
Automated Delegation is a Viable Alternative to
Multiple Inheritance in Class Based Languages

UVA Technical Report CS-98-03
John Viega, Bill Tutt, Reimer Behrends

March 3, 1998
Last revised: March 12, 1998

Abstract
Multiple inheritance is still a controversial feature in traditional object-oriented languages, as
evidenced by its omission from such languages as Modula-3, Objective C and Java™.
Nonetheless, users of such languages often complain about having to work around the absence of
multiple inheritance. Automating delegation, in combination with a multiple subtyping
mechanism, provides many of the same benefits as multiple inheritance, yet sidesteps most of the
associated problems. This simple feature could satisfy both the designers and the users of class
based object oriented languages.
In this paper, we discuss why automated delegation is desirable. We also present Jamie, a
freeware preprocessor-based extension to Java that offers such an alternative.

Automated Delegation is a Viable Alternative to
Multiple Inheritance in Class Based Languages

John Viega
Dept. Of Computer Science

University Of Virginia
Charlottesville, VA 22903

viega@list.org

Bill Tutt
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
billtut@microsoft.com

Reimer Behrends
Dept. Of Computer Science
University of Kaiserslautern

67653 Kaiserslautern, Germany
behrends@list.org

Abstract

Multiple inheritance is still a controversial feature
in traditional object-oriented languages, as evidenced
by its omission from such languages as Modula-3,
Objective C and Java™. Nonetheless, users of such
languages often complain about having to work around
the absence of multiple inheritance. Automating
delegation, in combination with a multiple subtyping
mechanism, provides many of the same benefits as
multiple inheritance, yet sidesteps most of the
associated problems. This simple feature could satisfy
both the designers and the users of class based object
oriented languages.

In this paper, we discuss why automated delegation
is desirable. We also present Jamie, a freeware
preprocessor-based extension to Java that offers such
an alternative.

1 Introduction
This paper discusses a language mechanism called

automated delegation, which we believe can be a
desirable alternative to multiple inheritance in class
based languages. The purpose of this feature is to
automate the practice of forwarding messages to
contained classes (commonly called delegation). This
automation provides an explicit mechanism for
abstraction, instead of leaving the user to devise ad
hoc solutions. At the same time, automated delegation
retains many of the advantages of multiple inheritance,
while avoiding its principal drawbacks.

Automated delegation is a subclassing mechanism;
i.e., a way by which one object derives methods and
possibly variables from another class. In particular, it
is a multiple subclassing mechanism, since it allows a
class to derive methods from more than one class. A

complement to multiple subclassing is multiple
subtyping, which is the ability for a type to be an
immediate refinement on multiple types. Both are
often seen coupled together as a single feature, which
is generally called multiple inheritance. However, this
definition of multiple inheritance is not universally
accepted. For example, multiple inheritance could be
used to refer to only one of multiple subtyping or
multiple subclassing, since the former is the ability to
inherit multiple types, and the later is the ability to
inherit multiple sets of methods and data. However,
the term multiple inheritance is generally not used to
refer to one without the other. For example, Java
interfaces are a multiple subtyping mechanism, yet
Java is generally considered to be lacking multiple
inheritance. In the course of this discussion, we will
refer to multiple inheritance as a mechanism that
provides both multiple subclassing and multiple
subtyping, coupled with the explicit notion of
inheritance. In contrast, automated delegation is a
subclassing mechanism that is separate from the
inheritance mechanism of a language. Thus, while a
complementary subtyping mechanism may exist, as
with Java, we will not refer to the combination as
multiple inheritance, since the mechanisms do not
embody the language’s notion of inheritance.

In section 2, we examine the arguments against
multiple inheritance as traditionally found in class
based programming languages, in order to understand
why it was deliberately omitted from programming
languages such as Java. In section 3 we discuss the
advantages of multiple inheritance, which an ideal
replacement would also provide. In section 4, we
discuss Java’s interface construct, showing why by
itself it is not a wholly adequate replacement for
multiple inheritance. Section 5 presents Jamie, which
is a language extension to Java that demonstrates our
ideas. Section 6 discusses the design decisions that we

made in adding this feature, and section 7 analyzes the
advantages and shortcomings of automated delegation
as a language feature.

2 Drawbacks of multiple inheritance
While multiple inheritance is a feature commonly

found in many modern class-based object-oriented
programming languages such as C++ and Eiffel, its
appeal is not universal, as demonstrated by its
exclusion from other prominent languages such as
Modula-3, Objective C and Java.

A common problem that any implementation of
multiple inheritance must address is how to handle
methods of the same signature inherited from multiple
base classes (commonly called a naming conflict).
Solutions to this problem can be divided into three
general categories:

• Implicit resolution: The language resolves name
conflicts with an arbitrary rule, such as the pre-
order traversal of an inheritance tree, as in Python.
A common technique that falls under this
classification is linearization of the inheritance
graph, which is essentially reducing the
inheritance graph to a flat list. This strategy is
common in object-oriented Lisp dialects, including
CLOS.

• Explicit resolution: The programmer must
explicitly resolve name conflicts in code. The way
programmers must resolve such conflicts varies
greatly from language to language. For example,
Eiffel requires that the programmer explicitly
remove all ambiguity by renaming functions until
there are no more clashes. In contrast, C++ allows
the ambiguity until used, at which time it requires
the caller to explicitly state the base class whose
implementation should be used as a part of a
method call, unless there is actually only one
implementation (i.e., if one virtual base class is
inherited multiple times).

• No resolution: naming conflicts are not allowed at
all.

Stroustrup notes that his practical experience shows
that order dependencies in a language are generally a
source of problems. He cites this problem as a reason
for requiring explicit resolution [Str94]. Indeed, it is
easy to see how it might be problematic if the
semantics of a program change based on whether a
class inherits A before B, or B before A. Linearization
has an additional problem in that a class’s “real”

superclass may not reflect its superclass after the
inheritance tree is linearized [Sny86]. This side effect
is undesirable because a class may pass messages back
to a different base class than the programmer intended.
While explicit resolution places the burden of
resolving names on the programmer, it does avoid
unanticipated, undesirable resolutions.

Another problem with naming conflicts is that two
methods with the same signature can be inherited that
do not refer to the same conceptual operation,
especially when a verb has two different yet common
meanings. Eiffel’s solution of having the programmer
rename methods to resolve name conflicts makes
resolving such a problem easier on the programmer.
However, a similar feature was considered for
inclusion into C++, and later rejected, since such
problems do not occur overly often, and such a
language feature can lead to following a convoluted
trail of chained aliases [Str94]. While most solutions to
name conflicts that demand explicit resolution provide
a straightforward and clear solution, none of them
have completely avoided criticism.

A comprehensive study of issues surrounding
naming conflicts is presented in [Knu88], which
suggests that attributes should be disambiguated at
class definition, so as to avoid limiting the utility of
multiple inheritance. We believe that this solution not
only maximizes flexibility but also is simple both for
the programmer and the language designer.

A less straightforward issue that language designers
must generally deal with when implementing multiple
inheritance is repeated inheritance, which is where
one class indirectly inherits from another class
multiple times. Should inheritance be virtual? That is,
should there be only one shared copy of the class
inherited multiple times, as in Trellis/Owl [SCB+86]?
Should there always be one copy for each time a class
is inherited, as in Python? Or should the programmer
have control, as in C++? Virtual inheritance removes
multiple copies of instance variables, which saves
space and prevents the accidental modification of the
wrong set of instance variables. However, unless
programmers anticipate potential sharing of instance
variables, unexpected side effects may occur. For
example, when a class operation performs a depth-first
traversal of the inheritance graph, the same class’
method may get called twice, unexpectedly [Sny86].
Also, sometimes having a base class explicitly
duplicated is the right design decision [Str94].

Yet another problem with multiple inheritance is
that it is often overused; i.e., some programmers use it
in an unclear or undesirable manner [Boo94].
Programmers often use multiple inheritance for
containment, even though they are generally taught to

only use it when the “IS-A” relationship is valid (We
will discuss what is usually considered acceptable use
in more detail in the next section). [Tai96] also notes
that multiple inheritance is often used inappropriately,
even in the literature. He cites [Mey88], who gave the
example of a Fixed_Stack class inheriting from
classes Stack and Array. His reasoning is that a
fixed-size stack is conceptually a specialization of a
stack only, and should therefore use the class Array
only as a contained component. However, while we
agree that multiple inheritance is frequently misused,
not everyone considers this example to be such a case.
See section 7 for an in-depth discussion, and its
implications for automated delegation.

Another significant problem with most
implementations of multiple inheritance is the
potential for obscure code. Take, for example, a class
A that inherits from classes B and C, which both define
a method foo(). When running code in C, and C
calls foo(), in many languages, A’s foo() method
will be used, which could be the method found in B,
and not the one found in C. When such a thing
happens, it is certainly not obvious at all when looking
at C’s code.

In general, multiple inheritance adds a lot of
complexity to an object oriented system, for both the
language designer and the end user, and thus is
potentially easy to misuse or obfuscate.

3 Advantages of multiple inheritance
While many people use any given subset of the

arguments presented in the previous section to
condemn multiple inheritance, it is still generally
considered to be a useful feature in languages that
provide it, and is a frequently requested feature in
languages that do not. Programmers often resort to
devising their own mechanisms to do what they
otherwise would have used multiple inheritance to do.
One of the advantages of multiple inheritance is that it
obviates such ad hoc solutions that would otherwise be
fairly common.

 The most common strategy for simulating multiple
inheritance in such a language is writing code to
delegate messages to an instantiated object. Take, for
example, a military simulation in Java, where we are
writing a class Tank, which needs to inherit from
class Vehicle. We would like to implement the
Armored interface in class Tank using an instance of
the TankArmor class, which provides
implementations of all methods in the Armored
interface, although it may or may not explicitly be

declared with an implements clause. To do these
things, we might write the following code:

class Tank extends Vehicle implements Armored
{
 private TankArmor myArmor;

 Tank()
 {
 myArmor = new TankArmor();
 }

 // Implement the Armored interface by forwarding
 // all methods in the interface to myArmor.
 boolean protect(Object x) throws InvalidObject
 {
 return myArmor.protect(x);
 }
 …
}

This strategy is undesirable, since the user must
tediously write a series of small methods that do
nothing more than forward responsibility for a method
to a delegate. With the exception of resolving
ambiguities (in languages that require you to do so),
such work would be automated by multiple
inheritance, saving the user from a repetitive chore,
where he could easily make a mistake. Such mistakes
become more common as the size of an interface
grows.

A strategy that would not require the user to write
short wrappers for every visible method in myArmor
would be to allow clients access to myArmor, either
through a method call, or by making myArmor public.
However, this strategy not only breaks encapsulation,
it also fails to provide the Tank class with the
methods it needs to implement the Armored
interface, and makes it impossible for Tank to
selectively override any of myArmor’s behavior.

Another potential workaround is the “copy and
modify” scheme [Tai96], which has nothing but
downsides in that it is highly error prone, breaks
encapsulation, and defeats the notion of reuse
encouraged by object oriented design methodologies.
Yet another alternative is to modify the original base
class, which is also undesirable. First, the source code
must be available. Second, editing the code can break
something that works, which could even have an effect
on other users and programs. Both “copy and modify”
and editing the original class force the programmer to
deal with the lower level implementation, and thus
loses the benefit of abstraction [Tai96].

Delegation can be viewed as more useful than
multiple inheritance, in that it is capable of dynamic
changes that multiple inheritance generally does not
support well. For example, users may dynamically
change the implementation by reassigning to the

delegate. However, delegation can also be viewed as
an unsuitable coping strategy, since the user must
tediously write one-line methods to dispatch to a
delegate. In general, languages should automate such
repetitive and error-prone tasks, if it is simple to do so
[Mac87].

There is no universal consensus as to what are
acceptable and desirable uses for multiple inheritance.
However, researchers tend to enumerate them in
similar-looking but not quite identical lists (e.g.,
[Str94], [Mey88] and [Sin95]). We consider the
following uses of multiple inheritance to be desirable,
all of which we have seen promoted in several sources:

1. Multiple specialization: An object is conceptually
a specialization of two different objects. For
example, a class InputOutputStream is a
specialization of both an InputStream and
OutputStream.

2. Mixin inheritance: A class inherits
implementations of multiple (usually orthogonal)
mixin classes, that may or may not be
implementations of interfaces. Mixin classes are
usually small units that encapsulate a general
attribute or modifications that may be of interest to
many other classes. Such mixins are generally not
instantiated directly, and may even be
independently uninstantiable, as they may depend
on the presence of a particular interface in the
classes that inherit them. Otherwise, mixins are
generally self contained. The main advantage of
the mixin style of programming is that it
encourages programmers to provide modular
highly reusable components.

3. Multiple subtyping: One of the advantages of
object-oriented languages is inclusion
polymorphism, i.e., polymorphism through
inheritance [CW85]. Multiple subtyping enhances
this advantage, as only having a single inherited
type is potentially limiting.

4. Pairing interfaces and implementations: Keeping
interfaces and implementations (subtypes and
subclasses) separate helps encourage reuse.
However, at some point, interfaces and
implementations must be combined to provide a
concrete object with an appropriate type. Java
supports this type of multiple inheritance, although
in a limited manner, since a class may only inherit
a single implementation.

4 Why interfaces are not sufficient
The designers of Java chose to exclude multiple

inheritance mainly due to the difficulties of
implementing repeated inheritance [AG96]. However,
they recognized the utility of the feature, and offered
language support for interfaces, claiming that they
offer all of the desirable features of multiple
inheritance, without the drawbacks [GM95].

Java interfaces certainly avoid most problems
generally associated with multiple inheritance, since
those problems are, for the most part, the direct results
of multiple subclassing, and not multiple subtyping.

However, Java interfaces only completely replace
one of the four desirable uses of multiple inheritance
we have enumerated, namely multiple subtyping. In
addition, while Java can pair multiple interfaces to a
single implementation, it may not map multiple
implementations to interfaces in the same object
without subclassing. The language automates neither
multiple specialization nor mixin inheritance.
Generally, programmers compensate by writing code
to delegate to an explicitly instantiated object.

The separation of interface and implementation into
two distinct mechanisms would aid in software reuse
by encouraging programmers to notice and take
advantage of the distinction. Inheriting a type, and no
more, does not bind the programmer to any
implementation, as long as his implementation meets
the interface (or signature) specified by the type,
which he may do in any way he chooses. In contrast,
languages where subtyping and subclassing are part of
the same mechanism usually allow but do not
encourage the separation. For example, subtyping
without subclassing can be achieved by inheriting
classes that provide no implementation whatsoever,
and subclassing without subtyping can be achieved
through manual delegation. Such languages also force
the inheritance of an implementation that may not be
wanted in order to inherit the associated type (although
the entire implementation may certainly be
overridden).

For these reasons, we believe a multiple subtyping
mechanism that is separate from the traditional
inheritance mechanism is desirable, even if such
mechanisms are not orthogonal. For example, in Java,
they do not appear to be orthogonal mechanisms, since
inheritance both subclasses and subtypes. However,
this apparent lack of orthogonality does not interfere
with the programmer’s mental model, since extending
a class with the extends keyword, and showing that
you implement an interface with the implements
keyword are both distinct and clear. In fact, the
conceptual specialization relationship “IS-A” is

desirable, but separate from the notion of subclassing
as a way of sharing code and data [LP91].

However, as we have previously discussed, a
multiple subtyping mechanism in itself is not sufficient
to replace multiple inheritance. We believe that, in
order to bridge this gap, a single inheritance based
object oriented language that adequately obviates
multiple inheritance would provide, in addition to a
multiple subtyping mechanism such as interfaces, a
second subclassing mechanism, one which does not
imply subtyping. We believe that such a mechanism
should have the same conceptual clarity and
independence as do the inheritance and interface
features in Java.

Noting that without multiple inheritance people
tend to use delegation when they need subclassing
(which does not imply subtyping at all) we suggest
that a language should automate delegation. Such a
feature in conjunction with a mechanism like Java’s
interfaces would provide language support for all four
desirable uses of multiple inheritance. In the next
section, we shall present an implementation, and then
in subsequent sections discuss the merits and
drawbacks of our implementation, and the mechanism
in general.

5 Automated delegation for Java
Jamie is a preprocessor that adds direct support for

delegation to Java 1.1, which is freely available from
http://www.list.org/jamie. We chose to add our
extensions to Java because it already has a multiple
subtyping mechanism (interfaces), and because it lacks
multiple inheritance, and is unlikely to get it. Jamie is
implemented as a preprocessor, using the Antlr LL(k)
parser generator [PQ95] and its supplied Java 1.1
grammar, and Java’s reflection mechanism.

To use Jamie, the programmer writes his code in
files with a “.jam” extension, which, when Jamie is
run, get processed, and converted into a file with a
“ .java” extension. When the user runs his program, a
small library supplied with the Jamie release must be
visible to the Java run time system.

The mental model Jamie promotes is that it is
simply automating the delegation code that a
programmer would ordinarily write himself. Instead of
writing short methods that forward appropriate
messages to all of the public methods of another
object, the programmer just declares that he would like
to do so. Returning to our tank example from section
3, in Jamie we would write the following code:

class Tank extends Vehicle
 forwards Armored to myArmor
 implements Armored
{
 TankArmor myArmor;

 Tank()
 {
 myArmor = new TankArmor();
 }
 // rest of class body, if any …
}

This code would cause the methods of the
Armored interface to be delegated to the variable
myArmor. The variable myArmor needs to be a
subtype of Armored, yet the Tank class does not
have to be. For each method in the Armored
interface, a method will be generated in the Tank
class with the same modifiers as the Armored
method†. The generated method will dispatch to the
variable myArmor at runtime, and will closely
resemble the forwarding function in the code example
from section 3. In general, forwarding functions will
be generated only for methods that are visible to the
delegating object. For example, the delegate’s
protected and private methods would not be visible,
but the public and default access methods would be.

The forwards clause shown above has two
parts. The first part is the class or interface whose
methods are to be delegated. The second is the
variable that will handle those methods, which is
specified after the to keyword. The actual delegate
variable may be a subclass of the class or interface
whose methods are being delegated. For example,
TankArmor is of type Armored, but is not an
Armored instance.

In the above code example, if the programmer
wished to delegate to all of TankArmor’s methods,
instead of just the ones in the Armored interface, he
could instead write:

class Tank extends Vehicle
 forwards TankArmor to myArmor
…

The programmer would need to forward to
TankArmor instead of the Armored interface if
class TankArmor did not explicitly declare that it
implements interface Armored, yet provided all of
the methods found in that interface. If that were the
case, the class Tank would still be able to declare that
it implements Armored, depending on the
programmer’s preference.

† Jamie copies all modifiers from the delegate into the

forwarder, with the exception of the final modifier.

Delegation information must appear before an
implements clause and after an extends clause, if
either exists. The variable specifying the delegate
object must refer to a variable defined by the class that
is doing the delegating. Such a variable must be visible
to the class. In particular, a private variable in the
Vehicle class could not be delegated to in this
instance, since the Tank class would not have access
to that variable. Either a locally declared attribute or
an inherited attribute is acceptable, so long as the
attribute is an object type (e.g., ints, floats and arrays
are not acceptable).

It is possible to forward to multiple delegates. For
example, if the Tank should also implement the
Armed interface by delegating to an instance of
TankWeapons (which itself implements Armed),
the programmer may write the following code:

class Tank extends Vehicle
 forwards Armored to myArmor,
 Armed to myWeapons
 implements Armored, Armed
{
 TankArmor myArmor;
 TankWeapons myWeapons;
 …
}

The Tank class can selectively prevent forwarding
functions from being generated by providing its own
implementation for any method in the Armored or
Armed interfaces. Providing such a method is useful
for selectively overriding behavior and it is useful in
resolving name conflicts, which are errors in Jamie.
For example, if myArmor and myWeapons both
provided a method stat(), the programmer would
be able to resolve the conflict in whatever manner he
chooses. If a subclass of Tank were to provide its own
implementation of stat(), yet Tank did not, a
forwarding function would still get generated inside
Tank, although it would be overridden by the
definition in the subclass.

If two delegates both inherit from a similar base
class or interface, overriding methods can get tedious
quickly. Jamie provides a second way to resolve name
conflicts that does not involve overriding methods.
Take for example, class A, which the programmer
would like to use in class T, except it implements S1
and S2, which T already inherits by extending B. If the
programmer would like to use the implementations of
S1 and S2 from B, he may write the following code:

class T extends B
 forwards A without S1, S2 to a
{
 A a;
 …
}

The without keyword takes a list of supertypes to
exclude from delegation. This keyword provides the
same sort of ambiguity resolution virtual base classes
in C++ can provide, without the potential problems
associated with subclasses sharing state.

In Java, such ambiguities are actually quite
common, since all classes inherit from the Object
type. However, Jamie assumes that the programmer
would prefer to delegate without delegating to
methods from Object, so the programmer need not
do so himself. We discuss the effects of this rule in
section 6.

The programmer is responsible for declaring
variables for each of his delegates, and assigning
instances to those variables. If the programmer were to
leave a delegate uninitialized, and a class then tried to
forward a message to it, the runtime system would
throw a NullPointerException. This
responsibility gives the user the flexibility to
instantiate delegates at his convenience, and to
initialize delegates with appropriate constructor
arguments. This responsibility also gives the
programmer the flexibility to change the
implementation of a delegate at run-time. Such an
ability supports the encapsulation of logical states. For
example, a class Window may like to inherit an object
that implements the Displayable interface with
methods such as draw(), that will always have to act
differently based on whether the window is iconified
or visible. With dynamic inheritance, we can provide
two different implementations of Displayable, one
for drawing iconified windows, and one for drawing
visible windows. Such a design keeps all mode
specific code together, instead of spreading it around
via a conditional test in each relevant method, which
can have a deleterious effect on code readability
[Tai96]. For example, with Jamie, a user may write the
following code:

interface Displayable
{
 public void draw();
 public void raise();
 public void iconify();
}

interface Window
{
 public void toggleState();
}

class RaisedDisplayer implements Displayable
{
 public void draw() { /* draw the window */ }
 public void raise() { /* already raised */ }
 public void iconify()
 {
 // add code to iconify the window
 ((Window)forwarder).toggleState();
 }
}

class IconifiedDisplayer implements Displayable
{
 public void draw() { /* do nothing */ }
 public void iconify(){ /* already iconified */ }
 public void raise()
 {
 // add code to raise the window
 ((Window)forwarder).toggleState();
 }
}

class MyWindow forwards Displayable to displayer
 implements Displayable, Window
{
 Displayable displayer,icon,raised;
 public MyWindow()
 {
 raised = new RaisedDisplayer();
 icon = new IconifiedDisplayer();
 displayer = raised;
 }

 public void iconify() { displayer = icon; }
 public void raise() { displayer = raised;}
 public void toggleState()
 {
 if(displayer.equals(raised)) displayer = icon;
 else displayer = raised;
 }
}

Note that if the programmer wants the Window
class to implement the Displayable interface, then
it needs to say so explicitly, even though both of its
delegates implement the interface, and it is delegating
to a variable of type Displayable. That is because
delegation is a subclassing mechanism, and not a
subtyping mechanism. Also note the addition of the
keyword forwarder, which returns an instance of
type Object, representing the object that forwarded
to the current object.

If the current execution is not a result of delegation
to the current object, then forwarder will be null.
The forwarder keyword, combined with an
interface mechanism, obviates supporting
uninstantiable mixins, since the delegate does not need
to depend on run time information to compile method
invocations. We feel that the above example is
straightforward and powerful, and that it is highly
preferable to the code one would write by hand
without this extension. For example, to get the effects
of the forwarder keyword without such an
extension, a programmer would likely pass the this
object (i.e., the current object in Java) as an extra

argument to the method in the delegate, or devise
some other ad hoc solution.

6 Design issues
Our original design used a keyword that modified

variables that were to be delegated. That design had
the advantage that the syntax for delegation did not
clutter the inheritance clause. However, it also had
some compelling drawbacks:

1. It added a large irregularity, in that the language
would sometimes use the inheritance clause for
subclassing, and would sometimes use a variable
modifier.

2. It unnecessarily allowed for the arbitrarily large
separation of subclassing information within a
single class. We felt that such information should
be consistently and conveniently located, if
possible.

3. In order to support superclass exclusion using a
without clause, we would have needed to add
significant irregularities to the syntax for variable
declarations.

4. The programmer would be unable to delegate to an
inherited final variable without aliasing, which
would be a minor inconvenience.

5. Consider the following example from Jamie:

 class FixedStack forwards AbstractStack to contain er

where container is of type Array. Our
original design had no such facilities, as it would
cause unacceptable irregularities in variable
declaration syntax. Therefore, to delegate only the
methods from class AbstractStack, the
programmer would have declared the delegation
variable to be of type AbstractStack. Then,
whenever the programmer would want to take
advantage of undelegated methods in his
implementation, he would either alias a variable of
type Array (which would increase the object size
unnecessarily) or cast the delegation variable.

Currently, Jamie only forwards methods, although
it could forward variables as well. Jamie does not do
so for two reasons. First, Jamie’s delegation
mechanism is designed to be a complement to Java’s
interfaces, which can not specify variables. Second,

such a feature could not be implemented transparently
and efficiently in a preprocessor.

The decision to implement Jamie as a preprocessor
was made primarily so that we could quickly develop a
working proof of concept implementation. This
decision helped support our notion that delegation is
an automation mechanism, since the preprocessor
generates code that the user can inspect. Also, being
able to inspect the code turned out to be important to
us, since we implement delegation by declaring
forwarding functions, which posed the problem that if
an exception is raised in a delegate, the forwarding
function will appear on the stack trace. We found it
would be less confusing to the programmer if the stack
trace always pointed at the generated Java file, instead
of pointing to the Jamie file, having the trace
sometimes show functions that could not be found in
any code. The preprocessor also has the advantage of
keeping our work independent of any particular Java
implementation.

However, most aspects of the system could have
been implemented far more efficiently if moved from
a preprocessor plus library approach to the compiler.
For example, the only solution for delegating to static
methods that is available at the preprocessor level is
Java’s reflection mechanism, which is not an efficient
solution.

Static methods posted another significant problem
to us. In Java, classes are not first class objects, which
meant that there could not be regular semantics for the
forwarder keyword. We considered returning the
meta-data of a class, but encountered another
limitation of the preprocessor approach. We could find
no completely reliable way to find the current root
class from a static method, which we would have
needed to do in order to set the value of the
forwarder keyword at delegation time.

Another important question we had to deal with
was what to do about declaring visibility modifiers on
the forwarding functions; i.e., should they be based on
the visibility modifier given to the variable containing
the delegate? For example, we briefly considered the
following strategies:

1. Delegate only to objects in variables of public or
default access, then copy the access modifiers of
the delegated methods for the forwarding
functions.

2. Have the protection level of the variable storing
the delegate reflect the most lax protection level a
forwarding function can achieve. For example,
when delegating to a private variable X, all of X’s

public and default methods would cause
forwarding functions to be generated, all of which
would be declared to be private, so only the
delegating object could use them.

We chose neither of these solutions. They both
seemed undesirable, primarily because they are too
restrictive: the delegating object may want to control
who can assign to the variable by declaring the
variable private, yet still have all of the forwarding
functions be visible to others. Our choice was to
blindly copy the access modifier of the delegate when
declaring a forwarding function. This choice has the
advantage of not depending on the type of the delegate
variable. We believe that this is the desirable choice,
because it best supports the usage patterns we are
trying to promote with this feature. That is, in our
experience, most objects used as delegates were
designed to be delegates. If those modifiers are not
acceptable to the programmer, he may always subclass
off the delegate to change them. This may not be a
wholly acceptable solution. If not, we will consider
adding extensions that will allow the programmer
control over the most lax access to give to a
forwarding function, as can be done with inheritance
in C++. However, such a mechanism would also cause
an irregularity in the language, since the inheritance
mechanism in Java has no such feature.

We also considered modifying the language to not
show the forwarding function in a stack trace, but did
not do so in the interest of time. For the same reason,
we did not implement delegating to a method instead
of a variable. This would work by, in the forwarding
function, invoking the method being delegated to, and
then forwarding to the object returned. These two
ideas are likely to be future work on Jamie.

In Java, all classes inherit from the Object class,
even if indirectly, which causes an unacceptably large
number of name conflicts for a multiple subclassing
system. As mentioned in the previous section, we
chose to avoid such conflicts in this case by explicitly
refusing to forward methods originally defined in the
Object class, despite adding the without keyword.
While this adds an irregularity to the language, it is an
innocuous one. Usually, programmers would prefer to
avoid explicitly using the without keyword in this
instance, unless for some reason they really do need to
delegate the methods found in class Object. Such a
need will certainly be the exceptional case, whereas
explicitly specifying without Object would get
tiresome quickly. Also, Jamie will warn the
programmer any time he or she delegates to an object
that redefines a method from the Object class,

reminding the programmer that if that particular
method is to be delegated, it must be done explicitly.
This strategy prevents the programmer from being
surprised by the system not delegating to such a
method when he may have expected it to do so.

Also, this solution is consistent with other aspects
of the Java language. For example, the programmer
must explicitly declare every type of exception that a
method can throw, except for those exceptions that are
subclasses of class RuntimeException, such as
ClassCastException and NullPointerException.
The rationale for this design is that having to declare
these exceptions at every method that could possibly
throw them would be an extraordinarily inconvenient
burden to place on the programmer [GJS96].

Another way to solve this problem would be to
only allow delegation to variables declared to be
interface types. However, we felt this solution would
be needlessly restrictive, and would be less useful than
our proposed solution in practice. For example, in
Java, a programmer may wish to extend the class
java.util.Vector, overriding a handful of the
methods, but leaving the bulk of them untouched.
Without Jamie, this can not be done in any useful
manner, since almost all of Vector’s methods are
final, meaning they can not be overridden. Being
able to delegate to such a class gives the programmer a
reasonable way to extend it.

The mechanism by which a delegate refers back to
the forwarder changed significantly several times, as
we realized flaws in each of our designs. We wanted
delegates to be clearly separated from their clients, and
so we chose not to have the this keyword point back
to the forwarder, as is done with the self-reference
operator in many delegation-based languages [Tai96].
Our first mechanism was a caller keyword, which
returned the object responsible for invoking the current
method. We quickly found that such a mechanism did
not support procedural decomposition. For example,
consider the following code:

class Delegate
{
 public void foo()
 {
 System.out.println(caller);
 }
}

If an object x forwards to an instance of class
Delegate, when foo is called in x, caller will
refer to x; however, consider separating the printing
code into its own method as follows:

class Delegate
{
 public void foo()
 {
 printCaller();
 }
 private void printCaller()
 {
 System.out.println(caller);
 }
}

The value of caller would always be equal to
the this reference, since the last call would always
be local to the current object, which probably is not
what the programmer intended.

We then refined the semantics of the caller
keyword to return the object that last invoked a
method, other than the current object. However, we
eventually found that the entire notion of caller
suffered from two significant problems:

1. While caller was an interesting general-
purpose mechanism, it usually was not what the
programmer expected when the calling object was
not the delegating object. Essentially, there was
no way for the object to tell if the current call was
the result of delegation, or a direct call from a
third party.

2. The semantics of caller were unclear with
respect to forwardings. For example, if an object
O calls object X, which delegates to object Y, if
object Y asked for the value of caller, would it
get object X or object O?

We also briefly considered replacing the caller
keyword with an owner keyword, since it seemed to
be a more accurate representation of the functionality a
programmer would generally want when writing
delegates. However, the “owner” of a delegate may be
ambiguous; one object could easily serve as a delegate
to several different clients. For example, multiple
objects may wish to delegate to a single cache, which
could be stored in a shared class variable.

The forwarder keyword, as currently
implemented, solves all the problems we found in
previous approaches. With it, the delegate can easily
distinguish between a method call by delegation and a
method call from a third party. Also, the semantics are
not ambiguous with respect to which object the caller
should be, as the delegating object explicitly
distinguishes himself from the caller by use of the
forwards clause. Finally, there is no sort of
ambiguity as there would have been with an owner

keyword, as the keyword tells the programmer which
client is responsible for the most recent delegation.

7 Analysis of automated delegation
We believe that delegation offers many advantages

to a single inheritance class based language, when
coupled with multiple subtyping. First, the two
together are good at doing the things multiple
inheritance does well, such as supporting mixins.
Second, they directly support and automate coding
techniques that programmers commonly practice in
languages without such features. Third, the dynamic
nature of delegation supports useful programming
techniques that most multiple inheritance based
systems do not, such as programming with logical
states. Fourth, the combination lacks most of the
disadvantages of multiple inheritance:

1. The problems of repeated inheritance are obviated.
Inconsistencies caused by sharing representations
in a single class hierarchy should not arise, since
the language is only supporting single inheritance
and containment.

2. Since delegates are individual objects, and not part
of a hierarchy, there is no way that a local call will
end up calling into another delegate instead.
Therefore, when looking at the code of a delegate,
unexpected code paths due to inheritance are far
less likely.

3. In our implementation, delegation is thought of as
an operation on a contained object, so the issue of
misusing the feature by using it where
containment would be a more appropriate
mechanism is a moot point. Delegation will only
be used when the programmer would like to
directly use the methods of a contained object.

4. The feature is simple to implement.

Our mechanism does not directly address the
problem of name clashes. However, as we mentioned
previously, we personally do not find this complaint to
be a significant source of problems in languages with
explicit resolution, and believe that any such solution
will also be more than acceptable for a delegation
based system.

Another advantage of our delegation mechanism is
that multiple subclassing remains orthogonal to
multiple subtyping. This separation strongly
encourages programmers to distinguish between
interfaces and implementations, which in turn

encourages better modularity and code reuse. This
distinction also allows the user to subclass, but not
subtype when the “IS-A” relationship does not make
sense.

Another benefit is that the mechanism only allows
for black-box reuse: the delegating object has no
special access to the implementation of the delegate. In
contrast, multiple inheritance generally (though not
always) implies some degree of white-box reuse,
which severely weakens encapsulation [Sny86]. Also,
specializing a prototypical instance offers an
alternative to the abstract, set-theoretic inheritance that
better supports the way people tend to think about real
objects [Lie86], and promotes unanticipated sharing;
i.e., reuse not anticipated by the author of the class
[SLU88].

Also, delegation is a useful abstraction tool under
circumstances that are not easily and cleanly handled
by other language mechanisms, including inheritance.
Consider Meyer's defense of his use of multiple
inheritance to handle a Fixed_Stack class which is
presented in [Mey97]. In his example,
Fixed_Stack inherits from both Stack and
Array, where Stack as an abstract class provides
the skeleton that is filled in by the methods from
Array. As noted in section 2, this has been criticized
as an inappropriate use of inheritance, as
Fixed_Stack conceptually is not a specialization of
Array [Tai96]. Still, if there are a number of similar
container classes (e.g., stacks, queues, etc.) in need of
an array-based implementation, a well-designed
language should facilitate this task by allowing for a
clean abstraction. Meyer argues that in this case a class
Fixed_Container, which implements all the
necessary methods as calls to a container attribute of
type Array would be a both a good abstraction and a
class of which Fixed_Stack would be a suitable
specialization. So creating Fixed_Stack as a
subclass of both Stack and Fixed_Container
would solve the problem. But then the implementation
of that class would simply forward the necessary
methods to that of the container object – a tedious and
error-prone approach, which is also fragile under
change. This drawback can be avoided by inheriting
from Array directly, rather than seeking the
roundabout way via manual delegation. We observe a
tradeoff between the goal of a clean design and that of
reliable software. Obviously, this argument does not
hold in the presence of automated delegation, where
such a tradeoff does not occur. This allows both
maintaining the conceptual integrity of the model and
avoiding the artificial introduction of an intermediate

class Fixed_Container, as in the following
example:

 class Fixed_Stack
 extends Stack
 forwards Array to container
 {

Array container;
…

 }

On the other hand, multiple inheritance is still
better suited for multiple specialization than is
delegation. First, inheritance usually implies an “IS-A”
relationship, whereas delegation models an “USES-A”
relationship. Second, depending on the language,
delegation may not be able to provide substitutability
(i.e. that the derived class may be used anywhere an
instance of the base class is expected). For example, if,
in Jamie, the class S delegates to instances of class A,
instances of S may not be used wherever an instance
of A is expected, since there is no way for an S
instance to be cast to an A instance. The best a
programmer can do is to have A and S implement a
single interface that should be used in all declaration
expecting an object compatible with A. Languages that
separate implementation inheritance from interface
inheritance, such as Sather, would not have this
problem.

There are some potential disadvantages to
delegation. Its dynamic nature makes it inherently less
efficient than static multiple inheritance, as sometimes
we can not bind to a single object, since the object we
are delegating to may change at runtime. However,
any reasonable implementation would be no less
efficient than the code a user would write by hand, and
could generally run faster, especially if the
implementation avoids invoking forwarding functions
when possible, such as by inlining. Also, when a
private delegate is only assigned in the constructor
(i.e., the compiler can determine that the
implementation will not be changed dynamically), the
delegate methods could be statically bound, although
our implementation makes no such optimizations.
And while such a dynamic feature can provide the
programmer with much expressive power, if abused, it
can lead to code that is harder to read than static
software [GH+95].

The forwarder keyword as implemented in
Jamie has a potential drawback in that there is no way
for the compiler to know the type of the forwarder,
since arbitrary classes may delegate to arbitrary
classes. Therefore, the programmer must pay the price
of a run time cast. This problem could be fixed by
letting the delegate specify a type that the forwarding

object must have in order to use a particular interface
for delegation. We plan on implementing such a
feature to Jamie for future work.

Another potential drawback specific to Jamie and
Java that we hope designers of other languages would
be able to avoid is the potential for a large separation
between the declaration of the delegate variable, and
the forwards clause. We considered an alternative
syntax, where the programmer would actually declare
the delegate in the forwards clause. For example:

class Tank forwards Armored
 to private Armored myArmor
{
 …
}

However, this choice had several drawbacks of its
own. First, in the previous example, either we would
have to allow myArmor to be declared multiple times,
or we would have to disallow delegating to inherited
variables. Second, allowing the declaration of delegate
variables outside the class body would add an
irregularity to the language. Since Java already has a
similar forward referencing problem by allowing
methods within the same class to be used before they
are declared, allowing the forward referencing is
consistent behavior, and avoids adding an irregularity.
If designing a language from scratch, however, we
would almost certainly devise a suitable syntax to
disallow forward referencing.

Bjarne Stroustrup discusses other potential
drawbacks to delegation in [Str94]. For a short time,
C++ supported a simple delegation mechanism that
automated the forwarding of messages to an object.
The feature was removed from C++, as it was error
prone and confusing [Str94]. Stroustrup believed the
two sources of these problems to be:

1. The delegate was an independent object, and thus
the delegating object could not override its
methods, which could be unexpected if such a
method were called directly.

2. There was no straightforward way for the delegate
to refer back to the delegating object.

The first problem we believe is adequately
addressed in Jamie, in that delegation is separate from
the notion of type inheritance, and that it has a more
explicit syntax than did C++. In C++, an object could
be coerced down to a delegate through assignment or
casting. However, even if a delegate declared a
function as virtual that was also redefined in the
delegating object, after the coercion the delegate
would always be called when the function was

invoked. The real problem was not the semantics, but
that programmers could not remember the semantics;
they would assume whatever was most convenient for
the code they were writing [Str98]. This particular
problem would go away if delegation were separated
from type inheritance, as is the case with Jamie, or if
assignment and casting only limited the interface of
the delegating object, instead of essentially replacing
the object with a delegate. The user would still be able
to pass around the delegate as a separate object.
However, at that point, the delegate is conceptually an
independent object, and that object should indeed be
responsible for handling methods explicitly invoked
on it, and thus the semantics are clear for the
programmer in all cases.

Jamie addresses Stroustrup’s second problem
directly by providing the forwarder keyword,
allowing the delegate to refer back to the delegating
object.

8 Related work
Delegation is the foundation of a number of object-

oriented languages without classes, such as ThingLab
[Bor81], Act-1 [Lie87], a Smalltalk without classes
[LTP86], and, perhaps most notably, Self [US87].
Such languages were shown to be equally as powerful
conceptually as inheritance by Lynn Stein [Ste87],
although she notes that, in practice, either delegation
or inheritance may be more desirable. She even
proposes a hybrid model that would allow for both
delegation and inheritance in the same language. An
excellent analysis of the similarities and differences in
both sharing mechanisms is presented in [SLU88]. A
hybrid model called object specialization is presented
in [Sci89]. With object specialization, objects still
have a class from which it receives variables and
methods, but individual objects determine what they
inherit.

A method for using parametric polymorphism to
support mixins is shown in [AFM97], in the context of
a Java language extension. However, this approach to
mixins suffers from a few drawbacks. First, the syntax
is non-intuitive, in that multiple mixins must be
declared as nested template parameters, which forces
an ordering, when, conceptually, there should not be
one. This also results in a linearized inheritance graph,
which, as we noted previously, introduces artificial
parents and undesirable order dependencies. Second,
to extend a non-parameterized base class such as
Object and one or more mixins simultaneously, a
programmer must either duplicate code, or pass the
base class as a parameter to a mixin, both of which are
undesirable solutions. For instance, when passing a

base class to a mixin, any method defined in both the
mixin and the base class will be supplied by the mixin,
since the base class will necessarily be a superclass of
the mixin. Third, with more complex template
specifications, the readability can also degrade
significantly. Also, mixin classes must be written so as
to take template arguments in order to be composable.
For example, the code for class MyTank, which
inherits from Tank as well as mixins TankArmor,
TankWeapons and Destroyable, would be
written in such a manner:

class TankArmor<T> extends T { … }
class TankWeapons<T> extends T { … }
class Destroyable<T> extends T { … }
class MyTank extends TankArmor< TankWeapons<

Destroyable< Tank > > >
{
 …
}

Since, in order to be subclassed in this way, a class
must anticipate its use in such a manner, and provide
an appropriate template parameter, this solution may
not be used for general-purpose multiple subclassing,
only as an ad hoc technique. For instance, given two
non-parameterized classes InputStream and
OutputStream, a programmer cannot produce
InputOutputStream as a mixin without changing
one of the original classes to have a parameter. This
solution will also break all the code relying on a non-
parameterized version.

Another drawback of this approach is that the static
nature of templates makes it impossible to implement
dynamic subclassing in a straightforward manner. We
also note that, in our experience, programmers tend
not to use templates in this way when using languages
with a genericity mechanism as well as a multiple
subclassing mechanism, such as C++ and Eiffel.

As previously mentioned, C++ had a delegation
mechanism for a short time before multiple inheritance
was added [Str94], but it was error-prone as designed.
Bracha and Cook added direct support for mixins to
Modula-3, but they were a static concept, and both a
subtyping and subclassing mechanism [BC90].

Cecil’s predicate classes are a variation on dynamic
inheritance for a class-based language [Cha93].
Predicate classes offer dynamic subtyping as well as
dynamic subclassing, as a single coupled mechanism.
For future work, we plan to explore dynamic
subtyping issues in Java by extending the interface
mechanism, keeping it orthogonal from our delegation
mechanism.

An extension to Java based on predicate classes is
presented in [VC+97], which is tailored towards the

sole goal of specializing classes for efficiency
purposes.

9 Conclusions
In this paper we have presented automatic

delegation for class based languages, which provides a
second subclassing mechanism capable of multiple
subclassing. We have argued that such a mechanism is
preferable to no multiple subclassing mechanism
whatsoever, since the mechanism is no less desirable
than the ad hoc mechanisms programmers would
otherwise devise themselves. We have compared our
delegation mechanism to multiple inheritance,
showing that delegation, for the most part, does not
suffer from the problems of multiple inheritance. It
also enables conceptually clear and desirable
abstractions that multiple inheritance does not handle
in a satisfactory manner. However, we have also
shown that our mechanism has potential drawbacks
generally not found in multiple inheritance
mechanisms. We hope that language designers will no
longer consider the question, “should I allow multiple
inheritance?” Instead, we hope they will ask
themselves, “Which is the better solution for my
language’s intended problem domain, multiple
inheritance, or multiple delegation?”

Acknowledgements
We would like to extend our deep appreciation to

Tim Hollebeek, Steve MacDonald and John Regehr
for their insightful input when discussing this idea. We
also are indebted to the people at Reliable Software
Technologies, who provided useful feedback early in
the life of this project.

We would also like to thank Gabe Ferrer, Leigh
Caldwell, Paul Reynolds and Kathy Ryall for
reviewing early drafts of this paper.

References
[AFM97] O. Agesen, S. Freund, J. Mitchell. Adding

type parameterization to the Java™ language.
In OOPSLA ’97 Conference Proceedings.
ACM SIGPLAN Notices 32, 10 (Oct. 1997).

[AG96] K. Arnold, J. Gosling. The Java™
Programming Language. Addison-Wesley,
1996.

[BC90] G. Bracha, W. Cook. Mixin-based inheritance.
In OOPSLA/ECOOP ’90 Conference
Proceedings. ACM SIGPLAN Notices 25, 10
(Oct. 1990).

[Boo94] G. Booch. Object-Oriented Analysis and
Design With Applications, 2nd edition.

Addison-Wesley, 1994.

[Bor81] A. Borning. The programming language
aspects of ThingLab, a constraint-oriented
simulation laboratory. ACM Transactions of
Programming Languages And Systems 3, 4
(Oct. 1981).

[Cha93] C. Chambers. Predicate classes. In ECOOP
’93 Conference Proceedings.

[CW85] L. Cardelli, P. Wegner. On understanding
types, data abstraction and polymorphism.
ACM Computing Surveys 17, 4 (Dec. 1985).

[GH+95] E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

[GJS96] J. Gosling, B. Joy, G. Steele. The Java™
Language Specification. Addison-Wesley,
1996.

[GM95] J. Gosling, H. McGilton. The Java Language
Environment. Sun Microsystems, 1995.

[Knu88] J. Knudsen. Name collision in multiple
classification hierarchies. In ECOOP ’88
Conference Proceedings.

[Lie86] H. Lieberman. Using prototypical objects to
implement shared behavior in object oriented
systems. In OOPSLA ’86 Conference
Proceedings. ACM SIGPLAN Notices 21, 11
(Nov. 1986).

[Lie87] H. Lieberman. Concurrent Object-oriented
programming in Act-1. In A. Yonezawa, M.
Tokoro (ed.), Object-Oriented Concurrent
Programming. MIT Press, 1987.

[LP91] W. LaLonde, J. Pugh. Subclassing ≠
subtyping ≠ is-a. Journal of Object-Oriented
Programming 3, 5 (Jan. 1991).

[LTP86] W. LaLonde, D. Thomas, J. Pugh. An
exemplar based Smalltalk. In OOPSLA ’86
Conference Proceedings. ACM SIGPLAN
Notices 21, 11 (Nov. 1986).

[Mac87] B. MacLennan. Principles of Programming
Languages: Design, Evaluation, and
Implementation, 2nd Edition. HBJ, 1987.

[Mey88] B. Meyer. Object-Oriented Software
Construction. Prentice Hall, 1988.

[Mey97] B. Meyer. Object-Oriented Software
Construction, 2nd edition. Prentice Hall, 1997.

[PQ95] T. Parr, R. Quong. ANTLR: A predicated-
LL(k) parser generator. Software Practice and
Experience 25, 7 (July 1995).

[SCB+86] C. Schaffert, T. Cooper, B. Bullis, M. Killian,
C. Wilpot. An introduction to Trellis/Owl. In
OOPSLA ’86 Conference Proceedings. ACM

SIGPLAN Notices 21, 11 (Nov. 1986).

[Sci89] E. Sciore. Object Specialization. In ACM
Transactions on Information Systems 7, 2
(Apr. 1989).

[Sin95] G. Singh. Single versus multiple inheritance in
object oriented programming. In OOPS
Messenger 6, 1 (Jan. 1995).

[SLU88] L. Stein, H. Lieberman, D. Ungar. A shared
view of sharing: the treaty of Orlando. In W.
Kim, F. Lochowsky (ed.), Object-Oriented
Concepts, Applications and Databases.
Addison-Wesley, 1988.

[Sny86] A. Snyder. Encapsulation and inheritance in
object-oriented programming languages. In
OOPSLA ’86 Conference Proceedings. ACM
SIGPLAN Notices 21, 11 (Nov. 1986).

[Ste87] L. Stein. Delegation Is Inheritance. In
OOPSLA ’87 Conference Proceedings. ACM
SIGPLAN Notices 22, 12 (Oct. 1987).

[Str94] B. Stroustrup. The Design and Evolution of
C++ . Addison-Wesley, 1994.

[Str98] B. Stroustrup. Personal communication (Feb.
1998).

[Tai96] A. Taivalsaari. On the notion of inheritance.
In ACM Computing Surveys 28, 3 (Sept.
1996).

[US87] D. Ungar, R. Smith. Self: the power of
simplicity. In OOPSLA ’87 Conference
Proceedings. ACM SIGPLAN Notices 22, 12
(Oct. 1987).

[VC+97] E. Volanschi, C. Consel, G. Muller, C.
Cowan. Declarative specialization of object-
oriented programs. In OOPSLA ’97
Conference Proceedings. ACM SIGPLAN
Notices 32, 10 (Oct. 1997).

Appendix

Changes in the Java grammar
We have made two changes to the Java grammar as

found in [GJS96]. That first change is in the class
declaration line. Using the conventions from [GJS96],
the class declaration line is now:

ClassDeclaration:
ModifiersOpt class Identifier SuperOpt DelOpt InterfacesOpt ClassBody

We also add the following supporting productions:

Del:
forwards ForwardingList

ForwardingList:
DelegationSpec

 ForwardingList , DelegationSpec

DelegationSpec:
DelegateName WithoutClauseOpt to Identifier

DelegateName:
Identifier
PackageName . Identifier

WithoutClause:
without WithoutList

WithoutList:
ClassName
WithoutList , ClassName

The second addition Jamie makes to the Java 1.1
grammar is to primary expressions. The forwarder
keyword is usable wherever the this keyword is:

PrimaryNoNewArray:
Literal
this
forwarder
…

For the elided part of the above production, and for
non-terminals not defined here, refer to [GJS96].

