
J. Functional Programming 1 (1): 1{000, January 1993 c
 1993 Cambridge University Press 1
Monadic Encapsulation of E�ects:A Revised Approach (Extended Version)E. Moggi yDISI, Univ. of Genova, v. Dodecaneso 3516146 Genova, ItalyAmr Sabry zComputer Science Department, Indiana UniversityBloomington, IN 47405, USAAbstractLaunchbury and Peyton Jones came up with an ingenious idea for embedding regionsof imperative programming in a pure functional language like Haskell. The key idea wasbased on a simple modi�cation of Hindley-Milner's type system. Our �rst contribution isto propose a more natural encapsulation construct exploiting higher-order kinds, whichachieves the same encapsulation e�ect, but avoids the ad hoc type parameter of the orig-inal proposal. The second contribution is a type safety result for encapsulation of strictstate using both the original encapsulation construct and the newly introduced one. Weestablish this result in a more expressive context than the original proposal, namely in thecontext of the higher-order lambda-calculus. The third contribution is a type safety resultfor encapsulation of lazy state in the higher-order lambda-calculus. This result resolves anoutstanding open problem on which previous proof attempts failed. In all cases, we for-malize the intended implementations as simple big-step operational semantics on untypedterms, which capture interesting implementation details not captured by the reductionsemantics proposed previously. 1 IntroductionLaunchbury and Peyton Jones (1995) came up with an ingenious idea for encap-sulating regions of imperative programming in a pure functional language. Morespeci�cally, they introduced a simple modi�cation of Hindley-Milner's type system,and proved (using logical relations) that if a program is well-typed (in a restrictedsystem, where all locations contain expressions of a �xed base type), then di�erentstate threads do not interfere. Subsequently Launchbury and Sabry (1997) gavea formal account of type safety (for the whole system) by attempting to provey Research partially supported by MURST and ESPRIT WG APPSEM.z Worked started at the University of Oregon. Supported by the National Science Foun-dation under Grant No. CCR-9733088.

2 Moggi and Sabrysubject reduction for a reduction semantics. Unfortunately, there is a bug in theattempted proof, which \can be traced to the complicated semantics of lazy statethreads" (Semmelroth & Sabry, 1999). However, Semmelroth and Sabry (1999) areable to adapt the formal developments by Launchbury and Sabry (1997) to provetype safety for monadic encapsulation of strict state.Our goals are similar to those stated by Semmelroth and Sabry (1999), while wedi�er substantially in the methodology and strength of the results. We formalize theintended implementations as big-step operational semantics (which are referred toas dynamic semantics), then we prove type safety for three systems. The �rst systemuses strict state and a newly introduced encapsulation construct based on higher-order kinds. The second system uses strict state and the original encapsulationconstruct runST : it is almost identical to the system considered by Semmelrothand Sabry (1999); the only di�erence being the rather minor issue of using Call-By-Name (CBN) evaluation for pure terms rather than Call-By-Value (CBV). The �nalsystem uses lazy state which adds considerable complexity since it does not allowthe simple deallocation strategy typical of region-based memory management. Butdespite the more complicated semantics, the general approach and proof techniquesused for reasoning about the previous two systems scale nicely and enable us toestablish the open problem of type safety for lazy state.The dynamic semantics we use is substantially simpler than the reduction seman-tics of Semmelroth and Sabry (1999), and we argue that it formalizes certain imple-mentation details more accurately, such as deallocation of local state and leakageof locations referring to a deallocated state. Another advantage of the dynamicsemantics we use is that it avoids the limitations one encounters when applyingreduction semantics to lazy state (Launchbury & Sabry, 1997). On the other hand,reduction semantics provides a more direct support for sound equational reasoning.Methodology and techniques. We follow a standard approach for proving type safety.The techniques used are fairly elementary and well-established:� the dynamic behavior of programs is speci�ed operationally with a structuraloperational semantics (SOS);� type systems are presented �a la Church (Barendregt, 1991; Cardelli, 1996),and we use erasure to remove information not needed at run-time;� type safety is established for an instrumented SOS, which handles also typeand region information and performs additional run-time checks, and thepattern of the proof follows (Harper, 1994).These techniques are quite robust with respect to language extensions such asrecursive de�nitions of terms and types, therefore we mostly ignore such desirable(but technically easy) extensions.Summary. The article extends the paper with the same title (Moggi & Palumbo,1999) with two results: a proof of type safety for a system with strict state andthe runST encapsulation construct, and a proof of type safety for a system with

Monadic Encapsulation of E�ects 3lazy state. The �rst extension is an adaptation of a result by Semmelroth andSabry (1999); the second extension is novel and resolves a problem in the paper byLaunchbury and Sabry (1997).The paper is structured as follows.Section 2 recalls some necessary background about monads and monadic state. Italso motivates the problem of monadic encapsulation and relates it to the moregeneral problem of encapsulation of e�ects.Section 3 gives a big-step operational semantics (dynamic semantics) for an untyped�-calculus with a run-construct and strict state, describing the intended implemen-tation, including what constitutes a run-time error. We have refrained from usinga reduction semantics along the lines of several other papers (Wright & Felleisen,1994; Launchbury & Sabry, 1997; Semmelroth & Sabry, 1999), because it fails tocapture certain low-level implementations details (see Remarks 3.3 and 3.4).Section 4 introduces a type system �a la Church, basically a higher-order �-calculuswith constants. The expressiveness of the type system allows us:� to adopt a more natural encapsulation construct, which relies on higher-orderkinds, and avoids the ad hoc type parameter for monadic types and opera-tions introduced in previous studies (Launchbury & Peyton Jones, 1995). Ourconstruct can be added as a primitive to Haskell (see Appendix C).� to establish a stronger type safety result, since more untyped terms are typable(but one must restrict to Haskell, to get a type inference algorithm).Section 5 introduces an instrumented semantics for the pseudo-expressions of thetype system �a la Church. The instrumented semantics makes explicit the two-di-mensional structure of the address space, typical of region-based memory manage-ment (Tofte & Talpin, 1997), and enables a more accurate description of improp-er program behavior. We prove type safety for the instrumented semantics, byexploiting region information in a crucial way. Then we relate the instrumentedand dynamic semantics independently from well-typedness assumptions (in generalthe instrumented semantics does not agree with the dynamic semantics, e.g. theformer does not permit access to the state of a thread with a location generatedby another thread, while the latter semantics does). Finally, we derive type safetyfor the dynamic semantics, namely the erasure of a well-typed term cannot causea run-time error.Section 6 repeats the previous development for the original encapsulation con-struct maintaining the simpler strict state semantics. This section con�rms thatour methodology and proof technique are not tied to the new encapsulation con-struct but could also be applied to the original runST construct, and are thus atleast as powerful as the reduction semantics approach used by Semmelroth andSabry (1999).Section 7 adapts the development to the more challenging problem of lazy state,showing that the current methodology and proof technique apply even to problemson which several previous approaches based on reduction semantics failed.

4 Moggi and SabrySection 8 brie
y discusses two language extensions beyond the minimal calculipresented in the early sections.Finally Section 9 draws some conclusions and discusses related and future work.Proof details are found in the appendices.Acknowledgments. We thank John Launchbury for enlightening discussions. Wealso thank Miley Semmelroth and Fabrizio Palumbo for earlier contributions, andSteve Ganz for helpful comments. An anonymous referee, Martin Elsman, andPhilip Wadler all provided valuable comments and suggestions.Notation. We summarize some conventions used throughout.Notation 1.1 for untyped and higher-order �-calculi:� An overline, e.g. e, indicates a comma-separated sequence (of terms), and jejdenotes its length.� We write e(e) and �x:e for iterated application and abstraction respectively(similar notation is also introduced for other binary constructs and binders,e.g. � ! � , e[u], �X:K:e and 8X:K:�).� Terms are treated up to �-conversion, and e[x: = e] stands for parallel substi-tution with renaming of bound variables.� � stands for a typing context, i.e. a sequence of variable declarations x: �(and X :K); we write x: � for declaring several variables of the same type.In a well-formed context a variable can be declared at most once, while anarbitrary context can have multiple declarations of the same variable.� � stands for a signature, i.e. a sequence of constant declarations c: � (andC:K). Well-formed signatures will not contain multiple declarations of thesame constant; we informally enforce this by requiring that any constant thatis to be added to a signature is \fresh."A constant is like a variable that cannot be bound. With some abuse of nota-tion (used only for constructor constants C in the instrumented semantics)one can extend operations involving variables to constants, such as substitu-tion e[C: = u] and binding �C:e of a constant C.Notation 1.2 related to BNF:� We allow production schemes in BNF. Let #o be the arity of operation o. Ascheme, e.g. \o(e) with jej � #o", stands for a �nite set of productions, i.e.\o(e1; : : : ; en)" with 0 � n � #o.� We write e =2 BNF to say that a certain expression e is not in the set ofexpressions de�ned by the BNF BNF . We use this notation mainly in side-conditions. For instance, the rulee1 =) ve1 e2 =) err v =2 �x:e j run j o(e) with jej < #osays that \e1 e2 evaluates to err", provided \e1 evaluates to a value v" and vis not among the values de�ned by the BNF \�x:e j run j o(e) with jej < #o".

Monadic Encapsulation of E�ects 52 Monadic Encapsulation: Introduction and ExamplesWe recall some necessary background about monads and monadic state, and thenmotivate the problem of monadic encapsulation and relate it to the more generalproblem of encapsulation of e�ects.2.1 Programming with MonadsIn most programming languages, evaluation may have implicit side-e�ects that arenot predicted by the type of the expression. For example, if r is a global variableholding a reference to an int, and Error is a global exception name, then theOcaml expression:3 + !r + raise Errorhas type int, which does not re
ect the fact that the function reads the globalreference and raises a global exception. In fact evaluating the expression does notreturn an int at all but rather raises the exception Error.From their �rst introduction to the world of programming languages (Moggi, 1989;Moggi, 1991), monads were used to distinguish between values, whose evaluationis pure, and computations, whose evaluation may have side-e�ects. The semanticseparation quickly led to a strati�ed programming style in which a pure functionalsublanguage is used to express the manipulation of values, and a monadic sublan-guage is used to express the manipulation of computations (Wadler, 1992; Wadler,1990). The interaction between the two sublanguages is mediated by the type sys-tem, which keeps track of the computational e�ects and their propagation.Hence, to write the above example in monadic style, one must expose the compu-tational e�ects. This can be done in almost any modern language, but Haskell pro-vides elegant mechanisms to do so. First, one de�nes a type that explicitly recordsthe fact that computations of that type depend on global locations and may raiseexceptions. For simplicity the following type assumes only one �xed global locationholding an Int. The dependency on a global location means that computations arereally functions that take the value of that location as an argument; the ability toraise exceptions means that computations may either return a value or fail, whichis modeled with the Maybe type:type Loc = Intdata GE a = GE (Loc -> Maybe a)Given appropriate de�nitions to the operations deref and raise, our example atthe beginning of the section becomes:do x1 <- return 3x2 <- derefx3 <- raise "Error"return (x1+x2+x3)

6 Moggi and SabryThe monadic expression looks more like an imperative program: sequencing andtermination of monadic evaluation are made explicit through do and return. Theexpression no longer has type Int but rather has the type GE Int which clearlyexposes the dependency on the global location and the ability to raise exceptions,and more accurately predicts the dynamic behavior of the expression.2.2 Monadic StateTo integrate assignments into Haskell, Launchbury and Peyton Jones (1995) pro-pose to extend the Haskell runtime with a state monad. As one would expect,an e�cient implementation of the monad is not possible in the source (function-al) language, and hence must be provided as a primitive in the implementation.The monad comes equipped with the type constructor ST, and several operationsfor manipulating references, of which we focus on the following three: newSTRef,readSTRef, and writeSTRef. Using these operations, many imperative algorithmscan be implemented naturally and without a loss of e�ciency in Haskell. For ourpurposes, we are mostly concerned with the types of the operations, and theirinteraction with the operation runST discussed in the next section.2.3 EncapsulationOne can argue that exposing the computational e�ects using monads has softwareengineering as well as semantic bene�ts. However, without the ability to encapsulatethe computational e�ects, the monadic approach forces every e�ect to be propa-gated to the top-level, and even worse, interferes with the modular decompositionof programs. Hence it is desirable and even necessary to associate a construct runwith every monad to encapsulate the computational e�ects.The problem of encapsulating e�ects is not unique to the monadic approach: it hasbeen studied in various contexts and is known to be quite subtle. The subtleties aremost visible in the case of the state monad ST where the encapsulation constructis called runST. To gain some intuition about the problem, consider the followingHaskell term:runST (runST (do x <- newSTRef 0return (do _ <- return xreturn 2)))Operationally, the evaluation of the expression proceeds as follows. The �rst runSTcreates an outer region in which its subexpression is evaluated. This subexpressionimmediately establishes an inner region in which a reference to 0 is allocated andbound to the name x, and returns a computation to be evaluated in the outerregion. Since all computational e�ects within the inner runST are supposed to beencapsulated, the inner region is reclaimed at this point, so the computation:do _ <- return xreturn 2

Monadic Encapsulation of E�ects 7must be performed in a context where x is a dangling pointer. Luckily, when execut-ed, this computation binds the dangling pointer to a dummy variable, and returnsthe value 2.The example shows that the straightforward typing of runST as ST a -> a isunsound, since it would fail to reject terms that actually tried to use the danglingpointer.In the history of programming languages, several approaches have been intro-duced to keep track of the lifetimes of references as required above, starting withReynolds's syntactic control of interference (1978), the imperative lambda calcu-lus (Swarup et al., 1991), lambda var (Odersky et al., 1993; Chen & Odersky,1994; Rabin, 1996), type-and-e�ect systems (Tofte, 1990; Talpin & Jouvelot, 1992b),coercions (Riecke, 1993; Riecke & Viswanathan, 1995), and region calculi (Tofte &Talpin, 1997) to name a few. The multitude of proposals and the fact that some vari-ants of these proposals were initially unsound, witness the di�culty of the problem.Instead of attempting to adapt any of these approaches directly to the monadicframework, Launchbury and Peyton Jones (1995) proposed to achieve the sameresult with a modest extension to the type system. State computations are givenan additional type parameter rho making the type of computations ST rho a. Thetype indicates that the computation delivers a value of type a and that it occursin a region indexed by the type variable rho. The additional type variable is prop-agated by every computation and stored in the types of references to keep track ofthe current region. In that framework, runST can be given the following type:runST : (forall rho. ST rho a) -> awhich intuitively says that the e�ects of the state computation can be encapsulatedif that computation makes no assumptions about the region in which it is evaluated.This idea has been formalized in the context of a strict state monad in which themonadic operations are performed as they are encountered. In the more complexcase of the lazy state monad, the correctness of the typing of runST was still anopen problem. 3 Dynamic Semantics: run with Strict StateWe extend the pure untyped �-calculus with a run-construct. Intuitively, when aninterpreter for the �-calculus has to evaluate run e, it calls a monadic interpreterwhich evaluates e applied to an internal implementation of the monadic operations,and then evaluates the term returned by the monadic interpreter. The term e inrun e should be considered abstract code, since it abstracts from the implementa-tion of the monadic operations. One can envisage several monadic interpreters forthe same abstract code, which would di�er in the implementation of the monadicoperations.To de�ne the dynamic semantics for such a language, we introduce auxiliary seman-tic domains and extend the syntax for terms with additional constants. The relevantsyntactic categories are:

8 Moggi and Sabry� Names m;n 2 N, e.g. natural numbers, for locations `m.� Monadic operations o 2 Op def= fret ; do;new ; get ; setg with arities de�ned asfollows:monadic operation o ret do new get setarity #o 1 2 1 1 2Given an expression e that abstracts from the implementation of monadicoperations, we write e(Op) for applying e to the sequence of monadic opera-tions in Op in the order listed above.� Constants c 2 Const: : = run j o j `m.� Terms e 2 E: : = c j x j �x:e j e1 e2; we write E0 for the set of closed terms.� Values v 2 Val: : = �x:e j run j `m j o(e) with jej � #o; we write Val0 for theset of closed values.� Stores � 2 S def= N �n! E0, i.e. partial maps from N to E0 with �nite domain;we write Loc� for the set f`mjm 2 dom(�)g of locations in �.� Descriptions d 2 D: : = v j (�; e) j err, i.e. possible outcomes of evaluation.Remark 3.1 (About constants) run is the only constant allowed in user-de�nedprograms, while monadic operations o and locations `m are instrumental to thedynamic semantics.The dynamic semantics is given by two mutually recursive interpreters for closedterms, which may also raise run-time errors. There are two evaluation judgments:� e =) v j err says that evaluation of e 2 E0 by the pure interpreter returnsv 2 Val0 (or raises an error);� �; e =) �0; e0 j err says that evaluation of e 2 E0 in local store � by themonadic interpreter returns e0 2 E0 and a �nal store �0 (or raises an error).Figure 1 gives the evaluation rules for the dynamic semantics, which satis�es thefollowing basic property:Proposition 3.2�; e =) �0; e0 implies dom(�) � dom(�0).Remark 3.3 (About evaluation) On pure �-terms pure evaluation coincides withCBN evaluation. Pure evaluation treats locations `m as values (like nil for theempty list) and monadic operations o as term-constructors (like cons). Monadicevaluation proceeds much like evaluation for an imperative language, but sequencingand termination of monadic evaluation are made explicit through do and ret . Thesequencing of monadic operations is strict in the sense that monadic operationsare immediately performed in the order they are encountered whether their e�ectsare needed or not. Moreover, monadic evaluation calls pure evaluation whenever itneeds the value of a term. The dynamic semantics is non-deterministic, since we donot �x a deterministic strategy for choosing an m =2 dom(�). Finally, evaluation israther permissive:� locations referring to a deallocated state can be returned as values, e.g.run (�x:xnew 0) =) `m where xnew is the variable in x which gets bound tonew and m can be any name;

Monadic Encapsulation of E�ects 9Pure Evaluationv =) v e1 =) �x:e e[x:= e2] =) ve1 e2 =) ve1 =) o(e)e1 e2 =) o(e; e2) jej < #o e1 =) run ;; e2(Op) =) �; e e =) ve1 e2 =) vMonadic Evaluatione =) ret(e0)�; e =) �; e0 e =) do(e0; e1) �0; e0 =) �1; e00 �1; e1 e00 =) �2; e0�0; e =) �2; e0e =) new(e0)�; e =) �fm = e0g; `m m =2 dom(�)e =) get(e0) e0 =) `m�; e =) �; e0 e0 = �(m) e =) set(e0; e1) e0 =) `m�; e =) �fm = e1g; `m m 2 dom(�)Pure and Monadic Run-Time ErrorsThe rules for error propagation follow the ML convention, i.e. those for error generationare:e1 =) ve1 e2 =) err v =2 �x:e j run j o(e) with jej < #oe =) v�; e =) err v =2 o(e) with jej = #oe =) get(e0) e0 =) v�; e =) err v =2 Loc� e =) set(e0; e1) e0 =) v�; e =) err v =2 Loc�Fig. 1. Evaluation Rules for Dynamic Semantics (strict state, run)� new can be implemented by a local name server, which does not requirecommunication with other threads, e.g. run (�x:xnew `m) =) `n where ncan be any name (including m);� there is no check on whether a location generated by a thread is used to accessthe state of another, e.g. run (�y:ydo (ynew 1)(� :yget (run (�x:xnew 0))) mayevaluate to 1 or err. The value 1 is returned when the name servers for thetwo threads choose the same name, while the run-time error occurs if theychoose di�erent names.Despite these examples, the dynamic semantics behaves properly on well-typedprograms (as we will prove).Remark 3.4 (Untyped run vs. runST) Previous studies (Launchbury & Pey-ton Jones, 1995; Launchbury & Sabry, 1997; Semmelroth & Sabry, 1999) adopta runST -construct with a slightly di�erent dynamic semantics (See Section 6):e1 =) runST ;; e2 =) �; e e =) ve1 e2 =) vIn an untyped language where Op can appear in user programs, the two constructs

10 Moggi and Sabryare inter-de�nable as follows: run e � runST (e(Op)) and runST e � run (�x:e)with x not free in e, but they are no longer inter-de�nable in the typed languagesintroduced in the rest of the paper.There are important trade-o�s between our dynamic semantics and the reductionsemantics used previously (Launchbury & Sabry, 1997; Semmelroth & Sabry, 1999).The latter introduce an auxiliary construct sto(�; e) (or sto(�; e)), which roughlyspeaking corresponds to the con�guration (�; e) for our monadic interpreter. How-ever, in sto(�; e) the locations in � are considered bound variables (while for usthey are constants), therefore one has that:� reduction e �! e0 has to be de�ned on open terms (and thus it is convenientto identify terms modulo �-conversion), while our dynamic semantics is givenon closed terms;� the reduction sto(�; ret(e)) �! e makes no sense when sto(�; e) is a binder(unless no locations in � occur in e), so one has to postpone deallocation ofthe local store (in a lazy state semantics there are other reasons why one mustpostpone deallocation);� the reduction sto(�; do (new(e0)) e1) �! sto(�fm = e0g; e1 `m) is correctonly if (m =2 dom(�) and) `m is not free in e0, e1, and �, so the name serverhas to look at the whole term.One can adapt the reduction semantics to provide a faithful account of store deal-location, but other implementation details (e.g. name generation) are at a lowerlevel of abstraction. On the other hand, the reduction semantics is directly relatedto sound equational reasoning.4 Higher Order Lambda-Calculus �a la ChurchWe formalize the type system as a higher-order �-calculus �a la Church (Barendregt,1991; Geuvers, 1993). 4.1 Syntax and Formation RulesFor convenience, we distinguish between constants (declared in signatures) andvariables (declared in contexts). The type system uses the following syntactic cat-egories:� Constructor constants C 2 CONST and constructor variables X 2 VAR,term constants c 2 Const and term variables x 2 Var;these sets are assumed to be in�nite and mutually disjoint.� Kinds K 2 K: : = � j K1 ! K2; � is the kind of all types.� Constructors u; � 2 U: : = C j X j �1 ! �2 j 8X :K:� j �X :K:u j u1[u2];we write � for a constructor that is expected to have kind �.� Terms e 2 E: : = c j x j �x: �:e j e1 e2 j �X :K:e j e[u]� Signatures � 2 Sig: : = ; j �; C:K j �; c: � ;we write � � �0 when � is a pre�x of �0.

Monadic Encapsulation of E�ects 11Signatures and Contexts : � ` and �; � `;-� ; ` C-� � `�; C:K ` C fresh in � c-� �; ; ` � : ��; c: � ` c fresh in �;-� � `�; ; ` X-� �; � `�; �; X:K ` X fresh in � x-� �; � ` � : ��; �; x: � ` x fresh in �Constructors : �; � ` u:KC �; � `�; � ` C:K C:K 2 � X �; � `�; � ` X:K X:K 2 �� �; �; X:K1 ` u:K2�; � ` �X:K1:u: (K1 ! K2) app �; � ` u1:K1 ! K2 �; � ` u2:K1�; � ` u1[u2]:K28 �; �; X:K ` � : ��; � ` (8X:K:�): � ! �; � ` �1: � �; � ` �2: ��; � ` (�1 ! �2): �Terms : �; � ` e: �c �; � `�; � ` c: � c: � 2 � x �; � `�; � ` x: � x: � 2 � conv �; � ` e: �1�; � ` �2: ��; � ` e: �2 �1 =u�� �2!I �; �; x: �1 ` e: �2�; � ` �x: �1:e: (�1 ! �2) !E �; � ` e1: (�1 ! �2) �; � ` e2: �1�; � ` e1 e2: �28I �; �; X:K ` e: ��; � ` �X:K:e: (8X:K:�) 8E �; � ` e: (8X:K:�) �; � ` u:K�; � ` e[u]: � [X: = u]Fig. 2. Formation Rules for Type System� Contexts �;� 2 Ctx: : = ; j �; X :K j �; x: � .Notation 4.1 There are several notions of reduction one may consider:� (�X :K:u0)[u] �!u� u0[X : = u] and �X :K:u[X] �!u� u when X =2 FV(u)� (�X :K:e)[u] �!8� e[X : = u] and �X :K:e[X] �!8� e when X =2 FV(e)� (�x: �:e0) e �!e� e0[x: = e] and �x: �:e x �!e� e when x =2 FV(e)The only notion of reduction needed for de�ning the type system is �!u��, i.e. theunion of �!u� and �!u� . With some abuse of notation, we use the same notationto refer to notions of reductions and their compatible closure. Moreover, we denotewith =u�� the re
exive, symmetric and transitive closure of the reduction �!u��(and similarly for other notions of reduction).Figure 2 gives the rules of the type system for deriving judgments of the form:� � `, i.e. � is a well-formed signature� �;� `, i.e. � is a well-formed context� �;� ` u:K, i.e. u is a well-formed constructor of kind K� �;� ` e: � , i.e. e is a well-formed term of type � .

12 Moggi and Sabry� ; X:K0; �0 x: � 0; �0� ; u0; �0 e0; �0Derived notation for:kinds �! K K K0 ! �0 ! K �0 ! Kconstructors ��:u u �X:K0:��0:u ��0:uu(�) u u[u0](�0) u(�0)8�:� � 8X:K0:8�0:� � 0 ! 8�0:�terms ��:e e �X:K0:��0:e �x: � 0:��0:ee(�) e (e[u0])(�0) (e e0)(�0)signaturesand contexts ��:� ; X: �! K0; ��:�0[X: = X(j�j)] x:8�:� 0; ��:�0sequences j�j ; X; j�0j x; j�0j��:� ; ��:u0; ��:�0 ��:e0; ��:�0�(�) ; u0(�); �0(�) e0(�); �0(�)The two top lines give the three cases of the inductive de�nitions of � and �, whilethe others introduce notation de�ned by induction on the structure of � or �. Forinstance, the �rst line in the second table de�nes � ! K (�rst entry) by cases onthe inductive de�nition of �, i.e.; ! K def� K; (X:K0; �0)! K def� K0 ! �0 ! K and (x: � 0; �0)! K def� �0 ! K:Fig. 3. Derived NotationAppendix A summarizes some basic facts about the type system needed for laterdevelopments in the paper.4.2 Types for encapsulationThis section describes the type for run, which is the only constant allowed in user-de�ned programs, and relates it to the type of the original runST encapsulationconstruct (Launchbury & Peyton Jones, 1995) and to existential types (Mitchell &Plotkin, 1988). We argue that the type of run is intuitive: it simply maps monadiccode to values. The type of run is however a new point in the design space of type-based encapsulation mechanisms; it di�ers from abstract data types, existentialtypes, and the runST proposal.For conciseness, we use the derived notation in Figure 3 de�ned by induction onthe structure of a context � or a sequence �, where sequences are given by the BNF�; � 2 Seq: : = ; j u; � j e; �.Type of run. The signature �run for the constant run is:run:8X : �:(8�M :XM [X])! X , where

Monadic Encapsulation of E�ects 13�M � XM ; XR: � ! �;xret :8X : �:X ! XM [X];xdo :8X;Y : �:XM [X]! (X ! XM [Y])! XM [Y];xnew :8X : �:X ! XM [XR[X]];xget :8X : �:XR[X]! XM [X];xset :8X : �:XR[X]! X ! XM [XR[X]]A more appealing way of writing the type for run is 8X : �:(M [X])! X , where thetype constructorM is de�ned as M � �X : �:8�M :XM [X] : � ! � . IntuitivelyM [X] is the type of monadic code (in higher-order abstract syntax).One can almost de�ne an initial algebra for the speci�cation �M . In second-order �-calculus one can represent initial algebras for algebraic speci�cations. For instance,given the speci�cation �N � XN : �; xzero:XN ; xsucc:XN ! XN of the naturalnumbers, one can de�ne the type N � 8�N :XN (of Church's numerals), which hasthe structure of a weakly initial algebra (Reynolds & Plotkin, 1993). The speci�-cation �M is not algebraic, but one can mimic the de�nition of the initial algebragiven by Reynolds and Plotkin (1993), except for the operation new (and set), sincethe type 8X : �:X !M [R[X]] of new has a nesting of M and R.M � �X : �:8�M :XM [X] : � ! �R � �X : �:8�M :XR[X] : � ! �ret � �X : �:�x:X:��M :xret [X](x) :8X : �:X !M [X]new � ???? :8X : �:X !M [R[X]]get � �X : �:�x:R[X]:��M :xget [X] (x(j�M j)) :8X : �:R[X]!M [X]Comparison with runST. It is easy to recast the original proposal of encapsula-tion (Launchbury & Peyton Jones, 1995) in the higher-order �-calculus, and thuscompare its expressiveness with that of our run. The type system of Launchburyand Peyton Jones (1995) introduces several constants. If we write �M for �M viewedas a signature (we write M in place of XM , etc.), then these constants are thosedeclared in:�0M ; runST :8X : �:(8�: �:M [�;X])! X where �0M def� ��: �:�M(every constant in �0M takes an extra type parameter with respect to the corre-sponding constant in �M). In the higher-order �-calculus one can de�ne our runin terms of these constants:run def� �X : �: �x: (8�M :XM [X]): runST [X] (��: �:x (j�0M j (�)))In other words, run[X] x �rst specializes the monadic code x with the constants in�0M applied to a generic type parameter �, i.e.�0M ; X : �; x:8�M :XM [X]; �: � ` x (j�0M j (�)):M [�;X] ;then applies runST to the abstraction of the specialized code with respect to �.As shown in Appendix C, this construction can be easily implemented in Haskell(using the non-standard extensions for rank-2 polymorphism).

14 Moggi and SabryRemark 4.2 (Typed run vs. runST) We conjecture that runST (and the otherconstants in �0M) cannot be de�ned in terms of run. We advocate run in place ofrunST because it avoids the ad hoc type parameter �, and thus it complies withstandard monadic programming style. Moreover, we have given an intuitive readingfor the type of run in terms of the de�nable type constructor for monadic code.Comparison with existential types. With the notation of Figure 3 one can de�ne theexistential type 9� as 8X : �:(8�:X)! X . Then the de�nition 8X : �:(8�M :X)! Xof the existential type 9�M is similar to the type 8X : �:(8�M :XM [X])! X of run.5 Instrumented Semantics: run with Strict StateThe instrumented semantics is a re�nement of the dynamic semantics of Section 3which uses terms of the type system �a la Church described in Section 4 insteadof untyped �-terms. The instrumented semantics serves two technical purposes: togive a more accurate description of improper program behavior, and to prove typesafety for the dynamic semantics. In order to transfer the type safety result fromthe instrumented to the dynamic semantics, one has to establish a compatibilityresult linking dynamic and instrumented semantics.To de�ne the instrumented semantics, we introduce auxiliary semantic domainsand syntactic categories. Most of them are analogues of those introduced for thedynamic semantics, and are indicated by a superscript ?:� Names r 2 N for regions. Region names are used to index locations `r;m, themonadic type-constructors Or, and the monadic operations or.� Names m;n 2 N for locations `r;m within a region.� Names a 2 N for constructor constants Ca created by evaluation of polymor-phic terms (see Remark 5.1).� Monadic type-constructors O 2 OP def= fM;Rg.� Monadic operations o 2 Op def= fret ; do;new ; get ; setg with the following ari-ties:monadic operation o ret do new get settype-arity 2o 1 2 1 1 1term-arity #o 1 2 1 1 2� Type- and term-constants, kinds, constructors and terms:C : : = Ca j Or ; we write OPr for fOrjO 2 OPgc 2 Const? : : = run j or j `r;m ; we write Opr for forjo 2 OpgK : : = � j K1 ! K2u : : = C j X j u1 ! u2 j 8X :K:u j �X :K:u j u1[u2]e 2 E? : : = c j x j �x:u:e j e1 e2 j �X :K:e j e[u]� Values: v 2 Val? : : = �x:u:e j run j run[u] j `r;m j or[u] with juj < 2oj or[u](e) with juj = 2o and jej � #o� Stores � 2 S? def= N �n! E?0; we write Locr;� for the set f`r;mjm 2 dom(�)g.

Monadic Encapsulation of E�ects 15� Dynamic signatures � 2 Sig: : = ; j �; C:K j �; c:u andStatic signatures �: := ; j �; Ca:K.Dynamic signatures keep track of the monadic type-constructors, operations,and locations associated with each region. Static signatures keep track of thepolymorphism of terms. (See Remark 5.1.)� Descriptions d 2 D?: : = (�j�; v) j (�;�; e) j err.Remark 5.1 (Polymorphism) The values in Val? do not include polymorphic terms�X :K:e, and hence the instrumented semantics has to account for evaluationunder �. More speci�cally, to evaluate �X :K:e we replace X with a fresh typeconstant Ca, and evaluate e[X : = Ca]. These type constants Ca and their kindsform the static signatures �.One can obtain a term in E from a term in E? by erasing types and regions.De�nition 5.2Given e 2 E? its erasure jej 2 E is de�ned by induction asjrunj = run jorj = o j`r;mj = `m jxj = xj�x:u:ej = �x:jej je1 e2j = je1j je2j j�X :K:ej = je[u]j = jejErasure is extended to stores � 2 S? and descriptions d 2 D? as followsj�j(m) = j�(m)j j(�j�; v)j = jvj j(�;�; e)j = (j�j; jej) jerrj = errProposition 5.3Erasure satis�es the following properties:� je[X : = u]j = jej and je[x: = e0]j = jej[x: = je0j]� v 2 Val? implies jvj 2 Val� e �!u8�� e0 implies jej � je0j.The instrumented semantics (like the dynamic one) is given in terms of two mutuallyrecursive interpreters, which evaluate closed terms and may raise run-time errors:� �j�; e =) �0j�0; v j err says that evaluation of e 2 E?0 by the pure interpreterreturns v 2 Val?0 and extends the dynamic signature from � to �0 (or raisesan error); moreover the polymorphism of e is made explicit by extending thestatic signature � to �0;� �j�;�; e r=) �0;�0; e0 j err says that evaluation of e 2 E?0 in local store � bythe monadic interpreter for region r returns e0 2 E?0, changes the store to �0and extends the dynamic signature from � to �0 (or raises an error).Figures 4 and 5 give the evaluation rules for the instrumented semantics. Each ruleis either the counterpart of a rule for the dynamic semantics of Figure 1, or isfor evaluating terms of the form e[u] and �X :K:e. The dynamic signature � keepstrack of the monadic constants and their regions. The rule for evaluating �X :K:e isthe one forcing the introduction of static signatures � and �0. The pure interpreter

16 Moggi and SabryPure Evaluation�j�; v =) ;j�; v �j�0; e1 =) ;j�1;�x:u:e �j�1; e[x: = e2] =) �0j�2; v�j�0; e1 e2 =) �0j�2; v�j�; e =) ;j�0; run�j�; e[u] =) ;j�0; run [u] �j�; e =) ;j�0; or[u]�j�; e[u] =) ;j�0; or[u; u] juj < 2o�j�; e1 =) ;j�0; or[u](e)�j�; e1 e2 =) ;j�0; or[u](e; e2) juj = 2o ^ jej < #o�j�; e =) Ca:K;�0j�0; v�j�; e[u] =) �0j(�0; v)[Ca: = u]�; Ca:Kj�; e[X: = Ca] =) �0j�0; v�j�; �X:K:e =) Ca:K;�0j�0; v a fresh�j�0; e1 =) ;j�1; run[u]�j�1 +�opr ; ;; e2[OPr](Opr) r=) �2;�; e�j�2; e =) �0j�3; v�j�0; e1 e2 =) �0j�3; v r freshwhere �opr def� Mr; Rr: � ! � ,retr: 8X: �:X !Mr[X] ,dor: 8X;Y : �:Mr [X]; (X !Mr[Y])!Mr[Y] ,newr: 8X: �:X !Mr[Rr[X]] ,getr: 8X: �:Rr[X]!Mr[X] ,setr: 8X: �:Rr[X]; X !Mr[Rr[X]]Monadic Evaluation�j�; e =) ;j�0; retr[u](e0)�j�; �; e r=) �0;�; e0 �j�0; e =) ;j�1; dor[u0; u1](e0; e1)�j�1;�0; e0 r=) �2;�1; e00�j�2;�1; e1 e00 r=) �3;�2; e0�j�0;�0; e r=) �3;�2; e0�j�; e =) ;j�0; new r[u](e0)�j�; �; e r=) �0; `r;m:Rru;�fm = e0g; `r;m m =2 dom(�)�j�0; e =) ;j�1; getr[u](e0) �j�1; e0 =) ;j�2; `r;m�j�0;�; e r=) �2;�; e0 e0 = �(m)�j�0; e =) ;j�1; setr[u](e0; e1) �j�1; e0 =) ;j�2; `r;m�j�0;�; e r=) �2;�fm = e1g; `r;m m 2 dom(�)Fig. 4. Evaluation Rules for Instrumented Semantics I (strict state, run)may evaluate under � but the monadic interpreter never evaluates under � whichavoids known problems with the combination of polymorphism and e�ects (Harper& Lillibridge, 1993).The following are basic properties of the instrumented semantics.Proposition 5.4

Monadic Encapsulation of E�ects 17Pure and Monadic Run-Time ErrorsThe rules for error propagation follow the ML convention, those for error generation are:�j�; e1 =) �0j�0; v�j�; e1 e2 =) err �0 6� ; orv =2 �x:u:e j run [u] j or[u](e) with juj = 2o ^ jej < #o�j�; e =) ;j�0; v�j�; e[u] =) err v =2 run j or[u] with juj < 2o�j�; e =) �0j�0; v�j�; �; e r=) err �0 6� ; _ v =2 or[u](e) with juj = 2o ^ jej = #o�j�; e =) ;j�0; getr[u](e0) �j�0; e0 =) �0j�00; v�j�; �; e r=) err �0 6� ; _ v =2 Locr;��j�; e =) ;j�0; setr[u](e0; e1) �j�0; e0 =) �0j�00; v�j�; �; e r=) err �0 6� ; _ v =2 Locr;�Fig. 5. Evaluation Rules for Instrumented Semantics II (strict state, run)� �j�; e =) �0j�0; v implies � � �0� �j�;�; e r=) �0;�0; e0 implies � � �0 and dom(�) � dom(�0)� �j�; e =) �0j�0; v implies no Ca in �0 occurs in �j�.The last clause is needed in the rule for evaluating polymorphic abstractions toconclude that � is identical to �[Ca: = u].5.1 Type safety and compatibilityWe show that well-formed programs cannot go wrong, which amounts to provingsubject reduction for the instrumented semantics.Notation 5.5 We introduce auxiliary de�nitions useful in stating type safety.� �;� j= J def() �run ;�;� ` J and for all C:K and c: � declared in �:| C �Mr implies K � � ! �| C � Rr implies K � � ! �| c � retr implies � � 8X : �:X !Mr[X]| c � dor implies � � 8X;Y : �:Mr[X]; (X !Mr[Y])!Mr[Y]| c � newr implies � � 8X : �:X !Mr[Rr[X]]| c � getr implies � � 8X : �:Rr[X]!Mr[X]| c � setr implies � � 8X : �:Rr[X]; X !Mr[Rr[X]]| c � `r;m implies � � Rr[� 0] for some � 0� Reg� is the set of regions in �, i.e.r 2 Reg� def() at least one Or is declared in �.� Locr;� is the set of locations of region r in �, i.e.`r;m 2 Locr;� def() `r;m is declared in �.

18 Moggi and Sabry� � ,! �0 def() � � �0 and 8n 2 Reg�:Locn;� = Locn;�0 , i.e.�0 extends � but the set of locations in pre-existing regions does not change.� � r,! �0 def() � � �0 and 8n 2 Reg� � frg:Locn;� = Locn;�0 , i.e.�0 extends � but the set of locations in pre-existing regions, except region r,does not change.� �;� j=r � def() �;� j= and Locr;� = Locr;� and for all names m 2 N`r;m:Rr[�] in � and e � �(m) imply �;� j= e: �To establish type safety one has to prove a much stronger result, which involvesin an essential way regions, namely pure evaluation does not add new locations topre-existing regions, while monadic evaluation can add new locations to the activeregion r, but not to other pre-existing regions. However, both evaluations may addnew locations to newly generated regions.Theorem 5.6 (Type Safety for Instrumented Semantics)1. If �j�; e =) d and �;� j= e: � , then exist �0, �0, v and � 0 s.t.d � (�0j�0; v) , � =u�� 8�0:� 0 , � ,! �0 and �;�0;�0 j= v: � 0.The type 8�0:� 0 is de�ned by induction on �0 (see Figure 3), and by blurringthe distinction between constants and variables (see Notation 1.1).2. If �j�;�; e r=) d , �;� j=r � and �;� j= e:Mr[�], thenexist �0, �0 and e0 s.t. d � (�0;�0; e0), � r,! �0, �;�0 j=r �0 and �;�0 j= e0: � .ProofBy induction on the derivation of an evaluation judgment, and by applying thegeneration lemma to the typing assumption. The details for some cases are givenin Appendix B.One expects the following relation (mediated by erasure) between the instrumentedand dynamic semantics: if e may evaluate to v, then jej evaluates to jvj.Theorem 5.7 (Erasure)� �j�; e =) �0j�; v implies jej =) jvj� �j�;�; e r=) �0;�0; e0 implies j�j; jej r=) j�0j; je0jWhen e may raise an error, one cannot say anything about jej. To prove type safetyfor the dynamic semantics, the above result is useless. Instead we need implicationsin the opposite direction covering also the case of run-time error (in the dynamicsemantics), more precisely: if jej may raise an error so does e, if jej may evaluate tov0, then e may evaluate to a compatible value or raise an error. This compatibilityresult together with type safety for the instrumented semantics will immediatelyimply type safety for the dynamic semantics via Corollary 5.9.Theorem 5.8 (Compatibility)For every �, �, e, �, r and d0 the following implications hold:� jej =) d0 implies exists d s.t. �j�; e =) d and (d0 � jdj or d � err)� j�j; jej =) d0 implies exists d s.t. �j�;�; e r=) d and (d0 � jdj or d � err)

Monadic Encapsulation of E�ects 19ProofThe implications are proved by lexicographic induction on the derivation of anevaluation judgment jej =) d0 and j�j; jej =) d0 for the dynamic semantics, andthe size of e and (�; e). The details for some cases are given in Appendix B.Corollary 5.9 (Type Safety for Dynamic Semantics)If �run ; ; ` e: � and jej =) d0, then d0 6� err.ProofThe typing assumption on e is equivalent to ; j= e: � . By compatibility we knowthere exists a d s.t. ;j;; e =) d and (d0 � jdj or d � err). By type safety for theinstrumented semantics we know that d 6� err, therefore d0 � jdj 6� err.6 runST with Strict StateWe explain how to adapt the development of Sections 3 to 5 to establish type safetyfor a language with a strict state variant of the original state monad consisting ofrunST , OP, and Op. 6.1 Dynamic SemanticsThe only change in the syntactic categories for the untyped language is in the namesof constants, the evaluation judgments are unchanged, and the evaluation rules (seeFigure 6) are unchanged, except the rule for run, which has been replaced by therule for runST .� Names m;n 2 N unchanged.� Monadic operations o 2 Op def= fretST ; doST ;newST ; getST ; setSTg with thefollowing arities:monadic operation o retST doST newST getST setSTarity #o 1 2 1 1 2� Constants c 2 Const: : = runST j o j `m.� Terms e 2 E: : = c j x j �x:e j e1 e2 unchanged.� Values v 2 Val: : = �x:e j runST j `m j o(e) with jej � #o.� Stores � 2 S unchanged.� Descriptions d 2 D unchanged.Remark 6.1 (On constants) In this language runST and the monadic operationso are allowed in user-de�ned programs, but locations `m are instrumental to thedynamic semantics. 6.2 Types for encapsulationThis section gives the signature �runST for the constants allowed in user-de�nedprograms, i.e. runST and the monadic type-constructors and operations. The kinds

20 Moggi and SabryPure Evaluatione1 =) runST ;; e2 =) �; e e =) ve1 e2 =) vMonadic Evaluatione =) retST (e0)�; e =) �; e0 e =) doST (e0; e1) �0; e0 =) �1; e00 �1; e1 e00 =) �2; e0�0; e =) �2; e0e =) newST (e0)�; e =) �fm = e0g; `m m =2 dom(�)e =) getST (e0) e0 =) `m�; e =) �; e0 e0 = �(m)e =) setST (e0; e1) e0 =) `m�; e =) �fm = e1g; `m m 2 dom(�)Pure and Monadic Run-Time ErrorsThe rules for error propagation follow the ML convention; those for error generation are:e1 =) ve1 e2 =) err v =2 �x:e j runST j o(e) with jej < #oe =) v�; e =) err v =2 o(e) with jej = #oe =) getST (e0) e0 =) v�; e =) err v =2 Loc� e =) setST (e0; e1) e0 =) v�; e =) err v =2 Loc�Fig. 6. Evaluation Rules for Dynamic Semantics (strict state, runST)and types of constants are those given by Launchbury and Peyton Jones (1995).ST;Ref: � ! � ! � ,retST :8�;X : �:X ! ST[�;X] ,doST :8�;X; Y : �:ST[�;X]! (X ! ST[�; Y])! ST[�; Y] ,newST :8�;X : �:X ! ST[�;Ref[�;X]] ,getST :8�;X : �:Ref[�;X]! ST[�;X] ,setST :8�;X : �:Ref[�;X]! X ! ST[�;Ref[�;X]] ,runST :8X : �:(8�: �:ST[�;X])! X6.3 Instrumented semanticsIn comparison to the language of Section 5 the main change involves the constants,in particular: monadic type-constructors and operations no longer have region anno-tations, instead they take an extra type parameter, since region information is nowencoded by type-constants Vr; runST expects code abstracted over a region (encod-ed as a type), instead of code abstracted with respect to the monadic operations.� Names r 2 N for the type encoding Vr of a region. Region names are used toindex locations `r;m.

Monadic Encapsulation of E�ects 21� Names m;n 2 N for locations `r;m within a region.� Names a 2 N for constructor constants Ca created by evaluation of polymor-phic terms.� Monadic type-constructors O 2 OP def= fST;Refg for describing the types ofmonadic computations and references.� Monadic operations o 2 Op def= fretST ; doST ;newST ; getST ; setSTg withtype-arities and term-arities de�ned as follows:monadic operation o retST doST newST getST setSTtype-arity 2o 2 3 2 2 2term-arity #o 1 2 1 1 2� Type-constants, term-constants, kinds, constructors and terms:C 2 CONST : : = Vr j Ca j Oc 2 Const : : = runST j o j `r;mK 2 Kind : : = � j K1 ! K2u 2 U : : = C j X j u1 ! u2 j 8X :K:u j �X :K:u j u1[u2]e 2 E : : = c j x j �x:u:e j e1 e2 j �X :K:e j e[u]are unchanged, except for constants C and c.� Values:v 2 Val? : : = �x:u:e j runST j runST [u] j `r;m j o[u] with juj < 2oj o[u](e) with juj = 2o and jej � #o� Stores � 2 S? are unchanged.� Dynamic signatures � 2 Sig and Static signatures � are unchanged. Butdynamic signatures keep track of the type encoding of a region instead of thetypes of the monadic operations associated with the region.� Descriptions d 2 D? unchanged.Erasure j j is de�ned by analogy with De�nition 5.2 and satis�es the same proper-ties.The evaluation judgments for the instrumented semantics are unchanged.Figures 7 and 8 give the evaluation rules for the instrumented semantics. The rulesfor pure evaluation are identical to the rules in Figure 4 except for runST . Therules for monadic evaluation are similar to the rules in Figure 4: the di�erencesare that a monadic operation, like retr, which was implicitly parameterized by aregion now takes an explicit type argument identifying the region, retST [ur]. Sinceregion information is now encoded in types, the check that the region names matchin each operation, is now in the side-condition Vr =u�� ur.6.4 Type safety and compatibilityThe statements of the technical results are unchanged, but the auxiliary de�nitionsused for stating type safety have to be rede�ned.

22 Moggi and SabryPure Evaluation�j�; v =) ;j�; v �j�0; e1 =) ;j�1;�x:u:e �j�1; e[x: = e2] =) �0j�2; v�j�0; e1 e2 =) �0j�2; v�j�; e =) ;j�0; runST�j�; e[u] =) ;j�0; runST [u] �j�; e =) ;j�0; or[u]�j�; e[u] =) ;j�0; or[u; u] juj < 2o�j�; e1 =) ;j�0; or[u](e)�j�; e1 e2 =) ;j�0; or[u](e; e2) juj = 2o ^ jej < #o�j�; e =) Ca:K;�0j�0; v�j�; e[u] =) �0j(�0; v)[Ca: = u]�; Ca:Kj�; e[X: = Ca] =) �0j�0; v�j�; �X:K:e =) Ca:K;�0j�0; v a fresh�j�0; e1 =) ;j�1; runST [u]�j�1; Vr: �; ;; e2[Vr] r=) �2;�; e�j�2; e =) �0j�3; v�j�0; e1 e2 =) �0j�3; v r freshMonadic Evaluation�j�; e =) ;j�0; retST [ur ; u](e0)�j�; �; e r=) �0;�; e0 Vr =u�� ur�j�0; e =) ;j�1; doST [ur ; u0; u1](e0; e1)�j�1; �0; e0 r=) �2;�1; e00�j�2; �1; e1 e00 r=) �3;�2; e0�j�0;�0; e r=) �3;�2; e0 Vr =u�� ur�j�; e =) ;j�0; newST [ur ; u](e0)�j�; �; e r=) �0; `r;m: Ref[Vr; u]; �fm = e0g; `r;m m =2 dom(�) ^ Vr =u�� ur�j�0; e =) ;j�1; getST [ur ; u](e0)�j�1; e0 =) ;j�2; `r;m�j�0;�; e r=) �2;�; e0 e0 = �(m) ^ Vr =u�� ur�j�0; e =) ;j�1; setST [ur; u](e0; e1)�j�1; e0 =) ;j�2; `r;m�j�0;�; e r=) �2;�fm = e1g; `r;m m 2 dom(�) ^ Vr =u�� urFig. 7. Evaluation Rules for Instrumented Semantics I (strict state, runST)Notation 6.2 The auxiliary de�nitions of Notation 5.5 are modi�ed as follows:� �;� j= J def() �runST ;�;� ` J and for all C:K and c: � declared in �:| C � Vr implies K � �| c � `r;m implies � � Ref[Vr; � 0] for some � 0� Reg� is the set of regions in �, i.e.r 2 Reg� def() Vr is declared in �.

Monadic Encapsulation of E�ects 23Pure and Monadic Run-Time ErrorsThe rules for error propagation follow the ML convention, those for error generation are:�j�; e1 =) �0j�0; v�j�; e1e2 =) err �0 6� ; orv =2 �x:u:e j runST [u] j o[u](e) with juj = 2o ^ jej < #o�j�; e =) ;j�0; v�j�; e[u] =) err v =2 runST j o[u] with juj < 2o�j�; e =) �0j�0; v�j�; �; e r=) err �0 6� ; orv =2 o[ur; u](e) with ur =u�� Vr ^ 1 + juj = 2o ^ jej = #o�j�; e =) ;j�0; getST [ur; u](e0) �j�0; e0 =) �0j�00; v�j�; �; e r=) err �0 6� ; _ v =2 Locr;��j�; e =) ;j�0; setST [ur; u](e0; e1) �j�0; e0 =) �0j�00; v�j�; �; e r=) err �0 6� ; _ v =2 Locr;�Fig. 8. Evaluation Rules for Instrumented Semantics II (strict state, runST)� The de�nitions of Locr;� , � ,! �0 , � r,! �0 and �;� j=r � are unchanged.The statement of type safety for the instrumented semantics requires a minoradjustment regarding the type of e in the second clause.Theorem 6.3 (Type Safety for Instrumented Semantics)1. If �j�; e =) d and �;� j= e: � , then exist �0, �0, v and � 0 s.t.d � (�0j�0; v) , � =u�� 8�0:� 0 , � ,! �0 and �;�0;�0 j= v: � 0.2. If �j�;�; e r=) d , �;� j=r � and �;� j= e: ST[Vr ; �], thenexist �0, �0 and e0 s.t. d � (�0;�0; e0) , � r,! �0 , �;�0 j=r �0 and �;�0 j= e0: � .The statement of compatibility is unchanged. The statement of type safety for thedynamic semantics re
ects the change in the syntax, and more speci�cally in theconstants allowed in user-de�ned programs.Corollary 6.4 (Type Safety for Dynamic Semantics)If �runST ; ; ` e: � and jej =) d0, then d0 6� err.7 run with Lazy StateIn this variant of the language pure evaluation is CBN and monadic evaluation islazy. This variant gives rise to lazy monadic state (Launchbury & Peyton Jones,1994) and is signi�cantly more complicated.7.1 Dynamic SemanticsBecause of laziness of the monadic constants, commands are no longer performedwhen they are �rst encountered. Instead, monadic evaluation immediately returns

24 Moggi and SabryPure Evaluation�; v =) �; v �; e1 =) �0; �x:e �0; e[x: = e2] =) d�; e1 e2 =) d� r;p=) �0; e0 �0; e0 =) d�; sr;p =) d �; e1 =) �0; o(e)�; e1 e2 =) �0; o(e; e2) jej < #o�; e1 =) �0; run �0fr = (;; ;)g; e2(Op) r;nil=) �00; p �00; sr;p =) d�; e1 e2 =) d r =2 dom(�0)Generation of Suspensions�; e r;k=) �(r):�fp = (e; c; k)g; p p =2 dom(�(r):�)Fig. 9. Evaluation Rules for Dynamic Semantics I (lazy state, run)a suspension which is treated as a �rst-class entity. The suspension may or maynot be forced as a result of the demand-driven evaluation mechanism. This sce-nario is complicated by the fact that suspensions cannot be forced independently ofeach other if the semantics is to maintain the (required) appearance of sequentialexecution of the e�ects. In particular forcing a command that looks up the val-ue of a location should not be done without ensuring that all previous commandsthat might set the location have also been forced. To realize this, suspensions aremaintained in lists of dependencies.This is however not enough! Suspensions can be forced in two di�erent ways thathave di�erent semantics. Consider a chain of dependencies where suspension s3depends on suspension s2 which in turn depends on suspension s1. Further considerthe case where s1 is the suspended monadic command set(`m; 0), s2 is the suspendedmonadic command ret(5), and s3 is the suspended monadic command get(`m). Ifthe value of s2 is demanded during execution we can force s2 and immediatelyreturn the value 5 without forcing s1 since the latter suspension cannot possiblya�ect the returned value. However, if the value of s3 is demanded, then we mustforce s2 in a more strict fashion than before, which also forces s1.Hence for the dynamic semantics, a new category of suspensions is introduced. Thesemantics still maintains a set of regions, one for each run-expression it encounters.As before, locations have names `m which implicitly refer to the current region, andhence the dynamic semantics is susceptible to the same pathological examples fromRemark 3.3 in which locations from di�erent regions are confused. Suspensions canbe forced at any time, even within another region, and hence have global namesthat includes their originating region.More formally the syntax of the language, in comparison to that of Section 3, isde�ned as follows:� Names r 2 N for regions. Region names are used to index suspensions sr;p.� Names m;n 2 N for locations `m: the region in which the location is allocatedis implicit.

Monadic Encapsulation of E�ects 25Forcing of Suspensions� r;p=) �; e �(r):�(p) = (e; v; k) �; e =) �0; ret(e0)� r;p=) �0(r):�fp = (e0; v; k)g; e0 �(r):�(p) = (e; c; k)�; e =) �0; do(e0; e1)�0; e0 r;k=) �00; q�00(r):�fp = (e1 sr;q; c; q)g r;p=) d� r;p=) d �(r):�(p) = (e; c; k)�; e =) �0; new(e0) �0 r;k=)s �00� r;p=) �00(r):�fm = e0g:�fp = (`m; v; nil)g; `m �(r):�(p) = (e; c; k) ^m =2 dom(�00(r):�)�; e =) �0; get(e0)�0 r;k=)s �00�00; e0 =) �000; `m� r;p=) �000(r):�fp = (e0; v; nil)g; e 0 �(r):�(p) = (e; c; k) ^ e0 = �000(r):�(m)�; e =) �0; set(e0; e1) �0 r;k=)s �00 �00; e0 =) �000; `m� r;p=) �000(r):�fm = e1g:�fp = (`m; v; nil)g; `m �(r):�(p) = (e; c; k)Strict Forcing of Suspensions� r;nil=)s � � r;p=) �0; �0 r;k=)s �00� r;p=)s �00(r):�fp = (e; v; nil)g �0(r):�(p) = (e; v; k)Fig. 10. Evaluation Rules for Dynamic Semantics II (lazy state, run)� Names p; q 2 N for suspensions sr;p within a region.� Monadic operations o 2 Op def= fret; do;new ; get ; setg and their arities areunchanged.� Constants c 2 Const: : = run j o j `m j sr;p now include also suspensions.� Terms e 2 E: : = c j x j �x:e j e1 e2 are unchanged.� Values v 2 Val: : = �x:e j run j `m j o(e) with jej � #o are unchanged;note that suspensions are not values.� Stores � 2 S def= N �n! E0 are unchanged.� Suspension lists � 2 P def= N �n! (E0 � fv; cg � (nil +N)) of suspended compu-tations. The tag v or c distinguishes between suspensions whose e�ects havebeen performed and those that have not. The tag from the set (nil +N) spec-i�es a possible dependency on another suspension: nil means no dependency,and a name p means a dependency on suspension sr;p in the current region r.Note that the e�ect of a suspension may have been performed (if it is a triviale�ect like ret) without having necessarily forced the e�ects of the suspensionson which it depends.� Regions � 2 ST def= N �n! (S � P) consist of a store and a suspension list; wewrite �(r):� and �(r):� for the two components of the region indexed by r.� Descriptions d 2 D: : = (�; e) j (�; p) j � j err.

26 Moggi and SabryRun-Time ErrorsThe rules for error propagation follow the ML convention, those for error generation are:�; e1 =) �0; v�; e1 e2 =) err v =2 �x:e j run j o(e) with jej < #o�; e r;k=) err r =2 dom(�)� r;p=) err r =2 dom(�) _ p =2 dom(�(r):�)�; e =) �0; v� r;p=) err �(r):�(p) = (e; c; k) ^ v =2 o(e) with jej = #o�; e =) �0; get(e0) �0 r;k=)s �00 �00; e0 =) �000; v� r;p=) err �(r):�(p) = (e; c; k) ^ v =2 Loc�000(r):��; e =) �0; set(e0; e1)�0 r;k=)s �00�00; e0 =) �000; v� r;p=) err �(r):�(p) = (e; c; k) ^ v =2 Loc�000(r):�� r;p=) �0;� r;p=)s err r =2 dom(�0) _ p =2 dom(�0(r):�) _ �0(r):�(p) 6= (e; v; k)Fig. 11. Evaluation Rules for Dynamic Semantics III (lazy state, run)The pure and monadic interpreters are more tightly coupled than in the strict case;in fact � gets threaded. There are three evaluation judgments: the pure evaluator ismuch like before, but the monadic evaluator has been split in three parts: one partgenerates suspensions, and the others force those suspensions to various degreesdepending on the kind of demand.� �; e =) �0; v j err for pure CBN evaluation;� �; e r;k=) �0; p j err for lazy monadic evaluation which simply generates suspen-sions: r is the index of the current region and k 2 N+fnilg is the index of thesuspension (within region r) on which the current command e may depend;the result is the name of a suspension for the current command.� � r;p=) �0; e j err for forcing evaluation (and updating) of the suspension pwithin region r. If evaluation does not require the store, then some of thesuspensions on which suspension p depends may not be forced. The depen-dencies among suspensions are maintained in case a later suspension requiresthe store.� � r;k=)s �0 j err, where k is either nil or a the name of a suspension p. Thisforces strict evaluation (and updating) a suspension p within region r, i.e. thesuspension and anything on which it depends is forced. This mode is enteredwhenever a command requires access to the store.Figures 9, 10, and 11 give the evaluation rules for the dynamic semantics. Anexample that illustrates much of the subtleties of the semantics is the following:

Monadic Encapsulation of E�ects 27run (\ ret do new get set ->let omega = omega -- shortand for any diverging computationin do omega (\ _ ->do (ret (\ x -> get x)) (\ f ->do (new 5) (\ a ->f a))))The term consists of a run-expression whose body consists of a sequence of monadicoperations. The �rst operation refers to an incalculable monadic operation omega;the second operation is also unusual in the sense that it returns a function thatwhen invoked, returns another monadic operation. The evaluation of this example,immediately builds a suspension which contains all the monadic operations, andthen forces the suspension lazily since there is no demand for the store from thepure evaluator. Forcing the value of the suspension, creates a linked list of suspen-sions for the �rst three operations, and then attempts to evaluate the call (f a).The reference to f forces the corresponding suspension which immediately returnsthe function (\x -> get x) without forcing the suspension for omega on whichit depends. This is clearly the right behavior since only the value of f is needed.However the application of f requires the execution of (get a) which requires thatall the monadic operations that might assign to a be forced. During this secondforcing the suspension for f is re-visited and this time, forcing it also forces thesuspension for omega, which makes the whole program diverge.7.2 Instrumented SemanticsTo de�ne the instrumented semantics, we extend the syntax of Section 7.1 withtype information in a way that mirrors the transition from Section 3 to Section 5.In comparison to the language of Section 5, the syntax is de�ned as follows:� Names r 2 N for regions. Region names are used to index locations `r;m,suspensions sr;p, monadic type-constructors Or, and monadic operations or.� Names m;n 2 N for locations `r;m within a region.� Names a 2 N for constructor constants Ca created by evaluation of polymor-phic terms.� Names p; q 2 N for suspensions sr;p within a region.� Monadic type-constructors O 2 OP def= fM;Rg are unchanged.� Monadic operations o 2 Op def= fret; do;new ; get ; setg and their arities areunchanged.� Type- and term-constants, kinds, constructors and terms:C : : = Ca j Orc 2 Const? : : = run j or j `r;m j sr;pK : : = � j K1 ! K2u : : = C j X j u1 ! u2 j 8X :K:u j �X :K:u j u1[u2]e 2 E? : : = c j x j �x:u:e j e1 e2 j �X :K:e j e[u]

28 Moggi and SabryPure Evaluation�j�; �; v =) ;j�; �; v �j�0; �0; e1 =) ;j�1; �1; �x:u:e�j�1; �1; e[x: = e2] =) �0j�2; �2; v�j�0; �0; e1 e2 =) �0j�2; �2; v�j�; �; e =) ;j�0; �0; run�j�; �; e[u] =) ;j�0; �0; run [u] �j�; �; e =) ;j�0; �0; or[u]�j�; �; e[u] =) ;j�0; �0; or[u; u] juj < 2o�j�; �; e1 =) ;j�0; �0; or[u](e)�j�; �; e1 e2 =) ;j�0; �0; or[u](e; e2) juj = 2o ^ jej < #o�j�; �; e =) Ca:K;�0j�0; �0; v�j�; �; e[u] =) �0j(�0; �0; v)[Ca: = u]�; Ca:Kj�; �; e[X: = Ca] =) �0j�0; �0; v�j�; �;�X:K:e =) Ca:K;�0j�0; �0; v a fresh�j�0; �0 r;p=) �1; �1; e �j�1; �1; e =) �0j�2; �2; v�j�0; �0; sr;p =) �0j�2; �2; v�j�0; �0; e1 =) ;j�1; �1; run [u]�j�1 +�opr ; �1fr = (;; ;)g; e2[OPr](Opr) r;nil ;u=) �2; �2; p�j�2; �2; sr;p =) �0j�3; �3; v�j�0; �0; e1 e2 =) �0j�3; �3; v r fresh, �opr as in Figure 4Generation of Suspensions�j�; �; e r;k;u=) �; sr;p:u; �(r):�fp = (e; c; k)g; p p =2 dom(�(r):�)Fig. 12. Evaluation Rules for Instrumented Semantics I (lazy state, run)are unchanged, excepts Const? which now include also suspensions.� Values: v 2 Val? are unchanged.� Stores � 2 S? def= N �n! E?0 are unchanged.� Suspension lists � 2 P? def= N �n! (E?0 � fv; cg � (nil + N)) andregions � 2 ST? def= N �n! (S? � P?) mimic those for the dynamic semantics;we write Locr;� for the set f`r;mjm 2 dom(�(r):�)g and Suspr;� for the setfsr;pjp 2 dom(�(r):�)g.� Dynamic signatures: � 2 Sig: : = ; j �; C:K j �; c:u andStatic signatures �: := ; j �; Ca:K are unchanged.� Descriptions: d 2 D?: : = (�j�; �; v) j (�; �; p) j (�; �; e) j (�; �) j err.Erasure j j is de�ned by analogy with De�nition 5.2, in particular jsr;pj = sr;p, andit satis�es the same properties.The instrumented semantics, like the dynamic semantics, is given in terms of fourmutually recursive interpreters. The evaluation judgments are:� �j�; �; e =) �0j�0; �0; v j err for pure CBN evaluation;� �j�; �; e r;k;u=) �0; �0; p j err for lazy monadic evaluation which generates sus-pensions; the evaluation judgment takes an additional parameter u which is

Monadic Encapsulation of E�ects 29Forcing of Suspensions�j�; � r;p=) �; �; e �(r):�(p) = (e; v; k)�j�; �; e =) ;j�0; �0; retr[u](e0)�j�; � r;p=) �0; �0(r):�fp = (e0; v; k)g; e0 �(r):�(p) = (e; c; k)�j�0; �; e =) ;j�1; �0; dor[u; u1](e0; e1)�j�1; �0; e0 r;k;u=) �2; �00; q�j�2; �00(r):�fp = (e1 sr;q; c; q)g r;p=) d�j�0; � r;p=) d �(r):�(p) = (e; c; k)�j�0; �; e =) ;j�1; �0; newr[u](e0)�j�1; �0 r;k=)s �2; �00�000 = �00(r):�fm = e0g:�fp = (`r;m; v; nil)g�j�0; � r;p=) �2; `r;m:Rru; �000; `r;m �(r):�(p) = (e; c; k) ^m =2 dom(�00(r):�)�j�0; �; e =) ;j�1; �0; getr[u](e0)�j�1; �0 r;k=)s �2; �00�j�2; �00; e0 =) ;j�3; �000; `r;m�j�0; � r;p=) �3; �000(r):�fp = (e0; v; nil)g; e 0 �(r):�(p) = (e; c; k) ^ e0 = �000(r):�(m)�j�0; �; e =) ;j�1; �0; setr[u](e0; e1)�j�1; �0 r;k=)s �2; �00�j�2; �00; e0 =) ;j�3; �000; `r;m�j�0; � r;p=) �3; �000(r):�fm = e1g:�fp = (`r;m; v; nil)g; `r;m �(r):�(p) = (e; c; k)Strict Forcing of Suspensions�j�; � r;nil=)s �; � �j�0; � r;p=) �1; �0;�j�1; �0 r;k=)s �2; �00�j�0; � r;p=)s �2; �00(r):�fp = (e; v; nil)g �0(r):�(p) = (e; v; k)Fig. 13. Evaluation Rules for Instrumented Semantics II (lazy state, run)the type of the suspension to generate. The type is used to augment thedynamic signature.� �j�; � r;p=) �0; �0; e0 j err for forcing evaluation of suspension p within region r.� �j�; � r;k=)s �0; �0 j err where k is either nil or the name of a suspension p.This forces strict evaluation of the suspension sr;p and everything on whichit depends.Note that the result of lazy monadic evaluation or evaluation of a suspension is neverpolymorphic. Figures 12, 13, and 14 give the rules for the instrumented semantics.7.3 Type safety and compatibilityWe show that well-formed programs cannot go wrong, which amounts to provingsubject reduction for the instrumented semantics.

30 Moggi and SabryRun-Time ErrorsThe rules for error propagation follow the ML convention, those for error generation are:�j�; �; e1 =) �0j�0; �0; v�j�; �; e1 e2 =) err �0 6� ; orv =2 �x:u:e j run [u] j or[u](e) with juj = 2o ^ jej < #o�j�; �; e =) ;j�0; �0; v�j�; �; e[u] =) err v =2 run j or[u] with juj < 2o�j�; �; e r;k;u=) err if r =2 dom(�)�j�; � r;p=) err if r 62 dom(�) _ p =2 dom(�(r):�)�j�; �; e =) �0j�0; �0; v�j�; � r;p=) err �(r):�(p) = (e; c; k) and(�0 6� ; or v =2 or[u](e) with juj = 2o ^ jej = #o)�j�; �; e =) ;j�0; �0; getr[u](e0)�j�0; �0 r;k=)s �00; �00�j�00; �00; e0 =) �0j�000; �000; v�j�; � r;p=) err �(r):�(p) = (e; c; k) ^ (�0 6� ; _ v =2 Locr;�000)�j�; �; e =) ;j�0; �0; setr[u](e0; e1)�j�0; �0 r;k=)s �00; �00�j�00; �00; e0 =) �0j�000; �000; v�j�; � r;p=) err �(r):�(p) = (e; c; k) ^ (�0 6� ; _ v =2 Locr;�000)�j�; � r;p=) �0; �0;�j�; � r;p=)s err r =2 dom(�0) _ p =2 dom(�0(r):�) _ �0(r):�(p) 6= (e; v; k)Fig. 14. Evaluation Rules for Instrumented Semantics III (lazy state, run)Notation 7.1 The auxiliary de�nitions of Notation 5.5 are modi�ed as follows:The de�nition of �;� j= J has an extra case for c: � , i.e. c � sr;p, but then �can be any type.� The de�nitions of Reg� and Locr;� are unchanged.� Suspr;� is the set of suspensions of region r in �, i.e.m 2 Suspr;� def() sr;p is declared in �.� �;� j= � def() �;� j= and Reg� = dom(�) and for all names r;m 2 N:| Locr;� = Locr;� and Suspr;� = Suspr;�| `r;m:Rr[�] in � and e � �(r):�(m) imply �;� j= e: �| sr;p: � in � and �(r):�(m) � (e; c;nil) imply �;� j= e:Mr[�]| sr;p: � in � and �(r):�(m) � (e; v;nil) imply �;� j= e: �| sr;p: � in � and �(r):�(m) � (e; c; q) imply �;� j= e:Mr[�] and sr;q 2Suspr;�| sr;p: � in � and �(r):�(m) � (e; v; q) imply �;� j= e: � and sr;q 2 Suspr;�In the statement of type safety for the instrumented semantics with lazy state thesignatures � and �0 before and after evaluation are related only by pre�xing � � �0.

Monadic Encapsulation of E�ects 31Indeed, the more constrained relations � ,! �0 and � r,! �0 (which hold for theinstrumented semantics with strict state) are false.Theorem 7.2 (Type Safety for Instrumented Semantics)1. If �j�; �; e =) d , �;� j= � and �;� j= e: � ,then exist �0, �0, �0, v and � 0 s.t.d � (�0j�0; �0; v) , � =u�� 8�0:� 0 , � � �0 , �;�0;�0 j= �0 and �;�0;�0 j= v: � 02. If �j�; �; e r;k;u=) d , �;� j= � and �;� j= e:Mr[u], and (k = nil or sr;k 2Suspr;�),then exist �0, �0 and p s.t.d � (�0; �0; p) , � � �0 , �;�0 j= �0 and �;�0 j= sr;p:u3. If �j�; � r;p=) d , �;� j= � , �;� j= sr;p: � ,then exist �0, �0, e0 and k s.t.d � (�0; �0; e0) , � � �0 , �;�0 j= �0 and �0(r):�(p) = (e0; v; k)4. If �j�; � r;k=)s d , �;� j= � , �;� j= sr;p: � , and (k = nil or sr;k 2 Suspr;�),then exist �0 and �0 s.t.d � (�0; �0) , � � �0 , �;�0 j= �0Compatibility has to be reformulated to account for the more complex evaluationjudgments, but the basic intuition is unchanged, i.e. if an error may occur in thedynamic semantics, then it may also occur in the instrumented semantics.Theorem 7.3 (Compatibility)For every �, �, e, �, r, p, k, u, and d0 the following implications hold:� j�j; jej =) d0 implies exists d s.t. �j�; �; e =) d and (d0 � jdj or d � err)� j�j; jej r;k=) d0 implies exists d s.t. �j�; �; e r;k;u=) d and (d0 � jdj or d � err)� j�j r;p=) d0 implies exists d s.t. �j�; � r;p=) d and (d0 � jdj or d � err)� j�j r;k=)s d0 implies exists d s.t. �j�; � r;k=)s d and (d0 � jdj or d � err)Type safety for the dynamic semantics is about the same set of user-de�ned pro-grams considered in Corollary 5.9, but the dynamic semantics has changed.Corollary 7.4 (Type Safety for Dynamic Semantics)If �run ; ; ` e: � and ;; jej =) d0, then d0 6� err.8 ExtensionsWe discuss how to extend the dynamic semantics of Section 3 with a �x-point oper-ation �x and a test for equality of locations eq . We do not consider the extensionsin the context of instrumented semantics or lazy state. We view these extensionsas interesting (though unproblematic) for the following reasons:� �x is independent of the run-construct (like many extensions one can envis-age);

32 Moggi and Sabrye1 =) run;; e2(Op; eq) =) �; ee =) ve1 e2 =) v e1 =) �xe2 (�x e2) =) ve1 e2 =) v e =) eqe e0 =) eq e0e =) eq e0e0 =) `me1 =) `me e1 =) �x; y:x e =) eq e0e0 =) `me1 =) `ne e1 =) �x; y:y m 6= n e =) eq e0ei =) vie e1 =) err vi =2 LocFig. 15. Additional Evaluation Rules in the Presence of �x and eq� eq is a peculiar operation, in fact its type involves the type constructor forlocations (and, like the monadic operations, it is passed as a parameter toabstract code), but its result type does not involve the type constructor forcomputational types (and so it is evaluated by the pure interpreter).The changes to the syntactic categories are as follows:� Constants c 2 Const: : = run j �x j eq j o j `m, i.e. we have added two newconstants; we write Loc for the set f`mjm 2 Ng of locations.� Terms e 2 E: : = c j x j �x:e j e1 e2� Values v 2 Val: : = �x:e j run j �x j eq j eq e j `m j o(e) with jej � #o.Figure 15 gives the additional evaluation rules, and the modi�ed rule for run. Only�x would be allowed in user-de�ned programs.9 Conclusions and Related WorkIn this section we discuss what we have done, also in the light of related work, andpoint out possible future developments.� CBV, CBN and lazy semantics. We have adopted a CBN semantics forthe pure interpreter following two previous studies (Launchbury & PeytonJones, 1995; Launchbury & Sabry, 1997), while another study (Semmelroth& Sabry, 1999) adopts a CBV semantics. Technically speaking, it does notmake much of a di�erence if the pure interpreter adopts CBN or CBV.However, CBN is ine�cient, so it would be interesting to adopt a lazy seman-tics for the pure interpreter, and then prove that it would induce the sameobservational congruence � of the pure CBN interpreter.� E�ect Masking. Semmelroth and Sabry (1999) show that runST implementsa cheap form of e�ect masking (Lucassen & Gi�ord, 1988; Talpin & Jouvelot,1992a). More precisely they give a translation from a type system with e�ectsand regions (EML) to one with runST (MML). The result is related to therelation between e�ects and monads established by Wadler (1998).It seems plausible that the translation given by Semmelroth and Sabry (1999)can be adapted so that the target language (MML) uses our run-constructinstead of runST .

Monadic Encapsulation of E�ects 33� Relations to region-based memory management. While the languageswe consider do not have syntactic categories of e�ects and regions, the instru-mented semantics for strict state exhibits certain similarities with region-based memory management (Tofte & Talpin, 1997), namely the two-dimen-sional structure of the address space, and the store deallocation strategy.In the paper we have also pointed out a limitation of previous reduction semantics,in which stores are represented as binders. Such semantics prevent the formalizationof certain implementation details but are more suitable for equational reasoning.Indeed substantially more work is needed to establish soundness of equational rea-soning with respect to our dynamic semantics (even for something as unsurprisingas �-equivalence).A Basic Properties of the Type SystemThis sections recalls basic facts about the type system for the higher-order �-calculus. In general, signatures � and contexts � are sequences of declarations.The notation � � �0 means that the sequence � is a pre�x of �0. In some cases,we are interested in whether a sequence �, viewed as a set, in included in anothersequence �0, also viewed as a set. We write � � �0 to describe this situation. (It isalways possible to view a well-formed signature or context as a set of declarations,since well-formed signatures and contexts do not allow multiple declarations of thesame constant or variable.) A judgment J is either empty, or of the form u:K, orof the form e: � . The set of declared variables in a context � is denoted as DV(�).Proposition A.1< :1 �;�0 `� ` < :2 �;�0; � ` J� ` < :3 �; �;�0 ` J�;� `Proposition A.2 (Thinning)T:� �;� ` J�0 `�0; � ` J � � �0 T:� �; �;� ` J�;�0 `�;�0;� ` J � � �0 ^ DV(�0) \ DV(�) = ;Proposition A.3 (Substitution)S:X �;�1; X :K;�2 ` J�;�1 ` u:K�;�1;�2[X : = u] ` J [X : = u] S:x �;�1; x:u;�2 ` J�;�1 ` e:u�;�1;�2 ` J [x: = e]Proposition A.4 (Proper Typing)�;� ` e: ��;� ` � : �Proposition A.5 (Generation Lemma for Terms)The following implications hold:

34 Moggi and Sabry1. �; � ` c: � implies exists � 0 s.t. �;� ` , c: � 0 2 � and � =u�� � 02. �; � ` x: � implies exists � 0 s.t. �;� ` , x: � 0 2 � and � =u�� � 03. �; � ` �x: �1:e: � implies exists �2 s.t. �;�; x: �1 ` e: �2 and � =u�� �1 ! �24. �; � ` e1 e2: � implies exist �1, �2 s.t.�;� ` e1: �1 ! �2 , �; � ` e2: �1 and � =u�� �25. �; � ` �X :K:e: � implies exists � 0 s.t. �;�; X :K ` e: � 0 and � =u�� 8X :K:� 06. �; � ` e[u]: � implies exist X , K, � 0 s.t.�;� ` e:8X :K:� 0 , �; � ` u:K and � =u�� � 0[X : = u]B Proofs of Type Safety and CompatibilityProofProof of Theorem 5.6. By induction on the derivation of an evaluation judgment,and by applying the generation lemma to the typing assumption. We consider afew cases in detail:� (1) �j�; e =) ;j�0; or[u]�j�; e[u] =) ;j�0; or[u; u] juj < 2oby assumption �;� j= e[u]: � and the generation lemma exist X , K, �1 s.t.(2) �;� j= e: (8X :K:�1) (3) �;� j= u:K (4) � =u�� �1[X : = u]from (2) and the IH for (1) exists �2 s.t.(5) �;�0 j= or[u]: �2 (6) (8X :K:�1) =u�� �2 (7) � ,! �0from (5) and (6) by the formation rule (conv) one has(8) �;�0 j= or[u]: (8X :K:�1)from (3) by thinning one has(9) �;�0 j= u:Kfrom (8) and (9) by the formation rule (8E) follows(10) �;�0 j= or[u; u]: �1[X : = u]from (4), (10) and (7), taking � 0 � �1[X : = u], follows the thesis.� (1) �j�; e =) ;j�0; v�j�; e[u] =) err v =2 run j or[u] with juj < 2oby assumption �;� j= e[u]: � and the generation lemma exist X , K, �1 s.t.(2) �;� j= e: (8X :K:�1) (3) �;� j= u:K (4) � =u�� �1[X : = u]from (2) and the IH for (1) exists �2 s.t.(5) �;�0 j= v: �2 (6) (8X :K:�1) =u�� �2 (7) � ,! �0from (5) and (6) by the formation rule (conv) one has(8) �;�0 j= v: (8X :K:�1)however (8) contradicts the side-condition v =2 run j or[u] with juj < 2o.In fact the remaining possibilities for v, i.e.�x:u:e j `r;m j run[u] j or[u](e) with juj = 2o and jej � #ocan only have a type of the form �1 ! �2 , Rr[�] or Mr[�].Therefore the thesis follows, because this case cannot occur, more preciselythe side-condition for applying the rule is not satis�ed.� (1) �; Ca:Kj�; e[X : = Ca] =) �0j�0; v�j�;�X :K:e =) Ca:K;�0j�0; v (2) a fresh

Monadic Encapsulation of E�ects 35by assumption �;� j= �X :K:e: � and the generation lemma exists �1 s.t.(3) �;�;X :K j= e: �1 (4) � =u�� (8X :K:�1)from (3) and (2) by the substitution lemma(5) �; Ca:K;� j= e[X : = Ca]: �1[X : = Ca]from (5) and the IH for (1) exists �2 s.t.(6) �1[X : = Ca] =u�� (8�0:�2) (7) �; Ca:K;�0;�0 j= v: �2 (8) � ,! �0from (4) and (6) by properties of =u��(9) � =u�� (8Ca:K;�0:�2)from (9), (7) and (8), taking � 0 � �2, follows the thesis.� (1) �j�; e =) ;j�0; retr[� 0](e0)�j�;�; e r=) �0;�; e0by assumption �;� j= e:Mr[�] and the IH for (1) exists �1 s.t.(2) Mr[�] =u�� �1 (3) �;�0 j= retr[� 0](e0): �1 (4) � ,! �0from (2) and (3) by the generation lemma and properties of =u��(5) �;�0 j= e0: � 0 (6) � 0 =u�� �from (3), (4) and the assumption �;� j=r � follows that(7) �;�0 j=r �from (5) and (6) by the formation rule (conv) one has(8) �;�0 j= e0: �from (4), since � ,! �0 implies � r,! �0, follows that(9) � r,! �0from (9), (7) and (8) follows the thesis.ProofProof of Theorem 5.8. The implications are proved by lexicographic induction onthe derivation of an evaluation judgment jej =) d0 and j�j; jej =) d0 for thedynamic semantics, and the size of e and (�; e). We consider in detail one case, toillustrate why we need the lexicographic induction. Suppose that jej � e01 e02 ande01 =) �x:e0 e0[x: = e02] =) d0e01 e02 =) d0 there are three possibilities for e� e � e1 e2, therefore je1j � e01 and je2j � e02.In this case we apply the IH to �, �, e1 and (�x:e0). In fact, the derivationof the dynamic evaluation judgment e01 =) �x:e0 is shorter.Therefore we have a d s.t. �j�; e1 =) d and (d0 � jdj or d � err).If d � (;j�1;�x:u:e0) and thus je0j = e0, then we proceed (and reach thedesired conclusion) by applying the IH to �, �1, e0[x: = e2] and d0. In fact,je0[x: = e2]j � e0[x: = e02] and the derivation of the dynamic evaluation judg-ment e0[x: = e02] =) d0 is shorter.In all the other cases, namely d � err or d � (�0j�1;�x:u:e0) with �0 6� ;,we get �j�; e1 e2 =) err.� e � �X :K:e0, therefore je0j � e01 e02.In this case we apply the IH to �; Ca:K (with a fresh), �, e0[X : = Ca]

36 Moggi and Sabryand d0. In fact, we have reduced the size of the term (from �X :K:e0 toe0[X : = Ca]), while the dynamic evaluation judgment is unchanged (sincej�X :K:e0j � je0[X : = Ca]j).Therefore we have a d s.t. �; Ca:Kj�; e0[X : = Ca] =) d and (d0 � jdj ord � err).If d � (�0j�0; v) and jdj = d0, then �j�;�X :K:e0 =) Ca:K;�0j�0; v, andobviously jCa:K;�0j�0; vj � d0. Otherwise we get �j�;�X :K:e0 =) err.� e � e0[u], therefore je0j � e01 e02.In this case we apply the IH to �, �, e0 and d0. In fact, we have reduced thesize of the term (from e0[u] to e0), while the dynamic evaluation judgment isunchanged (since je0[u]j � je0j).Therefore we have a d s.t. �j�; e0 =) d and (d0 � jdj or d � err).If d � (Ca:K;�0j�0; v) and jdj = d0, then �j�; e0[u] =) �0j(�0; v)[Ca: = u],and obviously j�0j(�0; v)[Ca: = u]j � d0. Otherwise we get �j�; e0[u] =) err.
C Adding run to HaskellSection 4.2 outlined a way of de�ning run using runST . This de�nition can bemade more concrete via an implementation in Haskell (using some non-standardextensions for rank-2 polymorphism in Hugs).The �rst step is to encode the necessary types. The type of run is:run:8X : �:(8�M :XM [X])! X , where�M � XM ; XR: � ! � ,xret :8X : �:X ! XM [X] ,xdo :8X;Y : �:XM [X]! (X ! XM [Y])! XM [Y] ,xnew :8X : �:X ! XM [XR[X]] ,xget :8X : �:XR[X]! XM [X] ,xset :8X : �:XR[X]! X ! XM [XR[X]]The operations in �M can be grouped in a record with polymorphic �elds as follows:data GammaM m r =GammaM { xret :: forall a. a -> m a,xdo :: forall a b. m a -> (a -> m b) -> m b,xnew :: forall a. a -> m (r a),xget :: forall a. r a -> m a,xset :: forall a. r a -> a -> m (r a)}It follows that the construct run would have the following type in Haskell:run :: forall a. (forall m r. GammaM m r -> m a) -> a

Monadic Encapsulation of E�ects 37Section 4.2 gives the following de�nition of run:run def� �X : �: �x: (8�M :XM [X]): runST [X] (��: �:x (j�0M j (�)))which can be transliterated as follows:run x =let gammaST = GammaM { xret = returnST,xdo = thenStrictST,xnew = newSTRef,xget = readSTRef,xset = \r v -> do writeSTRef r vreturn r}in runST (x gammaST)Intuitively, given an expression parameterized by generic monadic operations, theseoperations are �rst specialized to those of the built-in state monad, and runST isapplied to the result. For example, one can use such a run construct as follows:test = run (\ gammaM ->let retM = xret gammaMdoM = xdo gammaMnewM = xnew gammaMgetM = xget gammaMsetM = xset gammaMin doM (newM 0) (\ x ->doM (setM x 7) (\ _ ->doM (getM x) (\ v ->doM (retM "hello") (\ _ ->retM (v+v))))))which produces 14 using hugs -98 after importing the module ST. Note that oper-ation retM is used polymorphically, and hence must be let-bound. In general, onecannot use pattern-matching to extract the monadic operations from the recordsince this would �-bind the operations to a monomorphic type.ReferencesBarendregt, Henk P. (1991). Lambda calculi with types. Abramsky, S., Gabbay, D. M.,& Maibaum, T. S. E. (eds), Handbook of logic in computer science. Oxford: OxfordUniversity Press.Cardelli, Luca. (1996). Type systems. Tucker, Allen B. (ed), Handbook of computer scienceand engineering. CRC Press.Chen, K., & Odersky, M. (1994). A type system for a lambda calculus with assignment.Theoretical aspects of computer software. Springer Verlag, LNCS 789.Geuvers, Herman. (1993). Logics and type systems. Ph.D. thesis, Computer ScienceInstitute, Katholieke Universiteit Nijmegen.

38 Moggi and SabryHarper, Robert. (1994). A simpli�ed account of polymorphic references. Informationprocessing letters, 51(4), 201{206. See also note (Harper, 1996).Harper, Robert. (1996). A note on: \A simpli�ed account of polymorphic references"[Inform. Process. Lett. 51 (1994), no. 4, 201{206; MR 95f:68142]. Information processingletters, 57(1), 15{16. See (Harper, 1994).Harper, Robert, & Lillibridge, Mark. (1993). Explicit polymorphism and CPS conver-sion. Pages 206{219 of: the ACM SIGPLAN-SIGACT Symposium on Principles ofProgramming Languages. ACM Press, New York.Launchbury, John, & Peyton Jones, Simon L. (1994). Lazy functional state threads.Pages 24{35 of: the ACM SIGPLAN Conference on Programming Language Designand Implementation. ACM Press, New York.Launchbury, John, & Peyton Jones, Simon L. (1995). State in Haskell. Lisp Symbol.Comput., 8, 193{341.Launchbury, John, & Sabry, Amr. (1997). Monadic state: Axiomatization and type safe-ty. Pages 227{238 of: the ACM SIGPLAN International Conference on FunctionalProgramming. ACM Press, New York.Lucassen, J. M., & Gi�ord, D. K. (1988). Polymorphic e�ect systems. Pages 47{57 of: theACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACMPress, New York.Mitchell, John C., & Plotkin, Gordon D. (1988). Abstract types have existential type.ACM Transactions on Programming Languages and Systems, 10(3), 470{502. Pre-liminary version appeared in Proc. 12th ACM Symp. on Principles of ProgrammingLanguages, 1985, ACM Press, New York.Moggi, Eugenio. (1989). Computational lambda-calculus and monads. Pages 14{23 of:the IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press,Los Alamitos, Calif. Also appeared as: LFCS Report ECS-LFCS-88-86, University ofEdinburgh, 1988.Moggi, Eugenio. (1991). Notions of computation and monads. Inf. Comput., 93, 55{92.Moggi, Eugenio, & Palumbo, Fabrizio. (1999). Monadic encapsulation of e�ects: A revisedapproach. Electronic notes in theoretical computer science, 26, 119{136. Third Inter-national Workshop on Higher Order Operational Techniques in Semantics.Odersky, Martin, Rabin, Dan, & Hudak, Paul. (1993). Call by name, assignment, andthe lambda calculus. Pages 43{56 of: the ACM SIGPLAN-SIGACT Symposium onPrinciples of Programming Languages. ACM Press, New York.Rabin, Dan. (1996). Calculi for functional programming languages with assignments. Ph.D.thesis, Yale University. Technical Report YALEU/DCS/RR-1107.Reynolds, John C. (1978). Syntactic control of interference. Pages 39{46 of: the ACMSIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,New York.Reynolds, John C., & Plotkin, Gordon. (1993). On functors expressible in the polymorphictyped lambda calculus. Inf. Comput., 105(1), 1{29.Riecke, Jon G. (1993). Delimiting the scope of e�ects. Pages 146{155 of: the Conferenceon Functional Programming and Computer Architecture. ACM Press, New York.Riecke, Jon G., & Viswanathan, R. (1995). Isolating side e�ects in sequential languages.Pages 1{12 of: the ACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages. ACM Press, New York.Semmelroth, Miley, & Sabry, Amr. (1999). Monadic encapsulation in ML. Pages 8{17of: the ACM SIGPLAN International Conference on Functional Programming. ACMPress, New York.

Monadic Encapsulation of E�ects 39Swarup, V., Reddy, Uday, & Ireland, E. (1991). Assignments for applicative languages.Pages 192{214 of: the Conference on Functional Programming and Computer Architec-ture. ACM Press, New York.Talpin, J.-P., & Jouvelot, P. (1992a). Polymorphic type, region and e�ect inference. Jour-nal of functional programming, 2(3), 245{271.Talpin, Jean-Pierre, & Jouvelot, P. (1992b). The type and e�ect discipline. Pages 162{173of: the IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press,Los Alamitos, Calif.Tofte, Mads. (1990). Type inference for polymorphic references. Inf. Comput., 89(1),1{34.Tofte, Mads, & Talpin, Jean-Pierre. (1997). Region-based memory management. Inf.Comput., 132(2), 109{176.Wadler, Philip. (1990). Comprehending monads. Pages 61{78 of: the ACM Conferenceon Lisp and Functional Programming. ACM Press, New York.Wadler, Philip. (1992). The essence of functional programming (invited talk). Pages 1{14of: the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.ACM Press, New York.Wadler, Philip. (1998). The marriage of e�ects and monads. Pages 63{74 of: the ACMSIGPLAN International Conference on Functional Programming. ACM Press, NewYork.Wright, Andrew K., & Felleisen, Matthias. (1994). A syntactic approach to type soundness.Inf. Comput., 115(1), 38{94.

