a component found in a num-
er of cell extracts (Fig. 3). The identity of this component
is unclear, although it does not appear to be a protein or a
pyrimidine or purine biosynthetic intermediate. It should also
be noted that other C6 zinc cluster proteins purified from
baculovirus-infected insect cells are able to bind to their cog-
nate DNA sites without the requirement for added cell extracts
(3a). The effects of the extracts on the binding of full-length
Ppr1p are large. In the absence of the extract, high concentra-
tions of Ppr1p are required to observe even modest levels of
DNA binding. The extracts also aid DNA binding of the iso-
lated Ppr1p DNA binding domain, although the effect is ob-
served only at low concentrations of Ppr1p(29-123). We there-
fore suggest that the effect of the compound in the extract is to
stabilize the Ppr1p-DNA interaction. The relevance of this
effect in vivo is not clear at present, and its potential ramifi-
cations for the activation of URA gene expression await iden-
tification of the factor from the extracts.

ACKNOWLEDGMENTS

We thank Josh Brickman, Stanley Liang, and Ronen Marmorstein
for the gifts of plasmids; Judith Stanway, Ian Taylor, and Rob Hock-
ney, Zeneca Pharmaceuticals, for help and assistance in making pro-
teins in insect cells; and Adam Platt, Cristina Merlotti, and Ronen
Marmorstein for carefully reading the manuscript.

This work was supported by grants from the Biotechnology and
Biological Sciences Research Council to R.J.R.

REFERENCES

2. de Montigny, J., L. Kern, J. C. Hubert, and P. Lacroute. 1990. Cloning and sequencing of URA10, a second gene encoding orotate phosphoribosyl trans-
3. Denis-Duphil, M. 1989. Pyrimidine biosynthesis in Saccharomyces cerevisiae: the am2 cluster gene, its multifunctional enzyme product, and other struc-
tural or regulatory genes involved in de novo UMP synthesis. Biochem. Cell.
6. Friden, P., and P. Schimmel. 1988. LEU3 of Saccharomyces cerevisiae acti-

FIG. 7. Model for the activation of Ppr1p. DNA-bound Ppr1p senses the
level of DHO and/or OA within the nucleus. At low DHO levels, the URA genes are
transcribed at a constitutive level. Once the concentration of DHO rises
above a critical level, Ppr1p promotes the transcription of its target genes (URA1, URA3, URA4, and URA10). DHO interacts with the carboxyl-terminal region of
Ppr1p to release the activation domain and allow it to interact with the RNA
polymerase II transcriptional machinery. Activating the URA genes will promote
the conversion of DHO to OA and eventually the biosynthesis of UTP and CTP.
UTP will down-regulate the enzymatic activity of Ura2p, thereby modulating the
induction of DHO formation.
directly binds DHO/OA. OA is more efficient than DHO at the
conversion of Ppr1p into a transcriptional activator. This finding
raises the question as to the nature of the physiological
inducer of Ppr1p. Ura2p is known to be an exclusively nuclear
enzyme in S. cerevisiae (19). The cellular location of Ura4p has
not been identified, but Ura1p (which converts DHO to OA) is
found in the cytoplasm (18). Therefore, assuming that neither
DHO or OA is nuclear excluded, either should be available for interaction with Ppr1p.

How might interaction with DHO or OA convert Ppr1p into a transcriptional activator? The DHO-OA interaction region of Ppr1p colocalizes with the transcriptional activation domain since Ppr1p(770-904) fused to a heterologous DNA binding domain activates transcription in a DHO/OA-dependent fash-
ion. This finding confirms that the predominantly acidic car-
boxyl-terminal end of Ppr1p is indeed the activation do-
main and also suggests that activation and response to DHO
and/or OA are closely linked. It is tempting to speculate that in
the absence of DHO or OA, the activation domain of Ppr1p is
constrained in such a way that it is not visible to the transcrip-
tional machinery. Upon binding of either DHO or OA, Ppr1p
undergoes a conformational change to release the activation
domain, thereby promoting transcription. Parallels can be
drawn between our results with Ppr1p and those obtained for
Leu3p, the activator of the branched-chain amino acid meta-
bolic genes (5, 6). Leu3p is also activated by a small-molecule
intermediate of the pathway it controls, α-isopropylmalate
(26). The precise effect of α-isopropylmalate on Leu3p is un-
clear, but it appears to disrupt an intramolecular interaction
between the activation domain (the C-terminal end of Leu3p)
and an internal region of the protein (4, 27). The release of
the activation domain presumably allows transcriptional activation
to occur. The colocalization of the activation domain and
DHO/OA-responsive region that we observe for Ppr1p may
suggest that if this type of intramolecular repression occurs
with Ppr1p, then it does so over a more limited range.

In vitro, we observe that high concentrations of either DHO
or OA inhibit the transcriptional activity of Ppr1p. This inhibi-
tion can be relieved by higher concentrations of Ppr1p. High
levels of DHO or OA have no effect on other activators (Fig.
5A), and so it appears that this effect is specific for Ppr1p. We
have no evidence that this inhibition is physiologically signifi-
ant, but it is possible that Ppr1p contains two binding sites for
DHO and OA. Binding to the first site induces Ppr1p activity,
while binding at both sites—presumably requiring a higher
concentration of DHO and OA—inhibits Ppr1p activity.
This may provide another mechanism for controlling the flux
through the pyrimidine biosynthetic pathway. The intracellular
levels of DHO, OA, and Ppr1p within yeast have not yet been
experimentally determined.

It has previously been shown that DNA binding by Ppr1p is
independent of DHO (24). We also observe constitutive Ppr1p
DNA binding in vitro, but high-affinity binding of the full-
length protein is dependent on a component found in a num-er of cell extracts (Fig. 3). The identity of this component
is unclear, although it does not appear to be a protein or a
pyrimidine or purine biosynthetic intermediate. It should also
be noted that other C6 zinc cluster proteins purified from
baculovirus-infected insect cells are able to bind to their cog-
nate DNA sites without the requirement for added cell extracts
(3a). The effects of the extracts on the binding of full-length
Ppr1p are large. In the absence of the extract, high concentra-
tions of Ppr1p are required to observe even modest levels of
DNA binding. The extracts also aid DNA binding of the iso-
lated Ppr1p DNA binding domain, although the effect is ob-
served only at low concentrations of Ppr1p(29-123). We there-
fore suggest that the effect of the compound in the extract is to
stabilize the Ppr1p-DNA interaction. The relevance of this
effect in vivo is not clear at present, and its potential ramifi-
cations for the activation of URA gene expression await iden-
tification of the factor from the extracts.

ACKNOWLEDGMENTS

We thank Josh Brickman, Stanley Liang, and Ronen Marmorstein
for the gifts of plasmids; Judith Stanway, Ian Taylor, and Rob Hock-
ney, Zeneca Pharmaceuticals, for help and assistance in making pro-
teins in insect cells; and Adam Platt, Cristina Merlotti, and Ronen
Marmorstein for carefully reading the manuscript.

This work was supported by grants from the Biotechnology and
Biological Sciences Research Council to R.J.R.

