
EUNITE Network Competition:Eletriity Load ForeastingMing-Wei Chang, Bo-Juen Chen, and Chih-Jen LinDepartment of Computer Siene and Information EngineeringNational Taiwan UniversityTaipei, 106, Taiwanjlin�sie.ntu.edu.twAbstrat. EUNITE network reently organized a world-wide ompeti-tion on eletriity load foreasting. This paper details our approahesand results where the main mahine learning tehnique used is supportvetor mahine.1 IntrodutionReently EUNITE network organized a world-wide ompetition on eletriityload foreasting. Given the temperature and the eletriity load from 1997 to1998, the ompetitors are asked to predit the daily maximal load of January1999. The main mahine learning tehnique we used on this problem is thesupport vetor mahine (SVM).Load foreasting has been an important topi in power systems researh.Some surveys are, for example, [2, 5℄. Most of the earlier works aimed at predit-ing short-term loads suh as one-day ahead predition. However, in this ompe-tition, we are asked to predit the loads for a whole month. Comparing to theshort-term predition, this problem is muh harder as the result of the long-termpredition might degenerate due to the error propagation.This paper is organized as follows. In Setion 2, we briey introdue basionepts of support vetor mahines (SVM). Then in Setion 3 we desribe ouranalysis for the data set and Setion 4 presents our methods. In the end, wedemonstrate experimental results in Setion 5.2 Support Vetor MahineSupport vetor mahine (SVM) is a new and promising tehnique for data las-si�ation and regression [6℄. In this setion we briey introdue support vetorregression (SVR) whih an be used for time series predition. Given trainingdata (x1; y1), : : : , (xl; yl), where xi are input vetors and yi are the assoiated
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Fig. 1. Support Vetor Regressionoutput value of xi, the support vetor regression is an optimization problem:minw;b;�;�� 12wTw + C lXi=1(�i + ��i ) (1)subjet to yi � (wT �(xi) + b) � �+ �i;(wT�(xi) + b)� yi � �+ ��i ;�i; ��i � 0; i = 1; : : : ; l;where xi is mapped to a higher dimensional spae, �i is the upper training error( ��i is the lower) subjet to the �-insensitive tube jy � (wT�(x) + b)j � �. Theparameters whih ontrol the regression quality are the ost of error C, thewidth of tube �, and the mapping funtion �.The onstraints of (1) imply that we would like to put most data xi in thetube jy � (wT �(x) + b)j � �. This an be learly seen from Figure 1. If xi isnot in the tube, there is an error �i or ��i whih we would like to minimize inthe objetive funtion. For traditional least-square regression � is always zeroand data are not mapped into higher dimensional spaes. Hene SVR is a moregeneral and exible treatment on regression problems.In this ompetition, we would like to deploy SVR for time series predition.An earlier example using SVR is [4℄. Given any time series (� � � ; yt��; � � � ; yt�1;yt; � � � ), for the training data we onsider (yt��; � � � ; yt�1) as attributes of xiand yt as the target value. Then using the last � elements of the sequene asa test data, we predit the �rst unknown value. By sequentially adding newlyobtained data as attributes (and removing the earliest element), we ontinue topredit more elements.



Leture Notes in Computer Siene 33 Data AnalysisIn this ompetition, the data o�ered inlude eletriity load and temperature.A list of holidays is also provided. The load data set ontains the load per halfhour of eah day from 1997 to 1998 while the temperature data set provides theaverage daily temperature from 1995 to 1998. Like most data mining tasks herewe have to analyze the data �rst before applying any tehniques on them. Someproperties observed are as follows:
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3.1 Eletriity LoadThe given load data are the eletriity loads reorded every half hour, from 1997to 1998. With so many numeri data, we �rst olleted the maximal load of eahday as it is the objetive of the ompetition. Figure 2 shows the maximal load ineah day of 1997 to 1998. We also analyzed the sum of daily loads. The maximalload and the summed load share similar patterns.Load Periodiity In Figure 2 learly there are some periodial patterns for themaximum load data. First, the load is hanging with the season: high demandfor eletriity in the winter while low demand in the summer. Furthermore, theload pattern of weekdays is di�erent from that in the weekend. More preisely,in the weekend the load is usually lower. In addition, the eletriity demand onSaturday is a little higher than that on Sunday.Holiday E�et Earlier work have pointed out that holiday might be a fatorwhih an inuene the load. From the two-year load data, it is easily to �nd out



4 Chang, Chen, and Linthat the load usually lowers down on holidays. With further srutiny, we foundout that the load is not only lower on holidays but also depends on what holidayit is. On some major holidays suh as Christmas or New Year, the demand foreletriity may be a�eted more ompared with other holidays.3.2 Weather InueneAs we have pointed out earlier, the load data have some seasonal variation, whihindiates a great inuene of the temperature. It is lear to see that beause ofthe heating use, in the winter higher temperature auses lower demands. Figure3 shows the negative orrelation between the load demand and the temperature.There is another interesting observation: the temperature at Deember 31st,1998 is the lowest from 1997 to 1998. This observation might imply the highunertainty of the temperature and load of the inoming January 1999, andthus inrease the diÆulty of the load predition.
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4 Methods and Data PreparationWhen using SVM for this problem, it is onsidered a global approah as thelearning model is generated by gathering and training all existing data. On theontrary, there are also loal modeling approahes whih in fat do not have thetraining stage. We will ompare these two approahes and pik the better onefor generating our �nal results.



Leture Notes in Computer Siene 54.1 Loal ModelingLoal models generate preditions by �nding segments of the time series thatlosely resemble the segment of the points immediately proeeding the point tobe predited. Then the predition is usually the average of elements that ourredimmediately after these similar segments of points. A suessful example on timeseries predition using the loal model is in [3℄.Pratially we have to deide the length of eah segment and the number ofsimilar segments. Usually a validation proess is onduted in order to deidethese parameters. Here we simply onsider loads of seven days as a segment andselet the losest segment.4.2 Global ModelingIn Setion 2 we have roughly mentioned how to use support vetor mahinesfor time series predition. Here we provide details for solving this partiularproblem.If onsidering only the load information, the date set is a simple time serieswhere past information an be trained for prediting future data. Now in additionto the load information we also know the alendar dates and all holidays. Henewe would like to enode all these information if possible.Therefore, the training data of one partiular day has its load as the targetvalue yi and the following attributes:{ Seven attributes for maximal loads of the past seven days{ Seven binary attributes indiate whih day in a week{ One binary attribute indiates whether this is a holiday or not.{ One attribute for the daily average temperature. However, we may or maynot be able to use this attribute due to the lak of temperature in January1999. We will elaborate more on this later.We then use SVM to train a model using the above enoding. The newlypredited load will be inluded as an attribute and used for the next predition.For example, after obtaining an approximate load of January 1, 1999, it is usedwith loads of Deember 26-31, 1998 for prediting that of January 2. We ontinuethis way until �nding an approximate load of January 31.Information suh as alendar dates and holidays in January 1999 are knownin priori so there are no problems to enode them. However, the temperatureof January 1999 is not provided so we may have to approximate it as well. AsSVM urrently works only for models with a single output, we have to traintwo SVMs, one for prediting loads and the other for temperature. To be morepreise, we train another SVM where eah training data has temperature of thepast seven days as attributes and the urrent temperature as the target (output)value.



6 Chang, Chen, and Lin5 Experiments and Results5.1 ImplementationWe used MATLAB for experiments on loal modeling. For the global modelingusing SVM, we onsider LIBSVM [1℄, a library for support vetor mahines.To evaluate models, we separate the data to two sets, data of January 1998as the testing set and the rest as the training set. For both methods mentionedin Setion 4, we have to hoose several parameters. For example, the length ofsegments for loal modeling and the ost of error C in the SVM formulation(1). This is ahieved by onduting ross validation on the training set. In otherwords, the training set is further divided for training and validation. The pa-rameter set whih ahieves the best validation auray will be used for �ndingthe �nal model for future predition. Due to the lak of time, for loal modelingwe restrit to use the most similar segment and try only few segment lengths.Finally we deide to use seven-day information as a segment.On the other hand, for SVM, there are also quite a few parameters. Someimportant ones are1. ost of error C,2. the width of the �-insensitive tube,3. the mapping funtion �, and4. how many days inluded for one training data.As there are too many ombinations of the above parameters, for eah train-ing data we simply inlude data of the previous seven days. In addition, weonsider only the RBF funtion where �(xi)T�(xj ) = e�kxi�xjk2 and use thedefault � = 0:5 of LIBSVM. Therefore, parameters left are C and  whih werehosen by a �ve-fold ross validation.Furthermore, after some preliminary experiments, we realize that disard-ing data in the summer leads to better results. Hene we totally do not useinformation from April to September.In addition, for all the validation proedures, we evaluate results using themean square error.5.2 ResultsBeside some misellaneous tests, we mainly experiment with the following threeapproahes:1. Loal modeling2. SVM without temperature information3. SVM with temperature informationWe worry that though temperature is an important fator, it is not learwhether two SVMs together an produe good results. Thus we test the asewithout using temperature as well.



Leture Notes in Computer Siene 7We �nd out that it is very diÆult to predit the temperature. In partiular, ifone day the temperature suddenly drops or inreases, we annot orretly preditit so results after that day are erroneous.We onlude that if temperature is used,the variation is higher as sometimes the performane is good but sometimes isvery bad.
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98 JanFig. 4. Predition for Jan. 1998 (line: real loads; line-points: predited loads)Thus we deide to give up using the temperature information. If we alulatethe average load for eah day in a week, we �nd out that without using temper-ature, our predited values are very lose to them. This is reasonable as withouttemperature, the information about whih day in a week beomes the most in-uential fator. However, we also see the model manages to hold the trend. Forinstane, in the whole month if the load is slightly inreasing, our model revealsthis pattern too though in general its hanging rate is slower. In Figure 5.2, wean see that the load in January 1998 is reasing. Our predition shows the samepattern but its inrease is not as large as the real load.We also see that the model really returns smaller values for holidays whoseloads are usually lower. However, the gap between the predited value and thereal value is still bigger than that of non-holidays. Therefore, results after enoun-tering a holiday beome more inaurate. In partiular the �rst day of January isa holiday so this problem is quite serious. Finally we deide to ignore the holidayinformation while doing the predition. In other words, we treat all 31 days inJanuary 1999 as non-holidays. We think that even though the performane onholidays may not be good, the total error is still less. Some earlier work sepa-rated holidays and non-holidays and train di�erent models for them. However,now we have data in only two years so information about holidays is not enough.



8 Chang, Chen, and Lin5.3 Other ConsiderationsWe have also tried other options though they do not show signi�ant improve-ments and are not inluded. For example, we tried to give less weight for theholiday attribute while training the model. Originally eah attribute has valuesbetween 0 and 1 after saling but we an further redue the holiday attribute toa smaller ranger like [0; 0:3℄.Another modi�ation is as follows: Now we use seven binary attributes forindiating a day in a week. We guess that maybe seven an be redued to two:weekday and weekend. However, the result does not hange muh.6 ConlusionBased on experiments presented in the previous setion, we hoose the approahof using SVM without the temperature information for generating our �nalmodel.Referenes1. C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vetor mahines, 2001.Software available at http://www.sie.ntu.edu.tw/~jlin/libsvm.2. H. S. Hippert, C. E. Pedreira, and R. C. Souza. Neural networks for short-termload foreasting: a review and evaluation. IEEE Transations on Power Systems,16(1):44{55, 2001.3. J. MNames, J. A. K. Suykens, and J. Vandewalle. Winning entry of the K. U.leuven time series predition ompetition, 1998.4. K.-R. M�uller, A. Smola, G. R�atsh, B. Sh�olkopf, J. Kohlmorgen, and V. Vapnik.Prediting time series with support vetor mahines. In B. Sh�olkopf, C. J. C.Burges, and A. J. Smola, editors, Advanes in Kernel Methods - Support VetorLearning, pages 243{254, Cambridge, MA, 1999. MIT Press.5. P. Murto. Neural network models for short-term load foreasting. Master's the-sis, Department of Engineering Physis and Mathematis, Helsinki University ofTehnology, 1998.6. V. Vapnik. Statistial Learning Theory. Wiley, New York, NY, 1998.


