
A Theorem Prover for a
Computational Logic

1Robert S. Boyer
J Strother Moore

Technical Report 54
April, 1990

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951
This report was the keynote address at the 10th
International Conference on Automated
Deduction, July, 1990 in Kaiserslautern,
W. Germany. The views and conclusions
contained in this document are those of the
authors and should not be interpreted as
representing the official policies, either
expressed or implied, or Computational Logic,
Inc. or the U.S. Government.

1Mailing address: Computer Sciences Department, University of Texas at Austin, Austin, TX 78712,
USA

1

Abstract

We briefly review a mechanical theorem-prover for a logic of recursive functions over
finitely generated objects including the integers, ordered pairs, and symbols. The
prover, known both as NQTHM and as the Boyer-Moore prover, contains a mechanized
principle of induction and implementations of linear resolution, rewriting, and arithmetic
decision procedures. We describe some applications of the prover, including a proof of
the correct implementation of a higher level language on a microprocessor defined at the
gate level. We also describe the ongoing project of recoding the entire prover as an
applicative function within its own logic.

2

1 Introduction

We feel honored to be invited to give the keynote address for CADE-10. We thank
Mark Stickel and the program committee for the invitation.

It has been suggested that we discuss our theorem prover and its application to proving
the correctness of computations. We have been working on our prover, on and off, since
about 1972 [9]. This prover is known both as the Boyer-Moore theorem prover and as
NQTHM. (pronounced en-que-thum, an acronym for ‘‘New, Quantified THeoreM
Prover,’’ an uninspired parochialism that has taken on a life of its own). The details of
our prover and its applications have been extensively presented in several books and
articles. In fact, from these publications the prover has been recoded by at least three
other groups. In this paper, we will (a) very briefly review the prover and its
applications, (b) provide pointers to the literature on the prover and its applications, and
(c) discuss ACL2, a new development of the prover which involves recoding it in its
own logic, a subset of applicative Common Lisp.

In the subsequent discussion, we will make reference to two books, which are the main
references on NQTHM. They are (a) A Computational Logic [11] which we will
abbreviate as ‘‘ACL’’ and (b) A Computational Logic Handbook [18] which we will
abbreviate as ‘‘ACLH’’. Although a decade old, ACL still provides a rather accurate
description of many of the prover’s heuristics and some simple applications, whereas the
much more recent ACLH accurately describes the current logic and user interface.

2 The Logic

Although many theorem provers, especially those of the resolution tradition, are
designed to work with arbitrary collections of first order axioms, NQTHM is designed to
be used mainly with the fixed set of axioms we provide, typically augmented by a
number of definitions provided by the NQTHM user. Questions one might ask about
the NQTHM theory are ‘‘What are the well-formed formulas, what are the axioms, and
what are the rules of inference?’’ The precise answers to these questions may be found
in Chapter 4 of ACLH. Roughly speaking, in that chapter, we present our logic (the
Boyer-Moore Logic or NQTHM Logic, as it is sometimes known) by starting from
standard first order logic as in [70] and then adding some axioms that describe certain
data structures, including the integers, ordered pairs, and symbols. We include in the
logic a principle of definition for recursive functions over these data structures. Among
our rules of inference is a schema for proof by induction. This schema would be merely
a derived rule of inference were we to cast our induction axioms in the traditional form.

The syntax of our logic is close to that of Lisp. In fact, from the time we started writing
our prover [9] we have regarded it as a theorem prover for a theory of Lisp functions.
Some of the earliest theorems we proved mechanically were inspired by some of
McCarthy’s seminal papers on the logic of Lisp, including [54], [56], and [58]. Because
Lisp may be viewed as both a logic and a programming language, we have always found
it a most natural setting in which to express theorems about computations and other
parts of constructive mathematics.

Both the axioms of the NQTHM logic and the conjectures it entertains are quantifier
free, or, more precisely, implicitly universally quantified ‘‘on the far outside.’’ In fact,
NQTHM does not include rules for manipulating quantifiers at all. However, by using

3

recursive functions, we are able to express many of the things that one usually expresses
with quantifiers when dealing with ‘‘finite’’ objects such as trees of integers. For
example, to state and prove the uniqueness and existence of prime factorizations [11],
we define recursive functions which factor integers and which compute whether two
finite sequences of integers are permutations of one another. This practice of using
recursive functions to do work one might do with quantifiers may have been originated
by Skolem in [71], who was perhaps the earliest to demonstrate that arithmetic could be
built up using entirely constructive methods. Skolem’s program is further carried out in
[34].

Here is an example of a definition that one might give to the prover for a function that
appends, i.e. concatenates, two lists:

Definition.
(APP X Y)

=
(IF (LISTP X)

(CONS (CAR X) (APP (CDR X) Y))
Y)

In rough English, this definition says that to append a list X to a list Y, if X is nonemtpy,
then construct (i.e. CONS) the list whose first element is the first element of X, i.e. (CAR
X) , and whose other elements are the result of appending the rest of X, i.e. (CDR X),
and Y. On the other hand, if X is empty, just return Y.

A simple example of a theorem that one might ask NQTHM to prove is the associativity
of APP, which one would state as

Theorem.
(APP (APP X Y) Z) = (APP X (APP Y Z))

We discuss a proof of this theorem below when we describe the induction heuristic.

3 The Prover

3.1 How to Get a Copy

NQTHM is a Common Lisp program whose source files require about one million
characters. NQTHM runs in a variety of Common Lisps including Lucid, Allegro,
Symbolics, and KCL. It is publicly available, but a license is now required. We have
recently started to require a license to keep track of copies at the strong suggestion of
one of our sponsors. We previously distributed the same code without copyright or
license. At the time of this writing, a copy may be obtained without fee by anonymous
ftp from Internet site cli.com (start with the file /pub/nqthm/README) or on tape for a
modest fee by writing to the authors at Computational Logic, 1717 W. 6th St., Austin,
Texas 78703. The currently released version of NQTHM was first released in July of
1988, and no bugs affecting soundness have been reported as of the time of this writing.
The chapter of ACLH on installation describes in complete detail how to bring up
NQTHM from the sources.

4

3.2 WARNING: Difficulty of Use

It is hard, perhaps impossible, to use NQTHM effectively without investing a substantial
amount of time learning how to use it. To avoid disappointment, a prospective user
should probably be prepared first to understand most of two rather long books, ACL and
ACLH. Almost all of the successful users of NQTHM have in fact also taken a course
from us at the University of Texas at Austin on proving theorems in our logic. Based
upon teaching related courses at Stanford, our former student N. Shankar advises that a
user unfamiliar with the heuristics employed in the prover, as described in great detail in
ACL, is very unlikely to direct the prover to prove anything significant. Besides
precisely describing the logic of NQTHM, ACLH also serves as a user’s manual,
describing in great detail all of the commands with which one can direct the prover.

3.3 Heuristic Character of NQTHM

NQTHM is a heuristic theorem-prover. By heuristic, we mean that we have coded
guessing strategies for searching through the space of possible proofs for conjectures.
For example, NQTHM guesses when it is best to cut off ‘‘back chaining’’. If the guess
is wrong, which it can easily be, then no proof may be found. As another example,
NQTHM often guesses an induction to try, when all other proof techniques cease to be
applicable. If the guess is wrong, then NQTHM will irrevocably go chasing down a
search path that is probably totally fruitless. On the other hand, because NQTHM does
have heuristics, NQTHM is able to find proofs for what we believe is a remarkable
number of theorems. One crude measure of the effectiveness of NQTHM is that it is
always is able to make an above average grade on the final examinations we give to our
students in an introductory graduate course on proving theorems in the NQTHM logic.

We were inspired in part to build a theorem prover that is heuristic by the success of
W. W. Bledsoe [4], [5] in writing such theorem provers, including one that guessed
inductions based upon the terms in the conjecture. One of the major concerns in the
literature on automated reasoning in the 60’s and 70’s was with the completeness of
proof procedures. NQTHM is certainly not complete, except when guided by a
knowledgeable user.

3.4 Induction

Perhaps the most important heuristic in NQTHM is the induction heuristic. The key to
the success of our induction heuristic is that it is closely tied to the principle of recursive
definition which we employ. For example, to prove the associativity of APP, mentioned
above, NQTHM would guess to induction on X by CDR, i.e. by the length of the first
argument. This induction mirrors the way that APP recurses. An important part of the
induction heuristic is filtering out suggested inductions which are ‘‘not likely’’ to work,
such as the induction on Y by CDR in the theorem above.

The NQTHM practice of not permitting quantification but of permitting the user to
define recursive functions to express what might otherwise require quantification has an
effect of forcing the user to hint implicitly how to prove conjectures: try inductions that
mirror the definitions of the recursive functions used in the conjectures. This heuristic is
startlingly successful for the NQTHM logic.

5

3.5 Simplification

Besides induction, the other most important theorem proving component in NQTHM is
the simplifier. The simplifier combines rewriting (cf. [74] and [4]) with linear and
binary resolution and subsumption (cf. [65] and [53]). The simplifier also includes a
semi-decision procedure for a part of arithmetic, based upon ideas in [36].

An aspect of our simplifier that accounts for much of its effectiveness is a ‘‘type set’’
facility which keeps track, for each expression actively under consideration, a bit-
mask’s worth of information indicating a conservative estimate of the ‘‘type’’ of the
expression in terms of the basic data types of the NQTHM Logic. The type set
procedure, like most of the current simplifier, is described in ACL.

3.6 Other Heuristics

Of considerably less significance than induction or simplification are various NQTHM
routines which are named ‘‘elimination of destructors,’’ ‘‘cross fertilization,’’
‘‘generalization,’’and ‘‘elimination of irrelevance.’’ The structure of NQTHM, at least
as it was in 1979, is described in complete detail in ACL. That work remains a largely
accurate description of NQTHM except for (a) the integration of the arithmetic decision
procedure, described in [19], (b) the addition of metafunctions and an efficient
representation for large constant terms, described in [12], (c) some simplifications of the
induction machinery that have never been documented, (d) the axiomatization of an
interpreter for partial recursive functions [20], and (e) an implementation of a derived
rule of inference called ‘‘functional instantiation’’ [8].

4 The Importance of the User in Finding Proofs

Although NQTHM is quite capable of finding proofs for some simple theorems with
which even graduate students may struggle, we think of NQTHM as more of a proof
checker than as a theorem-prover. What do we mean by this distinction? It is perhaps
not possible to spell out clearly what the distinction is. However, whenever we have in
mind an interesting theorem for NQTHM to prove, we almost always expect to have to
suggest to NQTHM what the main intermediate steps to the proof are. We do expect
NQTHM to do a great deal of tedious work filling in minor details. And when filling in
such minor details, NQTHM very often exposes minor oversights in our statement of
theorems. The situation is entirely different for some ‘‘real theorem-provers,’’ such as
those of Wu and Chou [27], which one expects to decide quickly any theorem in their
domain.

The earliest version of NQTHM [9] had no facility for user guidance. The power of that
early version of the prover may be very crudely characterized by saying that, starting
from Peano’s axioms, and analogous axioms for lists, the prover could not prove
anything much more difficult than the associativity of multiplication or the correctness
of an insertion sort algorithm.

In order to permit NQTHM to prove theorems harder than these (without ‘‘cheating’’ by
adding additional formulas as axioms), the most important step we took was to permit
the user to suggest ‘‘lemmas,’’ i.e. intermediate theorems, which would first be proved
by NQTHM and then made available for use in subsequent proofs, mainly by the
simplifier [10]. Permitting the use of lemmas on the one hand makes NQTHM feel
more like a proof checker than a theorem prover, but on the other hand it permits the

6

checking of a very substantial part of elementary number theory [66], even including
Gauss’s law of quadratic reciprocity (the crown jewel of number theory), and the
correctness of some interesting algorithms [16].

5 Our Motivation: Computer System Correctness

Given that NQTHM is not a very ‘‘smart’’ theorem prover, one might well ask why we
have kept working on it for so many years! Our main motivation has been to develop
NQTHM into a system that can be used in a practical way to check the correctness of
computer systems, thereby reducing the frequency of bugs in computer programs.

The idea of proving the correctness of algorithms is at least as old as Euclid’s
demonstration of the correctness of an algorithm for finding the greatest common
divisor of two integers [29]. The idea of correctness proofs is also clearly stated in the
classic papers of Goldstine and von Neumann [73] that describe the first von Neumann
machine and how to use it. In those papers fifteen programs, including a sort routine,
are specified, coded in machine language, and proved correct. Although correctness
proofs were undoubtedly constructed by many early programmers, publications about
this idea seem rare until the 60s, when McCarthy [56], Floyd [30], Hoare [35], and
Burstall [26] described means for proving the correctness of programs written in higher
level languages. Subsequently a rather sizable literature on the subject has developed.

Proofs of the correctness of computing systems seem to be much longer, much more
tedious, and much more error prone than proofs in ordinary mathematics. The
additional length is due to the fact that the computing systems may easily require
hundreds of pages of specification, whereas most propositions in mathematics can easily
be stated in a few pages -- even if one includes the axiomatization of set theory,
analysis, and algebra. The tediousness and error level are perhaps due to this length and
also to the fact that many parts of computing systems are mathematically boring.

The idea of mechanically checking proofs of correctness of computing systems has been
pursued by many researchers, e.g. those mentioned in the review article [7]. Research
on this topic has grown to the extent that there are several research laboratories (e.g. the
Computer Science Laboratory of SRI International) and several small companies (e.g.
our own Computational Logic, Inc. and Richard Platek’s Odyssey Associates, Inc.)
which devote a major portion of their efforts to research on this topic.

6 Applications

We and others have used NQTHM to check the correctness of many small programs.
However, after many years of effort, we are beginning to see mechanical correctness
proofs of entire small computing systems. By far, the most significant application of
NQTHM has been to a prove the correctness of a computing system known as the CLI
Stack, which includes (a) a microprocessor design (FM8502) based on gates and
registers [38], (b) an assembler (Piton) [61] that targets FM8502, and (c) a higher level
language (micro Gypsy) [76] that targets Piton. We have also seen a proof of
correctness of a small operating system kernel (KIT) [2]. Except for the Piton work, all
of these projects represent Ph.D. dissertations in computer science which we supervised
at the University of Texas. FM8502, Piton, micro Gypsy, and Kit are documented in
one place, a special issue of the Journal of Automated Reasoning [62].

7

Another major application of NQTHM is the Ph.D. work of N. Shankar in proof
checking Godel’s incompleteness theorem [69]. The text of this proof effort is included
in the standard distribution of NQTHM, along with Shankar’s checking of the Church-
Rosser theorem.

On pp. 4-9 of ACLH, we enumerate many other applications of NQTHM, including
those in list processing, elementary number theory, metamathematics, set theory, and
concurrent algorithms. Descriptions of some of these applications may be found in
[16, 66, 12, 21, 17, 67], [68, 69, 20, 60, 28, 51, 37, 52], [13, 14, 15, 22, 77], and also in
[1, 31, 32, 33, 40, 75, 3], [48, 44, 41, 42], [39, 45, 23, 24, 25].

Recently colleagues of ours at Computational Logic, Inc., Bill Young and Bill Bevier,
have used NQTHM to construct mechanically checked proofs of properties relating to
fault-tolerance. A key problem facing the designers of systems which attempt to ensure
fault tolerance by redundant processing is how to guarantee that the processors reach
agreement, even when one or more processing units are faulty. This problem, called the
Byzantine Generals problem or the problem of achieving interactive consistency, was
posed and solved by Pease, Shostak, and Lamport [64, 50]. They proved that the
problem is solvable if and only if the total number of processors exceeds three times the
number of faulty processors and devised an extremely clever algorithm (the ‘‘Oral
Messages’’ Algorithm) which implements a solution to this problem. Bill Young and
Bill Bevier, have just finished developing a machine checked proof of the correctness of
this algorithm using NQTHM.

Matt Kaufmann, of Computational Logic, Inc., has made extensive additions to
NQTHM, building a system called ‘‘PC-NQTHM’’ on top of NQTHM, which many
find more convenient than NQTHM for checking proofs. Information about PC-
NQTHM and some extensions and applications may be found in
[46, 49, 45, 47, 63, 43, 76]. Among the theorems which Kaufmann has checked with
PC-NQTHM are:

• Ramsey’s theorem for exponent 2 (both finite and infinite versions), with
explicit bound in the finite case [41, 46].

• Correctness of an algorithm of Gries for finding the largest ‘‘true square’’
submatrix of a boolean matrix [40].

• The Cantor-Schroeder-Bernstein theorem [46].

• The correctness of a Towers of Hanoi program.

• The irrationality of the square root of 2.

• Correctness of a finite version of the collapsing function of Cohen forcing.

7 Work in Progress: ACL2

We are currently constructing an entirely new version of our prover. The name of the
new system is A Computational Logic for Applicative Common Lisp, which might be
abbreviated as ‘‘ACL ACL’’ but which we abbreviate as ‘‘ACL2’’. Whereas NQTHM
has been available for some time, extensively documented, and widely used, ACL2 is
still very much under development. Hence the following remarks are somewhat
speculative.

8

Instead of supporting ‘‘Boyer-Moore logic’’, which reflects an odd mixture of functions
vaguely, but not consistently, related to Lisp 1.5 and Interlisp, ACL2 directly supports
perfectly and accurately (we hope) a large subset of applicative Common Lisp. That is,
ACL2 is to applicative Common Lisp what NQTHM is to the ‘‘Boyer-Moore logic’’, a
programming/theorem proving environment for an executable logic of recursive
functions.

More precisely, we have identified an applicative subset of Common Lisp and
axiomatized it, following Steele’s [72] carefully. Because arrays, property lists,
input/output and certain other commonly used programming features are not provided
applicatively in Common Lisp (i.e., they all involve the notion of explicit state changes),
we axiomatized applicative versions of these features. For example, when one
‘‘changes’’ an array object, one gets a new array object. However, we gave these
applicative functions very efficient implementations which are in complete agreement
with their axiomatic descriptions but which happen to execute at near von Neumann
speeds when used in the normal von Neumann style (in which ‘‘old’’ versions of a
modified structure are not accessed). The result is ‘‘applicative Common Lisp’’ which
is also an executable mathematical logic.

Like NQTHM, the logic of applicative Common Lisp provides a definitional principle
that permits the sound extension of the system via the introduction of recursive
functions. Unlike NQTHM, however, functions in applicative Common Lisp may be
defined only on a subset of the universe. Like NQTHM, the new logic provides the
standard first order rules of inference and induction. However, the axioms are different
since, for example, NQTHM and ACL2 differ on what (CAR NIL) is. Most
importantly for the current purposes, we claim that all correct Common Lisps implement
applicative Common Lisp directly and that, unlike NQTHM’s logic, applicative
Common Lisp is a practical programming language.

ACL2 is a theorem prover and programming/proof environment for applicative
Common Lisp. ACL2 includes all of the functionality of NQTHM (as understood in the
new setting) plus many new features (e.g., congruence-based rewriting). The source
code for ACL2 consists of about 1.5 million characters, all but 43,000 of which are in
applicative Common Lisp. That is, 97% of ACL2 is written applicatively in the same
logic for which ACL2 proves theorems. The 3% of non-applicative code is entirely at
the top-level of the read-eval-print user interface and deals with reading user input, error
recovery and interrupts. We expect to implement read applicatively and limit the non-
applicative part of ACL2 to the essential interaction with the underlying Common Lisp
host system.

Thus, in ACL2 as it currently stands, the definitional principle is implemented as a
function in logic, including the syntax checkers, error handlers, and data base handlers.
The entire ‘‘Boyer-Moore theorem prover’’ -- as that term is now understood to mean
‘‘the theorem prover Boyer and Moore have written for ACL2’’ -- is a function in the
logic, including the simplifiers, the decision procedures, the induction heuristics, and all
of the proof description generators.

The fact that almost all of ACL2 is written applicatively in the same logic for which it is
a theorem prover allows the ACL2 source code to be among the axioms in that
definitional extension of the logic. The user of the ACL2 system can define functions,

9

combine his functions with those of ACL2, execute them, or prove things about them, in
a unified setting. One need only understand one language, Common Lisp, to use the
‘‘logic’’, interact with the system, interface to the system, or modify the system.
DEFMACRO can be used to extend the syntax of the language, users can introduce their
own front-ends by programming within the logic, and all of the proof routines are
accessible to users and have exceptionally clear (indeed, applicative) interfaces. Many
new avenues in metatheoretic extensibility are waiting to be explored. We believe we
have taken a major step towards the goal of perhaps someday checking the soundness of
most of the theorem prover by defining the theorem prover in a formalized logic.

At the time of this writing, we have completely recoded all of the functionality of
NQTHM, but have only begun experimentation with proving theorems. However, our
preliminary evidence is that there will be no substantial degradation in performance,
even though ACL2 is coded applicatively.

8 Conclusions

8.1 Proof Checking as a Mere Engineering Challenge

In our view it seems humanly feasible to write mechanical proof checkers for any part of
mathematics and to check mechanically any result in mathematics. There has been
much doubt cast on the feasibility of formal proofs, even by such respected authorities
as Bourbaki [6]

But formalized mathematics cannot in practice be written down in full, and therefore
we must have confidence in what might be called the common sense of the
mathematician ... We shall therefore very quickly abandon formalized mathematics ...

We believe that we have enough practical evidence to extrapolate that mechanical proof
checking any mathematical result is feasible, not some mere theoretical possibility
which would require a computer the size of the universe. We can make no definite
claim about the cost of doing such proof checking, given a suitable proof checker, but
we suspect that in the worst case it is somewhere between approximately ten and one
hundred times as expensive as doing careful hand proofs at the level of an upper level
undergraduate mathematics textbook. In a few areas of mathematics, such as those
described by [27] the cost is much less than doing careful hand proofs. We are
optimistic that research by top mathematicians will expand the areas in which
mechanical theorem-provers are better than most mathematicians.

8.2 Checking the Correctness of Computing Systems

Almost as a corollary to the preceding view, we assert that it is humanly feasible to
check mechanically the correctness of computer systems against formal specifications
for those systems. Moreover, we believe that the reliability of computing systems could
and should be increased significantly by requiring that critical systems be formally
specified and that their correctness with respect to those specifications be mechanically
checked. Again, we make no definite claim about the cost of doing such certification,
but given that, for example, there exist microprocessors that are in control of nuclear
weapons, we believe that the cost of doing such checking may well be less than the cost
of not doing such checking.

10

8.3 Formalizing the Real World

Although the correctness of algorithms and even systems is something that is reasonably
clearly understood from a mathematical point of view, it remains a major and largely
unexplored area of research to formalize the interactions of computing systems with the
‘‘real world.’’ Even correctly formalizing the behavior of a typical industrial
microcontroller, with its myriad timers, interrupts, buses, and A/D converters seems to
be on the edge of the state of the art of formalization. Any claim that a computing
system has been formally proved to interact safely with the world is no better than the
accuracy with which the behavior of the world has been formalized. The difficulty of
accurately formalizing the behavior of the world does not diminish the fact that typically
a very large part of what any computing system is supposed to do (especially the
internal workings) can be formally specified, and that part is suitable for scrutiny with
formal, mechanical proof attempts.

9 Acknowledgements

We want to express our thanks to a number of people who have contributed significantly
towards making NQTHM a successful prover.

The first version of our prover was developed in the amazingly fertile environment of
Edinburgh University in the period 1971 to 1974. While working in Bernard Meltzer’s
Metamathematics Unit (which then became the Department of Computational Logic),
we had the joy of working with such figures as J.A. Robinson, Bob Kowalski, Pat
Hayes, Alan Bundy, Aaron Sloman, and Woody Bledsoe. In nearby groups, such as the
Department of Machine Intelligence, we found inspiration from the likes of Rod
Burstall, Donald Michie, Robin Popplestone, Gordon Plotkin, Michael Gordon, Bruce
Anderson, David Warren, Raymond Aubin, Harry Barrow, John Darlington, and Julian
Davies. The time and place seemed to be embued with quiet inspiration. It is hard for
us to imagine that our prover could have put down its roots anyplace else.

John McCarthy’s influence on our work has been major. His invention of Lisp gave us
a language [55, 59] in which to write NQTHM. His papers on proof checking, e.g. [57],
and the mathematical theory of computation [58] gave us incentive to write a prover for
program verification, reasoning techniques to encode, and sample theorems on which to
work. We have mentioned above Woody Bledsoe’s influence on our work in showing
how to write heuristic theorem provers similar to ours.

We thank Rod Burstall for his inspiring and elegant paper on structural induction [26].
We thank Burstall, Michie, and Popplestone for use of the POP2 system running on an
ICL 4130 on which we coded the earliest version of our prover. POP2 is a Lisp-like
language with an Algol-like syntax and many features ahead of its time, including
streams and abstract data types, which influenced the design of the shell construct in the
NQTHM logic.

At SRI International and Xerox PARC (JSM), we translated our prover into Lisp and
made major extensions to it. We owe a debt of thanks to many people there for their
support and encouragement, including Robert W. Taylor, Warren Teitelmann, Peter
Deutsch, Butler Lampson, Jack Goldberg, Peter Neumann, Karl Levitt, Bernie Elspas,
Rob Shostak, Jay Spitzen, Les Lamport, Joe Goguen, Richard Waldinger, Nils Nilsson,
and Peter Hart.

11

We owe our user community a major debt. In particular, we acknowledge the
contributions of Bill Bevier, Bishop Brock, S.C. Chou, Ernie Cohen, Jimi Crawford,
David Goldschlag, C.H. Huang, Warren Hunt, Myung Kim, David Russinoff, Natarajan
Shankar, Mark Woodcock, Matt Wilding, Bill Young, and Yuan Yu. In addition, we
have profited enormously from our association with Matt Kaufmann, Hans Kamp, Chris
Lengauer, Norman Martin, John Nagle, Carl Pixley, and Bill Schelter. Topher Cooper
has the distinction of being the only person to have found an unsoundness in a released
version of our system.

We also most gratefully acknowledge the support of our colleagues at the Institute for
Computing Science at the University of Texas, now almost all at Computational Logic,
especially Don Good and Sandy Olmstead who created and maintained at the Institute a
creative and relaxed research atmosphere with excellent computing facilities. In 1986
we moved our entire verification research group (and its atmosphere) off campus and
established Computational Logic, Inc.

Notwithstanding the contributions of all our friends and supporters, we would like to
make clear that NQTHM is a very large and complicated system that was written
entirely by the two of us. Not a single line of Lisp in our system was written by a third
party. Consequently, every bug in it is ours alone. Soundness is the most important
property of a theorem prover, and we urge any user who finds such a bug to report it to
us at once.

The development of our logic and theorem prover has been an ongoing effort for the last
18 years. During that period we have received financial support from many sources.
Our work has been supported for over a decade by the National Science Foundation and
the Office of Naval Research. Of the many different grants and contracts involved we
list only the latest: NSF Grant DCR-8202943, NSF Grant DCR81-22039, and ONR
Contract N00014-81-K-0634. We are especially grateful to NSF, ONR, and our
technical monitors there, Tom Keenan, Bob Grafton, and Ralph Wachter, for years of
steady support and encouragement.

The development of our prover is currently supported in part at Computational Logic,
Inc., by the Defense Advanced Research Projects Agency, ARPA Order 6082 and by the
Office of Naval Research, ONR Contract N00014-88-C-0454.

We have received additional support over the years from the following sources, listed
chronologically: Science Research Council (now the Science and Engineering Research
Council) of the United Kingdom, Xerox, SRI International, NASA, Air Force Office of
Scientific Research, Digital Equipment Corporation, the University of Texas at Austin,
the Venture Research Unit of British Petroleum, Ltd., and IBM.

We thank Bill Schelter for the numerous suggestions he has made for improving the
performance of NQTHM under Austin-Kyoto Common Lisp.

Thanks to Anne Boyer for editing this and other writings.

Finally, we wish to express one negative acknowledgement. The research group
assembled at Edinburgh in the early 70’s was scattered to the winds by the ‘‘Lighthill
Report,’’ the devastatingly negative review of artificial intelligence in Britain conducted

12

by Sir James Lighthill. If computing becomes the dominant branch of both science and
engineering, as seems possible, we hope that renowned computer scientists, if asked,
will take the greatest care to review new developments in physics with humility, not
arrogance, and not attempt to quash new developments that do not fit into old paradigms
of science.

13

References

1. W. Bevier. A Verified Operating System Kernel. Ph.D. Th., University of Texas at
Austin, 1987.

2. W. R. Bevier. "Kit and the Short Stack". Journal of Automated Reasoning 5, 4
(1989), 519-530.

3. William Bevier, Matt Kaufmann, and William Young. Translation of a Gypsy
Compiler Example into the Boyer-Moore Logic. Internal Note 169, Computational
Logic, Inc., January, 1990.

4. W.W. Bledsoe. "Splitting and Reduction Heuristics in Automatic Theorem Proving".
Artificial Intelligence 2 (1971), 55-77.

5. W. Bledsoe, R. Boyer, and W. Henneman. "Computer Proofs of Limit Theorems".
Artificial Intelligence 3 (1972), 27-60.

6. N. Bourbaki. Elements of Mathematics. Addison Wesley, Reading, Massachusetts,
1968.

7. R. S. Boyer and J S. Moore. "Program Verification". Journal of Automated
Reasoning 1, 1 (1985), 17-23.

8. R. S. Boyer, D. M. Goldschlag, M. Kaufmann, and J S. Moore. Functional
Instantiation in First Order Logic, Report 44. Computational Logic, 1717 W. 6th St.,
Austin, Texas, 78703, U.S.A., 1989. To appear in the proceedings of the 1989
Workshop on Programming Logic, Programming Methodology Group, University of
Goteborg.

9. R. S. Boyer and J S. Moore. "Proving Theorems about LISP Functions". JACM 22,
1 (1975), 129-144.

10. R. S. Boyer and J S. Moore. A Lemma Driven Automatic Theorem Prover for
Recursive Function Theory. Proceedings of the 5th Joint Conference on Artificial
Intelligence, 1977, pp. 511-519.

11. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York,
1979.

12. R. S. Boyer and J S. Moore. Metafunctions: Proving Them Correct and Using
Them Efficiently as New Proof Procedures. In The Correctness Problem in Computer
Science, R. S. Boyer and J S. Moore, Eds., Academic Press, London, 1981.

13. R. S. Boyer and J S. Moore. A Verification Condition Generator for FORTRAN.
In The Correctness Problem in Computer Science, R. S. Boyer and J S. Moore, Eds.,
Academic Press, London, 1981.

14. R. S. Boyer and J S. Moore. The Mechanical Verification of a FORTRAN Square
Root Program. SRI International, 1981.

15. R. S. Boyer and J S. Moore. MJRTY - A Fast Majority Vote Algorithm. Technical
Report ICSCA-CMP-32, Institute for Computing Science and Computer Applications,
University of Texas at Austin, 1982.

14

16. R. S. Boyer and J S. Moore. "Proof Checking the RSA Public Key Encryption
Algorithm". American Mathematical Monthly 91, 3 (1984), 181-189.

17. R. S. Boyer and J S. Moore. "A Mechanical Proof of the Unsolvability of the
Halting Problem". JACM 31, 3 (1984), 441-458.

18. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
New York, 1988.

19. R. S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic
Theorem Provers: A Case Study with Linear Arithmetic. In Machine Intelligence 11,
Oxford University Press, 1988.

20. R. S. Boyer and J S. Moore. "The Addition of Bounded Quantification and Partial
Functions to A Computational Logic and Its Theorem Prover". Journal of Automated
Reasoning 4 (1988), 117-172.

21. R. S. Boyer and J S. Moore. A Mechanical Proof of the Turing Completeness of
Pure Lisp. In Automated Theorem Proving: After 25 Years, W.W. Bledsoe and D.W.
Loveland, Eds., American Mathematical Society, Providence, R.I., 1984, pp. 133-167.

22. R. S. Boyer, M. W. Green and J S. Moore. The Use of a Formal Simulator to
Verify a Simple Real Time Control Program. In D. Gries, et. al, Ed., Beauty Is Our
Business, Springer, 1990. To Appear.

23. A. Bronstein and C. Talcott. String-Functional Semantics for Formal Verification
of Synchronous Circuits, Report No. STAN-CS-88-1210. Computer Science
Department, Stanford University, 1988.

24. A. Bronstein. MLP: String-functional semantics and Boyer-Moore mechanization
for the formal verification of synchronous circuits. Ph.D. Th., Stanford University,
1989.

25. A. Bronstein and C. Talcott. Formal Verification of Synchronous Circuits based on
String-Functional Semantics: The 7 Paillet Circuits in Boyer-Moore. C-Cube 1989
Workshop on Automatic Verification Methods for Finite State Systems. LNCS 407,
1989, pp. 317-333.

26. R. Burstall. "Proving Properties of Programs by Structural Induction". The
Computer Journal 12, 1 (1969), 41-48.

27. S. Chou. Mechancial Geometry Theorem Proving. Reidel, 1988.

28. Benedetto Lorenzo Di Vito. Verification of Communications Protocols and
Abstract Process Models. Ph.D. Th., University of Texas at Austin, 1982.

29. T. L. Heath (translation and commentary). The Thirteen Books of Euclid’s
Elements. Dover, New York , 1908. p. 298, Vol 2., i.e. Proposition 2, Book VII.

30. R. Floyd. Assigning Meanings to Programs. In Mathematical Aspects of Computer
Science, Proceedings of Symposia in Applied Mathematics, American Mathematical
Society, Providence, Rhode Island, 1967, pp. 19-32.

31. David M. Goldschlag. "Mechanically Verifying Concurrent Programs with the
Boyer-Moore Prover". IEEE Transactions on Software Engineering (September 1990).
To appear.

15

32. David M. Goldschlag. Mechanizing Unity. In Proceedings of the IFIP TC2/WG2.3
Working Conference on Programming Concepts and Methods, M. Broy and C. B. Jones,
Eds., Elsevier, Amsterdam, 1990.

33. David M. Goldschlag. "Proving Proof Rules: A Proof System for Concurrent
Programs". Compass ’90 (June 1990).

34. R. L. Goodstein. Recursive Number Theory. North-Holland Publishing Company,
Amsterdam, 1964.

35. C. A. R. Hoare. "An Axiomatic Basis for Computer Programming". Comm. ACM
12, 10 (1969), 576-583.

36. L. Hodes. Solving Problems by Formula Manipulation. Proc. Second Inter. Joint
Conf. on Art. Intell., The British Computer Society, 1971, pp. 553-559.

37. C.-H. Huang and C. Lengauer. "The Automated Proof of a Trace Transformation
for a Bitonic Sort". Theoretical Computer Science 1, 46 (1986), 261-284.

38. W. A. Hunt. "Microprocessor Design Verification". Journal of Automated
Reasoning 5, 4 (1989), 429-460.

39. Matt Kaufmann. A Formal Semantics and Proof of Soundness for the Logic of the
NQTHM Version of the Boyer-Moore Theorem Prover. Internal Note 229, Institute for
Computing Science, University of Texas at Austin, February, 1987.

40. Matt Kaufmann. A Mechanically-checked Semi-interactive Proof of Correctness of
Gries’s Algorithm for Finding the Largest Size of a Square True Submatrix. Internal
Note 236, Institute for Computing Science, University of Texas at Austin, October,
1986.

41. Matt Kaufmann. An Example in NQTHM: Ramsey’s Theorem. Internal Note 100,
Computational Logic, Inc., November, 1988.

42. Matt Kaufmann. Boyer-Moore-ish Micro Gypsy and a Prototype Hardware
Expander. Internal Note 73, Computational Logic, Inc., August, 1988.

43. Matt Kaufmann. A Mutual Recursion and Dependency Analysis Tool for NQTHM.
Internal Note 99, Computational Logic, Inc., 1988.

44. Matt Kaufmann. A User’s Manual for RCL. Internal Note 157, Computational
Logic, Inc., October, 1989.

45. Matt Kaufmann and Matt Wilding. A Parallel Version of the Boyer-Moore Prover.
Tech. Rept. 39, Computational Logic, Inc., February, 1989.

46. Matt Kaufmann. DEFN-SK: An Extension of the Boyer-Moore Theorem Prover to
Handle First-Order Quantifiers. Tech. Rept. 43, Computational Logic, Inc., 1717 W. 6th
St, Suite 290, Austin, Texas, June, 1989.

47. Matt Kaufmann. Addition of Free Variables to an Interactive Enhancement of the
Boyer-Moore Theorem Prover. Tech. Rept. 42, Computational Logic, Inc., Austin,
Texas, May, 1989.

16

48. Matt Kaufmann. A Mechanically-checked Correctness Proof for Generalization in
the Presence of Free Variables. Tech. Rept. 53, Computational Logic, Inc., Austin,
Texas, March, 1990.

49. Matt Kaufmann. An Integer Library for NQTHM. Internal Note 182,
Computational Logic, Inc., March, 1990.

50. Leslie Lamport, Robert Shostak, and Marshall Pease. "The Byzantine Generals
Problem". ACM TOPLAS 4, 3 (July 1982), 382-401.

51. C. Lengauer. "On the Role of Automated Theorem Proving in the Compile-Time
Derivation of Concurrency". Journal of Automated Reasoning 1, 1 (1985), 75-101.

52. C. Lengauer and C.-H. Huang. A Mechanically Certified Theorem about Optimal
Concurrency of Sorting Networks. Proc. 13th Ann. ACM Symp. on Principles of
Programming Languages, 1986, pp. 307-317.

53. D. Loveland. Automated Theorem Proving: A Logical Basis. North Holland,
Amsterdam, 1978.

54. J. McCarthy. "Recursive Functions of Symbolics Expressions and their
Computation by Machine". Communications of the Association for Computing
Machinery 3, 4 (1960), 184-195.

55. J. McCarthy. The Lisp Programmer’s Manual. M.I.T. Computation Center, 1960.

56. J. McCarthy. Towards a Mathematical Science of Computation. Proceedings of
IFIP Congress, 1962, pp. 21-28.

57. J. McCarthy. Computer Programs for Checking Mathematical Proofs. Recursive
Function Theory, Proceedings of a Symposium in Pure Mathematics, Providence, Rhode
Island, 1962, pp. 219-227.

58. J. McCarthy. A Basis for a Mathematical Theory of Computation. In Computer
Programming and Formal Systems, P. Braffort and D. Hershberg, Eds., North-Holland
Publishing Company, Amsterdam, The Netherlands, 1963.

59. J. McCarthy, et al. LISP 1.5 Programmer’s Manual. The MIT Press, Cambridge,
Massachusetts, 1965.

60. J S. Moore. "A Mechanical Proof of the Termination of Takeuchi’s Function".
Information Processing Letters 9, 4 (1979), 176-181.

61. J. S. Moore. "A Mechanically Verified Language Implementation". Journal of
Automated Reasoning 5, 4 (1989), 461-492.

62. J. S. Moore, et. al. "Special Issue on System Verification". Journal of Automated
Reasoning 5, 4 (1989), 409-530.

63. Matt Kaufmann. A User’s Manual for an Interactive Enhancement to the Boyer-
Moore Theorem Prover. Tech. Rept. 19, Computational Logic, Inc., Austin, Texas,
May, 1988.

64. Marshall Pease, Robert Shostak, and Leslie Lamport. "Reaching Agreement in the
Presence of Faults". JACM 27, 2 (April 1980), 228-234.

17

65. J. A. Robinson. "A Machine-oriented Logic Based on the Resolution Principle".
JACM 12, 1 (1965), 23-41.

66. David M. Russinoff. "An Experiment with the Boyer-Moore Theorem Prover: A
Proof of Wilson’s Theorem". Journal of Automated Reasoning 1, 2 (1985), 121-139.

67. N. Shankar. "Towards Mechanical Metamathematics". Journal of Automated
Reasoning 1, 4 (1985), 407-434.

68. N. Shankar. A Mechanical Proof of the Church-Rosser Theorem. Tech. Rept.
ICSCA-CMP-45, Institute for Computing Science, University of Texas at Austin, 1985.

69. N. Shankar. Proof Checking Metamathematics. Ph.D. Th., University of Texas at
Austin, 1986.

70. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, Ma., 1967.

71. T. Skolem. The Foundations of Elementary Arithmetic Established by Means of the
Recursive Mode of Thought, without the Use of Apparent Variables Ranging over
Infinite Domains. In From Frege to Godel, J. van Heijenoort, Ed., Harvard University
Press, Cambridge, Massachusetts, 1967.

72. G. L. Steele, Jr. Common Lisp The Language. Digital Press, 30 North Avenue,
Burlington, MA 01803, 1984.

73. J. von Neumann. John von Neumann, Collected Works, Volume V. Pergamon
Press, Oxford, 1961.

74. L. Wos, et al. "The concept of demodulation in theorem proving". Journal of the
ACM 14 (1967), 698-709.

75. Matt Kaufmann and William D. Young. Comparing Gypsy and the Boyer-Moore
Logic for Specifying Secure Systems. Institute for Computing Science, University of
Texas at Austin, May, 1987. ICSCA-CMP-59.

76. W. D. Young. "A Mechanically Verified Code Generator". Journal of Automated
Reasoning 5, 4 (1989), 493-518.

77. Yuan Yu. "Computer Proofs in Group Theory". Journal of Automated Reasoning
(1990). To appear.

Table of Contents

1. Introduction . 2
2. The Logic . 2
3. The Prover . 3

3.1. How to Get a Copy . 3
3.2. WARNING: Difficulty of Use . 4
3.3. Heuristic Character of NQTHM . 4
3.4. Induction . 4
3.5. Simplification . 5
3.6. Other Heuristics . 5

4. The Importance of the User in Finding Proofs 5
5. Our Motivation: Computer System Correctness 6
6. Applications . 6
7. Work in Progress: ACL2 . 7
8. Conclusions . 9

8.1. Proof Checking as a Mere Engineering Challenge 9
8.2. Checking the Correctness of Computing Systems 9
8.3. Formalizing the Real World . 10

9. Acknowledgements . 10

i

