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Abstract

Having access to massive amounts of data does not necessarily imply that induction

algorithms must use them all. Samples often provide the same accuracy with far less

computational cost. However, the correct sample size is rarely obvious. We analyze

methods for progressive sampling|starting with small samples and progressively in-

creasing them as long as model accuracy improves. We show that a simple, geometric

sampling schedule is e�cient in an asymptotic sense. We then explore the notion of

optimal e�ciency: what is the absolute best sampling schedule? We describe the is-

sues involved in instantiating an \optimally e�cient" progressive sampler. Finally, we

provide empirical results comparing a variety of progressive sampling methods. We

conclude that progressive sampling often is preferable to analyzing all data instances.
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1 Introduction

Induction algorithms face competing requirements for accuracy and e�ciency. The require-

ment for accurate models often demands the use of large data sets which allow algorithms

to discover subtle and complex structure. The requirement for e�cient induction demands

the use of small data sets, because the computational complexity of even the most e�cient

induction algorithms is linear in the number of instances, and most are considerably less

e�cient.

In this paper we study progressive sampling methods, which attempt to maximize accu-

racy as e�ciently as possible. Progressive sampling starts with small samples and progres-

sively increases their size until model accuracy no longer improves. A central component of

progressive sampling is a sampling schedule S = fn0; n1; n2; : : : ; nkg where ni < nj for i < j.

Each ni speci�es the size of a sample to be provided to an induction algorithm.

We show that schedules in which the ni increase geometrically are e�cient in an asymp-

totic sense. Next we explore the question of optimal e�ciency in an absolute sense: what is

the most e�cient sampling schedule? We then investigate empirically how a variety of sched-

ules perform on large benchmark data sets, and how they compare to using the entire data

set. Next, we address a crucial practical issue: how can a method for progressive sampling

determine that model quality no longer increases? We describe an interaction between the

sampling schedule and the method of convergence detection, and we demonstrate a practical

alternative that avoids the worst aspects of the tradeo�s this interaction requires. Finally,

we discuss why progressive sampling is especially bene�cial in cases where sampling from a

large database is ine�cient.

We conclude that, in a wide variety of realistic circumstances, progressive sampling is

preferable to analyzing all instances from a database. Surprisingly, it can be competitive

even with knowing the optimal sample size in advance.

2 Progressive Sampling

A learning curve (Figure 1a) depicts the relationship between sample size and model ac-

curacy. The horizontal axis represents n, the number of instances in a given training set,
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Figure 1: Learning curves and progressive samples

which can vary between zero and N , the total number of available instances. The vertical

axis represents the accuracy of the model produced by an induction algorithm when given a

training set of size n.

Learning curves typically have a steeply sloping portion early in the curve, a more gently

sloping middle portion, and a plateau late in the curve. The gently sloping middle portion

can be extremely large in some curves (e.g., (Catlett, 1991a, 1991b; Harris-Jones & Haines,

1997)) and almost entirely missing in others. The plateau occurs when adding additional

data instances does not improve accuracy. The plateau, and even the entire middle portion,

can be missing from curves when N is not su�ciently large. Conversely, the plateau region

can constitute the majority of curves when N is very large. For example, in a recent study

of two large business data sets, Harris-Jones and Haines (1997) found that learning curves

reach a plateau quickly for some algorithms, but small accuracy improvements continue up

to N for other algorithms.

When a learning curve reaches its �nal plateau, we say it has converged. We denote the

training set size at which convergence occurs as nmin.

De�nition 1 Given a data set, a sampling procedure, and an induction algorithm, nmin is

the size of the smallest su�cient training set. Models built with smaller training sets have

lower accuracy, and models built with larger training sets have no higher accuracy, than

models built with from training sets of size nmin.
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Compute schedule S = fn0; n1; n2; : : : ; nkg of sample sizes
n n0
M  model induced from n instances

while not converged

recompute S if necessary

n next element of S larger than n

M  model induced from n instances

end while

return M

Figure 2: Progressive sampling

Figure 1b shows an example sampling schedule and its relation to a learning curve. Em-

pirical estimates are necessary to determine nmin because the precise shape of a learning

curve represents a complex interaction between the statistical regularities present in a given

data set and the abilities of an induction algorithm to identify and represent those regulari-

ties. In general, these characteristics are not known in advance, nor is their interaction well

understood. Thus, nmin is nearly impossible to determine from theory.

Figure 2 is a generic algorithm that de�nes the family of progressive sampling methods.

An instance of this family has particular methods for computing a schedule, for revising a

schedule, and for determining convergence. In the next two sections, we present methods

for computing and for revising schedules. We then analyze their e�ciency empirically. We

assume for these sections that progressive sampling is able to detect convergence and we

assume that this detection can be performed e�ciently (its worst-case run-time complexity

is not worse than that of the underlying induction algorithm). In Section 6 we relax these

assumptions. For this paper, we consider only drawing random samples from the larger data

set. We believe that the results will generalize to other methods of sampling, but have not

yet studied the general case.
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3 Computing schedules

3.1 Arithmetic schedules

We know of one prior study of progressive sampling. John and Langley (1996) de�ne a

method we will call arithmetic sampling, using the schedule Sa = n0 + (i � n�) = fn0; n0 +

n�; n0 + 2n�; : : : ; Ng. For example, one arithmetic schedule is f100; 200; 300; : : : ; Ng. John

and Langley compare arithmetic sampling with the most distinct alternative|estimating

nmin based on a subsample's statistical similarity to the entire sample|an approach they call

static sampling. Their experiments show that progressive sampling produces more accurate

models than does static sampling.

However, arithmetic sampling has an obvious drawback. If nmin is a large multiple of

n�, then the approach will require very many runs of the underlying induction algorithm.

For example, if nmin = 200; 000 and n0 = n� = 100, then 2000 runs will be necessary|more

than half with n > 100; 000 instances. John and Langley partially escape this di�culty by

specifying the use of an incremental induction algorithm (e.g., a simple Bayesian classi�er),

whose run time depends only on the additional instances, rather than having to reprocess all

prior instances as well. Unfortunately, Sa can be extremely ine�cient for the vast majority

of induction algorithms, which are not incremental (as we show in section 5).

3.2 Geometric schedules

One way to escape the limitations of arithmetic sampling is to use progressive sampling with

a geometric schedule. That is,

Sg = ai � n0 = fn0; a � n0; a
2 � n0; a

3 � n0; : : : ; Ng

for some constants n0 and a.
1 For example, one geometric schedule is f100; 200; 400; 800; : : : ; Ng.

We now show that geometric sampling is an asymptotically optimal schedule. That is, in

terms of worst-case time complexity, geometric sampling is equivalent to knowing nmin.

1
n0 can be 1, but in practice will be larger to compensate for the �xed overhead of running the induction

program.
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De�nition 2 A progressive sampling schedule is asymptotically optimal if its worst-case,

asymptotic run-time complexity is no worse than that of running the algorithm on the smallest

su�cient training set.

We assume that the asymptotic run-time complexity of induction with n instances, C(n),

is no better than O(n). Since most inductive algorithms have 
(n) run-time complexity, and

many are strictly worse than O(n), this assumption does not seem problematic. Under these

assumptions, geometric sampling is asymptotically optimal.2

Theorem 1 For inductive algorithms with time complexity C(n) no better than O(n), if

convergence also can be detected in C(n), then geometric sampling is an asymptotically op-

timal method for employing induction algorithms on large data sets.

Proof: Let the run-time complexity of induction (with the algorithm in question) be

C(n), where n is the size of the data set. As speci�ed in De�nition 1, let nmin be the size of

the smallest su�cient training set. The run-time complexity of induction from the smallest

su�cient training set is therefore C(nmin). Notably, the \optimal" run time grows with nmin

rather than with the total number of instances N .

By the de�nition of Sg, geometric sampling processes subsets of size ai � n0 for i =

0; 1; : : : ; k0, assuming convergence is detected after k0 samples, where k0 < k. The run-

time complexity of progressively running the induction algorithm on the k0 subsets, including

running the convergence-detection procedure, is O(
Pk0

i=0C(a
i � n0)), which is O(C(ak

0

� n0),

because C(n) is at best O(n).

Now, we assume convergence is well detected, so ak
0
�1 � n0 < nmin � ak

0

� n0. This

means that the overall time complexity is O(C(a �nmin)), which is O(C(nmin)), so progressive

sampling is asymptotically no worse than running the induction algorithm on the smallest

su�cient training set. 2

Because it is simple and asymptotically optimal, we propose that geometric sampling, for

example with a = 2, is a good default schedule for mining large data sets. We discuss further

2
We follow the reasoning of Korf, who shows that progressive deepening is an optimal schedule for

conducting depth-�rst search when the smallest su�cient depth is unknown (Korf, 1985) (Provost, 1993).
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reasons in Section 8, and provide empirical results testing this proposition in Section 5. First

we explore further the topic of optimal schedules.

3.3 Computing optimal schedules with dynamic programming

A guarantee of asymptotic optimality is encouraging, but can we say anything about sam-

pling schedules that are absolutely optimal? This section describes a method for identifying

the schedule with the minimum expected cost of convergence. This seems a daunting task.

For each value of n, from 1 to N , a model can either be built or not, leading to 2N possible

schedules. However, identi�cation of the optimal schedule can be cast in terms of dynamic

programming, yielding an algorithm that requires O(N2) space and O(N3) time.

Let f(n) be the cost of building a model with n instances and determining whether

accuracy has converged. Let �(n) be the probability that convergence requires more than

n instances. Clearly, �(0) = 1. If we let n0 = 0, then the expected cost of convergence by

following schedule S is given by the following equation:

C =

kX
i=1

�(ni�1)f(ni)

To better understand what this equation captures, consider a simple example in which

N = 10 and S = f3; 7; 10g. The value of C is as follows:

C =

kX
i=1

�(ni�1)f(ni) = �(0)f(3) + �(3)f(7) + �(7)f(10)

With probability 1 (�(0) = 1), an initial model will be built with 3 instances at a cost

of f(3). If more than 3 instances are required for convergence, an event that occurs with

probability �(3), a second model will be built with 7 instances at a cost of f(7). Finally,

with probability �(7) more than 7 instances are required for convergence and a third model

will be built with all 10 instances at a cost of f(10). The expected cost of a schedule is the

simply the sum of the cost of building each model times the probability that the model will

actually need to be constructed.
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Schedule Cost

S1 = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g 121.0

S2 = f10g 100.0

S3 = f2; 6; 10g 72.8

Table 1: Expected costs of various schedules given N = 10, f(n) = n2 and a uniform prior.

In many cases there may be no prior information about the likelihood of convergence

occurring for any given n. In that case, assuming a uniform prior over all n yields �(n) =

(N � n)=N .3 Consider another example in which N = 10, the uniform prior is used, and

f(n) = n2. The costs for three di�erent schedules is shown in Table 1. The �rst schedule,

in which a model is constructed for each possible data set size, is the most expensive of the

three shown. The second schedule, in which a single model is built with all of the instances,

is also not optimal in the sense of expected cost given a uniform prior. The third schedule

shown has the lowest cost of all 210 = 1024 possible schedules for this problem.

Given N , f and �, we want to determine the schedule S that minimizes C. That is,

we want to �nd the optimal schedule. As noted previously, a brute force approach to this

problem would explore exponentially many schedules. We take advantage of the fact that

optimal schedules are composed of optimal sub-schedules to apply dynamic programming to

this problem, resulting in a polynomial time algorithm. Let m[i; j] be cost of the optimal

schedule for i � n � j instances and that requires models to be constructed on n = i

instances and n = j instances. The cost of the optimal schedule given a data set containing

N instances is then m[0; N ]. The following recurrence can be used to compute m[0; N ]:

m[i; j] = min

�
�(i)f(j)

mini<k<j m[i; k] +m[k; j]

Both the bottom-up table-based and top-down memoized implementations of this equation

require O(N2) space to store the values of m and O(N3) time.

The results of applying dynamic programming to determine the optimal schedules for

three di�erent values of N and various f(n) are shown below in Tables 2 and 3. Both

3
This implies that �(N) = 0 and thus that nmin < N . We relax this assumption later in this section and

in section 4.1.
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N = 100

f(n) Schedule Cost

n f100g 100

n1:5 f6, 50, 100g 847

n2 f19, 62, 100g 7271

n3 f3, 15, 41, 75, 100g 560,790

Table 2: Optimal schedules for N = 100 and various f(n) given a uniform prior.

N = 500

f(n) Schedule Cost

n f500g 500

n1:5 f27, 248, 500g 9,470

n2 f10, 99, 312, 500g 181,775

n3 f2, 17, 77, 204, 375, 500g 70,096,920

Table 3: Optimal schedules for N = 500 and various f(n) given a uniform prior.

tables contain the optimal schedules for each f(n) at a given value of N along with the costs

associated with those schedule. These tables have several interesting features. First, note

that for a given level of N , the optimal schedule is highly dependent on f(n). In general,

the larger the asymptotic complexity of f(n) the more frequently the schedules indicate that

models should be constructed. Second, although the interval between the ni in any given

schedule seems to be geometrically increasing, the multiplicative factor is by no means a

constant. In fact, the factor seems to decrease dramatically near the end of the schedule.

As stated earlier, the running time of the algorithm that determines the optimal schedule

is O(N3). This is clearly impractical for data sets with millions of instances. Fortunately, the

running time actually is cubic in the number of data set sizes at which a model can be built,

which can be a small fraction of N if one is willing to sacri�ce precision in the placement of

model construction points (for example, looking only at multiples of 100 or 1000 instances).

If there is information on the likely location of the minimum data set set size required

for convergence, then schedules with much lower costs can be produced. For example, we

know that learning curves almost always have the characteristic shape shown in Figure 1,

and that in many cases nmin � N . Rather than assume a uniform prior, it would be more
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N = 500

f(n) Schedule Cost

n f57, 143, 285, 500g 183

n1:5 f36, 93, 180, 318, 500g 2,355

n2 f16, 50, 108, 191, 318, 500g 33,473

n3 f4, 23, 50, 93, 149, 231, 348, 500g 9,026,006

Table 4: Optimal schedules for N = 500 and various f(n) given a log-normal prior.

reasonable to assume a more concentrated distribution, with low values for very small n, and

low values for very large n. For example, data from Oates and Jensen (1997, 1998) show that

the distribution of the number of instances needed for convergence over a large set of the

UCI databases (Merz & Murphy, 1997) is roughly log-normal with a mean of 2000. Of the

18 datasets that reached convergence prior to N , four reached convergence between 100 and

1000 instances, 10 reached convergence between 1000 and 10,000, and 4 reached convergence

between 10,000 and 100,000.

Non-uniform priors can strongly a�ect the schedules produced by dynamic programming.

Tables 4 and 5 show optimal schedules for N = 500 and various f(n) using priors di�er-

ent from those in the previous tables. Table 4 is based on a log-normal prior such that

�(log(x)) = 1 � N(x) where N(x) is the cumulative density of a normal distribution with

mean log(50) and standard deviation 1. Despite the fact that the schedules in this table call

for more models to be constructed than schedules based on the uniform prior (see Table 3),

the expected costs are lower because more precise information about the location of nmin is

available. Table 5 is based on a uniform prior where �(n) = (1:25N � n)=1:25N . That is,

convergence is equally likely to occur for any data set size ranging from 1 to 1:25N . The

corresponding schedules call for fewer models to be constructed when compared to the case

in which convergence is guaranteed with N instances (again, see Table 3). That is because

there is a non-zero probability that more than N instances are required for convergence.

Using dynamic programming to compute the optimal schedule has several advantages

over using a geometric schedule with a �xed factor a. First, the schedules produced via

dynamic programming are optimal in a well-de�ned sense. Second, these schedules specify

the data set size for which the �rst model should be built. Third, schedules produced via
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N = 500

f(n) Schedule Cost

n f500g 500

n1:5 f3, 144, 500g 10,329

n2 f36, 212, 500g 208,850

n3 f3, 28, 114, 286, 500g 8:8� 107

Table 5: Optimal schedules for N = 500 and various f(n) given a uniform prior out to

1:25N .

dynamic programming determine, in a principled manner, the multiplicative constant to use

between the ni and that constant varies as needed.

We call progressive sampling based on an optimal schedule as determined by this proce-

dure Dynamic Programming sampling, or DP sampling.

4 Revising schedules

Determining optimal schedules for DP sampling requires a model of the probability of con-

vergence and a model of the run-time complexity of the underlying induction algorithm. In

the previous section we assumed that these were known in advance, but our prior knowledge

may be less than perfect. We now show that a progressive sampling procedure can build

both of these models adaptively. The key insight is that a progressive sampling algorithm

can obtain substantial amounts of information cheaply by including small samples in its

schedule.

4.1 Modeling the probability of convergence

As we argued above, the assumption of uniform probabilities of convergence for all n is

probably incorrect. However, progressive sampling algorithms can model the convergence

probability dynamically. For example, a progressive sampling algorithm might assume that

the accuracy of a particular algorithm on a particular data set can be modeled by a power

law. A simple power law is shown by Frey and Fisher (1999) to model learning curves better

than a variety of alternatives, and a similar approach is used by John and Langley (1996) to
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determine convergence (see Section 6). Such an modeling approach could allow a progressive

sampling procedure to adaptively improve the e�ciency of its schedule during execution.

This enhances the bene�ts of geometric schedules that take many small samples early,

when the learning curve has the most variation, but while running the induction algorithm

is inexpensive and the impact of a suboptimal schedule is low. When the cost of running

the induction algorithm increases, the model of the convergence probabilities will be much

better, and thus the actual performance closer to the true optimal.

4.2 The cost of running the induction algorithm

The second assumption of DP sampling is that we have an accurate model of the run-time

complexity (in n) of the underlying induction algorithm. Run-time complexity models are

not always easy to obtain. For example, our empirical results below use the decision-tree

algorithm C4.5 (Quinlan, 1993). The growth of C4.5 run time is often claimed to be linear

in the number of instances, for non-numeric data sets. This claim is based on an analysis

by Utgo�, where he shows the asymptotic time complexity to be O(n) (Utgo�, 1989). With

numeric data, sorting adds a logn term at each node.

However, C4.5 has been observed to be worse than O(n2) (Catlett, 1991a). One explana-

tion for the discrepancy is that Utgo� actually shows that the complexity of C4.5 is O(nt)

where t is the number of tree nodes. Oates and Jensen (1997, 1998) have shown that the

number of tree nodes often grows as O(n). Therefore, the complexity for non-numeric data

would be O(n2), for numerics O(n2 logn), and for mixed-type data, somewhere in between.

In addition, DP sampling requires the actual run-time complexity for the problem in

question, rather than the worst-case complexity. We obtained empirical estimates of the

complexity of C4.5 on the led and waveform data sets (used below), and found the former

to be O(n1:22) and the latter to be O(n1:37).4

As with learning curve estimation, progressive sampling can dynamically determine the

4
We follow a similar procedure to (Frey & Fisher, 1999) and assumed that the running time could be

modeled by: y = a �n
b
, gathered samples of CPU time required to build trees on 1,000 to 100,000 instances

in increments of 1,000, then took the log of both the CPU time and the number of instances, ran linear

regression, and used the resulting slope as an estimate of b.
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actual run-time complexity as the sampling progresses. As before, early in the schedule,

with small samples, suboptimal scheduling due to an incorrect time-complexity model will

have little overall e�ect. As the samples grow and bad estimates would be costly, the time-

complexity model becomes more accurate.

5 Empirical comparison of sampling schedules

We have shown that, in principle, progressive sampling can be optimal|both in an asymp-

totic and in an absolute sense. The goal of our empirical analysis is to evaluate whether pro-

gressive sampling can be used for practical scaling. We hypothesize that geometric sampling

and DP sampling are considerably less expensive than using all the data when convergence

is early, and not too much more expensive when convergence is late. We further hypothesize

that, for large data sets and non-incremental algorithms, these versions of progressive sam-

pling are signi�cantly better than arithmetic progressive sampling. We also investigate how

well simple geometric sampling compares with DP sampling, and how they each compare to

the oracle-determined schedule SO = fnming.

We compare progressive sampling with several di�erent schedules: SN = fNg, a single

sample with all the instances; SO = fnming, a single sample with the smallest su�cient

training set determined by an omniscient oracle; Sa = 100 + (100 � i), arithmetic sampling

with n0 = n� = 100; Sg = 100 � 2i, geometric sampling with n0 = 100 and a = 2; and Sdp,

DP sampling with schedule recomputation after dynamic estimation of priors and run-time

complexity.

Of the three progressive sampling methods, only DP sampling revises its schedules. In

order to determine the probability of convergence, with Sdp progressive sampling estimates

the learning curve dynamically by applying linear regression to estimate the parameters of a

power law. We also dynamically estimate C(n), the actual time complexity of the underlying

induction algorithm, under the assumption that C(n) = a � nb, based on the observed run

time on the samples taken so far. Progressive sampling with Sdp �rst builds models on 100,

200, 300, 400 and 500 instances to get an initial estimate of the learning curve and actual run-

time complexity. From these, the method estimates the convergence probability distribution

and the complexity of the algorithm. Then, as described in Figure 2 it iteratively checks for
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Data set Full Arith Geo DP Oracle

Led 16.40 1.77 0.55 0.56 0.18

Census 16.33 59.68 5.57 5.41 2.08

Waveform 425.31 1230.00 41.84 50.57 22.12

Table 6: Computation time for several progressive sampling methods

convergence, rebuilds the schedule by recomputing the distribution and the complexity with

the latest information, and then produces a new classi�er.

For the experiments in this section, we assume that convergence can be detected accu-

rately and without cost. The progressive sampling algorithms each had access to a function

that returns false if n < nmin and true if n � nmin. The function could only be accessed

as a way of testing convergence, not as a method of schedule construction. We address the

challenges of practical convergence detection in section 6.

For the purposes of this experiment, we determined nmin empirically by analyzing the

full learning curve for arithmetic sampling and applying a technique developed in (Oates &

Jensen, 1997). The technique takes sets of three adjacent points on a learning curve, averages

their accuracy, and then compares that accuracy with the accuracy on all N instances. We

select the �rst set (the set furthest to the left of the learning curve) for which average

accuracy is not less than 1% less than the accuracy on all instances. The middle point of

that set is nmin.

For our experiments we used 3 large data sets from the UCI repository (Merz & Murphy,

1997): led, waveform and census (adult). For led and waveform we used 100,000

instances, and for census 32,000. Based on the technique above, we found that for led

nmin = 2; 000, for waveform nmin = 12; 000, and for census nmin = 8; 000.

The results of the experiments are summarized in table 6, which shows running times in

seconds averaged over 10 runs. Before each run the order of the instances was randomized.

6 Determining convergence

The key assumption behind all the progressive sampling procedures we have discussed is that

convergence can be detected accurately and e�ciently. While we present some preliminary
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results below, we believe that convergence detection remains is an open problem on which

signi�cant research e�ort should be focused.

In their paper on arithmetic sampling, John and Langley outline how to model a learning

curve as sampling progresses. From this learning curve, they estimate whether the accuracy

that would be achieved with all instances (acc(N)) will be very di�erent from the accu-

racy achieved with the current sample (acc(n)). To formalize this notion, they de�ne the

Probably Close Enough (PCE) criterion, modeled after the Probably Approximately Cor-

rect (PAC) criterion of Valiant (1984). The PCE criterion states that convergence is reached

when Pr((acc(N) � acc(n)) > �) � �, where acc(x) is the accuracy of the model that an

algorithm produces after seeing x instances, � refers to the maximum acceptable decrease in

accuracy, and � is a probability that the maximum accuracy di�erence will be exceeded on

any individual run. John and Langley set � to 2% and � to 5%.

Convergence detection is essentially a statistical judgment, irrespective of the speci�c

convergence criterion or the method to estimate whether than criterion has been met. For

example, John and Langley estimate the parameters of a learning curve based on the cross-

validated accuracy of models produced with arithmetically larger subsamples, thus allowing

estimation of the accuracy di�erence.

However, statistical estimation of complete learning curves is fraught with di�culties.

Actual learning curves often require a complex functional form to estimate accurately. The

curve shown in �gure 1a has three regions of behavior|a primary rise, a secondary rise, and

a plateau. Most simple functional forms (e.g., those used by Frey and Fisher (1999) and John

and Langley (1996)) generally cannot capture all three regions of behavior, often causing the

estimated curves to converge too quickly or to never converge. Estimating convergence is

generally more challenging than �tting earlier parts of the curve, and even fairly small errors

are damaging to progressive sampling methods.

More importantly, the need for accurate statistical estimation is fundamentally at odds

with the goal of progressive sampling. Statistical estimates of convergence will be aided by

increasing the number of points in a schedule, but this directly impairs e�ciency. Even worse,

determining convergence is most aided by samples for which ni > nmin, because these points

will most assist the statistical determination that a plateau has been reached. Of course,
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Data set DP-LRLS DP-Free

Led 72.33 72.91

Census 84.87 85.38

Waveform 77.20 76.36

Table 7: Mean accuracy for DP with LRLS and with optimal convergence detection

these are the very sample sizes that, for e�ciency reasons, progressive sampling schedules

should avoid.

The most promising approach we have yet identi�ed for statistical convergence detection

increases complexity by essentially a constant factor. Despite this, preliminary tests indicate

it can approximate nmin with consistently high accuracy, though at the cost of signi�cant

increases in absolute run time. This method|linear regression with local sampling (LRLS)|

begins at the latest scheduled sample size ni and samples r additional points in the local

neighborhood of ni. These points are then used to estimate a linear regression line, whose

slope is compared to zero. If the slope is su�ciently close to zero, convergence is detected.

LRLS takes advantage of a common property of learning curves: the slope of the line tangent

to the curve constantly decreases. If LRLS ever estimates that the slope is zero, it is unlikely

to ever become non-zero for larger n.

6.1 Empirical analysis of convergence detection

We applied LRLS to estimate convergence of DP schedules. For these experiments, r = 20

and convergence was detected the �rst time that the 95% con�dence interval on the slope

of a regression line included zero. As before, each value represents the average of 10 runs

where instances were randomized prior to each run.

LRLS identi�ed convergence accurately. In most cases, LRLS correctly identi�ed nk0,

and in nearly all other cases convergence was identi�ed in a sample for which ni > nk0. In no

data set was the mean accuracy at estimated convergence statistically distinguishable from

the accuracy on nmin instances, the point of true convergence. Mean accuracies are shown

in table 7.

However, LRLS has a large e�ect on absolute computation time. The additional sam-
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Data set Full DP-LRLS DP-Free Oracle

Led 16.40 24.05 0.56 0.18

Census 16.33 54.46 5.41 2.08

Waveform 425.31 424.92 50.57 22.12

Table 8: Computation time for DP with LRLS and with free convergence detection

pling and executions of the induction algorithm created a large factor increase in the total

computational cost. The computational cost for waveform would have been substantially

lower except for a single run which took 1654 seconds. Without this run, the mean run time

reduces to 288 seconds.

These costs could be reduced by more e�cient estimation of convergence. In addition,

the costs of running on the full data set would increase dramatically if N increased, while

this would not a�ect the computational cost of any form of progressive sampling. Thus, as

the total size of data sets increases, progressive sampling becomes more attractive.

7 When is progressive sampling desirable?

The experiments above indicate the potential for progressive sampling to be more e�cient

than other approaches, given particular algorithms and data sets and provided that e�cient

convergence detection method can be identifed. However, what are the general conditions

under which progressive sampling is desirable compared full sampling? Are those conditions

su�ciently general that progressive sampling could be used routinely?

We constructed a simple analytical model to answer these questions. The model uses

three parameters: a, the ratio of N to the sample size at which convergence is detected

(a = N=nb); b, the number of schedules executed prior to detecting convergence; and c, the

exponent of the cost function (C(n) = nc). In the data sets used in our experiments above,

aled = 50, awaveform = 8:33, and acensus = 4. Recall that cled = 1:22 and cwaveform = 1:37.

Based on these parameters, we can de�ne the conditions under which the computational

cost of progressive sampling and the cost of using all N instances are equal. That is, the

conditions under which:
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Figure 3: Regions of e�ciency for arithmetic and geometric sampling

N c = n0
c + n1

c + n2
c + : : :+ nb

c

where a = N=nb and the relationship among the elements of the partial schedule fn0; n1; n2; : : : ; nbg

are determined by the given progressive sampling method (e.g., arithmetic or geometric).

Sets of parameter values that satisfy the equation above are shown in �gure 3. The curves

show the boundaries between regions where it is more e�cent to use progressive sampling

and regions where it is more e�cient to use all N instances. Above the curves, progressive

sampling is more e�cient; below the curves, complete sampling is more e�cient. The right-

and left-hand �gures show curves for arithmetic and geometric sampling, respectively.

The curves show that progressive sampling will be e�cient under a wide variety of cir-

cumstances. For example, arithmetic sampling that requires 30 samples to be tried before

convergence is detected can still be e�cient if the computational complexity is greater than

n2 and the �nal sample size is less than one-quarter of N . If, however, the �nal sample size

changes to one-half of N , arithmetic sampling will not be e�cient unless only 10 or fewer

samples are needed prior to detecting convergence.

Geometric sampling is far more forgiving. If computational complexity is n2 or worse,

then geometric sampling is e�cient as long as convergence can be detected with samples

smaller than N=2. The number of samples prior to convergence is almost irrelevant. This

is the essential feature of geometric sampling that makes it e�cient. If a schedule contains
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a large number of samples prior to the sample when convergence is detected, those samples

will almost all be quite small. In contrast, increasing the number of samples in an arithmetic

schedule adds samples along the schedule's entire range, and this results in a much larger

computational cost.

8 Discussion

We have presented our �nal result as partially negative, but in doing so we downplay the

bene�ts of progressive sampling. Our analysis assumes that sampling from a large database

is instantaneous. Actually, as this assumption is relaxed, the relative e�ciency of progressive

sampling becomes better. Progressive sampling can take advantage of data as they arrive,

e�ectively creating a pipelined induction process. For standard induction based on slow

data access, the CPU sits idle and waits for the sampling to complete, and then runs the

induction algorithm on the resultant data set. Progressive sampling can immediately get

started on the �rst sample points, computing its �rst estimates of the learning curve and

C(n). Thereafter, sampling �rst �lls up a test-set bu�er, so that when induction each subset

is �nished, the test-set bu�er (containing data for the next subset) is used �rst to estimate

the accuracy. Then the test set bu�er can be shifted into the training bu�er, and so on.

Moreover, the slower the sampling, the more work can be done on convergence detection.

With very slow sampling, the e�ciency of progressive sampling will be the same as if nmin

were known a priori.

9 Conclusion

With this work we have made substantial progress toward e�cient progressive sampling. We

have shown that if convergence detection can be done e�ciently, then progressive sampling is

far better than learning from all the data, and almost as e�cient as being given the minimum

su�cient training set by an oracle. We have also shown that convergence detection can be

done e�ectively. What is left is a well-de�ned challenge for future KDD research: increase

the e�ciency of convergence detection.

We know of neither theoretical argument nor empirical evidence that is a relationship
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between the size of a massive data set and the size of the minimum su�cient training set.

In fact, although multi-gigabyte and even terabyte databases are becoming more common,

we are not aware of evidence that any real-world induction task requires more than a million

examples|and e�cient induction on hundreds of thousands of examples is no longer unusual

(Provost & Kolluri, 1999). The existence of an e�cient progressive sampling procedure would

take a giant step toward solving one of the basic challenges of KDD: classi�er induction from

massive data sets.
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