Automated Delegation is a Viable Alternative to
Multiple Inheritance in Class Based Languages

UVA Technical Report CS-98-03

John Viega, Bill Tutt, Reimer Behrends
March 3, 1998
Last revised: March 12, 1998

Abstract

Multiple inheritance is still a controversial feature maditional object-oriented languages, as
evidenced by its omission from such languages as Modula-3gctiMgy C and Java™.
Nonetheless, users of such languages often complain about havingk around the absence of
multiple inheritance. Automating delegation, in combinationhwa multiple subtyping
mechanism, provides many of the same benefits as multipletartoe, yet sidesteps most of the
associated problems. This simple feature could sdbisfly the designers and the users of class
based object oriented languages.

In this paper, we discuss why automated delegation is desirdi® also presenlamie a
freeware preprocessor-based extension to Java that stieh an alternative.

Automated Delegation is a Viable Alternative to
Multiple Inheritance in Class Based Languages

John Viega Bill Tutt Reimer Behrends
Dept. Of Computer Science Microsoft Corporation Dept. Of Computer Science
University Of Virginia One Microsoft Way University of Kaiserslautern
Charlottesville, VA 22903 Redmond, WA 98052 67653 Kaiserslautern, Germany
viega@list.org billtut@microsoft.com behrends@list.org

complement to multiple subclassing isultiple
Abstract subtyping which is the ability for a type to be an
immediate refinement on multiple types. Both are
Multiple inheritance is still a controversial featureoften seen coupled together as a single feature, which
in traditional object-oriented languages, as evidenceg generally called multiple inheritance. However, this
by its omission from such languages as Modula-3jefinition of multiple inheritance is not universally
Objective C and Java™. Nonetheless, users of suelecepted. For example, multiple inheritance could be
languages often complain about having to work aroundsed to refer to only one of multiple subtyping or
the absence of multiple inheritance. Automatingnultiple subclassing, since the former is the ability to
delegation, in combination with a multiple subtypinginherit multiple types, and the later is the ability to
mechanism, provides many of the same benefits asherit multiple sets of methods and data. However,
multiple inheritance, yet sidesteps most of thdhe term multiple inheritance is generally not used to
associated problems. This simple feature could satisfgfer to one without the other. For example, Java
both the designers and the users of class based objederfaces are a multiple subtyping mechanism, yet
oriented languages. Java is generally considered to be lacking multiple
In this paper, we discuss why automated delegationheritance. In the course of this discussion, we will
is desirable. We also presedamie a freeware refer to multiple inheritance as a mechanism that
preprocessor-based extension to Java that offers sugtpvides both multiple subclassing and multiple

an alternative. subtyping, coupled with the explicit notion of
inheritance. In contrast, automated delegation is a
1 Introduction subclassing mechanism that is separate from the

gﬁweritance mechanism of a language. Thus, while a
complementary subtyping mechanism may exist, as
gvith Java, we will not refer to the combination as

Paultiple inheritance, since the mechanisms do not

This paper discusses a language mechanism call
automated delegationwhich we believe can be a
desirable alternative to multiple inheritance in clas
based languages. The purpose of this feature is he | , . finheri
automate the practice of forwarding messages tcambodyt_e anguagesnot!ono Inheritance. :
contained classes (commonly called delegation). This In_ sec_tlon 2 we examlng'the argument§ against
automation provides an explicit mechanism formultlple mhentaryce as tradltlon_ally found in class
abstraction, instead of leaving the user to devise a%ased programming languages, in order to understand

hoc solutions. At the same time, automated delegati thy it was deliberately omitted from programming

retains many of the advantages of multiple inheritanc anguages such as _Java_. In section 3 we dlscu_ss the
while avoiding its principal drawbacks. ddvantages of multiple inheritance, which an ideal

Automated delegation is subclassingnechanism; rgplacement WO.UId also provide. In sec'tion 4, we
i.e., a way by which one object derives methods anggjlscuss Java’s interface construct, showing why by

possibly variables from another class. In particular, i{self_ tIs not a wholly _adequate replacement fpr
multiple inheritance. Section 5 presents Jamie, which

's amultiple subclassingnechanism, since it allows a is a language extension to Java that demonstrates our
class to derive methods from more than one class. ,5 guag

Ideas. Section 6 discusses the design decisions that we

made in adding this feature, and section 7 analyzes teaperclass may not reflect its superclass after the
advantages and shortcomings of automated delegatiorheritance tree is linearized [Sny86]. This side effect

as a language feature. is undesirable because a class may pass messages back
to a different base class than the programmer intended.
2 Drawbacks of multiple inheritance While explicit resolution places the burden of

While multiple inheritance is a feature commonly'€S0IVing names on the programmer, it does avoid

found in many modern class-based object-orientefn@nticipated, undesirable resolutions.
programming languages such as C++ and Eiffel, its Another.problem with naming conflicts is the_lt two
appeal is not universal, as demonstrated by it ethods with the same signature can be inherited that

exclusion from other prominent languages such ad® not refer to the same conceptual operation,
Modula-3, Objective C and Java. especially when a verb has two different yet common

A common problem that any implementation C)fmeanings. Eiffel's solution of having the programmer

multiple inheritance must address is how to hand(EEname methods to resolve name conflicts makes

methods of the same signature inherited from multiplEeS©Iving such a problem easier on the programmer.
base classes (commonly callednaming conflick Howe_ver,_a similar feature was con5|qlered for
Solutions to this problem can be divided into thred"Clusion into C++, and later rejected, since such
general categories: problems do not occur overly oftgn, and such a
language feature can lead to following a convoluted

trail of chained aliases [Str94]. While most solutions to
name conflicts that demand explicit resolution provide
straightforward and clear solution, none of them

« Implicit resolution The language resolves name
conflicts with an arbitrary rule, such as the pre-
order traversal of an inheritance tree, as in Pytho

A common technique that falls under this a\f completﬂyaymded Cé't'c's?"'_ g
classification islinearization of the inheritance comprenensive study of Issues surrounding

graph, which is essentially reducing thenaming conflicts is presented in [Knu88], which

inheritance graph to a flat list. This strategy igSuggests that attributes should be disambiguated at

common in Object'oriented L|Sp dialeCtS, inCIUdingCIaSS deﬁnition, so as to avoid IImItIng the Utlllty of
CLOS multiple inheritance. We believe that this solution not

only maximizes flexibility but also is simple both for

» Explicit resolution: The programmer must the programmer and the language designer.

explicitly resolve name conflicts in code. The way A less straightforward issue that language designers

programmers must resolve such conflicts varie§nUSt generally deal with when implementing multiple

greatly from language to language. For examplénheritance isrepeated inheritangewhich is where

Eiffel requires that the programmer explicitly one class indirectly inherits from another class
remove all ambiguity by renaming functions until multiple times. Should inheritance b#tual? That is,
there are no more clashes. In contrast, C++ aIIow.'§h°u!OI there _be qnly one _shared_ copy of the class
the ambiguity until used, at which time it requiresmhented multiple times, as in Trellis/Owl [S_CB+86]?
the caller to explicitly state the base class whosgh.OUIOI 'there aIv_vays be one copy for each time a class
implementation should be used as a part of & IMherited, as in Python? Or should the programmer
method call, unless there is actually only on ave control, as in C++? Virtual inheritance removes
implementation (i.e., if one virtual base class ignUltiPle copies of instance variables, which saves
inherited multiple tim’es) space and prevents the accidental modification of the

' wrong set of instance variables. However, unless
programmers anticipate potential sharing of instance
variables, unexpected side effects may occur. For
example, when a class operation performs a depth-first
Stroustrup notes that his practical experience show@versal of the mhlierltanc_e graph, the dslame class
that order dependencies in a language are generallyEthod may get called twice, unexpeclte y [Snly8_€:].
source of problems. He cites this problem as a reas§hiS®: Sometimes r?avmg a base class explicitly
for requiring explicit resolution [Str94]. Indeed, it is duPlicated is the right design decision [Stro4]. _
easy to see how it might be problematic if the Yet another problem with multiple inheritance is
semantics of a program change based on whetherf‘%at it is often overused,; i.e., some programmers use it
class inherits beforeB, or B beforeA. Linearization [N @n unclear or undesirable manner [Boo94].
has an additional problem in that a class’'s “real

* No resolution naming conflicts are not allowed at
all.

Programmers often use multiple inheritance for
containment, even though they are generally taught to

only use it when the “IS-A” relationship is valid (We declared with an implements clause. To do these

will discuss what is usually considered acceptable ugbings, we might write the following code:

in more detail in the next section). [Tai96] also notes o
. class Tank extends Vehicle implements Armored

that multiple inheritance is often used inappropriately;

even in the literature. He cites [Mey88], who gave theprivate TankArmor myArmor;

example of aFi xed_St ack class inheriting from 1,

classesSt ack andArray. His reasoning is that a {

fixed-size stack is conceptually a specialization of a

stack only, and should therefore use the chassay ‘ _

only as a contained component. However, while we e emer e hmores metace by oerdng

agree that multiple inheritance is frequently misused,boolean protect(Object x) throws InvalidObject

not everyone considers this example to be such a caseé. _

See section 7 for an in-depth discussion, and its """ myArmor.protect(x):

implications for automated delegation.

Another significant problem with most !
implementations of multiple inheritance is the _ _ ,)
potential for obscure code. Take, for example, a class | NiS stratégy is undesirable, since the user must

A that inherits from classéandC, which both define tediously write a series of small methods that do
a methodf 00(). When running code i, andC nothing more than forward responsibility for a method

:) to a delegate. With the exception of resolving

callsf oo(), in many languages\'s f oo() method -) ,
: t I that ou to do so),
will be used, which could be the method foundgin o oiguities (in languages that require you)

_ > such work would be automated by multiple
and not the one found i@. When such a thing jyneritance, saving the user from a repetitive chore,

happens, it is certainly not obvious at all when lookingyhere he could easily make a mistake. Such mistakes

atC's code. S become more common as the size of an interface
In general, multiple inheritance adds a lot ofyrgws.

complexity to an object oriented system, for both the A strategy that would not require the user to write
language designer and the end user, and thus dfort wrappers for every visible methodrigAr mor
potentially easy to misuse or obfuscate. would be to allow clients access nyAr nor , either
. . . through a method call, or by making Ar nor public.
3 Advantages of multiple inheritance However, this strategy not only breaks encapsulation,
While many people use any given subset of th@ also fails to provide theTank class with the
arguments presented in the previous section tgethods it needs to implement thar nored
condemn multiple inheritance, it is still generallyjnterface, and makes it impossible fdfank to
considered to be a useful feature in languages th@électively override any afy Ar nor ’s behavior.
provide it, and is a frequently requested feature in Apoiher potential workaround is th&opy and
languages that do not. Programmers often resort modify” scheme [Tai96], which has nothing but

devising their own mechanisms to do what they,nsides in that it is highly error prone, breaks

otherwise would have used multiple inheritance to doencapsulation, and defeats the notion of reuse

One of the advantages of multiple inheritance is that Encouraged by object oriented design methodologies.

obviates such ad hoc solutions that would otherwise Bget another alternative is to modify the original base
fairly common.

imulati il class, which is also undesirable. First, the source code
The most common strategy for simulating multiple, ¢ he available. Second, editing the code can break

inheritance in such a Iar)guage_ is writi_ng code t omething that works, which could even have an effect
delegate messages to an instantiated object. Take, {Qf yher ysers and programs. Both “copy and modify”
example, a military simulation in Java, where we areq eiting the original class force the programmer to

writing a classTank, which needs to inherit from e with the lower level implementation, and thus

Ar nor ed interface in clas§ank USing an instance of De|egation can be viewed as more useful than
the TankAr nor class, which provides multiple inheritance, in that it is capable of dynamic
implementations of all methods in thermored changes that multiple inheritance generally does not
interface, although it may or may not explicitly besupport well. For example, users may dynamically

change the implementation by reassigning to the

myArmor = new TankArmor();

}

delegate. However, delegation can also be viewed & Why interfaces are not sufficient
an _unswtabl_e coping strategy, since the user must o designers of Java chose to exclude multiple
tediously write one-line methods to dispatch t0 g 4 iionce mainly due to the difficulties of

dEIeg.ate' In general, languages .S.hO.UId. automate s lementing repeated inheritance [AG96]. However,
repetitive and error-prone tasks, if it is simple tosgo they recognized the utility of the feature, and offered

[M?I'Ct?i]. s N6 uni | ‘ hat language support for interfaces, claiming that they
€ré 1S no universal consensus as to whal a§ser o) of the desirable features of multiple

acceptable and desirable uses for multiple inheritancf‘ﬁheritance without the drawbacks [GM95]
However, researchers tend to enumerate them In Java interfaces certainly avoid most problems

similar-looking but not guite identical lists (e'g"generally associated with multiple inheritance, since

Eﬁrg‘l.]r’] [Mey88]]c n?nlttj I[S'igﬁSDf Wwe ¢ cclJ)ns(ijder_ tgle those problems are, for the most part, the direct results
owing uses of multiple Inheritance 1o be desIrable, ¢ multiple subclassing, and not multiple subtyping.

all of which we have seen promoted in several sources: However, Java interfaces only completely replace

1. Multiple specializationAn object is conceptually one of the four desirable uses of multiple inheritance
a specialization of two different objects. Forwe have enumerated, namely multiple subtyping. In
example, a clas$ nput Qut put Stream is a addition, while Java can pair multiple interfaces to a
specialization of both ar nput Stream and Single implementation, it may not map multiple

Qut put St r eam implementations to interfaces in the same object
. _ _ _ ~without subclassing. The language automates neither
2. Mixin inheritance A class inherits myltiple specialization nor mixin inheritance.

implementations of multiple (usually orthogonal) Generally, programmers compensate by writing code
mixin classes, that may or may not Dbeyg delegate to an explicitly instantiated object.
implementations of interfaces. Mixin classes are The separation of interface and implementation into
usually small units that encapsulate a generglyo distinct mechanisms would aid in software reuse
attribute or modifications that may be of interest toOy encouraging programmers to notice and take
many other classes. Such mixins are generally n@fgvantage of the distinction. Inheriting a type, and no
instantiated ~ directly, ~and may even Dbemore, does not bind the programmer to any
independently uninstantiable, as they may depenghplementation, as long as his implementation meets
on the presence of a particular interface in thehe interface (orsignaturg specified by the type,
classes that inherit them. Otherwise, mixins argnich he may do in any way he chooses. In contrast,
generally self contained. The main advantage ohnguages where subtyping and subclassing are part of
the mixin style of programming is that it the same mechanism usually allow but do not
encourages programmers to provide modulagncourage the separation. For example, subtyping
highly reusable components. without subclassing can be achieved by inheriting
3. Multiple subtyping One of the advantages of classes that provide no implementation whatsoever,
object-oriented languages is inclusion and subclassing without subtyping can be achieved
polymorphism i.e., polymorphism through through manual delegation. Such languages also force
inheritance [CW85]. Multiple subtyping enhancesthe inheritance of an implementation that may not be
this advantage, as only having a single inheriteanted in order to inherit the associated type (although

type is potentially limiting. the entire implementation may certainly be
S . _ _ overridden).
4. Pairing interfaces and implementatioriseeping For these reasons, we believe a multiple subtyping

interfaces and implementations (subtypes anfhechanism that is separate from the traditional
subclasses) separate helps encourage reuggneritance mechanism is desirable, even if such
However, at some point, interfaces andmechanisms are not orthogonal. For example, in Java,
implementations must be combined to provide gnhey do not appear to be orthogonal mechanisms, since
concrete object with an appropriate type. Javéhheritance both subclasses and subtypes. However,
supports this type of multiple inheritance, althoughyis apparent lack of orthogonality does not interfere
in & limited manner, since a class may only inherifyiih the programmer’s mental model, since extending
a single implementation. a class with thext ends keyword, and showing that
you implement an interface with thenpl enent s
keyword are both distinct and clear. In fact, the
conceptual specialization relationship “IS-A” is

desirable, but separate from the notion of subclassirffss Tank extends venicle
. forwards Armored to myArmor

as a way of sharing code and data [LP91]. implements Armored

However, as we have previously discussed, &
multiple subtyping mechanism in itself is not sufficient T2"kArmor myArmor;
to replace multiple inheritance. We believe that, inTank(
order to bridge this gap, a single inheritance based
object oriented language that adequately obviateg
multiple inheritance would provide, in addition to a //restof class body, if any ...
multiple subtyping mechanism such as interfaces, ‘a
second subclassing mechanism, one which does not
imply subtyping. We believe that such a mechanisrf&
should have the same conceptual clarity and .
independence as do the inheritance and interfad® /¥ 7. The variablenyArmor needs to be a
features in Java. subtype ofAr nor ed, yet theTank class does not

Noting that without multiple inheritance peoplehave to be. For each method in tie nored
tend to use delegation when they need subclassifigjerface, a method will be generated in fhenk
(which does not imply subtyping at all) we suggestlass with the same modifiers as t#e nored
that a language should automate delegation. Suchmethod. The generated method will dispatch to the
feature in conjunction with a mechanism like Java'yariable nyArnor at runtime, and will closely
interfaces would provide language support for all fouresemble the forwarding function in the code example
desirable uses of multiple inheritance. In the nexfrom section 3. In general, forwarding functions will
section, we shall present an implementation, and thdye generated only for methods that are visible to the
in subsequent sections discuss the merits ardklegating object. For example, the delegate’s
drawbacks of our implementation, and the mechanisqrotected and private methods would not be visible,

myArmor = new TankArmor();

This code would cause the methods of the
r mor ed interface to be delegated to the variable

in general. but the public and default access methods would be.
The forwards clause shown above has two
5 Automated delegation for Java parts. The first part is the class or interface whose

Jamie is a preprocessor that adds direct support fgrethods are to be delegated. The second is the
delegation to Java 1.1, which is freely available fronYariable that will handle those methods, which is
http://www.list.org/iamie We chose to add our spe_cmed after thé o keyword. The actual del_egate
extensions to Java because it already has a multipfériable may be a subclass of the class or interface
subtyping mechanism (interfaces), and because it lack§0se methods are being delegated. For example,
multiple inheritance, and is unlikely to get it. Jamie isT@ankArmor is of type Arnored, but is not an
implemented as a preprocessor, using the Antlr LL(kf\r mor ed instance.
parser generator [PQ95] and its supplied Java 1.1 In the above code example, if the programmer
grammar, and Java’s reflection mechanism. wished to delegate to all gfankAr nor’'s methods,

To use Jamie, the programmer writes his code iinstead of just the ones in tie nor ed interface, he
files with a “jam” extension, which, when Jamie is could instead write:
run, get processed, and converted into a file with a
“.java” extension. When the user runs his program, glass Tank extends Vehicle
small library supplied with the Jamie release must be ™% TankAr mor to myArmor
visible to the Java run time system.

The mental model Jamie promotes is that it isSrThe programmer would need to forward to
simply automating the delegation code that aankArnor instead of theAr nored interface if
programmer would ordinarily write himself. Instead ofclass TankAr nor did not explicitly declare that it
writing short methods that forward appropriateimplements interfacér nor ed, yet provided all of
messages to all of the public methods of anothahe methods found in that interface. If that were the

object, the programmer just declares that he would likgase, the clastank would still be able to declare that
to do so. Returning to our tank example from sectio} jmplements Arnored, depending on the

3, in Jamie we would write the following code: programmer’s preference.

T Jamie copies all modifiers from the delegate into the
forwarder, with the exception of tlie¢ nal modifier.

Delegation information must appear before arf'ass T extends B
. . forwards A without S1, S2 to a
i npl enent s clause and after aaxt ends clause, if
either exists. The variable specifying the delegate? &
object must refer to a variable defined by the class tha ™
is doing the delegating. Such a variable must be visible
to the class. In particular, a private variable in the Thew t hout keyword takes a list of supertypes to
Vehi cl e class could not be delegated to in thisexclude from delegation. This keyword provides the
instance, since th€ank class would not have accesssame sort of ambiguity resolution virtual base classes
to that variable. Either a locally declared attribute oin C++ can provide, without the potential problems
an inherited attribute is acceptable, so long as thessociated with subclasses sharing state.
attribute is an object type (e.g., ints, floats amayar In Java, such ambiguities are actually quite
are not acceptable). common, since all classes inherit from tBej ect

It is possible to forward to multiple delegates. Fortype. However, Jamie assumes that the programmer
example, if theTank should also implement the would prefer to delegate without delegating to
Arned interface by delegating to an instance ofmethods fromObj ect, so the programmer need not
TankWeapons (which itself implementsAr ned), do so himself. We discuss the effects of this rule in

the programmer may write the following code: section 6. _ _ _
The programmer is responsible for declaring
class Tank extends Vehicle variables for each of his delegates, and assigning
forwaffméré“t%r?yagﬁrn”;°r’ instances to those variables. If the programmer were to
implements Armored, Armed leave a delegate uninitialized, and a class then toied t
forward a message to it, the runtime system would
TankArmor myArmor; . . .
TankWeapons myWeapons; throw a Nul | Poi nter Excepti on. This
responsibility gives the user the flexibility to
} instantiate delegates at his convenience, and to

TheTank class can selectively prevent forwarding'Ntialize delegates with appropriate =~ constructor
functions from being generated by providing its owr@f9uments. Thrlms reﬂSthr)',?'b'“ty alsoh gives ':he
implementation for any method in the nored or ~ Programmer the flexibilty to change the

Ar med interfaces. Providing such a method is usefullmp_lementatlon of a delegate' at run-time. Such an
) - . o . ability supports the encapsulation of logical states. For
for selectively overriding behavior and it is useful in

resolving name conflicts, which are errors in Jamie?xample’ a clasé/ ndow may like to inherit an object

For example, ifnmyArmor and myWeapons both that implements thebi spl ayabl e interface with
provided a m,ethod;t at (), the programmer would methods such adr aw() , that will always have to act

be able to resolve the conflict in whatever manner hglﬁe_rgntly based on whe‘;her t_he window Is |con|f!ed
chooses. If a subclass Tnk were to provide its own or visible. With dynamic inheritance, we can provide

implementation ofst at (), yet Tank did not, a two different implementations @i spl ayabl e, one

forwarding function would still get generated insidefor drawing iconified windows, and one for drawing
Tank, although it would be overidden by theV'S'bIe windows. Such a design keeps all mode

definition in the subclass. specific code together, instead of spreading it around

If two deleates both inherit imilar b via a conditional test in each relevant method, which
wo delegates both Inherit Irom a simiiar Das€.,, haye a deleterious effect on code readability
class or interface, overriding methods can get tedio

) .) %ai96]. For example, with Jamie, a user may write the
quickly. Jamie provides a second way to resolve na

)) L llowing code:
conflicts that does not involve overriding methods. g
Take for example, clas#, which the programmer interface Displayable
would like to use in class$, except it implementS1 o
. . . . public void draw();
andS2, whichT already inherits by extendirig If the public void raise():
programmer would like to use the implementations of public void iconify();

S1 andS2 from B, he may write the following code:
interface Window

public void toggleState();
}

class RaisedDisplayer implements Displayable

public void draw() {/* draw the window */ }

argument to the method in the delegate, or devise
some other ad hoc solution.

public void raise() {/* already raised */}
public void iconify() 6

/I add code to iconify the window
((Window)forwarder).toggleState();

Design issues

Our original design used a keyword that modified

variables that were to be delegated. That design had
} the advantage that the syntax for delegation did not

class IconifiedDisplayer implements Displayable

clutter the inheritance clause.

However, it also had

some compelling drawbacks:

public void draw() {/* do nothing */}
public void iconify(){ /* already iconified */ }
public void raise() 1.

/I add code to raise the window
((Window)forwarder).toggleState();
}
}

class MyWindow forwards Displayable to displayer 2.
implements Displayable, Window

Displayable displayer,icon,raised;
public MyWindow()
{

raised = new RaisedDisplayer();
icon = new IconifiedDisplayer();
displayer = raised; 3.

public void iconify() { displayer = icon; }
public void raise() { displayer = raised;}
public void toggleState()

if(displayer.equals(raised)) displayer = icon; 4.
else displayer = raised;

Note that if the programmer wants tN& ndow 5.
class to implement thBi spl ayabl e interface, then
it needs to say so explicitly, even though both of its
delegates implement the interface, and it is delegating
to a variable of typ®i spl ayabl e. That is because
delegation is a subclassing mechanism, and not a
subtyping mechanism. Also note the addition of the
keyword f or war der , which returns an instance of
type Obj ect, representing the object that forwarded
to the current object.

If the current execution is not a result of delegation
to the current object, theror war der will be nul | .
The forwarder keyword, combined with an
interface mechanism, obviates supporting
uninstantiable mixins, since the delegate does not need
to depend on run time information to compile method
invocations. We feel that the above example is
straightforward and powerful, and that it is highly
preferable to the code one would write by han
without this extension. For example, to get the effectd
of the forwarder keyword without such an
extension, a programmer would likely pass tHe s
object (i.e., the current object in Java) as an extra

(0]

It added a large irregularity, in that the language
would sometimes use the inheritance clause for
subclassing, and would sometimes use a variable
modifier.

It unnecessarily allowed for the arbitrarily large
separation of subclassing information within a
single class. We felt that such information should
be consistently and conveniently located, if
possible.

In order to support superclass exclusion using a
wi t hout clause, we would have needed to add
significant irregularities to the syntax for variable

declarations.

The programmer would be unable to delegate to an
inherited final variable without aliasing, which
would be a minor inconvenience.

Consider the following example from Jamie:

class FixedStack forwards AbstractStack to contain er

where cont ai ner is of type Array. Our
original design had no such facilities, as it would
cause unacceptable irregularities in variable
declaration syntax. Therefore, to delegate only the
methods from classAbstract Stack, the
programmer would have declared the delegation
variable to be of typébstract St ack. Then,
whenever the programmer would want to take
advantage of undelegated methods in his
implementation, he would either alias a variable of
typeAr r ay (which would increase the object size
unnecessarily) or cast the delegation variable.

Currently, Jamie only forwards methods, although
d’t could forward variables as well.

Jamie does not do

for two reasons. First, Jamie’s delegation

mechanism is designed to be a complement to Java’s
interfaces, which can not specify variables. Second,

such a feature could not be implemented transparently public and default methods would cause
and efficiently in a preprocessor. forwarding functions to be generated, all of which
The decision to implement Jamie as a preprocessor would be declared to be private, so only the
was made primarily so that we could quickly develop a delegating object could use them.
working proof of concept implementation. This
decision helped support our notion that delegation is We chose neither of these solutions. They both
an automation mechanism, since the preprocesseeemed undesirable, primarily because they are too
generates code that the user can inspect. Also, beinggtrictive: the delegating object may want to control
able to inspect the code turned out to be important twho can assign to the variable by declaring the
us, since we implement delegation by declaringyariable private, yet still have all of the forwarding
forwarding functions, which posed the problem that iffunctions be visible to others. Our choice was to
an exception is raised in a delegate, the forwardinglindly copy the access modifier of the delegate when
function will appear on the stack trace. We found ideclaring a forwarding function. This choice has the
would be less confusing to the programmer if the stackdvantage of not depending on the type of the delegate
trace always pointed at the generated Java file, insteadriable. We believe that this is the desirable choice,
of pointing to the Jamie file, having the tracebecause it best supports the usage patterns we are
sometimes show functions that could not be found itrying to promote with this feature. That is, in our
any code. The preprocessor also has the advantageegperience, most objects used as delegates were
keeping our work independent of any particular Javaesigned to be delegates. If those modifiers are not
implementation. acceptable to the programmer, he may always subclass
However, most aspects of the system could haweff the delegate to change them. This may not be a
been implemented far more efficiently if moved fromwholly acceptable solution. If not, we will consider
a preprocessor plus library approach to the compileadding extensions that will allow the programmer
For example, the only solution for delegating to staticontrol over the most lax access to give to a
methods that is available at the preprocessor level ferwarding function, as can be done with inheritance
Java’s reflection mechanism, which is not an efficienin C++. However, such a mechanism would also cause
solution. an irregularity in the language, since the inheritance
Static methods posted another significant problermechanism in Java has no such feature.
to us. In Java, classes are not first class objettshw We also considered modifying the language to not
meant that there could not be regular semantics for tl#how the forwarding function in a stack trace, but did
f orwar der keyword. We considered returning thenot do so in the interest of time. For the same reason,
meta-data of a class, but encountered anoth&e did not implement delegating to a method instead
limitation of the preprocessor approach. We could findf a variable. This would work by, in the forwarding
no completely reliable way to find the current rootfunction, invoking the method being delegated to, and
class from a static method, which we would havéhen forwarding to the object returned. These two
needed to do in order to set the value of thédeas are likely to be future work on Jamie.
f or war der keyword at delegation time. In Java, all classes inherit from tkj ect class,
Another important question we had to deal witheven if indirectly, which causes an unacceptably large
was what to do about declaring visibility modifiers onnumber of name conflicts for a multiple subclassing
the forwarding functions; i.e., should they be based osystem. As mentioned in the previous section, we
the visibility modifier given to the variable containing chose to avoid such conflicts in this case by explicitly
the delegate? For example, we briefly considered thefusing to forward methods originally defined in the
following strategies: hj ect class, despite adding tiaet hout keyword.
While this adds an irregularity to the language, it is an
1. Delegate only to objects in variables of public orinnocuous one. Usually, programmers would prefer to
default access, then copy the access modifiers alvoid explicitly using theni t hout keyword in this
the delegated methods for the forwardinginstance, unless for some reason they really do need to
functions. delegate the methods found in cl&dg ect. Such a
need will certainly be the exceptional case, whereas
2. Have the protection level of the variable storingexpncmy specifyingwi t hout Obj ect would get
the delggate reflgct the most_lax protection level gresome quickly. Also, Jamie will warn the
forwarding function can achieve. For example,rogrammer any time he or she delegates to an object
when delegating to a private variabd¢all of X's that redefines a method from thebj ect class,

reminding the programmer that if that particularCIEISS Delegate
method is to be delegated, it must be done explicitly.
This strategy prevents the programmer from beingpublic void foo()
surprised by the system not deleg'atlng to such éprintCaIIer();
method when he may have expected it to do so. }

Also, this solution is consistent with other aspectsPrivate void printCaller()
of the Java language. For example, the programmersysiem. out.printincaller);
must explicitly declare every type of exception that a}
method can throw, except for those exceptions that ate

subclasses of clasg&unti mneException, such as The value ofcal | er would always be equal to

O assCast Exception and Null PointerException. thet hjs reference, since the last call would always
The rationale for this design is that having to declarge |c4) to the current object, which probably is not
these exceptions at every method that could possiblyi5t the programmer intended.

throw them would be an extraordinarily inconvenient We then refined the semantics of thal | er

bur}gﬁgtthoeflafae Otr:)tzs)l\e;o%t!imrﬁigl[grﬂs\?vgtl d be tokeyword to return the object that last invoked a
only allow deI):egation o varigbles declared 1o bemethod, other than the current object. However, we
. , . eventually found that the entire notion ohl | er
interface types. However, we felt this solution WOUIdsuffered from two significant problems:
be needlessly restrictive, and would be less useful than '
our proposed solution in practice. For example, i
Java, a programmer may wish to extend the class
java.util. Vector, overriding a handful of the
methods, but leaving the bulk of them untouched.
Without Jamie, this can not be done in any useful
manner, since almost all ofect or’s methods are
final, meaning they can not be overridden. Being
able to delegate to such a class gives the programmer a
reasonable way to extend it. 2
The mechanism by which a delegate refers back to
the forwarder changed significantly several times, as
we realized flaws in each of our designs. We wanted
delegates to be clearly separated from their clients, an
so we chose not to have thki s keyword point back
to the forwarder, as is done with the self-reference . . .
operator in many delegation-based languages [Taige]. W€ @lso briefly considered replacing tbal | er
Our first mechanism was @al | er keyword, which Keyword with anowner keyword, since it seemed to
returned the object responsible for invoking the currerf® & More accurate representation of the functionality a
method. We quickly found that such a mechanism dirogrammer would generally want when writing
not support procedural decomposition. For exampléi€legates. However, the “owner” of a delegate may be
consider the following code: ambiguous; one object _could easily serve as a del'egate
to several different clients. For example, multiple
class Delegate objects may wish to delegate to a single cache, which

While call er was an interesting general-
purpose mechanism, it usually was not what the
programmer expected when the calling object was
not the delegating object. Essentially, there was
no way for the object to tell if the current call was
the result of delegation, or a direct call from a
third party.

The semantics ofcal | er were unclear with
respect to forwardings. For example, if an object
O calls objectX, which delegates to objedf, if
objectY asked for the value afal | er, would it
get objectX or objectO?

t could be stored in a shared class variable.
public void fo(The forwarder keyword, as currently
System.out.printin(caller); implemented, solves all the problems we found in
} previous approaches. With it, the delegate can easily

} distinguish between a method call by delegation and a

If an objectx forwards to an instance of class method call from a third party. Also, the semantics are

Del egat e, whenf oo is called inx, cal | er will not ambiguous with respect to which object the caller
refer tox; however, consider separating the printingshould be, as the delegating object explicitly
code into its own method as follows: distinguishes himself from the caller by use of the

forwards clause. Finally, there is no sort of
ambiguity as there would have been withamer

keyword, as the keyword tells the programmer whiclencourages better modularity and code reuse. This
client is responsible for the most recent delegation. distinction also allows the user to subclass, but not

subtype when the “IS-A” relationship does not make
7 Analysis of automated delegation sense.

We believe that delegation offers many advantages Another benefit is that the mechanism only allows

to a single inheritance class based language, wh&f Plack-box reuse: the delegating object has no
coupled with multiple subtyping. First, the two special access to the implementation of the delegate. In

together are good at doing the things multiplepontrast,_mulj[iple inheritance generally (though not
inheritance does well, such as supporting mixins2\Ways) implies some degree of white-box reuse,
Second, they directly support and automate codin hich severely weakens encapsulation [Sny86]. Also,

techniques that programmers commonly practice inPecializing a —prototypical instance offers an

languages without such features. Third, the dynamiglternatlve to the abstract, set-theoretic inheritanae th

nature of delegation supports useful programmin e'_[ter supports the way people ten_d_to think abgut real
techniques that most multiple inheritance basedPI€Cts [Lie86], and promoteasnanticipated sharing

systems do not, such as programming with logic e., reuse not anticipated by the author of the class

states. Fourth, the combination lacks most of th LU88]. . ,
disadvantages of multiple inheritance: Also, delegation is a useful abstraction tool under

circumstances that are not easily and cleanly handled

1. The problems of repeated inheritance are obviatedy ot_her language mechanisms, ir_lcluding inherita_nce.
Inconsistencies caused by sharing representatiof®nsider Meyer's defense of his use of multiple
in a single class hierarchy should not arise, sinciheritance to handle i xed_St ack class which is

the language is only supporting single inheritanc@'esented in- [Mey97]. In his example,
and containment. Fi xed_St ack inherits from both St ack and

Array, whereSt ack as an abstract class provides
2. Since delegates are individual objects, and not patfie skeleton that is filled in by the methods from
of a hierarchy, there is no way that a local call wil Ar ray. As noted in section 2, this has been criticized
end up calling into another delegate insteadas an inappropriate use of inheritance, as
Therefore, when looking at the code of a delegatd;i xed_St ack conceptually is not a specialization of
unexpected code paths due to inheritance are fér r ay [Tai96]. Still, if there are a number of similar
less likely. container classes (e.g., stacks, queues, etc.) inafeed
an array-based implementation, a well-designed
3. In our implementation, delegation is thought of adanguage should facilitate this task by allowing for a
an operation on a contained object, so the issue ofean abstraction. Meyer argues that in this casesa cla
misusing the feature by wusing it whereFi xed Cont ai ner, which implements all the
containment would be a more appropriatenecessary methods as calls to a container attribute of
mechanism is a moot point. Delegation will onlytype Ar r ay would be a both a good abstraction and a

be used when the programmer would like tociass of whichFi xed_ St ack would be a suitable
directly use the methods of a contained object. specialization. So creatingFi xed_Stack as a

subclass of botltt ack and Fi xed_Cont ai ner

would solve the problem. But then the implementation
of that class would simply forward the necessary
ethods to that of the container object — a tedious and
ror-prone approach, which is also fragile under

4. The feature is simple to implement.

Our mechanism does not directly address th
problem of name clashes. However, as we mention

previously, we personally do not find this complaint to hange. This drawback can be avoided by inheriting
be a significant source of problems in languages wit

explicit resolution, and believe that any such solutionrom Array diectly, rather than seeking the
wil? also be moré than acceptable fgr a dele atiorr]oundabout way via manual delegation. We observe a

P 9allol adeoff between the goal of a clean design and that of
based system.

reliable software. Obviously, this argument does not

Another advantage of our delegation mechanism i . :
that multiple subclassing remains orthogonal toﬁold in the presence of automated delegation, where

multiple subtyping. This separation stronegSUCh a tradeoff does not occur. This allows both

encouradges proarammers to distinauish betweerr?aintaining the conceptual integrity of the model and
. 9 prog) gL . avoiding the artificial introduction of an intermediate
interfaces and implementations, which in turn

class Fi xed_Cont ai ner, as in the following object must have in order to use a particular interface

example: for delegation. We plan on implementing such a
feature to Jamie for future work.
class Fixed_Stack Another potential drawback specific to Jamie and
extends Stack .

forwards Array to container Java that we hope designers of other languages would

{ _ be able to avoid is the potential for a large separation
Array container; between the declaration of the delegate variable, and

} thef orwar ds clause. We considered an alternative

syntax, where the programmer would actually declare

On the other hand, multiple inheritance is stillthe delegate in thieor war ds clause. For example:
better suited for multiple specialization than is
delegation. First, inheritance usually implies an “|S-A"class Tank forwards Armored
relationship, whereas delegation models an “USES-Ay ' P™"™® Armored myArmor
relationship. Second, depending on the language,.
delegation may not be able to provisigbstitutability
(i.e. that the derived class may be used anywhere an) _ _
instance of the base class is expected). For exarfiple, i 1oWever, this choice had several drawbacks of its
in Jamie, the class S delegates to instances af flas own. First, in the previous example, elthgr we would
instances of S may not be used wherever an instanf@Vve to allowry Ar mor to be declared multlplg times,
of A is expected, since there is no way for an $F we would have to dlsallow delegatln_g to inherited
instance to be cast to an A instance. The best \@riables. Second, allowing the declaration of delegate
programmer can do is to have A and S implement 'garlableg outside the class_ body would add an
single interface that should be used in all declaratioliregularity to the language. Since Java already has a
expecting an object compatible with A. Languages thatimilar forward referencing problem by allowing
separate implementation inheritance from interfac&€thods within the same class to be used before they
inheritance, such as Sather, would not have thid'e€ declared, allowing the forward referencing is
problem. consistent behavior, and avoids adding an irregularity.

There are some potential disadvantages t§ designing a language from scratch, however, we
delegation. Its dynamic nature makes it inherently les§ould almost certainly devise a suitable syntax to
efficient than static multiple inheritance, as someg disallow forward referencing. _
we can not bind to a single object, since the object we Bjarme Stroustrup discusses other potential
are delegating to may change at runtime. Howevefrawbacks to delegqtlon in [Str94_]. For a shqrt time,
any reasonable implementation would be no les§++ supported a simple delegation mechanism that
efficient than the code a user would write by hand, angutomated the forwarding of messages to an object.
could generally run faster, especially if the The feature was _removed from C++, as it was error
implementation avoids invoking forwarding functions Prone and confusing [Str94]. Stroustrup believed the
when possible, such as by inlining. Also, when gWo sources of these problems to be:

private delegate is only assigned in the constructor. The delegate was an independent object, and thus
(.e., the compiler can determine that the the delegating object could not override its

implementation will not be changed dynamically), the methods, which could be unexpected if such a
delegate methods could be statically bound, although method were called directly.

our implementation makes no such optimizations,
And while such a dynamic feature can provide the-
programmer with much expressive power, if abused, it

can lead to code that is harder to read than static i . .
software [GH+95]. The first problem we believe is adequately

addressed in Jamie, in that delegation is separate from
e notion of type inheritance, and that it has a more
xplicit syntax than did C++. In C++, an object could

There was no straightforward way for the delegate
to refer back to the delegating object.

The forwarder keyword as implemented in
Jamie has a potential drawback in that there is no wd

for the compiler to know the type of the forwarder, .
since arbitrary classes may delegate to arbitrar e coerced down to a delegate through assignment or

classes. Therefore, the programmer must pay the pricdSting. However, even if a delegate declared a
of a run time cast. This problem could be fixed b unction as virtual that was also redefined in the
. ' - - “gelegating object, after the coercion the delegate

letting the delegate specify a type that the forwardmgle ,
g g pecify a typ ould always be called when the function was

invoked. The real problem was not the semantics, biase class to a mixin, any method defined in both the
that programmers could not remember the semanticsixin and the base class will be supplied by the mixin,
they would assume whatever was most convenient f@ince the base class will necessarily be a superclass of
the code they were writing [Str98]. This particularthe mixin. Third, with more complex template
problem would go away if delegation were separatedpecifications, the readability can also degrade
from type inheritance, as is the case with Jamief or significantly. Also, mixin classes must be written so a
assignment and casting only limited the interface ofo take template arguments in order to be composable.
the delegating object, instead of essentially replacingor example, the code for cladd/Tank, which

the object with a delegate. The user would still be ablgherits fromTank as well as mixinsTankAr nor ,

to pass around the delegate as a separate objephnk\eapons and Destroyable, would be
However, at that point, the delegate is conceptually agyritten in such a manner:

independent object, and that object should indeed be

responsible for handling methods explicitly invoked®ass TankArmor<T> extends T{ ...}

. . class TankWeapons<T> extends T { ... }
on it, and thus the semantics are clear for th@ass Destroyable<T>extends T{...}

programmer in all cases. class MyTank extends TankArmor< TankWeapons<
Jamie addresses Stroustrup’s second problem Destroyable< Tank > > >

directly by providing thef orwarder keyword,

allowing the delegate to refer back to the delegating

object. . . S
) Since, in order to be subclassed in this way, a class

must anticipate its use in such a manner, and provide
8 Related work _ ~an appropriate template parameter, this solution may
Delegation is the foundation of a number of objectnot be used for general-purpose multiple subclassing,
oriented languages without classes, such as ThingLafly as an ad hoc technique. For instance, given two
[Bor81], Act-1 [Lie87], a Smalitalk without classes non-parameterized classed nput Stream and
[LTP86], and, perhaps most notably, Self [US87]q ¢ put Stream a programmer cannot produce
Such languages were shown to be equally as powerfphput Qut put St r eamas a mixin without changing
conceptually as inheritance by Lynn Stein [Ste87]bne of the original classes to have a parameter. This

although she notes that, in practice, either delegatioéblution will also break all the code relying on a non-

or inheritance may be more desirable. She eveﬁarameterized version

gr(IJpos?s a h()j/b_ric:‘ ”.‘tOde' thattr\]/vould all?w for both Another drawback of this approach is that the static
€legation and Inherftance In the same language. %ture of templates makes it impossible to implement

ﬁxfﬁ"eﬁt gnalysshof t_he S|mllarr|t|esn?n((jj (::ﬁgrfﬂg% ynamic subclassing in a straightforward manner. We
oth sharing mechanisms is presented in [} Iso note that, in our experience, programmers tend

hybrid model callecbbject specializations presented not to use templates in this way when using languages

in [SciB9). With object_ spgcializa_tion, objects still ith a genericity mechanism as well as a multiple
have a class from which it receives variables anévubclassing mechanism. such as C++ and Eiffel
methods, but individual objects determine what they As previously mentiéned C++ had a deIeQation
'nhi”t' thod f . i | hism t mechanism for a short time before multiple inheritance
method Tor using parametric polymorphism 10,4 5 qged [Str94], but it was error-prone as designed.

support mixins is shown in [AFM97], in the context 0fl?racha and Cook added direct support for mixins to

a _nga language extension. However, _this approach Modula-3, but they were a static concept, and both a
mixins suffers from a few drawbacks. First, the Synta’éubtyping’ and subclassing mechanism [Bé90]

IS _non-intuitive, in that multiple mixins must be Cecil's predicate classes are a variation on dynamic
declared as nested template parameters, which forcfﬁ%eritance for a class-based language [Cha93].

an ordering, when, conceptually, there should not ID5redicate classes offer dynamic subtyping as well as

One. This also results in a I_inearizgd inheritance .g.rapla'ynamic subclassing, as a single coupled mechanism.
which, as we noted previously, introduces art|f|C|aIF ¢ future work v;/e plan to explore dynamic
parents and undesirable order dependencies. Secog btyping issues in Java by extending the interface

to extend a non-parameterized base class such f&chanism, keeping it orthogonal from our delegation
Obj ect and one or more mixins simultaneously, a, . hanism

programmer must either duplicate code, or pass the ap eytension to Java based on predicate classes is

base class as a parameter to a mixin, both of which age.senteqd in [vC+97], which is tailored towards the
undesirable solutions. For instance, when passing a

sole goal
purposes.

of specializing classes for efficiency

[Bor81]

9 Conclusions

In this paper we have presented automatic
delegation for class based languages, which provides a
second subclassing mechanism capable of multiplgCha93]
subclassing. We have argued that such a mechanism is
preferable to no multiple subclassing mechanis cwss]
whatsoever, since the mechanism is no less desirable
than the ad hoc mechanisms programmers would
otherwise devise themselves. We have compared OféH+95]
delegation mechanism to multiple inheritance,
showing that delegation, for the most part, does not
suffer from the problems of multiple inheritance. It [GJS96]
also enables conceptually clear and desirable
abstractions that multiple inheritance does not handle
in a satisfactory manner. However, we have als§GM95]
shown that our mechanism has potential drawbacks
generally not found in multiple inheritance [Knuss]
mechanisms. We hope that language designers will no
longer consider the question, “should | allow multiple
inheritance?” Instead, we hope they will ask
themselves, “Which is the better solution for my
language’s intended problem domain, multiple
inheritance, or multiple delegation?”

[Lie86]

Acknowledgements _

We would like to extend our deep appreciation tdLi€87]
Tim Hollebeek, Steve MacDonald and John Regehr
for their insightful input when discussing this idea. We
also are indebted to the people at Reliable Software
Technologies, who provided useful feedback early ifLP91]
the life of this project.

We would also like to thank Gabe Ferrer, Leigh
Caldwell, Paul Reynolds and Kathy Ryall for [Tpge]
reviewing early drafts of this paper.

References

[AFM97] O. Agesen, S. Freund, J. Mitchell. Adding [Mac87]
type parameterization to the Java™ language.
In OOPSLA '97 Conference Proceedings.
ACM SIGPLAN Notices 320 (Oct. 1997).

[AG96] K. Armold, J. Gosling. The Java™
Programming Language Addison-Wesley,
1996.

G. Bracha, W. Cook. Mixin-based inheritance.
In OOPSLA/ECOOP '90 Conference
ProceedingsACM SIGPLAN Notices 2580
(Oct. 1990).

G. Booch. Object-Oriented Analysis and [SCB+86]
Design With Applications 2" edition.

[Mey88]
[Mey97]

[BC90] (PQOS]

[Bo094]

Addison-Wesley, 1994.

A. Borning. The programming language
aspects of ThingLab, a constraint-oriented
simulation laboratoryACM Transactions of
Programming Languages And Systems43
(Oct. 1981).

C. Chambers. Predicate classes.HGOOP
'93 Conference Proceedings

L. Cardelli, P. Wegner. On understanding
types, data abstraction and polymorphism.
ACM Computing Surveys 14 (Dec. 1985).

E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design PatternsAddison-Wesley, 1995.

J. Gosling, B. Joy, G. Steel@he Java™
Language Specification Addison-Wesley,
1996.

J. Gosling, H. McGiltonThe Java Language
Environment Sun Microsystems, 1995.

J. Knudsen. Name collision in multiple
classification hierarchies. INECOOP '88
Conference Proceedings

H. Lieberman. Using prototypical objects to
implement shared behavior in object oriented
systems. In OOPSLA '86 Conference
ProceedingsACM SIGPLAN Notices 2111
(Nov. 1986).

H. Lieberman. Concurrent Object-oriented
programming in Act-1. In A. Yonezawa, M.
Tokoro (ed.), Object-Oriented Concurre
Programming MIT Press, 1987.

W. Lalonde, J. Pugh. Subclassing
subtyping# is-a. Journal of Object-Oriented
Programming 35 (Jan. 1991).

W. Lalonde, D. Thomas, J. Pugh. An
exemplar based Smalltalk. IOOPSLA '86
Conference ProceedingsACM SIGPLAN
Notices 2111 (Nov. 1986).

B. MacLennan.Principles of Programming
Languages: Design, Evaluation, and
Implementation2™ Edition. HBJ, 1987.

B. Meyer. Object-Oriented
Construction Prentice Hall, 1988.

B. Meyer. Object-Oriented Software
Construction,Z"d edition. Prentice Hall, 1997.

T. Parr, R. Quong. ANTLR: A predicated-
LL(k) parser generatoSoftware Practice and
Experience 257 (July 1995).

C. Schaffert, T. Cooper, B. Bullis, M. Killian,
C. Wilpot. An introduction to Trellis/Owl. In
OOPSLA '86 Conference ProceedingsCM

Software

SIGPLAN Notices 2111 (Nov. 1986). ForwardingList:

. . . o DelegationSpec
Transactions on Information Systems Z
(Apr. 1989). DelegationSpec:

. . . L . . DelegateName WithoutClausgg o Identifier
[Sin95] G. Singh. Single versus multiple inheritance in 9 e

object oriented programming. INOOPS pelegateName:
Messenger 61 (Jan. 1995). Identifier

[SLU8B8] L. Stein, H. Lieberman, D. Ungar. A shared PackageNameldentifier
vi_ew of sharing: the treaty of erandq. In W. \withoutClause:
Kim, F. Lochowsky (ed.),Object-Oriented wi t hout WithoutList
Concepts, Applications and Databases
Addison-Wesley, 1988. WithoutList:

. . . . ClassName
[Sny86] A. Snyder. Encapsulation and inheritance in WithoutList ClassName

object-oriented programming languages. In
OOPSLA '86 Conference Proceedings. ACM

SIGPLAN Notices 211 (Nov. 1986). The second addition Jamie makes to the Java 1.1

[Ste87] L. Stein. Delegation Is Inheritance. In grammar is to primary expressions. Ther war der

OOPSLA '87 Conference Proceedings. A | avword i le wherever thai s k rd is:
SIGPLAN Notices 2212 (Oct. 1987). eyword is usable wherever théi s keyword is:

[Stro4] B. Stroustrup The Design and Evolution of PrimaryNoNewArray:

C++. Addison-Wesley, 1994. Lirt:_aral
this
[Stro8] B. Stroustrup. Personal communication (Feb. forwarder
1998).

[Taios6] A. Taivalsaari. On the notion of inheritance. . .
In ACM Computing Surveys 28 (Sept. For the elided part of the above production, and for

1996). non-terminals not defined here, refer to [GJS96].

[US87] D. Ungar, R. Smith. Self: the power of
simplicity. In OOPSLA ’'87 Conference
Proceedings. ACM SIGPLAN Notices, 12z
(Oct. 1987).

[VC+97] E. Volanschi, C. Consel, G. Muller, C.
Cowan. Declarative specialization of object-
oriented programs. In OOPSLA '97
Conference Proceedings. ACM SIGPLAN
Notices 3210 (Oct. 1997).

Appendix

Changesin the Java grammar

We have made two changes to the Java grammar as
found in [GJS96]. That first change is in the class
declaration line. Using the conventions from [GJS96],
the class declaration line is now:

ClassDeclaration
Modifiersoycl ass Identifier Supesy Deloy Interfaces,, ClassBody

We also add the following supporting productions:

Del:
f or war ds ForwardingList

