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sie.ntu.edu.twAbstra
t. EUNITE network re
ently organized a world-wide 
ompeti-tion on ele
tri
ity load fore
asting. This paper details our approa
hesand results where the main ma
hine learning te
hnique used is supportve
tor ma
hine.1 Introdu
tionRe
ently EUNITE network organized a world-wide 
ompetition on ele
tri
ityload fore
asting. Given the temperature and the ele
tri
ity load from 1997 to1998, the 
ompetitors are asked to predi
t the daily maximal load of January1999. The main ma
hine learning te
hnique we used on this problem is thesupport ve
tor ma
hine (SVM).Load fore
asting has been an important topi
 in power systems resear
h.Some surveys are, for example, [2, 5℄. Most of the earlier works aimed at predi
t-ing short-term loads su
h as one-day ahead predi
tion. However, in this 
ompe-tition, we are asked to predi
t the loads for a whole month. Comparing to theshort-term predi
tion, this problem is mu
h harder as the result of the long-termpredi
tion might degenerate due to the error propagation.This paper is organized as follows. In Se
tion 2, we brie
y introdu
e basi

on
epts of support ve
tor ma
hines (SVM). Then in Se
tion 3 we des
ribe ouranalysis for the data set and Se
tion 4 presents our methods. In the end, wedemonstrate experimental results in Se
tion 5.2 Support Ve
tor Ma
hineSupport ve
tor ma
hine (SVM) is a new and promising te
hnique for data 
las-si�
ation and regression [6℄. In this se
tion we brie
y introdu
e support ve
torregression (SVR) whi
h 
an be used for time series predi
tion. Given trainingdata (x1; y1), : : : , (xl; yl), where xi are input ve
tors and yi are the asso
iated
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Fig. 1. Support Ve
tor Regressionoutput value of xi, the support ve
tor regression is an optimization problem:minw;b;�;�� 12wTw + C lXi=1(�i + ��i ) (1)subje
t to yi � (wT �(xi) + b) � �+ �i;(wT�(xi) + b)� yi � �+ ��i ;�i; ��i � 0; i = 1; : : : ; l;where xi is mapped to a higher dimensional spa
e, �i is the upper training error( ��i is the lower) subje
t to the �-insensitive tube jy � (wT�(x) + b)j � �. Theparameters whi
h 
ontrol the regression quality are the 
ost of error C, thewidth of tube �, and the mapping fun
tion �.The 
onstraints of (1) imply that we would like to put most data xi in thetube jy � (wT �(x) + b)j � �. This 
an be 
learly seen from Figure 1. If xi isnot in the tube, there is an error �i or ��i whi
h we would like to minimize inthe obje
tive fun
tion. For traditional least-square regression � is always zeroand data are not mapped into higher dimensional spa
es. Hen
e SVR is a moregeneral and 
exible treatment on regression problems.In this 
ompetition, we would like to deploy SVR for time series predi
tion.An earlier example using SVR is [4℄. Given any time series (� � � ; yt��; � � � ; yt�1;yt; � � � ), for the training data we 
onsider (yt��; � � � ; yt�1) as attributes of xiand yt as the target value. Then using the last � elements of the sequen
e asa test data, we predi
t the �rst unknown value. By sequentially adding newlyobtained data as attributes (and removing the earliest element), we 
ontinue topredi
t more elements.



Le
ture Notes in Computer S
ien
e 33 Data AnalysisIn this 
ompetition, the data o�ered in
lude ele
tri
ity load and temperature.A list of holidays is also provided. The load data set 
ontains the load per halfhour of ea
h day from 1997 to 1998 while the temperature data set provides theaverage daily temperature from 1995 to 1998. Like most data mining tasks herewe have to analyze the data �rst before applying any te
hniques on them. Someproperties observed are as follows:
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3.1 Ele
tri
ity LoadThe given load data are the ele
tri
ity loads re
orded every half hour, from 1997to 1998. With so many numeri
 data, we �rst 
olle
ted the maximal load of ea
hday as it is the obje
tive of the 
ompetition. Figure 2 shows the maximal load inea
h day of 1997 to 1998. We also analyzed the sum of daily loads. The maximalload and the summed load share similar patterns.Load Periodi
ity In Figure 2 
learly there are some periodi
al patterns for themaximum load data. First, the load is 
hanging with the season: high demandfor ele
tri
ity in the winter while low demand in the summer. Furthermore, theload pattern of weekdays is di�erent from that in the weekend. More pre
isely,in the weekend the load is usually lower. In addition, the ele
tri
ity demand onSaturday is a little higher than that on Sunday.Holiday E�e
t Earlier work have pointed out that holiday might be a fa
torwhi
h 
an in
uen
e the load. From the two-year load data, it is easily to �nd out



4 Chang, Chen, and Linthat the load usually lowers down on holidays. With further s
rutiny, we foundout that the load is not only lower on holidays but also depends on what holidayit is. On some major holidays su
h as Christmas or New Year, the demand forele
tri
ity may be a�e
ted more 
ompared with other holidays.3.2 Weather In
uen
eAs we have pointed out earlier, the load data have some seasonal variation, whi
hindi
ates a great in
uen
e of the temperature. It is 
lear to see that be
ause ofthe heating use, in the winter higher temperature 
auses lower demands. Figure3 shows the negative 
orrelation between the load demand and the temperature.There is another interesting observation: the temperature at De
ember 31st,1998 is the lowest from 1997 to 1998. This observation might imply the highun
ertainty of the temperature and load of the in
oming January 1999, andthus in
rease the diÆ
ulty of the load predi
tion.
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4 Methods and Data PreparationWhen using SVM for this problem, it is 
onsidered a global approa
h as thelearning model is generated by gathering and training all existing data. On the
ontrary, there are also lo
al modeling approa
hes whi
h in fa
t do not have thetraining stage. We will 
ompare these two approa
hes and pi
k the better onefor generating our �nal results.
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ien
e 54.1 Lo
al ModelingLo
al models generate predi
tions by �nding segments of the time series that
losely resemble the segment of the points immediately pro
eeding the point tobe predi
ted. Then the predi
tion is usually the average of elements that o

urredimmediately after these similar segments of points. A su

essful example on timeseries predi
tion using the lo
al model is in [3℄.Pra
ti
ally we have to de
ide the length of ea
h segment and the number ofsimilar segments. Usually a validation pro
ess is 
ondu
ted in order to de
idethese parameters. Here we simply 
onsider loads of seven days as a segment andsele
t the 
losest segment.4.2 Global ModelingIn Se
tion 2 we have roughly mentioned how to use support ve
tor ma
hinesfor time series predi
tion. Here we provide details for solving this parti
ularproblem.If 
onsidering only the load information, the date set is a simple time serieswhere past information 
an be trained for predi
ting future data. Now in additionto the load information we also know the 
alendar dates and all holidays. Hen
ewe would like to en
ode all these information if possible.Therefore, the training data of one parti
ular day has its load as the targetvalue yi and the following attributes:{ Seven attributes for maximal loads of the past seven days{ Seven binary attributes indi
ate whi
h day in a week{ One binary attribute indi
ates whether this is a holiday or not.{ One attribute for the daily average temperature. However, we may or maynot be able to use this attribute due to the la
k of temperature in January1999. We will elaborate more on this later.We then use SVM to train a model using the above en
oding. The newlypredi
ted load will be in
luded as an attribute and used for the next predi
tion.For example, after obtaining an approximate load of January 1, 1999, it is usedwith loads of De
ember 26-31, 1998 for predi
ting that of January 2. We 
ontinuethis way until �nding an approximate load of January 31.Information su
h as 
alendar dates and holidays in January 1999 are knownin priori so there are no problems to en
ode them. However, the temperatureof January 1999 is not provided so we may have to approximate it as well. AsSVM 
urrently works only for models with a single output, we have to traintwo SVMs, one for predi
ting loads and the other for temperature. To be morepre
ise, we train another SVM where ea
h training data has temperature of thepast seven days as attributes and the 
urrent temperature as the target (output)value.



6 Chang, Chen, and Lin5 Experiments and Results5.1 ImplementationWe used MATLAB for experiments on lo
al modeling. For the global modelingusing SVM, we 
onsider LIBSVM [1℄, a library for support ve
tor ma
hines.To evaluate models, we separate the data to two sets, data of January 1998as the testing set and the rest as the training set. For both methods mentionedin Se
tion 4, we have to 
hoose several parameters. For example, the length ofsegments for lo
al modeling and the 
ost of error C in the SVM formulation(1). This is a
hieved by 
ondu
ting 
ross validation on the training set. In otherwords, the training set is further divided for training and validation. The pa-rameter set whi
h a
hieves the best validation a

ura
y will be used for �ndingthe �nal model for future predi
tion. Due to the la
k of time, for lo
al modelingwe restri
t to use the most similar segment and try only few segment lengths.Finally we de
ide to use seven-day information as a segment.On the other hand, for SVM, there are also quite a few parameters. Someimportant ones are1. 
ost of error C,2. the width of the �-insensitive tube,3. the mapping fun
tion �, and4. how many days in
luded for one training data.As there are too many 
ombinations of the above parameters, for ea
h train-ing data we simply in
lude data of the previous seven days. In addition, we
onsider only the RBF fun
tion where �(xi)T�(xj ) = e�
kxi�xjk2 and use thedefault � = 0:5 of LIBSVM. Therefore, parameters left are C and 
 whi
h were
hosen by a �ve-fold 
ross validation.Furthermore, after some preliminary experiments, we realize that dis
ard-ing data in the summer leads to better results. Hen
e we totally do not useinformation from April to September.In addition, for all the validation pro
edures, we evaluate results using themean square error.5.2 ResultsBeside some mis
ellaneous tests, we mainly experiment with the following threeapproa
hes:1. Lo
al modeling2. SVM without temperature information3. SVM with temperature informationWe worry that though temperature is an important fa
tor, it is not 
learwhether two SVMs together 
an produ
e good results. Thus we test the 
asewithout using temperature as well.
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ture Notes in Computer S
ien
e 7We �nd out that it is very diÆ
ult to predi
t the temperature. In parti
ular, ifone day the temperature suddenly drops or in
reases, we 
annot 
orre
tly predi
tit so results after that day are erroneous.We 
on
lude that if temperature is used,the variation is higher as sometimes the performan
e is good but sometimes isvery bad.
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tion for Jan. 1998 (line: real loads; line-points: predi
ted loads)Thus we de
ide to give up using the temperature information. If we 
al
ulatethe average load for ea
h day in a week, we �nd out that without using temper-ature, our predi
ted values are very 
lose to them. This is reasonable as withouttemperature, the information about whi
h day in a week be
omes the most in-
uential fa
tor. However, we also see the model manages to hold the trend. Forinstan
e, in the whole month if the load is slightly in
reasing, our model revealsthis pattern too though in general its 
hanging rate is slower. In Figure 5.2, we
an see that the load in January 1998 is 
reasing. Our predi
tion shows the samepattern but its in
rease is not as large as the real load.We also see that the model really returns smaller values for holidays whoseloads are usually lower. However, the gap between the predi
ted value and thereal value is still bigger than that of non-holidays. Therefore, results after en
oun-tering a holiday be
ome more ina

urate. In parti
ular the �rst day of January isa holiday so this problem is quite serious. Finally we de
ide to ignore the holidayinformation while doing the predi
tion. In other words, we treat all 31 days inJanuary 1999 as non-holidays. We think that even though the performan
e onholidays may not be good, the total error is still less. Some earlier work sepa-rated holidays and non-holidays and train di�erent models for them. However,now we have data in only two years so information about holidays is not enough.



8 Chang, Chen, and Lin5.3 Other ConsiderationsWe have also tried other options though they do not show signi�
ant improve-ments and are not in
luded. For example, we tried to give less weight for theholiday attribute while training the model. Originally ea
h attribute has valuesbetween 0 and 1 after s
aling but we 
an further redu
e the holiday attribute toa smaller ranger like [0; 0:3℄.Another modi�
ation is as follows: Now we use seven binary attributes forindi
ating a day in a week. We guess that maybe seven 
an be redu
ed to two:weekday and weekend. However, the result does not 
hange mu
h.6 Con
lusionBased on experiments presented in the previous se
tion, we 
hoose the approa
hof using SVM without the temperature information for generating our �nalmodel.Referen
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