
Subtyping Recursive Games

Juliusz Chroboczek

Université de Paris VII
Paris, France

Abstract. Using methods drawn from Game Semantics, we build a
sound and computationally adequate model of a simple calculus that
includes both subtyping and recursive types. Our model solves recursive
type equations up to equality, and is shown to validate a subtyping rule
for recursive types proposed by Amadio and Cardelli.

Introduction

Subtyping is an ordering relation over types that is an essential feature of a wide
range of programming languages. While at first order subtyping corresponds
to inclusion of the carriers, there is no simple set-theoretic interpretation of
subtyping at higher order.

Many programming languages also include recursive types — types that are
defined implicitly, as fixpoints of maps over types. The interaction of recur-
sive types with subtyping has been studied before [4], and shown to present a
number of interesting challenges. While both are important features of many
programming languages, there are only few interpretations that satisfactorily
model both.

Game Semantics is a framework for modelling programming languages that
combines the elegant mathematical structure of Denotational Semantics with
explicitly operational notions. Due to the blend of the two, Game Semantics has
been successful at modelling a wide range of programming language features. In
a previous work [7], we have shown how the simple feature of adding explicit
error elements to Game Semantics allows us to model subtyping; in this paper,
we extend this model to include recursive types, and show that it validates the
subtyping rule for recursive types proposed by Amadio and Cardelli [4].

There are two main new results in this paper. First, we show how a minor
modification of the operational semantics of the untyped model presented in an
earlier makes the model computationally adequate (Sections 1.1 and 2.2), thus
solving the main open problem in our previous paper [7]. Second, we show how
the space of games, used for modelling types, can be equipped with a metric
that allows us to construct recursive types; the metric is shown to interact with
the order structure related to subtyping so as to validate the desired subtyping
rules (Sections 4 and 5).

1 A λ-calculus with errors

We consider an untyped λ-calculus with ground values, defined by the following
syntax:

M, N, N ′ ::= x | λx.M | (M N)

| (M, N) | πl(M) | πr(M)

| tt | f f | top | if M then N else N ′ fi.

The only unusual feature of this calculus is the presence of a ground value top

that will be used for representing the result of badly-typed terms.
Our calculus may be equipped with an operational semantics e.g. by defining

a one step reduction relation on terms. For our calculus, a common choice —
the call-by-name semantics — consists of the rules

((λx.M) N) M [x\N]

πl((M, N)) M πr((M, N)) N

if tt then N else N ′ fi N if f f then N else N ′ fi N ′

M M ′

E[M] E[M ′]

where the set of evaluation contexts E[·] is defined by

E[·] ::= ([·] N) | πl([·]) | πr([·]) | if [·] then N else N ′ fi.

In general, we will be interested in computations that take more than one step.
The reduction relation ∗ is the transitive reflexive closure of .

We say that a term M reduces to value V , written M ↓ V , if M ∗ V where
V is a value. We write M ↓ when there exists a value V such that M ↓ V , and
M ↑ otherwise.

1.1 Errors in the calculus

The relation ↓ is not total; a number of terms do not reduce to values. This
is expected, as we have done nothing whatsoever to prevent the formation of
meaningless terms.

Let δ be the term λx.(x x). The term (δ δ) does not reduce to a value; (δ δ)
leads to an infinite sequence of one-step reductions:

(δ δ) (δ δ) (δ δ) · · ·

A very different example of a term that fails to reduce to a value is

M = if λx.x then tt else ff fi

In this case, small-step semantics shows that the reduction remains “stuck” at
a non-value term: there is no M ′ such that M M ′. In our view, this situation

corresponds to a runtime error — an exceptional situation detected during the
reduction of a term. As our calculus contains no constructs that allow us to
handle (“trap”) such errors, we shall use the term untrappable error.

We will use the term top to represent untrappable errors. Intuitively, a term
should reduce to top whenever its reduction gets “stuck” with no applicable rule;
unfortunately, such a simple extension does not quite work. Indeed, consider the
“identity on the Booleans” IBool = λx.if x then tt else ff fi; this term behaves
as the identity when applied to a Boolean, but returns an error when applied to a
function or a pair. Let now Y be a fixpoint combinator, and consider the “looping
Boolean” (Y IBool); intuitively, we would expect this term to loop when invoked
in a Boolean context, but return an error when e.g. applied. The reduction
relation ↓, augmented as suggested above, causes it to loop (this problem is
expressed technically by the failure of computational adequacy of our model
w.r.t. ↓ [7, Section 2.3]).

We therefore define a different reduction relation, written ⇓, which is ex-
plicitly decorated with the locus of the computation. To do so, we introduce a
notion of initial component, a finite sequence over {1, l, r} (the empty sequence
is written ǫ). Walking the syntax tree of a type, computation happening on the
right-hand-side of an arrow is marked by 1; computation happening on the left-
hand-side (resp. right-hand-side) of a product is marked by l (resp. r). A family
of reduction relations, indexed by initial components, is defined in Fig. 1.

As usual, we write M ⇑c when there is no V such that M ⇓c V . We write ǫ

for the empty component, and |c| for the length of component c.

To clarify this definition, note that the form of a value resulting from reduc-
tion at initial component c is determined by c. More precisely, if M is a closed
term and c an initial component such that M ⇓c V , then one of the following is
true:

– V = top; or

– c = ǫ and V = f f or V = tt; or

– c is of the form 1 · c′ and V is of the form λx.M ′; or

– c is of the form l · c′ or r · c′, and V is of the form (N, P).

Conversely,

– if (M, N) ⇓c P , then either c is of the form l · c′ or r · c′, or P = top;

– if λx.M ⇓c N , then either c is of the form 1 · c′ or N = top;

– tt ⇓c N or f f ⇓c N , then either c = ǫ or N = top.

There is also a simple relationship between ⇓ and the simple reduction re-
lation ↓; it shows that the extension that we introduce only concerns erroneous
reductions. Roughly speaking, the relations ⇓ and ↓ coincide, except in the case
in which ⇓ yields an untrappable error and ↓ diverges. More precisely, M ↓ V

implies that for some initial component c, M ⇓c V . Conversely, M ↑ implies that
for all c, either M ⇑c or M ⇓c top. Finally, if for some c, M ⇑c, then M ↑.

tt ⇓ǫ tt ff ⇓ǫ ff tt ⇓c top (c 6= ǫ) ff ⇓c top (c 6= ǫ)

λx.M ⇓1·c λx.M λx.M ⇓c top (c 6= 1 · c′)

(M, N) ⇓l·c (M,N) (M, N) ⇓r·c (M, N) (M, N) ⇓c top (c = ǫ or c = 1 · c′)

M ⇓1·c λx.M
′

M
′[x\N] ⇓c P

(M N) ⇓c P

M ⇓1·c top

(M N) ⇓c top

M ⇓l·c (N, P) N ⇓c N
′

πl(M) ⇓c N
′

M ⇓r·c (N, P) P ⇓c P
′

πr(M) ⇓c P
′

M ⇓l·c top

πl(M) ⇓c top

M ⇓r·c top

πr(M) ⇓c top

M ⇓ǫ tt N ⇓ǫ N
′

if M then N else P fi ⇓ǫ N
′

M ⇓ǫ ff P ⇓ǫ P
′

if M then N else P fi ⇓ǫ P
′

M ⇓ǫ top

if M then N else P fi ⇓ǫ top
if M then N else P fi ⇓c top (c 6= ǫ)

Fig. 1. Big-step semantics with errors and initial components

1.2 Errors and denotational semantics

It is not immediately obvious how to model errors in Denotational Semantics.
Consider for example the domain of Booleans. One choice would be to add an
error value error “on the side” (Fig. 2(a)); another one would be to add a value
top as a top element (Fig. 2(b)).

It is our view that errors on the side model (trappable) exceptions, while
errors at top model untrappable errors. Consider, indeed, the addition to our
calculus of a term ignore-errors that would satisfy

ignore-errors tt ⇓ǫ tt

ignore-errors ff ⇓ǫ tt

ignore-errors top ⇓ǫ f f

Denotationally, such a term would have to map tt to tt while mapping top to
f f , which would be a non-monotone semantics. On the other hand, modelling an
analogous term using error instead of top would cause no problem at all.

tt ff error

⊥

@@@@@@@@

~~~~~~~

mmmmmmmmmmmmmmm

(a)

top

{{
{{

{{
{{

CC
CC

CC
CC

tt ff

⊥

CCCCCCCC

{{{{{{{{

(b)

Fig. 2. Two domains of Booleans with errors

Errors “on the side,” or exceptions, have been studied before [6]; in this
paper, we adopt the domain in Fig. 2(b).

The addition of a top value to Scott domains was a common feature of
early Denotational Semantics. However, this value does not seem to be used
for modelling anything, but is just added to domains in order to turn them into
complete lattices.

1.3 Observational preorder

In order to complete the definition of the semantics of our calculus, we need to
introduce a notion of equivalence of terms. This is usually done by defining a
set of observations, which is then used to define a congruent preorder on terms
known as the observational preorder. We choose our set of observations to consist
of the observations “reduction to top at ǫ,” “reduction to tt at ǫ” and “reduction
to f f at ǫ,” ordered analogously to Fig. 2(b).

Definition 1. (Observational preorder)

M . N iff ∀C[·]







C[M ] ⇓ǫ top ⇒ C[N ] ⇓ǫ top;
C[M ] ⇓ǫ tt ⇒ C[N ] ⇓ǫ tt or C[N ] ⇓ǫ top;
C[M ] ⇓ǫ f f ⇒ C[N ] ⇓ǫ f f or C[N ] ⇓ǫ top.

We say that two terms M and N are observationally equivalent, and write M ∼=
N , when M . N and N .M .

As usual in calculi with ground values, the observational preorder can be
defined by just one well-chosen observation; one possible choice is reduction to
top at ǫ.

Lemma 2. M . N if and only if

∀C[·] C[M ] ⇓ǫ top ⇒ C[N ] ⇓ǫ top.



Informally, this lemma says that terms are equivalent if and only if they
generate errors in the same set of contexts.

It is worthwhile to compare our calculus with Abramsky’s lazy λ-calculus [1].
Writing Ω for the looping term (e.g. Ω = ((λx.(x x)) λx.(x x))), notice that Ω

and λx.Ω are observationally distinct. Indeed, taking

C[·] = if · then tt else ff fi

we have C[Ω] ⇑ǫ, while C[λx.Ω] ⇓ǫ top. On the other hand, as we shall see
in Section 2, we introduce no explicit lifting in a sound and computationally
adequate model. Thus, we believe that our calculus combines the most desirable
characteristics of what Abramsky calls the standard interpretation of the λ-
calculus with those of the lazy calculus. The fundamentally call-by-name nature
of the construction is reflected in the syntax by the fact that the terms top and
λx.top are observationally equivalent (see the end of Section 2.2).

2 A game semantics for the untyped calculus

This section roughly outlines the semantic framework used for modelling untyped
terms. As Game Semantics has been described before [2, 11], and so has our
particular framework [7, 8], this section remains informal.

In Game Semantics, a term is represented by a strategy, the set of its be-
haviours in all possible contexts. A behaviour is modelled as a play between two
players, Player, who represents the term under consideration, and Opponent,
who represents its environment (the context it is in). The two players exchange
tokens of information known as moves — one may think of these as (visible)
actions in process calculi, or messages in message-passing object-oriented lan-
guages. By convention, Opponent plays first when modelling a call-by-name
calculus.

Moves are structured into components which correspond to paths in the syn-
tax tree of a type. For example, a strategy corresponding to a term of type
Bool → Bool exchanges moves in components 0 (the left-hand-side of the ar-
row) and 1. Precisely, a move is of the form mc, where m is one of q, the question,
att, the answer true, or aff , the answer false, and c, the component of the move,
is a finite string over 0, 1, l, r. In addition, moves are decorated with justification
pointers which, while absolutely necessary for the correction of the interpreta-
tion, are not essential for the ideas in this paper.

A position is an alternating sequence of moves — odd-ordered moves played
by Opponent, even-ordered ones by Player. A strategy is a set of positions that
specify the moves played by Player in response to a given sequence of moves
from Opponent.

The main novelty of the formalism used in this work and introduced in [8, 7] is
that we allow strategies to refuse moves, which is used for modelling untrappable
errors. Concretely, this is realised by allowing strategies to contain both even- and
odd-length positions. In a spirit similar to that of Harmer [9, Chapter 4], even-
length positions represent moves that are played by Player, while odd-length
positions represent situations in which player loops.



Definition 3. A set s of positions is

– prefix-closed if p · q ∈ s implies p ∈ s for any positions p and q;
– even-prefix-closed if p · q ∈ s and |p| even imply p ∈ s for any positions p

and q;
– deterministic if for any position p ∈ s, if |p| is odd then, for any moves m

and n,
• p · m ∈ s and p · n ∈ s imply m = n; and
• p · m ∈ s implies p 6∈ s.

A strategy is a non-empty even-prefix-closed deterministic set of positions.

For any collection of positions A, we write Pref A for the prefix completion of A.
The even-prefix-closedness condition in this definition says that a strategy

cannot mandate that Opponent should play at a given position: a strategy must
allow for the situation in which Opponent never plays a move. As to the deter-
minacy condition, it states that a strategy cannot mandate either playing two
distinct moves or both playing and not playing a move at a given position. Taken
together, even-prefix-closedness and determinacy imply that an odd-length po-
sition in a strategy cannot be extended (i.e. if p ∈ s and |p| is odd, then no p · q
is in s): once a strategy has refused to play a move, the play will not proceed
further.

In [7], we define a certain number of strategies. The strategy top consists
of the single empty position ǫ; this strategy never accepts an Opponent’s move.
The strategy Ω consists of all positions of length 1; thus, it always accepts an
initial move from Opponent, but never plays a move. The strategy tt consists
of all even-length positions composed of alternations of the moves q and att;
thus, it always accepts an initial question, and replies with the answer true (f f
is analogous).

The class of strategies that copy moves between components are known as
the copy-cat strategies; this class includes the identity I, the projections πr and
πl, and, to a certain extent, the “if-then-else” strategy ite. In addition, we use a
number of operations on strategies, including (functional) pairing 〈·, ·〉, currying
Λ(·), as well as the injection K(·) which “shifts” a strategy into component 1.

Composition of strategies s and t is performed by ranging over all behaviours
in s and t, selecting those that are agree on a common component, and composing
them, similarly to Baillot et al. [5]. However, we cannot just use their formalism,
as we need to take into account livelock, or infinite chattering, the situation
in which two strategies never disagree but never have positions that coincide.
Indeed, suppose that when composing s with t, after the initial move is played
in component 1 of t, both t and s keep playing in the common component. In
this case, the two strategies would never ultimately reach agreement, and yet
neither would ever play a move that is not accepted by the other.

Definition 4. Given a natural integer n, we say that two positions p and q

agree at depth n if p and q only contain moves within components 1 and 0, and
the prefix of length n of p ↾ 1 is equal to the prefix of same length of q ↾ 0 (or
p ↾ 1 = q ↾ 0 if both projections are of length smaller than n).



Given two strategies s and t, the strategy s; t is the set of all positions p such
that for any natural integer n, there exist positions q ∈ s and q′ ∈ t such that q

and q′ agree at depth n, q ↾ 0 = p ↾ 0 and q′ ↾ 1 = p ↾ 1.

2.1 The liveness ordering

We now introduce an ordering — the liveness ordering 4 — which will model
the observational preorder, the typing relation, and the subtyping relation (Lem-
mata 10 and 21 and Theorem 22), and is inspired by Abramsky’s “back-and-forth
inclusion relation” [2]. The definition of the liveness ordering is analogous to that
of the observational preorder. Just like for terms M and N we have M . N when
M produces errors in less contexts than N , and N produces results in more con-
texts than M (Definition 1), we will want strategies s and t to satisfy s 4 t if and
only if s accepts more positions and produces less positions than t when playing
against any given opponent. We define 4 on prefix-closed sets of positions, and
deduce a suitable definition for strategies from that.

For any non-empty position p, we write p−1 for the prefix of p of length |p|−1
(i.e. p without its last move).

Definition 5. Given non-empty prefix-closed sets of positions A and B, we say
that B is more live than A, or A is safer than B, and write A 4 B, if

– for every position of odd length q ∈ B, if q−1 ∈ A then q ∈ A; and
– for every position of even length p ∈ A (p 6= ǫ), if p−1 ∈ B, then p ∈ B.

The definition of 4 may be paraphrased as follows. Given a prefix-closed collec-
tion of positions A, a position p is said to be reachable at A if p−1 ∈ A or p = ǫ.
In order to have A 4 B, the set of odd-length positions (positions ending in an
Opponent’s move) in A that are reachable at A needs to be a superset of the set
of odd-length positions in B; and, dually, the set of even-length positions in B

that are reachable at B should be a superset of the even-length positions in A.
A clarification of the intuitions behind the liveness ordering may be found in [8,
7].

Theorem 6. The relation 4 is a partial order on non-empty prefix-closed col-
lections of positions.

The definition of 4 above does not yield a transitive or antireflexive relation on
arbitrary sets of positions. We may, however, extend 4 to all non-empty sets of
positions by writing A 4 B whenever Pref(A) 4 Pref(B); while this only makes
4 into a preorder on arbitrary sets of positions, it does actually make it into a
partial order on strategies.

Lemma 7. If s and t are strategies, then Pref(s) = Pref(t) implies s = t. The
relation 4 is therefore a partial order on strategies.

This property does depend on the fact that we have restricted ourselves to
deterministic strategies.



2.2 Interpretation of the calculus

We interpret a couple Γ ⊢ M , where Γ is an (ordered) list of variables, and M

a term such that FV(M) ⊆ Γ . The interpretation is defined as follows.

[[x ⊢ x]] = I [[Γ ⊢ λx.M ]] = Λ([[Γ, x ⊢ M ]])

[[Γ, x ⊢ x]] = πr [[Γ ⊢ (M N)]] = 〈[[Γ ⊢ M ]], [[Γ ⊢ N ]]〉; eval

[[Γ, y ⊢ x]] = πl; [[Γ ⊢ x]] [[Γ ⊢ (M, N)]] = 〈[[Γ ⊢ M ]], [[Γ ⊢ N ]]〉

[[Γ ⊢ tt]] = K(tt) [[Γ ⊢ πl(M)]] = [[Γ ⊢ M ]]; πl

[[Γ ⊢ f f ]] = K(f f) [[Γ ⊢ πr(M)]] = [[Γ ⊢ M ]]; πr

[[Γ ⊢ top]] = top [[Γ ⊢ if M then N else N ′ fi]] =
= 〈[[Γ ⊢ M ]], 〈[[Γ ⊢ N ]], [[Γ ⊢ N ′]]〉〉; ite

The notion of soundness that we use is somewhat complicated by the fact
that we use a family of reduction relations. Given a component c, we say that
two strategies s and t are equal at component c, and write s =c t, when the sets
of positions starting with qc in s and t coincide.

Lemma 8. (Equational Soundness) If [[Γ ⊢ M ]] is defined and M ⇓c N , then
[[Γ ⊢ N ]] is defined and [[Γ ⊢ N ]] =1·c [[Γ ⊢ M ]].

The interpretation is also computationally adequate.

Lemma 9. (Computational Adequacy) If [[Γ ⊢ M ]] is defined and there is no
term N such that M ⇓ǫ N , then [[Γ ⊢ M ]] =1 ⊥.

In order to prove this property, we use a variant of Plotkin’s method of formal
approximation relations. We say that a family ⊳c of relations between strategies
and terms, indexed by initial components, is a family of formal approximation
relations when it satisfies a number of fairly natural properties that imply in
particular that s ⊳ǫ M implies s =1 ⊥ or M ⇓ǫ. We then show the existence
of such a family, and that for any closed term M and initial component c,
[[Γ ⊢ M ]] ⊳c M , which allows us to conclude by a standard argument.

Soundness, computational adequacy and Lemma 2 imply inequational sound-
ness.

Lemma 10. (Inequational Soundness) For any two terms M and N , if [[M ]] 4
[[N ]] then M . N .

Inequational soundness can often be used for proving properties about the
calculus itself. For example, as the terms top and λx.top have the same inter-
pretation, we may conclude that they are in fact observationally equivalent.

3 Type assignment and subtyping

In order to define a type assignment on our calculus, we assume the existence
of a countable set of type variables X, Y, . . . and define the syntax of types as
follows,

A, B ::= Bool | ⊤ | X | A × B | A → B | µX.C



where the type C is guarded in the type variable X . Thus, types consist of the
ground type Bool of Booleans, the type ⊤ of all terms, type variables, product
types, arrow types, and recursive types.

The set of types guarded in a type variable X is defined by the grammar

C, D ::= Bool | ⊤ | Y | A × B | A → B | µY.C

In order to speak about subtyping of recursive types, we need a notion of co-
variant type. The set of types covariant in a type variable X is defined by the
grammar

E, F ::= Bool | ⊤ | X | Y | E × F | G → E | µY.E

where G is contravariant in X ; the set of types contravariant in a type variable
X is defined by the grammar

G, H ::= Bool | ⊤ | Y | G × H | E → G | µY.G

An environment is a set of type variables and a map from variables to types.
We use the letter E to range over environments, and write

X, Y, x : C, y : D

for the environment that specifies the free type variables X and Y , and maps x

to C, y to D and all other type variables and variables to ⊤.
We use two kinds of judgements. A subtyping judgement is of the form E ⊢

A ≤ B and specifies that in the environment E, the type A is a subtype of the
type B; we write E ⊢ A = B for E ⊢ A ≤ B and E ⊢ B ≤ A. A typing judgement
is of the form E ⊢ M : A and states that in the environment E, the term M has
type A.

The set of inference rules used for typing is given in Figures 3 and 4. Some-
what unusual is the fact that there are no explicit rules for the folding and
unfolding of recursive types; these rules can in fact be derived from the penul-
timate rule in Fig. 4 and subsumption (the last rule in Fig. 3). The last rule in
Fig. 4 is the subtyping rule proposed by Amadio and Cardelli [4].

3.1 Games and the liveness ordering

Types will be interpreted as games. A game is a set of positions that provide a
specification that a strategy may or may not satisfy.

As we use the liveness ordering to interpret typing, a game A provides not
only a specification for Player but also a specification for Opponent. A strategy
s belongs to the game A if its behaviour satisfies the constraints expressed by A,
but only as long as Opponent behaves according to A; Player’s behaviour is oth-
erwise unrestricted. Technically, this is expressed by the reachability condition
in the definition of the liveness ordering.

Definition 11. A game is a non-empty prefix-closed set of positions.



E ⊢ M : ⊤ E, x : A ⊢ x : A

E, x : A ⊢ M : B

E ⊢ λx.M : A → B

E ⊢ M : A → B E ⊢ N : A

E ⊢ (M N) : B

E ⊢ tt : Bool E ⊢ ff : Bool

E ⊢ M : Bool E ⊢ N : A E ⊢ P : A

E ⊢ if M then N else P fi : A

E ⊢ M : A E ⊢ N : B

E ⊢ (M, N) : A × B

E ⊢ M : A × B

E ⊢ πl(M) : A

E ⊢ M : A × B

E ⊢ πr(M) : B

E ⊢ M : A E ⊢ A ≤ B

E ⊢ M : B

Fig. 3. Typing rules

We write G for the set of games.
The game ⊤ = {ǫ} is the maximal element of the lattice of games. The game

Bool of Booleans it is defined as the set of all interleavings of positions in Pref tt
and Pref f f . The game A×B consists of the set of the injections of all positions
in A in the component l, the injections of all positions in B in the component r,
and all interleavings of such positions. Finally, the game A → B consists of all
positions p entirely within components 0 and 1 such that p ↾ 0 is an interleaving
of positions in A and p ↾ 1 is an interleaving of positions in B.

4 A metric on games

In order to solve recursive type equations, we use Banach’s fixpoint theorem. We
recall that a metric space is said to be complete when every Cauchy sequence has
a limit. A map over a metric space (X, d) is said to be Lipschitz with constant
λ > 0 when for all x, y ∈ X , d(f(x), f(y)) ≤ λd(x, y). Such a map is said to be
nonexpanding when λ ≤ 1, and contractive when λ < 1.

Theorem 12. (Banach) A contractive map f over a complete metric space has
a unique fixpoint fix(f).

In order to solve recursive type equations using Banach’s theorem, we need
to equip the set of games G with a metric that makes it into a complete space;



E ⊢ A ≤ A
E ⊢ A ≤ B E ⊢ B ≤ C

E ⊢ A ≤ C

E ⊢ A ≤ ⊤ E ⊢ ⊤ ≤ A → ⊤

E ⊢ A′ ≤ A E ⊢ B ≤ B′

E ⊢ A → B ≤ A′ → B′

E ⊢ A ≤ A′ E ⊢ B ≤ B′

E ⊢ A × B ≤ A′ × B′

E ⊢ µX.B[X] = B[µX.B[X]]

E, X ⊢ A[X] ≤ B[X]

E ⊢ µX.A[X] ≤ µX.B[X]
(A, B covariant in X)

Fig. 4. Subtyping rules

furthermore, the metric should make all type constructors into contractive maps.
Games, being prefix-closed collections of sequences, may be seen as trees, so it
would seem natural to equip G with the tree metric. Unfortunately, this simple
approach does not yield enough contractive maps, failing in particular to make
the product contractive. For this reason, we apply the tree metric method twice,
once to components and once to positions.

Definition 13. Let p = m0 · · ·mn−1 be a position, and Mp the set of moves m

such that p ·m is a position. For any move m ∈ Mp, the weight of m w.r.t. p is
defined by wp(m) = 2−|c|, where c is the component of m.

The ultrametric dp on Mp is defined, for distinct moves m, m′, as dp(m, m′) =
2−|c|, where c is the longest common prefix of the components of m, m′.

We are now ready to define the metric on positions that will serve our needs.
Given two distinct positions p and p′, either one is the prefix of the other, in
which case we will use the weight of the first differing move, or neither is a prefix
of the other, in which case we use the distance between the first differing moves.

Definition 14. Given a position p = q ·mn = m0 ·m1 · · ·mn−1 ·mn, the weight
of p is defined as w(p) = 2−nwq(mn).

The metric d on the set of positions is defined as follows. Given two distinct
positions p, p′, let q = m0 · · ·mn−1 be their longest common prefix. If

p = q · mn · r, p′ = q · m′
n · r′,

then d(p, p′) = 2−ndq(mn, m′
n). On the other hand, if

p = q · mn · r, p′ = q,

then d(p, p′) = 2−nwq(mn).



Note that this metric does not induce the discrete topology on the set of posi-
tions; games, however, are closed with respect to it, and therefore we may still
apply the Hausdorff formula to games.

Definition 15. The metric d on the set of games is defined by the Hausdorff
formula

d(A, B) = max(sup
p∈A

inf
q∈B

d(p, q), sup
p∈B

inf
q∈A

d(p, q)).

As the space of positions is not complete, and games are not necessarily
compact1, we cannot take any of the properties of Hausdorff’s metric for granted.
However, a fairly standard proof shows that in fact d does have all the desired
properties.

Theorem 16. The space of games (G, d) is a complete ultrametric space.

There is another property that we will need in order to prove soundness of
typing: the fact that least upper bounds preserve the ordering in some cases. The
following property is simple enough to prove directly and is sufficiently strong
for our needs:

Lemma 17. If A is a game, then the order ideal {B | B 4 A} is closed with
respect to d.

This is proved by considering a game C 64 A. If A contains a position p such
that p 6∈ C but all strict prefixes of p are in C, we define the real number δ as
the minimum of the weights of all prefixes of p, and show that for any B 4 A,
d(B, C) ≥ δ. A similar argument applies in the case when p ∈ C, p 6∈ A and all
strict prefixes of p are in A.

This property implies the following one, which we will need in order to prove
soundness:

Lemma 18. Let f, g : G → G be monotone, contractive maps over games such
that for any game A, f(A) 4 g(A). Then fix(f) 4 fix(g).

Finally, as the metric was constructed ad hoc, it is a simple matter to show
that all type constructors are contractive.

Lemma 19. The maps over games · × · and · → · are contractive in all of their
arguments.

5 Interpreting types

In order to interpret types, we need to give values to free type variables. A
type environment is a map from type variables to games; we range over type
environments with the Greek letter η. We write η[X\A] for the type environment

1 Actually, they are in this case, but would no longer necessarily be so if we chose to
use an infinite set of ground values.



that is equal to η except at X , which it maps to A, and interpret types as maps
from type environments to types as follows:

[[Bool]]η = Bool [[A × B]]η = [[A]]η × [[B]]η

[[⊤]]η = ⊤ [[A → B]]η = [[A]]η → [[B]]η

[[X ]]η = η(X) [[µX.A[X ]]]η = fix(λX .[[A]](η[X\X ]))

The well-foundedness of this definition is a consequence of the following lemma:

Lemma 20. If A is a type, then

(i) [[A]] is well-defined;
(ii) [[A]] is a pointwise nonexpanding map;
(iii) if A is guarded in X, then [[A]](η[X\X ]) is contractive in X ;
(iv) if A is covariant (resp. contravariant) in X, then [[A]](η[X\X ]) is monotone

(resp. antimonotone) in X .

The four properties are shown simultaneously by induction on the syntax of
types. The only issue with part (i) is that of the existence and unicity of fixpoints,
which is a consequence of part (iii) of the induction hypothesis, the fact that we
restrict the fixpoint operator to guarded types, and Banach’s fixpoint theorem.
Parts (ii) and (iii) follow from Lemma 19 and the fact that d is an ultrametric,
and part (iv) only depends on itself.

5.1 Soundness of typing

The following lemma expresses the soundness of subtyping and is proved by
induction on the derivation of E ⊢ A ≤ A′.

Lemma 21. (Soundness of subtyping) Let E be an environment, and A and A′

types such that E ⊢ A ≤ A′. Let η be a type environment; then [[A]]η 4 [[A′]]η.

The main novelty in this lemma is the soundness of the last subtyping rule for
the fixpoint operator; this is a consequence of Lemma 18.

Expressing the soundness of typing is slightly more involved, as we need to
consider not only free type variables but also free variables.

Theorem 22. Let E be a typing environment, M a term and A a type such
that E ⊢ M : A. Suppose that E = X1, . . . Xn, x1 : C1, . . . xm : Cm, and let
Γ = x1, . . . xm; let η be a typing environment, and C be the type C = (· · · (C1 ×
C2) × · · ·Cm). Then [[Γ ⊢ M ]] 4 [[C]]η → [[A]]η.

The usual statement of the safety of typing — that “well-typed terms cannot
go wrong” — translates in our setting into the statement that terms that have
a non-trivial type do not generate untrappable errors.

Corollary 23. (Safety of Typing) If ⊢ M : A, where M is a closed term and
A a closed type such that [[A]]∅ 6=ǫ ⊤, then it is not the case that M ⇓ǫ top.



6 Conclusions and further work

In a previous work [7], we have shown how the addition of explicit untrappable
errors to a simple λ-calculus with ground values induces a notion of subtyping,
and have shown a sound Game Semantics model of the calculus with explicit
errors and subtyping. In this paper, we have shown how an minor modification
of the operational semantics makes our model computationally adequate. We
believe that this calculus combines the best features of the standard and lazy
semantics of the λ-calculus.

In addition, we have shown how the model supports recursive types by using
fairly standard machinery, mainly a variant of the tree topology, and Banach’s
fixpoint theorem. By proving a property relating various order-theoretic and
metric topologies, we have shown how our model validates the subtyping rule
proposed by Amadio and Cardelli.

There is, however, an issue remaining. In [7], we have shown how the model
supports bounded quantification. As we note in [8], we have been unable to make
recursive types and quantifiers coexist in the same model. Indeed, while there
is no problem with quantifying over fixpoints, there is no apparent reason why
a least upper bound of contractive maps should itself be contractive; the issue
is analogous to the well-known lack of properties of intersection with respect to
Hausdorff’s metric.

References

1. S. Abramsky. The lazy Lambda calculus. In D. Turner, editor, Research Topics in

Functional Programming. Addison Wesley, 1990.
2. S. Abramsky. Semantics of interaction. In P. Dybjer and A. M. Pitts, editors,

Semantics and Logics of Computation. Cambridge University Press, 1997.
3. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF (extended

abstract). In Proc. TACS’94, volume 789 of Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 1994.

4. R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on

Programming Languages and Systems, 15(4):575–631, 1993.
5. P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Believe it or not, AJM’s games

model is a model of classical linear logic. In Proceedings of the Twelfth International

Symposium on Logic in Computer Science. IEEE Computer Society Press, 1997.
6. R. Cartwright, P.-L. Curien, and M. Felleisen. Fully abstract models of observably

sequential languages. Information and Computation, 111(2):297–401, 1994.
7. J. Chroboczek. Game Semantics and Subtyping In Proceedings of the Fifteenth An-

nual IEEE Symposium on Logic in Computer Science, Santa Barbara, California,
June 2000.

8. J. Chroboczek. Game Semantics and Subtyping. Forthcoming PhD thesis, Univer-
sity of Edinburgh, 2000.

9. R. Harmer. Games and Full Abstraction for Nondeterministic Languages. PhD
thesis, Imperial College, University of London, 1999.

10. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III. 1994.
11. G. McCusker. Games and Full Abstraction for a Functional Metalanguage with

Recursive Types. PhD thesis, Imperial College, University of London, 1996.


