MachineLearning, 28, 41-75 (1997)
© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Multitask L earning"

RICH CARUANA caruana@cs.cmu.edu
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Editor:

Abstract. Multitask Learning is an approach to inductive transfer that improves generalization by using the
domain information contained in the training signals of related tasks as an inductive bias. It doesthis by learning
tasksin parallel while using a shared representation; what is learned for each task can help other tasks be learned
better. This paper reviews prior work on MTL, presents new evidence that MTL in backprop nets discoverstask
relatedness without the need of supervisory signals, and presents new results for MTL with k-nearest neighbor
and kernel regression. In this paper we demonstrate multitask learning in three domains. We explain how
multitask learning works, and show that there are many opportunities for multitask learning in real domains.
We present an algorithm and results for multitask learning with case-based methods like k-nearest neighbor and
kernel regression, and sketch an algorithm for multitask learning in decision trees. Because multitask learning
works, can be applied to many different kinds of domains, and can be used with different learning algorithms, we
conjecture therewill be many opportunitiesfor its use on real-world problems.

Keywords: inductive transfer, parallel transfer, multitask learning, backpropagation, k-nearest neighbor, kernel
regression, supervised learning, generalization

1. Introduction
1.1. Oveview

Multitask Learning (MTL) is an inductive transfer mechanism whose principle goal is
to improve generaization performance. MTL improves generalization by leveraging the
domain-specific information contained in the training signals of related tasks. It does this
by training tasks in parallel while using a shared representation. In effect, the training
signals for the extra tasks serve as an inductive bias. Section 1.2 argues that inductive
transfer isimportant if we wish to scale tabularasa learning to complex, real-world tasks.
Section 1.3 presents the simplest method we know for doing multitask inductive transfer,
adding extratasks (i.e., extraoutputs) to abackpropagation net. Because the MTL net uses
a shared hidden layer trained in paralel on al the tasks, what islearned for each task can
help other tasks be learned better. Section 1.4 argues that it is reasonable to view training
signals as an inductive bias when they are used thisway.

Section 2 demonstrates that MTL works. We compare the performance of single task
learning (STL—Iearning just onetask at atime) and multitask learning in backpropagation
on three problems. One of these problemsis areal-world problem created by researchers
other than the author who did not consider using MTL when they collected the data.

* This work was supported by ARPA grant F33615-93-1-1330, NSF grant BES-9315428, Agency for Health
Care Policy and Research grant HS06468, and by Justsystem Pittsburgh Research Center.

42

Section 3 explainshow MTL in backprop netsworks. Section 3.1 suggests mechanisms
that could improve generalization even if the extra tasks' training signals are not relevant
to the main task. We present an empirical test that rules out these mechanisms and thus
ensures that the benefit from MTL is due to the information in the extra tasks. In section
3.2 we present mechanisms that explain how MTL leverages the information in the extra
training signals to improve generaization. In section 3.3 we show that MTL in backprop
nets is able to determine how tasks are related without being given an explicit training
signal for task relatedness.

Section 4 may be the most important part of this paper. It shows that there are many
opportunitiesfor MTL (and for inductive transfer in general) on real-world problems. At
first glance most of the problems one sees in machine learning today do not look like
multitask problems. We believe most current problems in machine learning appesar to be
single task because of the way we have been trained. Many—in fact, we believe most—
real-world problems are multitask problems and performance is being sacrificed when we
treat them as single task problems.

Sections 1-4 use the simplest MTL agorithm we know of, a backprop net with multiple
outputs sharing a single, fully connected hidden layer. But MTL is a collection of ideas,
techniques, and agorithms, not one agorithm. In Section 5 we present MTL algorithms
for k-nearest neighbor and decision trees. While these algorithms look rather different
from MTL in backprop nets, there is strong overlap of mechanisms and issues; all MTL
algorithmsmust address essentially thesame set of problems, even if the specific mechanism
in each agorithmis different.

Inductivetransfer isnot new, and many backprop netsused multiple outputsbefore M TL
came along. Related work is presented in Section 6. Section 7 discusses many issues that
arisein MTL and briefly mentions future work. Section 8 isasummary.

1.2. Motivation

Thestandard methodol ogy inmachinelearningistolearn onetask at atime. Largeproblems
are broken into small, reasonably independent subproblemsthat are learned separately and
then recombined (see, for example, Waibel's excellent work on connectionist glue [Waibel
1989]). Thispaper argues that sometimes thismethodol ogy iscounterproductivebecause it
ignoresapotentially rich source of information availablein many rea -world problems: the
information contained in the training signals of other tasks drawn from the same domain.

An artificia neural network (or a decision tree, or a ...) trained tabularasaon asingle,
isolated, very difficult task isunlikely tolearnit well. For example, anet with a1000x1000
pixel input retinais unlikely to learn to recognize complex objects in rea-world scenes
given the number of training patterns and training time likely to be available. Might it
be better to require the learner to learn many things simultaneously? Yes. If the tasks
can share what they learn, the learner may find it is easier to learn them together than
inisolation. Thus, if we simultaneoudly train a net to recognize object outlines, shapes,
edges, regions, subregions, textures, reflections, highlights, shadows, text, orientation,
size, distance, etc., it may learn better to recognize complex objectsin the real world. This
approach is Multitask Learning.

43

1.3. MTL in Backpropagation Nets

Figure 1 shows four separate artificial neural nets (ANNS). Each net is a function of the
same inputs, and has one output. Backpropagation is applied to these nets by training each
net in isolation. Because the four nets are not connected, it is not possiblefor what one net
learns to help another net. We call thisapproach Single Task Learning (STL).

Taskl Task2 Task3 Task4
OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO
INPUTS INPUTS INPUTS INPUTS

Figure 1. Single Task Backpropagation (STL) of four tasks with the same inputs.

Figure 2 shows a single net with the same inputs as the four netsin Figure 1, but which
has four outputs, one for each task the netsin Figure 1 were being trained on. Note that
these four outputs are fully connected to a hidden layer that they share.® Backpropagation
is done in parale on the four outputsin the MTL net. Because the four outputs share
a common hidden layer, it is possible for internal representations that arise in the hidden
layer for onetask to beused by other tasks. Sharingwhat islearned by different taskswhile
tasksare trained in paralel isthe central ideain multitask learning [Suddarth & Kergosien
1990; Dietterich, Hild & Bakiri 1990, 1995; Suddarth & Holden 1991; Caruana 1993a,
1993h, 1994, 1995; Baxter 1994, 1995, 1996; Caruana & de Sa 1996].

MTL isan inductivetransfer method that uses the domain specific information contained
inthetraining signals of related tasks. It doesthis by learning the multipletasksin parallel
while using a shared representation. |n backpropagation, MTL allows features devel oped
in the hidden layer for one task to be used by other tasks. It also alows features to be
developed to support severa tasks that would not have been developed in any STL net
trained onthetasksinisolation. Importantly, MTL a so allows some hidden unitsto become
specialized for just one or afew tasks; other tasks can ignore hidden unitsthey do not find
useful by keeping the weights connected to them small.

1.4. Training Signalsas an Inductive Bias

MTL is one way of achieving inductive transfer between tasks. The goa of inductive
transfer is to leverage additional sources of information to improve the performance of
learning on the current task. Inductive transfer can be used to improve generalization
accuracy, the speed of learning, and the intelligibility of learned models. In this paper
we focus solely on improving accuracy. We are not concerned about the computational

44

CNONORONCNORONG)

|

INPUTS

Figure 2. Multitask Backpropagation (MTL) of four tasks with the same inputs.

cost of learning nor the intelligibility of what is learned. One way transfer improves
generalization isby providingastronger inductive bias than would be available without the
extraknowledge. This can yield better generalization with a fixed training set, or reduce
the number of training patterns needed to achieve some fixed level of performance.

Inductive bias is anything that causes an inductive learner to prefer some hypotheses
over other hypotheses. Bias-freelearning isimpossible; much of the power of an inductive
learner follows directly from the power of its inductive bias [Mitchell 1980]. Multitask
learning uses the training signas for related tasks as an inductive bias to improve gener-
alization. One does not usually think of training signals as a bias; but when the training
signalsarefor tasks other thanthe maintask, it iseasy to see that, fromthe point of view of
the main task, the other tasks may serve as a bias. The multitask bias causes the inductive
learner to prefer hypothesesthat explain morethan onetask. For thismultitask biasto exist,
the inductive learner must be biased to prefer hypotheses that have utility across multiple
tasks.

2. DoesMTL Work?

Before jumping into how multitask |earning works and when to useit, wefirst demonstrate
that it does work. We do this not only to convince the reader that multitask learning is
worthwhile, but because the examples will help the reader develop intuitions about how
multitask learning works and where it is applicable.

In this section we present three applications of MTL in backprop nets. The first uses
simulated data for an ALVINN-like road-following domain. The second uses real data
collected with arobot-mounted camera. Thisdatawas collected specifically to demonstrate

45

MTL. The third domain appliesMTL to amedica decision-making domain. The datain
this domain was collected by other researchers who did not consider using MTL when
collecting the data.

21 1D-ALVINN

1D-ALVINN uses a road image simulator first developed by Pomerleau to permit rapid
testing of learning ideas for road-following domains [Pomerleau 1992]. The original
simulator generates synthetic road images based on a number of user defined parameters
such astheroad width, number of lanes, angleand field of view of thecamera. We modified
the simulator to generate 1-D road images comprised of a single 32-pixel horizontal scan
lineinstead of the origina 2-D 30x32-pixel image. We did thisto speed learning so more
thorough experimentation could be done—training moderate sized nets with the full 2-D
retina was computationally too expensive to alow many replications. Nevertheless, 1D-
ALVINN retains much of the complexity of the original 2-D domain; the main complexity
lost is that road curvature is no longer visible, and the smaller input (960 pixels vs. 32
pixels) makes learning easier.

The principletask in both 1D-ALVINN and 2D-ALVINN isto predict steering direction.
For our MTL experiments, eight additional tasks were used:

o whether the road is one or two lanes e |ocation of centerline (2-lane roads only)
o location of left edge of road o location of right edge of road

o location of road center e intensity of road surface

e intensity of region bordering road e intensity of centerline (2-lane roads only)

These additional tasks are all computable from the internal variables in the simulator. We
modified the ssimulator so that the training signals for these extra tasks were added to the
synthetic data along with the training signal for the main steering task.

Table 1 shows the performance of ten runs of single and multitask learning on 1D-
ALVINN using nets with one hidden layer. The MTL net has 32 inputs, 16 hidden units,
and 9 outputs. The 36 STL nets have 32 inputs, 2, 4, 8 or 16 hidden units, and 1 output
each.? Note that the size of the MTL nets was not optimized.

The entries under the STL and MTL headings are the generalization error for nets of the
specified size when early stopping is used to halt training. The bold STL entries are the
STL runsthat yielded best performance. The last two columns compare STL and MTL.
Thefirst column isthe percent reduction in error of MTL over the best STL run. Negative
percentages indicate MTL performs better. This test is biased in favor of STL because
it compares single runs of MTL on an unoptimized net size with several independent
runs of STL that use different random seeds and are able to find near-optimal net size.
The last column is the percent improvement of MTL over the average STL performance.
Differences marked with an “*” are statistically significant at 0.05 or better. Note that on
the important steering task, MTL outperforms STL 15-30%. It does this without having
access to any extratraining patterns. exactly the same training patterns are used for both
STL and MTL. The only difference is that the MTL training patterns have the training

46

Table 1. Performance of STL and MTL with one hidden layer on tasks in the 1D-ALVINN domain. The bold
entriesin the STL columns are the STL runs that performed best. Differences statistically significant at 0.05 or
better are marked with an *.

ROOT-MEAN SQUARED ERROR ON TEST SET

TASK Single Task Backprop (STL) MTL ChangeMTL ChangeMTL
2HU 4HU 8HU 16HU 16HU to Best STL to Mean STL
1or2Lanes 201 .209 .207 178 .156 -12.4%* -21.5%*
Left Edge .069 071 .073 .073 .062 -10.1%* -13.3%*
Right Edge .076 .062 .058 .056 .051 -8.9%* -19.0% *
Line Center 153 152 152 152 151 -0.7% -0.8%
Road Center .038 .037 .039 .042 .034 -8.1%* -12.8%*
Road Greylevel .054 .055 .055 .054 .038 -29.6% * -30.3% *
Edge Greylevel .037 .038 .039 .038 .038 2.7% 0.0%
Line Greylevel .054 .054 .054 .054 .054 0.0% 0.0%
Steering .093 .069 .087 072 .058 -15.9%* -27.7%*

signalsfor al nine tasks, whereas the STL training patterns have training signals for only
onetask at atime.

2.2. 1D-DOORS

1D-ALVINN isnot area domain; the datais generated with asimulator. Totest MTL ona
morerealistic problem, we created an object recognition domain similar in somerespectsto
1D-ALVINN. In 1D-DOORS, themain tasks are to | ocate doorknobsand to recogni ze door
types (single or double) in images of doors collected with a robot-mounted color camera.
Figure 3 shows several door images from the database. Aswith 1D-ALVINN, the problem
was simplified by using horizontal stripes from the images, one for the green channel and
onefor theblue channdl. Each stripeis 30 pixelswide (accomplished by applying Gaussian
smoothing to the original 150 pixel-wide image) and occurs at the vertical height in the
image where the doorknobislocated. Ten taskswere used. These are:

¢ horizontal location of doorknob e single or double door

¢ horizontal location of doorway center e width of doorway

¢ horizontal location of left door jamb e horizontal location of right door jamb
e width of left door jamb e width of right door jamb

¢ horizontal location of left edge of door o horizontal location of right edge of door

Asthisisareal domain, the training signals for these tasks had to be acquired manually.
We used a mouse to click on the appropriate features in each image in the training and test
sets. Sinceit was necessary to process each image manually to acquire thetraining signals
for the two main tasks, it was not that difficult to acquire the training signals for the extra
tasks.

The difficulty of 1D-DOORS precludes running as exhaustive a set of experiments as
with 1D-ALVINN; comparison could be done only for the two tasks we considered most
important: doorknob location and door type. STL was tested on nets using 6, 24, and 96

Figure 3. Sample single and double doors from the 1D-DOORS domain.

hidden units. MTL was tested on nets with 120 hidden units. The results of ten trialswith
STL and MTL arein Table 2.

MTL generalizes 20-30% better than STL on these tasks, even when compared to the
best of three different runsof STL. Once again, note that the training patterns used for STL
and MTL are identical except that the MTL training patterns contain additional training
signals. It istheinformation contained in these extratraining signal s that hel ps the hidden
layer learn a better internal representation for the door recognition domain, and this better
representation in turn helps the net better learn to recognize door types and the location of
the doorknobs.

Table 2. Performance of STL and MTL on the two main tasks in 1D-DOORS. The bold entries in the STL
columns are the STL runsthat performed best. Differences statistically significant at 0.05 or better are marked
withan *.

ROOT-MEAN SQUARED ERROR ON TEST SET

TASK Single Task Backprop (STL) MTL ChangeMTL
6HU 24HU 96HU 120HU to Best STL

Doorknob Loc .085 .082 .081 .062 -23.5%*

Door Type 129 .086 .096 .059 -31.4% *

The 1D-ALVINN domain used simulated data. Although the simulator was not built
with MTL in mind, it was modified to make extra task signals available in the training
data The 1D-DOORS domain used real data collected from areal camera on area robot
wandering around areal hallway. Although every attempt was made to keep this domain
challenging (e.g., the robot was not kept paralel to the hallway and the distance to the
doors and illumination was allowed to vary), it is still a domain contrived specifically to
demonstrate MTL. How well will MTL work on areal domain which was not customized
for it?

2.3. Pneumonia Prediction

Of the 3,000,000 cases of pneumonia each year in the U.S., 900,000 are admitted to the
hospital for treatment and testing. Most pneumonia patients recover given appropriate

48

treatment, and many can be treated effectively without hospitalization. Nonethel ess, pneu-
moniais serious: 100,000 of those hospitalized for pneumoniadie fromit, and many more
are at elevated risk if not hospitalized.

A primary goal in medical decision making is to accurately, swiftly, and economically
identify patients at high risk from diseases like pneumonia so they may be hospitalized to
receive aggressive testing and treatment; patients at low risk may be more comfortably,
safely, and economically treated at home. In this problem the diagnosis of pneumonia
has already been made. The goal is not to diagnose if the patient has pneumonia, but to
determine how much risk the illness poses to the patient.

Because some of themost useful testsfor predicting pneumoniarisk are usualy measured
after one is hospitalized, they will be available only if preliminary assessment indicates
hospitalizationand further testingiswarranted. But low risk patients can often beidentified
using measurements made prior to admission to the hospital. We have a database in which
all patientswere hospitalized. It istheextra lab tests made once these patientsare admitted
tothehospital that wewill use asextratasksfor MTL ; they cannot be used asinputsbecause
they usualy will not be available for future patientswhen the decision to hospitalize or not
must be made.

The Medis Pneumonia Database [Fine et a. 1995] contains 14,199 pneumonia cases
collected from 78 hospitals in 1989. Each patient in the database was diagnosed with
pneumonia and hospitalized. 65 measurements are available for most patients. These
include 30 basic measurements acquired prior to hospitalization, such as age, sex, and
pulse, and 35 lab results, such as blood counts or blood gases, usually not available until
after hospitalization. The database indicates how long each patient was hospitalized and
whether the patient lived or died. 1,542 (10.9%) of the patients died. The most useful
decision aid for this problem would predict which patientswill live or die. But thisistoo
difficult. In practice, the best that can be achieved is to estimate a probability of death
(POD) from the observed symptoms. In fact, it is sufficient to learn to rank patients by
their POD so lower-risk patients can be discriminated from higher risk patients; patients at
least risk may then be considered for outpatient care.

The performance criteria used by others working with the Medis database [Cooper et
al. 1995] is the accuracy with which one can select prespecified fractions of the patient
population who will live. For example, given a population of 10,000 patients, find the
20% of this population at least risk. To do thiswe learn arisk model and a threshold for
this model that allows 20% of the population (2000 patients) to fall below it. If 30 of the
2000 patients below this threshold die, the error rate is 30/2000 = 0.015. We say that the
error ratefor FOP 0.20is0.015 (FOP standsfor “fraction of population”). In this paper we
consider FOPs 0.1, 0.2, 0.3, 0.4, and 0.5. Our goal isto learn model sand model thresholds,
such that the error rate at each FOP is minimized.

The Medis database contains results from 35 lab tests that usually will be available only
after patientsare hospitalized. These resultstypically will not be available when the model
is used because the patients will not yet have been admitted. We use MTL to benefit from
the future lab results. The extralab values are used as extra backprop outputs, as shown
in Figure 4. The hope is that the extra outputs will bias the shared hidden layer towards
representations that better capture important features of each patient’s condition.3

49

We developed amethod called Rankprop that learns to rank patients without learning to
predict mortality. “Rankprop” is short for “backpropagation using sum-of-squares errors
on repeatedly re-estimated ranks’. Rankprop outperformstraditiona backprop using sum-
of-squares errors (SSE) on targets 0=lives,1=dies by 10%-40% on thisdomain, depending
onwhich FOPisused for comparison. Itisthebest performer we know of on thisdatabase.
See [Caruana, Bauja& Mitchell 1995] for details about rankprop and why it outperforms
SSE on thisdomain.

Mortality pemaocrit. WHIteBIoodd™ pyaium <——— FUTURE LABS

RANKPROP
OUTPUT

OUTPUT LAYER

SHARED HIDDEN LAYER

ONONOROROCRONOEE® INPUT LAYER
TITTET
?gggggé § INPUTS

Figure 4. Using future lab results as extra outputs to bias learning for the main rankprop risk predictiontask. The
lab tests would help most if they could be used asinputs, but will not yet have been measured when risk must be
predicted, so we use them as extraM TL outputsinstead.

The STL net has 32 hidden units and one output for the rankprop risk prediction. The
MTL net has 64 hidden units. (Preliminary experiments suggested 32 hidden units was
near optimal for STL, and that MTL would perform somewhat better with nets as large as
512 hidden units.) Table 3 showsthe mean performance of ten runs of rankprop using STL
and MTL. The bottom row shows the improvement over STL with rankprop. Although
MTL lowers the error at each FOP compared with STL, only the differences at FOP 0.3,
0.4, and 0.5 are statistically significant with ten trials.

We a so tried using feature nets on this problem. Feature nets [Davis & Stentz 1995] is
a competing approach that trains nets to predict the missing future measurements and uses
the predictions, or the hidden layers learned for these predictions, as extrainputs. On this
pneumonia problem feature nets did not yield benefits comparableto MTL.

50

Table 3. Error Rates (fraction deaths) for STL with Rankprop and MTL with Rankprop on Fractions of the
Population predicted to be at low risk (FOP) between 0.0 and 0.5. MTL makes 5-10% fewer errors than STL.

FOP 0.1 0.2 0.3 0.4 0.5
STL Rankprop .0083 .0144 .0210 .0289 .0386
MTL Rankprop .0074 .0127 .0197 .0269 .0364
% Change -10.8% -11.8% -6.2%* -6.9%* 5.7%*

3. HowDoesMTL Work?

Why are tasks learned better when trained on a net that learns other related tasks at the
same time? Is it because information in the extra tasks is helping the hidden layer learn
a better internal representation, or is something else less interesting happening? And, if
multitask learning is exploiting the informationin the training signal s of related tasks, how
doesit do this? This section addresses these questions.

3.1. Ruling Out Alternate Explanations

Thereare many potential reasonswhy adding extraoutputsto abackprop net mightimprove
generaization performance. For example, adding noise to backpropagation sometimes
improves generalization [Holmstrom & Koistinen 1992]. To the extent that tasks are
uncorrelated, their contribution to the aggregate gradient (the gradient that sums the error
fed back from each layer’s outputs) can appear as noise to other tasks. Thus uncorrelated
tasks might improve generalization by acting as a source of noise. Another possibility
is that adding tasks might change weight updating dynamics to somehow favor nets with
more tasks. For example, adding extra tasks increases the effective learning rate on the
input-to-hidden layer weightsrelative to the hidden layer-to-output weights. Maybe larger
learning rates on the first layer improves learning. A third possibility is net capacity;
MTL nets share the hidden layer between all tasks. Perhaps reduced capacity improves
generalization on these problems.

Itispossibleto deviseexperimentsto disprove each of these explanations, but the number
of possible explanation that would have to be ruled out is not small. It would be better to
show the benefits of MTL depend on thetraining signalsfor the extratasksbeing related to
the main task, as the following experiment does: Take an MTL training set. For each case
inthetraining set, thereisa set of input features, the main task training signal, and a set of
extratask training signals. Shuffle the extratask training signalsamong all the casesin the
training set, i.e., randomly reassign thetraining signals for the extratasks among the cases.
Thisbreakstherel ationship between themain task and the extratasks without altering other
propertiesof theextratasks; thedistributionsof the extratasksremains unchanged. If MTL
depends on the extrainformation in the training signals being meaningfully related to the
main task, shuffling will eliminate that relationship, and thus should eliminate the benefits
of MTL. If the benefits from MTL depend on some other property of having multiple
outputs, shuffling will not affect this and the benefits should remain after shuffling. This

51

shuffle test is similar to the heuristic used in [Valdes-Perez & Simon 1994] to discover
complex patternsin data.

We' ve run the shuffle test on the problemsin Section 2. In each case, shuffling the extra
tasks reduces the performance of MTL to performance comparable to STL. We conclude
that the benefits observed with MTL are dueto theinformationin the extratraining signals
serving as a domain-specific inductive bias for these problems, not to some other benefit
achievable with unrelated extra outputs.

The shuffle test does not completely rule out the possibility that the benefit of MTL is
due to restricting net capacity—extratasks can consume net capacity even after they have
been shuffled. To rule out net capacity as the possible explanation for MTL, we always
compare MTL with STL run at many different net sizes, or are careful to optimize the net
sizefor STL before running the experiments. Usually, we do not optimize the net size for
MTL. We ve aso done experiments using MTL nets larger than the sum of all the STL
nets combined. In these experiments, the MTL nets still outperform STL. It is clear that
the extratasks are not improving performance merely by restricting net capacity.

3.2. MTL Mechanisms

Knowing that the performance improvement from MTL is dueto the extrainformationin
thetraining signalsof related tasks is different from knowing how that benefit occurs. This
section summarizes several mechanisms that help MTL backprop netsto generalize better.
The mechanismsall derivefrom the summing of error gradient terms at the hidden layer for
thedifferent tasks. Each, however, exploitsadifferent rel ationship between tasks. We have
discovered additional mechanisms (some of which are special cases of the ones presented
here) and have run tests on carefully contrived problems to verify that each mechanism
actually works. More detail can befound in [Caruana 1994, 1997].

3.2.1. Satigtical Data Amplification

Data amplification is an effective increase in sample size due to extra information in the
training signas of related tasks. Amplification occurs when there is noise in the training
signals. Consider two tasks, 7" and 7", with independent noise added to their training
signals, that both benefit from computing a hidden layer feature F* of the inputs. A net
learning both 7" and 7" can, if it recognizes that the two tasks share F', use the two training
signalstolearn I’ better by averaging F' through the different noise processes.

3.2.2. Attribute Selection

Consider twotasks, 7" and 7", that useacommon hidden | ayer feature F'. Supposethereare
many inputsto the net. A net learning 7" will, if thereis limited training data or significant
noise, sometimes have difficulty distinguishing inputs relevant to ' from those irrelevant
toit. A netlearning both 7" and 7", however, will better select the attributes relevant to

52

I because data amplification provides better training signals for I, allowing it to better
determine which inputsto use to compute F'. Attribute selection is a consequence of data
amplification.

3.2.3. Eavesdropping

Consider a hidden layer feature F', useful to tasks, 7" and 77, that is easy to learn when
learning 7', but difficult to learn when learning 7" (either because 7" uses F' in a more
complex way, or because the residua error in 7" learned without F' is noisier). A net
learning T' will learn F, but a net learning just 77 may not. If the net learning 77 aso
learnsT', T can eavesdrop on the hidden layer learned for T' (e.g., F') and thuslearn better.
Once the connection is made between 7’ and the evolving representation for F', the extra
informationfrom7” about F' will helpthenet learn F' better viathe other mechanisms. The
simplest case of eavesdropping is what Abu-Mostafa calls catalytic hintswhere 7' = F,
i.e, the net is being told explicitly to learn a feature ' that is useful to the main task
[Abu-Mostafa 1990].

3.24. Representation Bias

Because netsareinitializedwith randomwel ghts, backpropisastochastic search procedure;
multiple runsrarely yield identical nets. Suppose there are two local minima, A and B, a
net can find for task 7. Supposeanet learning task 7" also hastwo minima, A and C'. Both
sharetheminimaat A (i.e., bothwould perform well if the net entered that region of weight
space), but do not overlap at B and C'. Weran two experiments. Inthefirst, we selected the
minimaso that netstrained on’I" doneareequaly likely tofind A or B, and netstrained on
T’ doneareequaly likely tofind A or C'. Netstrained onboth 7" and 7" usudly fall into A
for both tasks.* This shows that MTL tasks prefer hidden layer representations that other
tasks prefer. Search is biased towards representationsin the intersection of what would be
learned for 7" or 7" alone.

Representations Findable by Backprop

L Best Reps

In the second experiment we selected the minima so that 7" has a strong preference for
B over A: anettrained on T dways falsinto B. 7", however, still has no preference
between A or C'. When both 7" and 7" are trained on one net, 7" falsinto B as expected:
the biasfrom 7" isunableto pull it to A. Surprisingly, 7" usualy falsinto C, the minima
it does not share with 7! T creates a“tide” in the hidden layer representation towards B
that flows away from A. T" has no preference for A or C, but is subject to the tide created

53

by 7. Thus T" usualy falsinto C; it would have to fight the tide from 7" to fall into A.
MTL tasks prefer NOT to use hidden layer representations that other tasks prefer NOT to
use.

3.3. Backprop MTL DiscoversHow Tasks Are Related

Section 3.2 presents mechanisms that allow MTL to exploit different kinds of relationships
between tasks. But MTL nets are not told how tasks are related. Do MTL backprop
nets discover how tasks are related? Yes. Backprop nets, though primarily used for
supervised learning, perform a limited kind of unsupervised learning on the hidden layer
features|earned for different tasks (different outputs). The details of how thisunsupervised
learning occurs and how well it works are not yet fully understood. It is worthwhile,
however, to demonstrate here that backprop does discover task relatedness.

We devised a set of test problems called the Peaks Functions. Each peak function is of
theform:

IF (?1 > 1/2), THEN ?2, ELSE ?3

where 71, 22, and 23 areinstantiated from the al phabet { A,B,C,D,E,F} without duplication.
There are 120 such functions:

PO01 = IF (A > 1/2) THEN B, ELSE C
P002 = IF (A > 1/2) THEN B, ELSE D
P014 =|IF (A>1/2) THEN E, ELSE C
P024 =|IF (B >1/2) THEN A, ELSE F
P120 =|IF (F>1/2) THEN E, ELSE D

The variables A—F are defined on the real interval [0,1]. A—F are provided as inputsto
a backprop net learning peaks functions. The values for A—F are given to the net viaan
encoding, rather than as simple continuousinputs. A net learning peaks functionsmust not
only learn thefunctions, but must learn to properly decode theinput encodings. The details
of the encoding we used are not particularly interesting; nearly any learnable encoding will
work. The encoding we used has ten inputsfor each of the six inputs A—F, so there are 60
inputs altogether.

We trained one MTL net on all 120 peaks functions. This net has 60 inputs and 120
outputs, one for each of the 120 peaks functions. We “opened” the net to see how much
different outputs shared the hidden layer. We did a sensitivity analysisfor each output with
each hidden unit. There are 120 outputs and 64 hidden units, so we did 15,360 separate
sengitivity analyses. By comparing the sensitivity of output POO1 to each hidden unit
with that of output PO02 to each hidden unit, we were able to measure how much outputs
P001 and PO02 shared the hidden layer. We used a non-parametric rank correlation test to
measure sharing because we were uncertain of the distributionsof sensitivities.

54

The relatedness of two peaks functions depends on how many variables they have in
common, and whether they use those variables in the same way. For example, POO1 does
not share any variableswith P120, so it isnot related to P120 (see above). PO01 shares two
variables with P024, though neither of these are used in the same way; POO1 is moderately
related to PO24. POO1 & so shares two variables with P014, and both variables are used the
same way. Thus PO01 is morerelated to PO14 than to P024.

Figure5 showstherank correlation of hidden unit sensitivitiesbetween tasksasafunction
of how related they are. In the graph, the data point at “0 features in common” compares
how much tasks having no featuresin common share the hidden layer. The two data points
at “3 features in common” show the degree of hidden unit sharing between tasks that use
the same three features (though these features are not necessarily in the same placesin the
tasks). Thelinelabelled “any feature” disregards the position of the featuresin the tasks.
Tasks that have one feature in common might or might not use that common feature the
same way. The linelabelled “test_must_match”, however, requires that the feature in the
conditional test be the same. Thus if two tasks have one feature in common, this feature
must be the feature used in the conditional.

0.5 T

"any_feature" —— S
04 "test_must_match" -+-- g

03 g
02| .

0.1 | B

Rank Correlation of the 64 Hidden Units

0.1 s ‘ ‘

1 2
Number of Features in Common

Figure 5. Sharing in the hidden layer as a function of the similarity between tasks. Tasks that are more related
share more hidden units.

The general trend of both lines is that tasks share hidden units more if they are more
related. The small negative correlation for tasks that do not share any variables suggests
that a complete lack of relatedness between functions leads to anticorrelated sharing, i.e.,
outputs for unrelated functions tend to use different hidden units. The correlations for
the “test_ must_match” lineis higher than the correlations for the “any _feature’ line. This
suggests that overlap in the conditional |F test is more important for hidden layer sharing
than overlap inthe THEN or EL SE part of the tasks.

55

There are other relationships between peaks functions we could examine. For every
relationship between peaks functions we examined, relatedness was positively correlated
with hidden unit sharing. Thissuggeststhat, for the peaks functionsat least, backpropaga-
tion using a shared hidden layer is able to discover how tasks are related on hidden layer
features without being given explicit training signal s about task rel atedness.

4. 1sMTL Broadly Applicable?

Section 2 demonstrated the benefits of MTL. Section 3 showed these benefits are due the
domain knowledge contained in the extratraining signals. How often will training data be
available for extra tasks that are usefully related to the main task? This section presents
nine kinds of domains wheretraining signalsfor useful extratasks will often be available.
We believe most real-world problems fall into one or more of these kinds of domains.
This claim might sound surprising given that few of the test problemsin machine learning
repositories are multitask problems. We believe that most problems traditionally used in
machine learning have been preprocessed to fit STL, thus eliminating the opportunitiesfor
MTL beforelearning was applied.

4.1. Usingthe Futureto Predict the Present

Often valuabl e features become available after predictions must be made. These features
cannot be used as inputs because they will not be available at run time. If learning is done
offline, however, they can be collected for the training set and used as extra MTL tasks.
The predictions the learner makes for these extra tasks will probably be ignored when the
system is used; their main function is to provide extra information to the learner during
training.

One application of learning from the future is medical risk prediction, such as the
pneumonia risk problem from Section 2.3. In that problem, we used lab tests that were
available in the training set—but which would not be available when making predictions
for patients—as extra output tasks. The vauable information contained in those future
measurements hel ped biasthenet towardsahiddenlayer representationthat better supported
risk prediction from the features that would be available at run time.

Future measurements are avail ablein many offlinelearning problems. Asavery different
example, a robot or autonomous vehicle can more accurately measure the size, location,
and identity of objectsin the futureif it passes near them. For example, road stripes can
be detected reliably as a vehicle passes alongside them, but detecting them far ahead of
a vehicle is beyond the current state-of-the-art. Since driving brings future road closer
to the car, stripes can be measured accurately when passed and added to the training
set. They can’t be used as inputs because they will not be available in time when driving
autonomously. AsMTL outputs, though, they provideextrainformationthat helpslearning
without requiring they be available at run time.

56

4.2. MultipleRepresentationsand Metrics

Sometimes capturing everything that isimportant in one error metric or in one output rep-
resentation is difficult. When aternate metrics or output representations capture different,
but useful, aspects of a problem, MTL can be used to benefit from them.

An example of using MTL with different metrics is again the pneumonia domain from
Section 2.3. There we used the rankprop error metric [Caruana, Baluja& Mitchell 1995]
designed specifically for this domain. Rankprop outperforms backprop using traditional
SSE by 10-40% on this problem. Rankprop, however, can have trouble learning to rank
cases at such low risk that virtually all patients survive. Rankprop still outperforms SSE
on these low-risk patients, but thisiswhere it has the most difficulty |earning a stable rank.
Interestingly, SSE isat itsbest in regions of the space with high purity, asin regionswhere
most cases havelow risk. Suppose we add an additional SSE output to a network learning
to predict risk using rankprop?

Adding an extra SSE output to the rankprop MTL net has the expected effect. It lowers
error at the rankprop output for the low-risk FOPs, while slightly increasing error at the
higher-risk FOPs. Table 4 showstheresultswith rankprop before and after adding the extra
SSE output. Note that the extra SSE output is completely ignored when predicting patient
risk. It has been added solely because it providesa useful biasto the net during training.

Table4. Adding an extra SSE task to MTL with rankpropimproves MTL performancewhere SSE performswell
(FOPs near 0.0 or 1.0) but hurts MTL performancewhere SSE performs poorly (FOPs near 0.5).

FOP 0.1 0.2 0.3 04 0.5
w/o SSE .0074 .0127 .0197 .0269 .0364
with SSE .0066 .0116 .0188 .0272 .0371
% Change -10.8%* -8.7%* -4.6%* +1.1% +1.9%

Similarly, it is not aways apparent what output encoding will work best. Alternate
codings of the main task can be used as extra outputsthe same way aternate error metrics
were used above. For example, distributed output representations often help parts of a
problem be learned better because the parts have separate error gradients. But if prediction
requires all outputsin the distributed representation to be correct at the same time, a non-
distributed representation can be more accurate. MTL isoneway to merge these conflicting
requirements and obtain both benefits by using both output representations.

4.3. TimeSeries Prediction

Applications of this type are a subclass of using the future to predict the present where
futuretasks are identical to the current task except that they occur at alater time. Thisisa
large enough subclass to warrant specia attention.

The simplest way touse MTL for timeseries predictionisto use asinglenet with multiple
outputs, each output corresponding to the same task at a different time. Figure 2 showed

57

an MTL net with four outputs. If output k referred to the prediction for the time series
task at time T}, thisnet makes predictionsfor the same task at four different times. Often,
the output used for prediction would be the middle one (temporally) so that there are tasks
earlier and later than it trained on the net. Or, as input features temporally “dide” across
the inputs, one can collect the outputsfrom a sequence of predictionsand combine them.

We tested MTL on time sequence data in a robot domain where the god is to predict
future sensory states from the current sensed state and the planned action. For example,
wewere interested in predicting the sonar readings and cameraimage that would be sensed
N meters in the future given the current sonar and camera readings, for N between 1 and 8
meters. Astherobot moves, it collectsa stream of sense data. (Strictly speaking, thissense
data is a time series only if the robot moves at constant speed. We use dead reckoning
to determine the distance the robot travelled, so our data might be described as a spatia
Series.)

We used a backprop net with four sets of outputs. Each set predictsthe sonar and camera
image that will be sensed at a future distance. Output set 1 isthe prediction for 1 meter,
set 2 isfor 2 meters, set 3isfor 4 meters, and set 4 for 8 meters. The performance of this
net on each prediction distance is compared in Table 5 with separate STL nets learning to
predict each distance separately. Each entry isthe SSE averaged over all sense predictions.
Error increases with distance, and MTL outperforms STL at all distances except 1 meter.

Table 5. STL and MTL on robot sensory prediction tasks. The tasks are to predict what the robot will sense 1, 2,
4, and 8 metersin the future. The harder 4 and 8 meter prediction tasks are helped the most by MTL, while the
easier 1 meter task may behurt by MTL.

METERS 1 2 4 8
STL 074 .098 .145 .183
MTL .076 .094 131 .165

% Change +2.7% -4.1% -9.7%* -10.9%*

The loss of accuracy at 1 meter is not statistically significant, but there is an interesting
trend in MTL improvement as a function of distancee MTL seems to help the harder,
long-range prediction tasks more. We conjecture that thismay not be uncommon. That is,
MTL may help harder tasks most, possibly at the expense of easier tasks, because thereis
more room for improvement with harder tasks and more to loose with easy tasks. Where
possible, one should use STL for the tasks on which it works best, and use MTL for the
tasks on which it works best. But it isimportant to include tasks best trained with STL on
the MTL net to help the MTL tasks.

Why does MTL provide a benefit with time series data? One explanation is that pre-
dictions at different time scales (or different distance scales) often partially depend on
different processes. When learning a task with a short time scale, the learner may find it
difficult to recognize the longer-term processes, and vice-versa. Training both scales on a
single net improves the chances that both short- and long-term processes will be learned
and combined to make predictions.

58

4.4. Using Non-Operational Features

Somefeatures areimpractical to use at run time because they are too expensiveto compute,
or because they need human expertisethat won’t be around or that will betoo slow. Training
sets, however, are often small, and we usually have theluxury to spend more time preparing
them. Where it is practical to compute non-operational feature values for the training set,
these may be used as extraMTL outputs.

A good example of thisis in scene analysis where human expertise is often required to
label important features. Usually the human will not beintheloopwhen thelearned system
isused. Does this mean features labelled by humans cannot be used for learning? No. If
thelabels can be acquired for thetraining set, they can be used as extratasksfor thelearner;
as extratasks they will not be required later when the system isused. A good example of
thisis the 1D-DOORS domain, where we used a mouse to define features in the images
of doorways collected from arobot-mounted camera. A human had to process each image
to capture the training signals for the two main tasks, the doorknob location and doorway
center, so it was easy to collect the additional features a the same time. Using the extra
features as extratasksimproved performance considerably on the two main tasks.

45. Using Extra Tasksto Focus Attention

Learners often learn to use large, ubiquitous patternsin the inputs, whileignoring small or
less common inputs that are useful. MTL can be used to coerce the learner to attend to
patternsin theinput it would otherwise ignore. Thisisdone by forcing it to learn internal
representations to support tasks that depend critically on input patterns it might otherwise
ignore. A good example of this is the road-following domain in Section 2.1. Here, STL
nets often ignore lane markings when learning to steer because lane markings are usually
asmall part of the image, are not always present, and frequently change appearance (e.g.,
singlevs. double centerlines and solid vs. dashed centerlines).

If anet learning to steer is also required to learn to recognize road stripes as an extra
output task, the net will learn to attend to those parts of the image where stripes occur. To
the extent that the stripe tasks are learnabl e, the net will develop internal representationsto
support them. Sincethenetisalso learning to steer using the same hidden layer, the steering
task can use whatever parts of the stripe hidden representation are useful for steering.

4.6. Sequential Transfer

Sometimes we aready have a domain theory for related tasks from prior learning. The
data used to train these model's, however, may no longer be available. Can MTL benefit
from the prior learned models without the training data? Yes. One can use the model
to generate synthetic data and use the training signals in the synthetic data as extra MTL
tasks. Thisapproach to sequentia transfer elegantly sidesteps the catastrophicinterference
problem (forgetting old tasks while learning new ones), and is applicable even where the
analytic methods of evaluating domain theories used by other seria transfer methods are

59

not available. For example, EBNN [Thrun & Mitchell 1994; Thrun 1996] requires that the
domaintheory bedifferentiable, but the M TL approach to sequentid transfer doesnot. This
approach is most effective when the prior learned models are accurate. If the prior models
are poor, they can be a poor source of inductive bias. Some seria transfer mechanisms
have explicit mechanisms for reducing transfer when prior learning does not appear to be
accurate for the task at hand [Thrun & Mitchell 1994; Thrun 1996].

An issue that arises when synthesizing data from prior models is what distribution to
sample from. One approach is to use the distribution of the training patterns for the
current task. Pass the current training patterns through the prior learned models and use
the predictionsthose models make as extraM TL outputswhen learning the new main task.
Thissampling may not alwaysbe satisfactory. If themodel sare complex (suggestingalarge
or carefully constructed sample would be needed to represent them with high fidelity), but
the new sample of training datais small, it is beneficia to sample the prior model a more
pointsthan the current sample. See [Craven & Shavlik 1994] for a thorough discussion of
synthetic data sampling.

4.7. MultipleTasks Arise Naturally

Often the world gives us sets of related tasksto learn. The traditional approach to separate
these into independent problemstrained inisolationis counterproductive; related tasks can
benefit each other if trained together. An early, amost accidental, use of multitask transfer
in backprop netsisNETtalk [Sejnowski & Rosenberg 1986]. NETtak learnsthe phonemes
and stressesto giveaspeech synthesi zer to pronouncethewords givenit asinputs. NETtalk
used one net with many outputs, partly because the goal was to control a synthesizer that
needed both phonemes and stresses at the same time. Although they never analyzed the
contribution of multitask transfer to NETtalk, there is evidence that NETtalk is harder to
learn using separate nets [Dietterich, Hild & Bakiri 1990, 1995].

A more recent example of multiple tasks arising naturally is Mitchell’s Calendar Ap-
prentice System (CAP) [Dent et al. 1992; Mitchell et al. 1994]. In CAR, the god isto
learn to predict the Location, Time_Of _Day, Day Of_Week, and Duration of the
meetings it schedules. These tasks are functions of the same data and can share many
common features. Early resultsusing MTL decision trees (see Section 5.2) on thisdomain
suggest that trai ning these four taskstogether yields better performance than training them
inisolation, asisdonein the CAP system.

4.8. Quantization Smoothing

Oftentheworld givesus quantized information. For example, thetraining signal may result
from human assessment intoone of several categorica variables(e.g., poor, medium, good),
or it may result from a natural process that quantizes some underlying smoother function
(e.g., physicad measurements made with limited precision, or patient outcomes such as
livesor dies). Although quantization sometimes makes problems easier to learn, usualy it
makes learning harder.

60

If there are extratraining signals avail able that are less quantized than the main task, or
that are quantized differently, these may be useful as extratasks. What is learned for less
guantized extra tasks is helpful because it sometimes can be learned more easily due its
greater smoothness. Extra tasks that are not smoother, but which result from a different
guantization process, sometimes a so help because, together with the main task, it may be
possible to better interpolate the coarse quantization of both tasks. In effect, each task can
serve to fill in some of the gaps created by quantization in the other.

One example of quantization smoothing occursin the pneumoniadomain. Inthisdomain,
the main task—mortality probability—is heavily and stochastically quantized: a patient
either lives or dies. But one of the extra features in the database is the length of stay in
the hospital. If length of stay isrelated to risk and the severity of illness, then it is clear
that thelength of stay extratask can help the net better interpolaterisk between the crudely
quantized values lives or dies. In this case, the relationship between length of stay and
risk may be complex. For example, patients at very high risk might have short staysin the
hospital because they do not live long. While the potential complexity of the relationship
between a quantized task and some related, less quantized task can make benefitting from
the less quantized task more difficult, some benefit will often arise.

4.9. Somelnputs Work Better asOutputs

Many domains where MTL is useful are domains where it is impractical to use some
features as inputs. MTL provides away of benefiting from these features (instead of just
ignoring them) by using them as extra tasks. Might some features that can be used as
inputs be better used as outputs? Surprisingly, yes. It is possible to construct problems
with features that are more useful when used as outputsthan as inputs.

Consider the following function:

F1(A,B) = SIGMOID(A+B), SIGMOID(x) = 1/(1+ e(=2))

Consider the backprop net shown in Figure 6a with 20 inputs, 16 hidden units, and
one output trained to learn F1(A,B). Datafor F1(A,B) is generated by randomly sampling
values A and B uniformly from theinterval [-5,5]. The net input is 10-bit binary codes for
A and B. The first 10 inputs receive the coding for A and the second 10 that for B. The
target output isthe unary real (unencoded) value F1(A,B).

Table 6 shows the mean performance of 50 trials of Net 1a with backpropagation and
early stopping. For each trial, we generate new randomtraining, halt, and test sets. Training
sets contain 50 patterns—enough for good performance, but not so much that there is not
room for improvement. The halt and test sets contain 1000 cases each to minimize the
effect of sampling error.

Now consider the related function:

F2(A,B) = SIGMOID(A-B).
Suppose, in addition to the 10-bit binary codings for A and B, the net is given the

unencoded value F2(A,B) as an extra input feature. Will this extra input help it learn
F1(A,B) better? Probably not. A+B and A-B do not correlate for random A and B. (The

61

A: STD Mai n O.Jtput B: STDHI N Mai n On put C: STD+OUT Main Qutput Extra Qutput
|

fully connected /Am fully connected //]m fully connected

hi dden | ayer hi dden | ayer hi dden | ayer
OOOOOOOOOOOOOOO

OOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO (] OOOOOOOOOOOOOOOOOOOO
Ferrrrrrrr rrrrrrrrnd FEEErErerr rrrrrrrend | Ferrrrerrr rrrrrrrrnd

binary inputs binary inputs binary inputs binary inputs bi nary inputs binary inputs

coding for A coding for B coding for A coding for B Extra lnput coging for A coding for B

Regul ar I nputs Regular Inputs Regul ar I nputs

Figure 6. Three net architectures for learning F1. A:STD is a standard net that does not use the extra feature.
B:STD+IN isanet that usesthe extrafeature as an extrainput. C:STD+OUT isMTL, the extrafeatureis used as
an extraoutput, not as an input.

Table 6. Performance of STL, STL with an extrainput, and MTL (STL with an extra output) on F1. Using the
extrafeature as an MTL output works better than using it as an extrainput.

Network Trials Mean RMSE Significance
STD (STL w/o extrainput) 50 0.0648 -
STD+IN (STL with extrainput) 50 0.0647 ns
MTL (STD with extraoutput) 50 0.0631 0.013*

absolute value of the correlation coefficients for our training sets is typically less than
0.01.) This hurts backprop’s ability to learn to use F2(A,B) to predict F1(A,B). The net
in Figure 6b has 21 inputs— 20 for the binary codes for A and B, and an extra input for
F2(A,B). The 2ndlinein Table 6 showsthe performance of STL with theextrainput for the
same training, halting, and test sets. Performance is not significantly different—the extra
information contained in the feature F2(A,B) does not hel p backpropagation learn F1(A,B)
when used as an extra input.

If using F2(A,B) as an extrainput does not help backpropagation learn F1(A,B), should
we ignore F2(A,B)? No. F1(A,B) and F2(A,B) are strongly related. They both need to
compute the same subfeatures, A and B. If, instead of using F2(A,B) asan extrainput, it is
used as an extra output that must be learned, it will bias the shared hidden layer to learn A
and B better, and thiswill help the net better learn to predict F1(A,B).

Figure 6¢ shows a net with 20 inputs for A and B, and 2 outputs, one for F1(A,B) and
one for F2(A,B). The performance of thisnet is evaluated only on the output for F1(A,B),
but backpropagation is done on both outputs. The 3rd line in Table 6 shows the mean
performance of the MTL net on F1(A,B). Using F2(A,B) as an extra output improves
performance on F1(A,B). Using the extra feature as an extra output is better than using it
asan extra input.

F1(A,B) and F2(A,B) were carefully contrived. We have devised less contrived functions
that demonstrate similar effects, and have seen evidence of this behavior in red-world
problems [Caruana & de Sa 1997]. One particularly interesting class of problems where

62

some features are more useful as outputsthan asinputsiswhen thereisnoisepresent in the
features, noisein extraoutputsis often less harmful than noise in extrainputs.

5. ISMTL Just for Backprop Nets?

In MTL with backprop nets, the representation used for multitask transfer isa hidden layer
shared by all tasks. Many learning methods do not have a representation naturally shared
between tasks. Can MTL be used with these methods? Yes. This section presents an
algorithm and results for MTL with case-based methods such as k-nearest neighbor and
kernel regression, and sketches an algorithm for MTL in decision tree induction.

5.1. MTL in KNN and Kernel Regression

K-nearest neighbor (KNN) and kernel regression (also called locally weighted averaging
(LCWA)) use a distance metric defined on attributesto find training cases close to the new
case:

NO_ATTS

Distance(case) = \l Z weight; * (Aattribute;)?
i=1

The principle difference between KNN and LCWA is the kernel used for prediction.

Whereas KNN uses akernel that isuniform for the K closest neighbors and dropsto O for

cases further away, LCWA uses akernel that decreases smoothly (and usualy rapidly) with

increasing distance.

The performance of KNN and LCWA depends on the quality of the distance metric.
Search for good attribute weights can be cast as an optimization problem using cross
validation to judge the performance of different sets of weights. We use gradient descent
and leave-one-out cross validation, which is particul arly efficient with case-based methods
like KNN and LCWA.

Finding good attribute weights is essential to good performance with KNN and LCWA.
MTL can be used to find better weights. The basic approach isto find attributeweightsthat
yield good performance not just on the main task, but also on a set of related tasks drawn
from the domain.

NO_TASKS
FEval_Metric = Perf_Main_Task + Z X x Perf_FExtra_Task;
i=1

A; = 0 causes learning to ignore the extra task, A; ~ 1 causes learning to give as much
weight to performance on the extra task as on the main task, and A; > 1 causes learningto
pay more attention to performance on the extra task than on the main task.

We applied MTL LCWA to the pneumoniadomain from Section 2.3. Asbefore, themain
task isto predict afraction of the population at least risk, and the extra tasks are to predict

0.0295

0.029

0.0285 -

0.3

0.028 ;

0.0275 | A

0.027

0.0265 | [

Mortality At FOP

0.026

0.0255

0.025 L

0.5 1 15
Weight of Extra Tasks Compared with Main Task

Figure 7. Error rate at FOP 0.3 as afunction of A, the parameter that controls how sensitive learning is to extra

tasks. A = 0isSTL; theextratasksareignored. A = 1is MTL with the same weight given to the main task and
each extratask. A = 2is MTL with most weight given to the extra tasksinstead of the main task.

the results of lab tests available on the training set but that will not be available for future
patients.

Figure 7 shows the error rates for FOP 0.3 as a function of A (for simplicity, we present
results here where each); takes on the same value). A = 0is STL; al extra tasks are
ignored. A = 1.0isMTL giving equal weight to each extratask and to the main task; the
feature weights attempt to perform well on all the tasks. Note that the error rate is lowest
when learning pays comparabl e attention to the main task and to the extra tasks.®> Similar
graphswere obtained for other FOPs. Table 7 summarizes the performance of LCWA with

STL (A = 0) and MTL (with A = 1.0) for the five FOPs. Aswith backpropagation, MTL
performs 5-10% better than STL on risk prediction.

Table7. Error rates of STL LCWA and MTL LCWA (X = 1) on the pneumoniaproblem using training sets with
1000 cases.

FOP 0.1 0.2 0.3 0.4 0.5
STL LCWA .0147 .0216 .0285 .0364 .0386
MTL LCWA .0141 .0196 .0259 .0340 .0364
% Change -4.3% -9.3% -9.1%* -6.6%* 5.7%*

Figure 8 shows the performance of STL(A = 0) and MTL (with A = 1.0) as afunction
of the size of thetraining set. The error bars are the standard errors of the estimates. The

63

64

error rates for MTL are lower than STL for all training set sizes. For smaller training set
sizes, MTL yields performance comparable to STL given 25% to 75% more data.

0.07 T T T T T T T T
0.065 -
0.06
0.055 -
0.05
0.045

0.04 -

Error Rate at FOP 0.3

0.035
0.03 -

0.025 -

002 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600
Number of Training Patterns

Figure 8. Performance of STL (A = 0) and MTL (with A = 1) as the number of training patterns varies. For
100-800training patterns, STL needs about 50% more data to perform aswell asMTL.

5.2. MTL Decision Tree Induction

Traditional decision trees are single task: leaves denote a class (or class probabilities) for
only one task. Multitask decision trees, where each leaf denotes classes for more than one
task, are possible, but why use them? Just as it was important to find good feature weights
in KNN/LCWA, in top-down induction of decision trees (TDIDT) it is important to find
good splits. In STL TDIDT, the only information available to judge splitsis how well they
separate classes on asingletask. InMTL TDIDT splitscan be evaluated by how well they
perform on multipletasks. If tasks are related, preferring splitsthat have utility to multiple
tasks will improve the quality of the selected splits.

Thebasicrecursivestepin TDIDT [Quinlan 1984, 1992] isto determine what split to add
at the current node in agrowing decision tree. Typically thisis done using an information
gain metric that measures how much class purity isimproved by the available splits. The
basic approachinMTL TDIDT isto compute theinformation gain of each split for each task
individualy, combine the gains, and select the split with the best aggregate performance.
Asin MTL KNN/LCWA, A parameters are introduced to control how much emphasis is
given to the extra tasks. Weighting the extra tasks this way yields better performance
than the simpler approach presented in [Caruana 1993], which combined task gains by
averaging them; recursive splitting algorithms often suffer when the data becomes sparse

65

low inthetree, soitisimportant early splitsare sensitiveto performance on the main task.
See [Caruana 1997] for more detail about how the A parameters can be learned efficiently
in MTL TDIDT. See [Dietterich, Hild & Bakiri 1990, 1995] for the earliest discussion we
know of the potential benefits of MTL in decision trees.

6. Reated Work

It is common to train neura nets with multiple outputs. Usually these outputs encode a
singletask. For example, inclassificationtasksitiscommon to use one output for each class
(see, for example, [Le Cun et al. 1989]). But using one net for afew strongly related tasks
isalso not new. The classic NETtalk [Sginowski & Rosenberg 1986] application uses one
net to learn both phonemes and their stresses. Using one net isnatura for NETtalk because
the goal isto learn to control a synthesizer that needs both phoneme and stress commands
at thesametime. NETtalk isan early example of MTL. But the buildersof NETtak viewed
the multipleoutputsas codingsfor a singleproblem, not asindependent tasks that benefited
by being trained together. If one graphsthe NETtalk learning curves for the phoneme and
stress tasks separately, one observes that the stress tasks begin to overtrain long before the
phoneme tasks reach peak performance. Better performance could easily been obtained in
NETtak by doing early stopping on each output individually, or by balancing the learning
rates of the different outputs so they all reach pesk performance at roughly the same time.
[Dietterich, Hild & Bakiri 1990, 1995] performed a thorough comparison of NETtalk and
ID3 on the NETtak text-to-speech domain. One explanation they considered as to why
backpropagation outperformed D3 on this problem isthat backpropagation benefits from
sharing hidden unitsbetween different outputs, something D3 does not do. They conclude
that although hidden unit sharing (i.e, MTL) does help, it is not the largest difference
between the two learning methods, and suggest that adding sharing to | D3 probably would
not be worthwhile.

Transferring learned structure between related tasks is not new. The early work on
sequentia transfer of learned structure between neura nets [Pratt et a. 1991; Pratt 1992;
Sharkey & Sharkey 1992] clearly demonstrates that what is learned for one task can
be used as a bias for other tasks. Unfortunately, this work failed to find improvementsin
generalization performance; thefocuswason speeding uplearning. Morerecently, Mitchell
and Thrun devised a serial transfer method called Explanation-Based Neural Nets (EBNN)
[Thrun & Mitchell 1994; Thrun 1995, 1996] based on tangent prop [Simard et al. 1992]
that yields improved generalization on sequences of learned tasks. [O’ Sullivan & Thrun
1996] devised a seria transfer mechanism for KNN that clusters previoudy learned tasks
into sets of related tasks. KNN attribute weights learned for previoustasks in the cluster
most similar to the new task are used for the new task when the number of training patterns
for the new task are too small to support accurate learning. Both of these approaches differ
from MTL, where the goa isto learn a better model for one task by learning al available
extratasksin paralel. O Sullivanis currently exploring a thesis that combines sequential
transfer and MTL.

Some approaches to inductive transfer have both parallel and sequentia components.
[Breiman & Friedman 1995] present a method called Curds & Whey that takes advantage

66

of correlations between different prediction tasks. Models for different tasks are trained
separately (i.e., viaSTL), but predictionsfrom the separately learned model s are combined
before making the final predictions. This sharing of the predictions of the models instead
of theinternal structurelearned by the modelsis quite different from MTL; combining the
two methods is strai ghtforward and might be advantageous in some domains. Omohundro
presents agorithms for “Family Discovery” where the god is to learn a parameterized
family of stochastic models [Omohundro 1996]. By interleaving learning of different
functions drawn from the family of functions, the algorithms learn the structure of the
function family and can make better predictions.

[Hinton 1986] suggested that generaization in artificial neural nets would improve if
nets learned to better represent underlying regularities of the domain. Suddarth and Abu-
Mostafa were among the first to recognize that this might be accomplished by providing
extrainformation at the outputs of anet. [Suddarth & Kergosien 1990; Suddarth & Holden
1991] used extra outputs to inject rule hintsinto networks about what they should learn.
ThisisMTL wherethe extratasks are carefully engineered to coerce the net to learn specific
internal representations. The centerline extratasks in the 1D-ALVINN domain in Section
2.1 areexamples of rule-injection hints. [Abu-Mostafa1990, 1993, 1995] provides hintsto
backprop nets viaextraterms in the error signal backpropagated for the main task output.
The extra error terms constrain what is learned to satisfy desired properties of main task
such as monotonicity [Sill & Abu-Mostafa1997], symmetry, or transitivity with respect to
certain setsof inputs. MTL, which does not use extra error terms on the main task output,
could easily be used in concert with Abu-Mostafa’s hints.

MTL issimilar insomewaysto clustering and unsupervised learning. For example, small
changestotheindicesin COBWEB's[Fisher 1987] probabilisticinformationmetricyieldsa
metric suitablefor judging splitsin multitask decision trees. Whereas COBWEB considers
all features as tasksto predict, MTL decision trees alow the user to specify which signals
areinputsand which aretraining signals. Thisnot only makes it easier to create additional
tasks without committing to extra training information being available at run time, but
makes learning simpler in domains where some features cannot reasonably be predicted.
[Martin 1994, Martin & Billman 1994] explore how concept formation systems such as
COBWEB can be extended to acquire overlapping concept descriptions. Their OLOC
system isan incremental concept learner that learns overlapping probabilistic descriptions
that improve predictive accuracy. de Sa's Minimizing Disagreement Algorithm [de Sa
1994] is an unsupervised learning method similar in spirit to MTL. In MDA, multiple
unsupervised learning tasks are trained in parallel and bias each other via supervisory
signals from the other unsupervised tasks.

Attempts have been made to develop theories of paralel transfer in artificial neura nets
[Abu-Mostafa 1993; Baxter 1994, 1995, 1996].° Unfortunately, it is difficult to use the
theory developed so far to draw conclusions about real-world uses of MTL. Limitations of
the current theory include:

e it yields worst-case bounds that are too loose to insure extra tasks will help. For
example, it is possible to create synthetic problems where increasing the number of
taskshurtsperformanceinstead of helpingit. Resultswiththese problemsare consistent
with the theory, but only because the bounds are |oose enough to allow it.

67

o itlacksawell-defined notion of task relatedness and makes assumptions about sharing
inthe hiddenlayer that often are not satisfied. For example, weusually find that optimal
performance requires increasing the number of unitsin the shared hidden layer as the
number of tasksincreases. This conflictswith assumptions made by the theory that the
hidden layer size remain constant as the number of tasksincreases.

e itisunabletoaccount for behaviorsof the search procedurethat are critical in practice.
Asone example, if early stoppingis not done correctly, MTL often hurts performance
instead of helpingit. The current theory is unableto account for important phenomena
likethis.

Developing a theory of MTL that better agrees with what is observed in practice may be
difficult. Perhaps the hardest obstacle standing in the way of better MTL theory is the
difficulty of defining task relatedness. An improved theory of MTL in artificial neural nets
also would need to address open questions about the effective capacity of neural nets and
take into account important behaviors of training procedures like backprop, such as their
susceptibility to local minima, pressure towards sharing, etc.

[Munro & Parmanto 1997] use extra tasksto improve the generalization performance of
a committee machine that combines the predictions of multiple learned experts. Because
committee machines work better if the errors made by different committee members are
decorrelated, they use adifferent extratask for each committee member to biashowit learns
the main task. Each committee member learns the main task in a dightly different way,
and the performance of the committee as a whole improves. Committee machines trained
with extratasks can be viewed as MTL with architectures more complex than the ssimple,
fully connected MTL architectures presented here. One interesting feature of committee
MTL architectures is that multiple copies of the main task are used, and this improves
performance on the main task. Sometimes this same effect is observed with simpler, fully
connected MTL nets, too [Caruana 1993]. [Dietterich & Bakiri 1995] examine a much
more sophisticated approach to benefitting from multiple copies of the main task by using
multi-bit error-correcting codes as the output representation.

One application of MTL is to take features that will be missing at run time but that are
available for the training set, and use them as outputs instead of inputs. There are other
waysto handle missing values. One approach isto treat each missing feature as a separate
learning problem, and use predictions for missing values as inputs. (We tried this on the
pneumonia problem and did not achieve performance comparable to MTL, but in some
domains this works well.) Other approaches to missing data include marginalizing over
the missing values in learned probabilistic models [Little & Rubin 1987; Tresp, Ahmad
& Neuneier 1994], and using EM to iteratively reestimate missing values from current
estimates of the data density [Ghahramani & Jordan 1994, 1997]. Of particular interest in
thisdirection iswork on learning Bayesian Networks [Cooper & Herskovits 1992; Spirtes,
Glymour, & Scheines 1993; Jordan & Jacobs, 1994]. Because Bayes nets have sound
statistical semantics (which makes handling missing values easier) and usually are more
comprehensive models than those learned with STL, Bayes nets also are able to benefit
from extra tasks like those used by MTL. It is not clear yet if Bayes nets represent a
competitive approach to MTL, the main issue being that the extra complexity inherent in

68

many Bayes net models may increase the number of training samples required to achieve
good performance.

7. Discussion and Future Work
7.1. Predictionsfor Multiple Tasks

MTL trainsmany tasksin parallel on onelearner, but thisdoes not mean one learned model
should be used to make predictionsfor many tasks. The reason for training multipletasks
on one learner is so one task can benefit from the information contained in the training
signals of other tasks, not to reduce the number of models that must be learned. Where
tradeoffs can be made between mediocre performance on all tasks and optimal performance
on any onetask, usually it isbest to optimize performance on tasks one at atime, and allow
performance on the extra tasks to degrade. The task weightsin MTL KNN/LCWA and
MTL TDIDT make thistradeoff explicit; the learner can even ignore some tasksto achieve
better performance on the main task.

Where predictions for severa tasks are required (as in CAP, Section 4.8), it may be
important to train a separate MTL mode for each required task. With backprop MTL,
however, using an architecture that treats al tasks equally, and that has sufficient capacity
in the shared hidden layer to alow parts of the hidden layer to become dedicated to single
tasks, often allows models to be learned for al tasks during one training run. If early
stopping is used, it isimportant to apply it to each task individually; not all tasks train—
or overtrain—at the same rate. The easiest way to do this is to take snapshots of the
network when performance on each task is best, instead of trying to halt training on some
tasks while other tasks are till being trained. If some tasks train much faster than others,
reducing thelearning rate on tasks that have already achieved their best performanceisone
way to prevent them from overtraining so much that they drag the other dower tasks into
overtraining.

7.2. Learning Ratein Backprop MTL

Usually better performance is obtained in backprop MTL when all tasks learn at similar
rates and reach best performance at roughly the same time. If the main task trains long
before the extra tasks, it cannot benefit from what has not yet been learned for the extra
tasks. If the main task trainslong after the extratasks, it cannot shape what is learned for
the extratasks. Moreover, if the extra tasks begin to overtrain, they may cause the main
task to overtrain too because of the overlap in hidden layer representation.

The easiest way to control the rate at which different tasks learn is to adjust the learning
rate on each output task. One way to do thisisto train a net using equal learning rates
for al tasks, and then train again a second time, reducing the learning rate for tasks that
learned fastest. A few iterations of this process usually suffice to bring most tasks to peak
performance at roughly the same time. Early stopping on tasks individually is then used
to pick the optima stopping point for each task. We are currently testing an agorithm

69

that automates this tuning of learning rates. Instead of using alearning rate for each task
that is constant throughout training, it adaptively adjusts each task’s learning rate during
training based on how much progress that task has made. Tasks ahead of schedule have
their learning rate reduced until ower tasks catch up. This method still requires at least
one prior training run to estimate how far each task will get before it beginsto overtrain.

7.3. Paralld vs. Sequential Transfer

MTL isparalle transfer. It might seem that sequential transfer [Pratt & Mostow 1991, Pratt
1992; Sharkey & Sharkey 1992; Thrun & Mitchell 1994; Thrun 1995] would be easier.
Thismay not be the case. The advantages of paralld transfer are:

e Thefull detail of what isbeing learned for all tasksisavailableto al tasks because all
tasks are being learned at the same time.

e Inmany applications, the extratasksare available intime to be learned in parallel with
the main task(s). Paralld transfer does not require one to define atraining sequence—
the order in which tasks are trained often makes a difference in serial transfer.

e Tasks often benefit each other mutually, something a linear sequence cannot capture.
For example, if task 1 islearned before task 2, task 2 can't help task 1. Thisnot only
reduces performance on task 1, but can also reduce task 1's ability to help task 2.

When tasks naturally arise seridly, it is straightforward to use paralld transfer for se-
guential transfer. If thetraining datacan be stored, performMTL usingwhatever taskshave
become available, re-learning asnew tasksarise. If training datacannot be stored, synthetic
data can be generated from prior learned model s (see Section 4.6). Interestingly, whileitis
easy to use paralle transfer to do serial transfer, it isnot so easy to use seria transfer to do
paralel transfer. Notethat it is possibleto combine serial and paralel transfer; O’ Sullivan
iscurrently exploring athesisat Carnegie Mellonto combine MTL and EBNN for life-long
learning in robots.

7.4. Computational Cost

The main goa of multitask learning is to improve generalization. But what effect does
MTL haveontrainingtime? In backprop nets, an MTL netisusualy larger than an STL net
and thus requires more computation per backprop pass. If all tasks eventually need to be
learned, training the MTL net often requires less computation than training the individual
STL nets. If most of the extra tasks are being trained just to help one or a few main
tasks, then the M TL net will require more computation. However, we often find that tasks
trained with MTL need fewer epochs than the same tasks trained aone, which partialy
compensates for the extra computational cost of each MTL epoch.

In k-nearest neighbor, kernel regression, and decision trees, MTL addslittleto the cost of
trainingthemodels. Theonly extra cost isthe computation needed to eva uate performance
on multiple tasks instead of just one task. This small constant factor is easily dominated

70

by other more expensive steps, such as computing distances between cases, finding nearest
neighbors, finding the best threshold for splits of continuous attributes in decision trees,
etc. The main additional cost of using MTL with these algorithmsis cross-validating the A
parameters the control the relative weight of the main and extratasks.

7.5. Architecture

The applications of MTL backprop presented in Section 2 use a single fully connected
hidden layer shared equally by &l tasks. Sometimes, more complex net architectures work
better. For example, sometimes it is beneficial to have asmall private hidden layer for the
main task, and alarger hidden layer shared by both the main task and extratasks. But too
many privatehidden layers(e.g., aprivatehidden layer for each task) reduce sharing and the
benefits of MTL. We do not currently have principled ways to determine what architecture
is best for each problem. Fortunately, simple architectures often work well, even if not
optimally. [Ghosn & Bengio 1997] experiment with severa different architectures for
MTL in backprop nets.

Regularization methods such as weight decay can be used with MTL. By reducing the
effective number of free parameters in the modd, regularization promotes sharing. Too
strong a bias for sharing, however, can hurt performance. If tasks are more different than
they are aike (the usual case), it isimportant to allow tasks to learn fairly independent
models and overlap only where there is common hidden structure. Thisis one reason why
MTL performance often dropsif the size of the shared hidden layer is much smaller than
the sum of the sizes of the STL hidden layers that would provide good performance on the
tasks when trained separately.

7.6. What Are Related Tasks?

One of the most important open problems in inductive transfer is to better characterize,
either formally or heuristically, what related tasksare. Thelack of an adequate definition of
task relatedness is one of the obstacl es preventing the devel opment of more useful theories
of inductivetransfer. Some of the characteristics of atheory of relatedness are already clear.
For example, if two tasks are the same function of the inputs, but with independent noise
processes added to thetask signals, clearly thetwotasks arerelated. Asanother example, if
two tasksareto predict different aspects of the health of the sameindividud , thesetasks are
morerelated than two tasksto predict different aspects of the health of different individuals.
Finally, just because two tasks help each other when trained together does not necessarily
mean they are related: sometimes injecting noise through an extra output on a backprop
net improves generalization on other outputsby acting as aregularizer a the hidden layer,
but this does not mean the noise task is related to the other tasks.

We may never have atheory of relatedness that allows usto reliably predict which tasks
will help or hurt each other when used for inductive transfer. Because of this, we are now
focussing part of our effort on ways of efficiently determining which tasks are beneficially
related to each other. Of particular interest is recent work on feature selection that shows

71

generalization performance sometimes improves if as many as half of the input features
available on some of the large problemsin the UCI repository are ignored, i.e., not used as
inputs[Liu & Setiono 1996]. It would be interesting to test those problems to see if some
of the“ignored” features might be well used as extra outputs (as was donein Section 4.9).

7.7. When Inductive Transfer Hurts

MTL does not always improve performance. In the pneumonia domain, performance
dropped for high-risk cases when an extra SSE output was added to the rankprop net (see
Section 4.2). Thiswas consistent with our model of the relative strengths and weaknesses
of the main and extra task on this problem. MTL is a source of inductive bias. Some
inductive biases help. Someinductivebiaseshurt. It depends onthe problem. For now, the
safest approach isto treat MTL asatool that must be tested on each problem. Fortunately,
on most problemswherewe havetried MTL, it helps. Algorithmsthat automatically adjust
theMTL biasusing cross-validation, such asthoseused for TDIDT and KNN, areimportant
steps for making MTL useful in practice.

7.8. MTL Thriveson Complexity

Perhaps the most important lesson we have learned from applying MTL to rea problems
is that the MTL practitioner must get involved before the problem and data have been
sanitized. MTL benefits from extra information that often would be engineered away
because traditional STL techniqueswould not be ableto useit. The opportunitiesfor MTL
often decrease as one gets further removed from the raw data or from the data collection
process. MTL provides new ways of using information that may not be obvious from the
traditional STL point-of-view.

8. Summary

Acquiring domain-specific inductive bias is subject to the usual knowledge acquisition
bottleneck. Multitask learning alowsinductive biasto be acquired viathe training signals
for related additional tasks drawn from the same domain. This paper demonstrates that the
benefit of using extra tasks can be substantial. Through careful experiments, we are able
to show that the benefits of multitask learning are due to the extrainformation contained in
the training signals for the extra tasks, not due to some other property of backpropagation
nets that might be achieved in another way. We are also able to elucidate a number of
mechanisms that explain how multitask learning improves generalization.

Most of the work presented in this paper uses multitask learning in backprop nets. We
have, however, developed agorithms for multitask learning in k-nearest neighbor and
decision trees. The ability to use multitask learning with inductive methods as different as
artificial neural nets, decision trees, and k-nearest neighbor speaks to the generality of the
basicidea. Perhaps moreimportantly, we have been ableto identify a number of situations

72

that commonly arise in real-world domains where multitask |earning should be applicable.
Thisis surprising—few of the standard test problems used in machine learning today are
multitask problems. We conjecture that as machine learning is applied to unsanitized,
real-world problems, the opportunitiesfor multitask |earning will increase.

Acknowledgments

We thank Greg Cooper, Michael Fine, and other members of the Pitt/CMU Cost-Effective
Health Care group for help with the Medis Pneumonia Database; Dean Pomerleau for
the use of his road simulator; Tom Mitchell, Reid Simmons, Joseph O’ Sullivan, and
other members of the Xavier Robot Project for help with Xavier the robot; and Tom
Mitchell, David Zabowski, and other members of the Calendar Apprentice Project for help
in collecting and using the CAP data. The work to characterize which features are more
useful asinputsor as outputsisjoint work with Virginiade Sa. Rankprop was devel oped
with Shumeet Baluja. This work has benefited from discussions with many people, most
notably Tom Mitchell, Herb Simon, Dean Pomerleau, Tom Dietterich, Shumeet Baluja,
Jonathan Baxter, Virginia de Sa, Scott Fahlman, Andrew Moore, Sebastian Thrun, and
Dave Touretzky. We aso thank the anonymous reviewers for their thorough reviews and
excellent suggestions.

Notes

1. Morecomplex architecturesthan afully connected hidden layer sometimeswork better. See Section 7.5

2. A similar experiment using nets with 2 hidden layers containing 2, 4, 8, 16, or 32 hidden units per layer for
STL and 32 hidden units per layer for MTL yielded similar results.

3. Itisinteresting to note that other researchers who tackled this problem using this database ignored the the
extralab tests because they knew the lab tests would not be available at run time and did not see ways to use
them other than asinputs.

4. Inthese experimentsthe nets have sufficient capacity to find independent minima for the tasks. They are not
forced to share the hidden layer representations.

5. If separate \; arelearned for each extra task, some A may be near 0 while others may be larger than 1.

6. Baxter'stheory doesnot exactly apply to the backprop MTL described in this paper becauseit assumes each
task has independent training patterns. In MTL, the extra training signals are usually, though not always,
available for the same training patterns asthe main task.

References

Abu-Mostafa, Y. S, “Learning from Hintsin Neural Networks,” Journal of Complexity, 1990, 6(2), pp. 192-198.

Abu-Mostafa, Y. S., “Hints and the VC Dimension,” Neural Computation, 1993, 5(2).

Abu-Mostafa, Y. S., “Hints,” Neural Computation, 1995, 7, pp. 639-671.

Baluja, S. and Pomerleau, D. A., “Using the Representation in a Neural Network’s Hidden Layer for Task-
Specific Focus of Attention,” Proceedings of the International Joint Conference on Artificial Intelligence 1995,
1JCAI-95, Montreal, Canada, 1995, pp. 133-139.

Baxter, J., “Learning Internal Representations,” Ph.D. Thesis, The Flinders Univeristy of South Australia, Dec.
1994,

73

Baxter, J., “Learning Internal Representations,” Proceedings of the 8th ACM Conference on Computational
Learning Theory, (COLT-95), Santa Cruz, CA, 1995.

Baxter, J., “A Bayesian/Information Theoretic Model of Bias Learning,”, Proceedings of the Sth International
Conference on Computational Learning Theory, (COLT-96), Desenzano del Gardo, Italy, 1996.

Breiman, L. and Friedman, J. H., “Predicting Multivariate Responses in Multiple Linear Regression,” 1995,
ftp://ftp.stat.berkel ey.edu/pub/users/breiman/curds-whey-all.ps.Z.

Caruana, R., “Multitask Learning: A Knowledge-Based Source of Inductive Bias,” Proceedings of the 10th
International Conference on Machine Learning, ML-93, University of Massachusetts, Amherst, 1993, pp.
41-48.

Caruana, R., “Multitask Connectionist Learning,” Proceedingsof the 1993 Connectionist Models Summer School,
1994, pp. 372-379.

Caruana, R., “Learning Many Related Tasks at the Same Time with Backpropagation,” Advances in Neural
Information Processing Systems 7, (Proceedings of NIPS-94), 1995, pp. 656-664.

Caruana, R., Baluja, S., and Mitchell, T., “Using the Future to “ Sort Out” the Present: Rankprop and Multitask
Learning for Medical Risk Prediction,” Advancesin Neural |nformation Processing Systems 8, (Proceedings of
NIPS-95), 1996, pp. 959-965.

Caruana, R. and de Sa, V. R., “Promoting Poor Featuresto Supervisors: Some Inputs Work Better As Outputs,”
to appear in Advancesin Neural Information Processing Systems 9, (Proceedings of NIPS-96), 1997.

Caruana, R., “Multitask Learning,” Ph.D. Thesis, School of Computer Science, Carnegie Mellon University,
1997.

Cooper, G. F. and Herskovits, E., “A Bayesian Method for the Induction of Probabilistic Networks from Data,”
MachineLearning, 1992, 9, pp. 309-347.

Cooper, G. F, Aliferis, C. F,, Ambrosino, R., Aronis, J., Buchanan, B. G., Caruana, R., Fine, M. J., Glymour, C.,
Gordon, G., Hanusa, B. H., Janosky, J. E., Meek, C., Mitchell, T., Richardson, T., and Spirtes, P, “An Evaluation
of MachineLearning Methodsfor Predicting PneumoniaMortality,” Artificial Intelligencein Medicine9, 1997,
pp. 107-138.

Craven, M. and Shavlik, J., “Using Sampling and Queries to Extract Rules from Trained Neural Networks,”
Proceedings of the 11th International Conference on Machine Learning, ML-94, Rutgers University, New
Jersey, 1994, pp. 37-45.

Davis, |. and Stentz, A., “ Sensor Fusion for Autonomous Outdoor Navigation Using Neural Networks,” Proceed-
ings of |EEE's Intelligent Robots and Systems Conference, 1995.

Dent, L., Boticario, J., McDermott, J., Mitchell, T., and Zabowski, D., “A Personal Learning Apprentice,”
Proceedingsof 1992 National Conference on Artificial Intelligence, 1992.

deSa, V. R, “Learning Classification with Unlabelled Data,” Advancesin Neural Information Processing Systems
6, (Proceedings of NIPS-93), 1994, pp. 112-119.

Dietterich, T. G., Hild, H., and Bakiri, G., “A Comparative Study of ID3 and Backpropagation for English
Text-to-speech Mapping,” Proceedingsof the Seventh I nter national Conferenceon Artificial Intelligence, 1990,
pp. 24-31.

Dietterich, T. G., Hild, H., and Bakiri, G., “ A Comparison of D3 and Backpropagationfor English Text-to-speech
Mapping,” Machine Learning, 18(1), 1995, pp. 51-80.

Dietterich, T. G. and Bakiri, G., “Solving Multiclass Learning Problems via Error-Correcting Output Codes,”
Journal of Artificial Intelligence Research, 1995, 2, pp. 263-286.

Fine, M. J,, Singer, D., Hanusa, B. H., Lave, J., and Kapoor, W., “Validation of a Pneumonia Prognostic Index
Using the MedisGroups Comparative Hospital Database,” American Journal of Medicine, 1993.

Fisher, D. H., “Conceptual Clustering, Learning from Examples, and Inference,” Proceedings of the 4th Interna-
tional Workshop on Machine Learning, 1987.

Ghahramani, Z. and Jordan, M. I., “Supervised Learning from Incomplete Data Using an EM Approach,”
Advancesin Neural Information Processing Systems 6, (Proceedings of NIPS-93,) 1994, pp. 120-127.

Ghahramani, Z. and Jordan, M. 1., “Mixture M odel sfor Learning from Incomplete Data,” Computational Learning
Theory and Natural Learning Systems, \ol. 1V, R. Greiner, T. Petsche and S.J. Hanson (eds.), Cambridge, MA,
MIT Press, 1997, pp. 67-85.

Ghosn, J. and Bengio, Y., “Multi-Task Learning for Stock Selection,” to appear in Advancesin Neural Information
Processing Systems 9, (Proceedings of NIPS-96), 1997.

Hinton, G. E., “Learning Distributed Representations of Concepts,” Proceedings of the 8th International Confer-
ence of the Cogpnitive Science Society, 1986, pp. 1-12.

74

Holmstrom, L. and Koistinen, P, “Using Additive Noise in Back-propagation Training,” |EEE Transactions on
Neural Networks, 1992, 3(1), pp. 24-38.

Jordan, M. and Jacobs, R., “Hierarchical Mixtures of Expertsand the EM Algorithm,” Neural Computation, 1994,
6, pp. 181-214.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackal, L. D., “Backpropa-
gation Applied to Handwritten Zip-Code Recognition,” Neural Computation, 1989, 1, pp. 541-551.

Little, R. J. A. and Rubin, D. B., Satistical Analysiswith Missing Data, 1987, Wiley, New York.

Liu, H. and Setiono, R., “A Probibilistic Approach to Feature Selection—A Filter Solution,” Proceedings of the
13th International Conference on Machine Learning, ICML-96, Bari, Italy, 1996, pp. 319-327.

Martin, J. D., “Goal-directed Clustering,” Proceedings of the 1994 AAAI Spring Symposium on Goal-directed
Learning, 1994.

Martin, J. D. and Billman, D. O., “Acquiring and Combining Overlapping Concepts,” Machine Learning, 1994,
16, pp. 1-37.

Mitchell, T., “The Need for Biasesin Learning Generalizations,” Rutgers University: CBM-TR-117, 1980.

Mitchell, T., Caruana, R., Freitag, D., McDermott, J., and Zabowski, D., “Experience with a Learning Personal
Assistant,” Communicationsof the ACM: Special Issue on Agents, July 1994, 37(7), pp. 80-91.

Munro, P W. and Parmanto, B., “ Competition Among Networks Improves Committee Performance,” to appear
in Advancesin Neural Information Processing Systems 9, (Proceedings of NIPS-96), 1997.

Omohundro, S. M., “Family Discovery,” Advancesin Neural Information Processing Systems 8, (Proceedings of
NIPS-95), 1996, pp. 402-408.

O’ sullivan, J. and Thrun, S., “ Discovering Structurein MultipleLearning Tasks: The TC Algorithm,” Proceedings
of the 13th International Conference on MachineLearning, ICML-96, Bari, Italy, 1996, pp. 489-497.

Pomerleau, D. A., “Neural Network Perception for Mobile Robot Guidance,” Carnegie Mellon University:
CMU-CS-92-115, 1992.

Pratt, L. Y., Mostow, J., and Kamm, C. A., “Direct Transfer of Learned Information Among Neural Networks,”
Proceedingsof AAAI-91, 1991.

Pratt, L. Y., “Non-literal Transfer Among Neural Network Learners,” Colorado School of Mines: MCS-92-04,
1992.

Pratt, L. Y., Mostow, J., and Kamm, C. A., “Direct Transfer of Learned Information Among Neural Networks,”
Proceedingsof AAAI-91, 1991.

Quinlan, J. R., “Induction of Decision Trees,” Machine Learning, 1986, 1, pp. 81-106.

Quinlan, J. R., C4.5: Programsfor Machine Learning, Morgan Kaufman Publishers, 1992.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning Representations by Back-propagating Errors,”
Nature, 1986, 323, pp. 533-536.

Segjnowski, T. J. and Rosenberg, C. R., “NETtalk: A Parallel Network that Learnsto Read Aloud,” John Hopkins:
JHU/EECS-86/01, 1986.

Sharkey, N. E. and Sharkey, A. J. C., “Adaptive Generalisation and the Transfer of Knowledge,” University of
Exeter: R257, 1992.

Sill, J. and Abu-Mostafa, Y., “Monotonicity Hints,” to appear in Neural Information Processing Systems 9,
(Proceedings of NIPS-96), 1997.

Spirtes, P, Glymour, C., and Scheines, R., Causation, Prediction, and Search,, 1993, Springer-Verlag, New York.

Simard, P, Victorri, B., LeCun, Y., and Denker, J., “ Tangent Prop—A Formalism for Specifying Selected Invari-
ancesin an Adaptive Neural Network,” Advancesin Neural Information Processing Systems4, (Proceedings of
NIPS-91) 1992, pp. 895-903.

Suddarth, S. C. and Holden, A. D. C., “Symbolic-neural Systems and the Use of Hints for Developing Complex
Systems,” International Journal of Man-Machine Sudies, 1991, 35(3), pp. 291-311.

Suddarth, S. C. and Kergosien, Y. L., “Rule-injection Hints as a Means of Improving Network Performance and
Learning Time,” Proceedings of the 1990 EURASI P Workshop on Neural Networks, 1990, pp. 120-129.

Thrun, S. and Mitchell, T., “Learning One More Thing,” Carnegie Mellon University: CS94-184, 1994.

Thrun, S, “Lifelong Learning: A Case Study,” Carnegie Mellon University: CS-95-208, 1995.

Thrun, S, “Is Learning the N-th Thing Any Easier Than Learning The First?,” Advancesin Neural Information
Processing Systems 8, (Proceedings of NIPS-95), 1996, pp. 640-646.

Thrun, S., Explanation-Based Neural Network Learning: A Lifelong Learning Approach, 1996, Kluwer Academic
Publisher.

Tresp, V., Ahmad, S, and Neuneier, R., “Training Neural Networks with Deficient Data,” Advances in Neural
Information Processing Systems 6, (Proceedings of NIPS-93), 1994, pp. 128-135.

75

Valdes-Perez, R., and Simon, H., “A Powerful Heuristic for the Discovery of Complex Patterned Behavior,”
Proceedings of the 11th International Conference on Machine Learning, ML-94, Rutgers University, New
Jersey, 1994, pp. 326-334.

Waibel, A., Sawai, H., and Shikano, K., “Modularity and Scaling in Large Phonemic Neural Networks’ IEEE
Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12), pp. 1888-1898.

Received Date
Accepted Date
Final Manuscript Date

