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Extreme Points of Riccati Inequalities 

ANDERS LINDQUIST, C. MARTIN, AND GIORGIO PICCI 

Abstruct -Relations  between solutions of the  algebraic  Riccati  equation 
and the  associated quadratic  matrix  inequalities  are  discussed  and ex- 
plained. 

The purpose of this note is to clarify  some of the relations  that  exist 
between solutions of the algebraic  Riccati  equation and the  associated 
quadratic matrix  inequalities. In particular,  the  main  result of the note is 
to establish that there  are extremepoints in the  solutions  set of quadratic 
matrix inequalities that are not solutions of the  algebraic  Riccati  equa- 
tion. The history of this result is typical of many  results  involving Riccati 
equations in the engineering  literature-total  confusion. It has been part 
of the folklore for many  years  that  the  solutions of  the algebraic  Riccati 
equation are extreme  points of the  above-mentioned quadratic matrix 
inequalities. In Badawi’s  thesis [l] a  very  elegant  proof  is  given,  however, 
in review it was  discovered  that  there  had in fact  appeared  a  proof in the 
literature. In  Faurre et nl. [3] there is indeed  a  proof and a  footnote to the 
effect that there are  extreme  points other than the  solutions of the 
algebraic Riccati  equation.  However, it has evolved as part of the  folklore 
that the two  sets  coincide, even though it seems to be  known that there  are 
extreme points that are  not  solutions of the  algebraic  Riccati equation. 
However. we have  been  unable to find  a  proof. In this note we present  a 
class of examples  that  establishes  that  there  are  other  extreme  points. 

The example  is  based on the  simple  analysis  presented in [2].  Following 
the notation of [ l ]  we let F, G and H and R be  matrices  such  that F is 
2 X 2. G is  2 X 1, and H is 1 X 2.  We define  then  the  function W( P )  = FP 
+ PF’+(G-   PH’ )R- ’ (G-  PH’)’. W(P) is  the  Riccati  operator. The 
matrix Riccati  inequality  referred to above  is of course  the  inequality 
W (  P )  Q 0 in the sense of positive  definite  matrices.  The  Riccati  equation 
is the equation W (  P )  = 0. Now we choose F, G. and H such that the 
Hamiltonian associated  with  the  Riccati  equation has complex  eigenval- 
ues. The Hamiltonian is  constructed  by  transforming  the  above equation 
to the more standard form  (for the purposes of geometric  analysis) 

W (  P )  = ( F  - G R - ’ H )  P + P (  F -  GR-’H)’+  GR-’G’+  PH’R-lHP 

and writing the Hamiltonian # 

where we let A = F - GR-‘H, D = - H’R-’H. and Q = GR-IG‘. This 
matrix has four  complex  eigenvalues  which can be  denoted  by r,  r, - r. - r. 
(A standard result about infinitesimal  symplectic  matrices.) It is  trivial  to 
establish that such  matrices  exist. For example.  let A have  complex 
eigenvalues and  let Q = SI. Since .X? has complex  eigenvalues  with s = 0, 
it follows (from continuity) that  when s is  sufficiently  small.  the  eigenval- 
ues of the Hamiltonian are  also.  Choose  the  matrices A.  B ,  Q.  and D 
such that ( A ,  H )  is  controllable and Q and D are positive  semidefinite. 
Then using the results of [2]  there  exist  exactly  two  real  solutions of the 
associated  algebraic  Riccati  equation. Thus, if the set of extreme points of 
the quadratic matrix  inequalities  consists  only of these  tn’o  solutions  then 
the solution set is  a  linear  segment. This is  not  the  case and hence  there 
must  exist other extreme  points. 
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The  Optimal Projection Equations for Fixed-Order 
Dynamic  Compensation 

DAVID C. HYLAND AND DENNIS S .  BERNSTEIN 

Abstract-First-order  necessary  conditions for quadratically  optimal, 
steady-state,  fixed-order  dynamic  compensation of a  linear,  time-invari- 
ant  plant  in  the  presence of disturbance  and  observation  noise  are  derived 
in a new  and  highly  simplified  form.  In  contrast to the  pair of matrix 
Riccati  equations for the  full-order LQG case,  the  optimal  steady-state 
fixed-order  dynamic  compensator is characterized  by four matrix  equa- 
tions (two modified  Riccati  equations  and two modified  Lyapunov 
equations)  coupled  by  a  projection whose rank  is  precisely  equal to the 
order of the  compensator  and  which  determines  the  optimal  compensator 
gains. The  coupling  represents  a  graphic  portrayal of the  demise of the 
classical  separation  principle for the  reduced-order  controller  case. 

I. INTRODUCTION 

Because of constraints imposed by on-line  computations,  dynamic 
controllers for high-order  systems  such as flexible  spacecraft  must be of 
relatively  modest order. Hence, this paper  is  concerned  with the design of 
quadratically optimal, fixed-order (i.e., reduced-order) dynamic compen- 
sation for a  plant  subject to stochastic  disturbances and nonsingular 
measurement  noise. Since white  noise  in all measurement channels 
precludes direct output  feedback (see Section K), only  purely  dynamic 
controllers are considered. The requirements for resolution  of this 
optimization  problem  include the following. 

1) Conditions for the existence of an optimal,  stabilizing  compensator 
of the prescribed order. (In the full-order case these are the usual 
stabilizability and detectability  conditions  of  LQG theory.) 

2) Stationary  conditions, i.e., first-order  necessary  conditions,  ren- 
dered in a  tractable form to facilitate  developments  in  items 3) and 4) 
below. (In the full-order case these  conditions are precisely the LQG  gain 
relations  together  with the regulator  and observer Riccati equations.) 

3) Sufficiency  conditions, Le., additional  restrictions on solutions  of 
the first-order  necessary  conditions  which  characterize  local minima and 
single  out  the global minimum.  (In the full-order case the global 
minimum  is  distinguished by the unique nonnegativedefinite solutions to 
the LQG  Riccati equations.) 

4) Convergent  numerical  algorithms for simultaneous  satisfaction  of 
the necessary and sufficient  conditions.  (In the full-order case numerical 
algorithms  have  been  devised  which take full  advantage  of the highly 
structured form of the Riccati equations.) 
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The present paper deals exclusively with  item 2). Although  the 
stationary conditions for the fixed-order compensation problem have been 
written down ( see  [1]-[12], for example), full exploitation has  undoubt- 
edly been impeded by their extreme complexity [see (3.3)-(3.1 l ) ] .  What 
has been lacking, to quote the insightful remarks of [9], "is a deeper 
understanding of the structural coherence of  these equations." The 
contribution of the present paper is  to show how  the o r i m y  very 
complex stationary conditions can be transformed without loss of 
generality to much simpler and more tractable forms. The resulting 
equations (2.10)-(2.17)  preserve the simple form of  LQG relations for  the 
gains in terms of covariance and  cost matrices which, in turn, are 
determined by a coupled system of two modified Rimt i  equations and 
two modified  Lyapunov equations. This coupling, by means of a 
projection (idempotent matrix) whose rank is pecisely equal to the  order 
of the compensator, represents a graphic portrayal of  the demise of the 
classical separation principle for the reduced-order controller case.  When, 
as a special case, the order of the compensator is required to be equal to 
the order of the plant, the modified Riccati equations reduce to the 
standard LQG Riccati equations and the modified  Lyapunov equations 
express  the proviso that the compensator be minimal, i.e., controllable 
and observable. Since the LPG Riccati equations as such are nothing 
more than the necessary conditions for  full-order compensation, we 
believe that the "optimal projection equations" provide a clear and simple 
generalization of standard LQG theory. 

Since we are concerned with optimal fixed-order compensator design, 
our approach does not represent yet another model- or  controller- 
reduction scheme along the lines of  [13]-[17]. Indeed, the optimal 
projection equations, by virtue of their relatively transparent structure, 
can reveal the extent to  which the design equations of a given ad hoc 
reduction scheme conform to  the necessary conditions for optimality. For 
example, the oblique projection which arises  in the present formulation 
may not be of the form [i 3 even in the basis corresponding to the 
"balanced" realization [13]-[16]. These issues are discussed in [lS] 
where the results of  [19] are simplified by means of the approach of the 
present paper and where the balancing method  of [I31 is reinterpreted in 
the context of optimality theory. 

The  fact that the optimal projection equations consist of four coupled 
matrix equations, Le., two modified Riccati equations and two modified 
Lyapunov equations, should not be at all surprising for the following 
simple reason. Reduced-order control-design methods  often involve either 
LQG applied to a reduced-order model or model reduction applied to a 
full-order LQG design. Both approaches,  then, involve the solution of 
precisely four equations: two Riccati equations (for LQG)  plus two 
Lyapunov equations (for model reduction via balancing, as in [13]). The 
coupled form of the optimal projection equations is thus a strong 
reminder that the LQG  and order-reduction operations cannot be iterated 
but must, in a certain  sense, be performed simultaneously. 

II. PROBLEM STATEMENT AND THE MAIN THEOREM 

Given the control system 

4 t )  =Ax(t) + Bu(t) + Wl(t), (2.1) 

At )  = CW) + WZ(t) (2.2) 
design a fixed-order dynamic compensator 

-few = A J c ( t )  + ~ C Y ( O ,  (2.3) 

u(t) = CJAO (2.4) 
which minimizes the steady-state performance criterion 

J(& Bc, CJ 4 I[x(t)'R~x(t)+ u(t)'Rzu(t)l (2.5) 

where: x E Pn, u E Rm, y E R', x, E R n c ,  n, Q n, A ,  B, C, A,, B,, 
C,, RI,  and Rz are matrices of appropriate dimension with RI (symmetric) 
nonnegative definite and R2 (symmetric) positive definite; wI is white 
disturbance noise  with n X n nonnegativedefinite intensity VI and w, is 

white observation noise with I X I positivedefinite intensity V,; w1 and 
wz are uncorrelated and have zero mean. We note that the assumptions  of 
nonsingular control weighting and nonsingular observation noise preclude 
the use of direct output feedback as in 

~ ( 0  = C J J ~  + DcAO (2.6) 

since J is undefined unless (see [I) 
tr [DrRzD, Vz] = 0 ((=) RZD, Vz= 0). (2.7) 

To guarantee that J is finite and independent of initial conditions we 
restrict our attention to the set of admissible stabilizing compensators 

[ 21 is asymptotically  stable 

where 2 is the closed-loop dynamics matrix.  Since  the value of J is 
independent of the internal realization of the compensator, we can further 
restrict our attention to 

@+ 4 {(Ac, B,, CJ E a: 

(A,, E,) is controllable and (Cc, A,) is observable). 

For the following lemma call a square matrix nonnegative (respectively, 
positive) xmisimple if it has a diagonal Jordan form and nonnegative 
(respectively, positive) eigenvalues. Let I, denote the r X r identity . 
matrix. 

Lemma 2.1: Suppose Q, p E B n X n  are nonnegative definite. Then 
Qp is nonnegative semisimple. Futhermore, if rank QP = n, then there 
exist G ,  r E R n c  x n  and positive-semisimple M E R3"c  x n c  such that 

QP= G'rn ,  (2.8) 

I'GT=InC. (2.9) 

Proof. The result is an immediate consequence of [20, Theorem 
6.2.5, p. 1231. 

For convenience in stating the Main Theorem, define 

C 4 BR;IBT, 4 CTV;'C 

and call G,  M ,  and I' satisfying (2.8) and (2.9) a (G, M, I')-factorimion 

Main Theorem: Suppose (A,, B,, C,) E a, solves the steady-state 
fixed-order dynamic-compensation problem. Then there exist n X n 
nonnegativedefinite matrices Q, P, Q, and p such that A,, B,, and C, are 
given by 

of QP. 

A,  = r(A - QC - C P ) G ~ ,  (2.10) 

(2.11) 

C,= -R;IBTPGT (2.12) 

for some (G, M, I')-factorization of QP, and such that with r 4 G T  the 
following conditions are satisfied: 

0 = (A - rQz)Q + Q(A - TQE) '+ VI + rQCQr ', (2.13) 

O=(A-CPT)~P+P(A-CPT)+RI+T'PCPT, (2.14) 

O=T[(A-EP)Q+Q(A-XP)'+QZQ], (2.15) 

0 = [(A - Q z )  ' p  + $(A - Qc)  + PCPIT, (2.16) 

rank &=rank P=rank QP=nc. (2.17) 

Remark 2.1: Because of (2.9) the n X n matrix r which couples the 
four equations (2.13)-(2.16) is idempotent, i.e., = r. In general this 
"optimal projection" is an oblique projection (as opposed to  an 
orthogonal projection) since  it is not necessarily symmetric. Note that 
Sylvester's inequality and (2.9) imply  that rank T = n,. 

Remark 2.2: Using the relations Q = rQ and P = I% [ see  (3.12)], 



1036 IEEE TRANSACTIONS  ON AUTOMATIC CONTROL, VOL. AC-29,  NO. 11, NOVEMBER 1984 

the optimal projection equations (2.13)-(2.16) can be written in the 
equivalent form 

O=AQ+QAT+Vl-Q%Q+rLQEQ7:, (2.18) 

O = A r P + P A + R 1 - P X P + ~ ~ P X P ~ L ,  (2.19) 

O=(A-XP)&+Q(A-XP)T+QEQ-r lQ%~: ,  (2.20) 

O=(A-QE)TP+&4-Q%)+PXP-~:PCP~, (2.21) 

where T, el,, - T. Note that in the full-order case n, = n ,  T = G = r 
= I,, and thus (2.18) and (2.19) reduce to the standard observer and 
regulator Riccati equations and (2.10)-(2.12) yield the usual LQG 
expressions. Furthermore,  it can be shown that (2.20),  (2.21), and (2.17) 
are equivalent to the assumption that (A,, B,, C,) is controllable and 
observable. 

Remark 2.3: Since_ QP is nonnegative semisimple it has a group 
generalized inverse (QP)# given by G T M - T  (see e.g.,  [21,  p. 1241). 
Hence, by (2.9) the optimal projection r is given by 

7 = QP(QP)#. (2.22) 

Remark 2.4: The modified Rimti equations (2.13) and  (2.14) are 
similar to the (single) "extended algebraic Riccati equation" which arises 
in the static output feedback problem (see, e.g.,  [22]). 

Remark 2.5: Replacing x, by Sx,, where S is  invertible, yields the 
"equivalent" compensator (SA$-', SB,, CJ-I). Since J(A,, B,, C,) 
= J(SAJ-' ,  SB- C$-l) one would expect the Main Theorem to  apply 
also to (SA$-', SB,, CJ-I). This is indeed the case since transforma- 
tion of the compensator state basis corresponds to the alternative 
factorization QP = ( S - = C )  (SMS -1) (ST). see [IO]  for related 
remarks. 

Remark 2.6: By introducing the quasi-full-state estimate 2 4 G rxc E 
ran SO that 79 = 2 and x, = rf E I+, (2.1)-(2.4) can be written as 

X = A X + B ~ ~ ~ ~ + W ~ ,  

~ = ~ ( A - - , C + B ~ ~ , ) ~ + ~ - ~ ( C ~ + W ~ )  

where B, & QCrV; I and e, 4 - R;  'BrP.  Although the implemented 
compensator has the  state x, E I",, it can be viewed as a quasi-full-order 
compensator whose geomehc structure  is entirely dictated by the 
projection T. Sensor inputs B a  are annihilated unless they are contained 
in [X(s)] l  = R ( T ~ ,  where X and CR denote null space and range. 
Furthermore, the quasi-full-order state estimate 72 employed in the 
control input is contained in R(7). Thus, R(T) and cR(73 are the control 
and observation subspaces of the compensator. 

m. PROOF OF THE MAIN THEOREM 

The proof given here considerably simplifies the original derivation 
given in  [23]  and  [24].  Using the fact that Q, is  open, the Fritz John 
version of the Lagrange multiplier theorem can be  used to rigorously 
derive the first-order necessary conditions ([q, s e e  also [25]) 

where 

and (n + n,) X (n + n,) a P a r e  partitioned into n x n,  n x nc, and 
n, x n, subblocks as 

r r 7 

Expanding (3.1) and (3.2) yields 

O=AQl+ QIA'+BC,Q:+ Q12(BCc)T+  VI, (3.6) 

O = A Q , Z + Q ~ ~ A : + B C , Q ~ + Q I ( B , C ) ~ ,  (3.7) 

O = A ~ Q Z + Q Z A : + B ~ C Q I ~ + Q ~ ~ ( ~ ~ C ) ~ + B ~ V Z B : .  (3.8) 

O=ArPl+PIA+(BcC)rPPf2+P12BcC+RI, (3.9) 

O=P,2A,+ATP,z+(B,C)TPz+P~BC,, (3.10) 

O = A ~ P ~ + P Z A , + ( B C , ) ~ P ~ ~ + P ~ ~ B C , + C , T R ~ C , .  (3.11) 

Writing (3.8) as ( see  [26], [27) 

O=(A~+B~CQIZQ;)Q~+QZ(A~+B~CQIZQ;)~+B~V~B: 

where Q;  is  the Moore-Penrose or Drazin generalized inverse of Qz, it 
follows from [28, Lemmas 2.1 and  12.21 that Qz is positive definite. 
Similarly, (3.11) implies that Pz is positive definite. This justifies (3.4) 
and (3.5). 

Now define the n X n nonnegativedefinite matrices (see [26], [271) 

Q 4 Q I - Q I z Q ; ' Q ~ , >  P ~ P I - P I ~ P ; ' P L ,  

Q P QnQ;'QL, B P PI2P;lP; 

and note that (3.3) implies (2.8) and (2.9) with 

G 4 Q;'OL, M 4 QzPz. r 4 - P;'P;. 

Since QP, = P;1'2(P:/2Q2P~'2)P:/2, M is positive semisimple. 
Sylvester's inequality yields (2.17). Note also that 

Q=7Q,  P=Pr.  (3.12) 

Next (2.11) and (2.12) follow from (3.4) and (3.5) by using the 
identities 

QI=Q+Q,   P l=P+P,  (3.13) 

Qlz=@",  PI?= -PCr, (3.14) 

Q~ = rQr r, pZ = GPGT. (3.15) 

Nowsubstitute(2.11),(2.12),and(3.13)-(3.15)into(3.6)-(3.11)anduse 
the relations 

B,C=rQE, BC,= -XPGT, 

BcV2B:=I'QPQrr, C,TRzC,=GPZPGT. 

Then (2.10) follows from (3.8)-I'(3.7). Substituting (2.10) into (3.3, 
(3.8),  (3.10), and (3.11) shows that ((3.7)Qr and -(3.10)r are 
precisely(2.15)and(2.16). SinceGr(3.8)G = (2.15)sandfr(3.1l)r = 
s(2.16), (3.8) and (3.11) can be omitted. Finally, using (3.12) it follows 
that (2.13) = (3.6) + (2.15)s - (2.15)-(2.15)r and similarly for 
(2.14). 

N. DIRECTIONS FOR FURTHER RESEARCH 

With regard to the existence of a stabilizing compensator, known 
results (e.g., [28]-[34]) can be exploited to a great extent. A numerical 
algorithm for solving the optimal projection equations has  been developed 
in [24] and [35]. The proposed computational scheme is philosophically 
quite different from gradient search algorithms [2], [3], [6],  [7], [9], [l  I],  
[36], [37l in that it operates through direct solution of the optimal 
projection equations by iterative refinement of the optimal projection. 
Methods for eliminating local extrema are being investigated by applying 
component cost analysis [17]. Generalizations of the optimal projection 
equations can arise by considering the following extensions of the fixed- 
order  dynamiccompensation problem. 

1) Discrete-Time System/Dkcrete-Time Compensator: Digital im- 
plementation can be  modeled by a discrete-time compensator with control 
of a continuous-time system facilitated by sampling and reconstruction 
devices. 
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2) Cross Weighting/Correlated  Disturbance and Observation 
Noise: This extension  is straighforward and entirely  analogous to the 
LQG case (see, e.g. ,  [3,  p. 3511). 

3) Singular Observation  Noise/Singular Control Weighting: With 
due  attention to (2.7), direct  output  feedback can be used  in  the  singular 
case. The nature of the  problem  forebodes all of the difficulties associated 
with  the  singular LQG problem. Note that  the  output  feedback  problem 
[22], [38], when viewed in this context,  is high@ singular. 

4) Infinite-Dimensional  Systems: The  optimal  projection  equations 
have been extended in [39]  and [40] to  the case in which (2.1)  is a 
distributed  parameter system,  for  example, a  paitial or  functional 
differential  equation. 

5 )  Decentralized  Fixed-Order  Controller: The  optimal  projection 
equations can be  derived for the case in  which  the  dynamic  controller has 
a  fixed  decentralized  structure. 

6)  Parameter  Uncertainties: The  original  derivation in [23] treated a 
Stratonovich statedependent  noise model  representing  parameter  uncer- 
tainties  in  the  plant. Further consideration of control- and  measurement- 
dependent noise raises  the  possibility of directly  including  the  impact of 
parameter uncertainties in the design of robust,  implementable  compensa- 
tion for large-order systems. 
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Optimal  Control of Systems Possessing Symmetries 

J. W. GRIZZLE AND S .  I. MARCUS 

Abstract-It is shown  that  a  symmetry  in an optimization problem 
induces a decomposition  of the optimal  feedback  control  law into  factors. 
One factor  can  be calculated  algebraically  and  depends  only on the 
symmetry;  the  other factor corresponds to a  lower  dimensional  optimiza- 
tion problem. This gives a priori  information about  the  structure of  the 
optimal  feedback  control  law  and  indicates  a  possibly  more efficient 
method for optimizing  such  systems. 
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