The Qo site of cytochrome $b_{6}f$ complexes controls the activation of the LHCII kinase

F.Zito, G.Finazzi1, R.Delosme, W.Nitschke2, D.Picot3 and F.-A.Wollman4

UPR 1261 CNRS, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, 2CNRS Marseille, 31 Chemin Joseph Aiguier, Marseille, 3UPR 9052 CNRS, Institut de Biologie Physico-Chimique, Paris, France and 4Centro di Studio del CNR sulla Biologia Cellulare e Molecolare delle Piane, via Celoria 26, 20133 Milano, Italy

4Corresponding author

e-mail: wollman@ibpc.fr

We created a Qo pocket mutant by site-directed mutagenesis of the chloroplast petD gene in Chlamydomonas reinhardtii. We mutated the conserved PEWY sequence in the EF loop of subunit IV into PWYE. The pwye mutant did not grow in phototropic conditions although it assembled wild-type levels of cytochrome $b_{6}f$ complexes. We demonstrated a complete block in electron transfer through the cytochrome $b_{6}f$ complex and a loss of plastoquinol binding at Qo. The accumulation of cytochrome $b_{6}f$ complexes lacking affinity for plastoquinol enabled us to investigate the role of plastoquinol binding at Qo in the activation of the light-harvesting complex II (LHCII) kinase during state transitions. We detected no fluorescence quenching at room temperature in state II conditions relative to that in state I. The quantum yield spectrum of photosystem I charge separation in the two state conditions displayed a trough in the absorption region of the major chlorophyll a/b proteins, demonstrating that the cells remained locked in state I. 32P$^\text{I}$ labeling of the phosphoproteins in vivo demonstrated that the antenna proteins remained poorly phosphorylated in both state conditions. Thus, the absence of state transitions in the pwye mutant demonstrates directly that plastoquinol binding in the Qo pocket is required for LHCII kinase activation.

Keywords: Chlamydomonas reinhardtii/plastoquinol/Qo site/site-directed mutagenesis/state transitions

Introduction

Chloroplasts have an as yet undetermined number of protein kinases and phosphatases which catalyze the reversible phosphorylation of several thylakoid membrane proteins (for reviews see Allen, 1992; Gal et al., 1997). Among these are the antenna proteins, light-harvesting complex II (LHCII), which reversibly associate with either photosystem I (PSI) or photosystem II (PSII) depending on their state of phosphorylation. Since the majority of the two photosystems are located in distinct thylakoid membrane regions, i.e. the grana and stroma lamellae domains (Albertsson, 1995), changes in LHCII phosphorylation cause a lateral migration of the antenna proteins along the thylakoid membranes. The displacement of LHCII antenna proteins has provided a molecular clue to the mechanism of short-term chromatic adaptation, known from the late 1960s as state transitions (Bonaventura and Myers, 1969; Murata, 1969). The picture that emerged from extensive studies, pioneered by Bennett and co-workers (Bennett, 1991), is that state I corresponds to a low phosphorylation state for LHCII, which is then functionally connected with PSII, whereas state II corresponds to an increased phosphorylation of LHCII (Allen, 1992), which then serves as a PSI antenna (Delosme et al., 1994, 1996).

In vivo studies with the unicellular green alga Chlamydomonas reinhardtii have demonstrated that state transitions are also controlled by the intracellular demand for ATP: in the total absence of illumination, C.reinhardtii cells are locked in state II when the intracellular content of ATP is low, whereas they adopt a state I configuration when the ATP pool is restored (Bulte et al., 1990). Since the PSI-containing domains of the thylakoid membranes display an increased content of both LHCII and cytochrome $b_{6}f$ complexes in state II (Vallon et al., 1991), this state can be regarded as a supramolecular organization of the photosynthetic apparatus favoring cyclic electron flow around PSI, a functional organization well suited to cope with an increased demand for ATP production.

The changes in the state of phosphorylation of antenna proteins result from the combined actions of an LHCII kinase, whose activation is redox dependent (Allen et al., 1981), and a phosphatase that is considered permanently active (Elich et al., 1997), although some recent data suggest that it may be regulated by its interaction with an immunophilin-like protein (Fulgosi et al., 1998). Although far from being elucidated fully, studies on the mechanism of kinase activation have achieved significant progress over the years. Starting with the observation that an increased reduction of the plastoquinol pool correlated with kinase activation (Allen et al., 1981; Horton and Black, 1981), a search for a specific role for known quinone-binding proteins from the thylakoid membranes led us to exclude that PSII was required for kinase activation in vivo (Wollman and Lemaire, 1988). In contrast, we observed that C.reinhardtii mutants lacking cytochrome $b_{6}f$ complexes were in a state I configuration, and that they were unable to undergo transitions from state I to state II, even though the redox state of the plastoquinone pool could be poised to go from an oxidized to a fully reduced state (Lemaire et al., 1987; Wollman and Lemaire, 1988). Similar conclusions were reached subsequently with several cytochrome $b_{6}f$ mutants from higher plants (Coughlan et al., 1988; Gal et al., 1988). That the activation signal was transduced through the cytochrome $b_{6}f$ complexes was supported further by the
presence of an LHCII kinase activity in partially purified cytochrome b6f fractions (Gal et al., 1990, 1992). However, the mechanism through which the redox poise is transduced to the kinase for its activation still remains obscure. Some insight on the process came with the recent studies of Vener and colleagues (Vener et al., 1995, 1997) who found that a reversible acid-induced transient reduction of ~20% of the plastoquinone pool was sufficient to activate the kinase in vitro. They reported that kinase activation persisted even when the plastoquinone pool was fully reoxidized, provided that one single plastoquinol molecule was retained per cytochrome b6f complex (Vener et al., 1997). These observations led the authors to propose that kinase activation occurred as soon as one plastoquinol is available to the Qo site of cytochrome b6f complexes that have a fully reduced high potential chain. However, this proposal conflicts with the absence of kinase activation in vivo in aerated cells of C. reinhardtii, although the fraction of reduced plastoquinone is sufficiently high to meet the criteria suggested by Vener and co-workers for state transition. Thus we took a different approach to investigate directly, by site-directed mutagenesis, the possible contribution of the Qo site to the activation of the LHCII kinase.

In cytochrome b6f complexes, cytochrome b6 subunit IV and the Rieske protein contribute residues to the formation of the Qo pocket. We have shown previously that the loops between helices C and D of cytochrome b6 (Finaazzi et al., 1997) and helices E and F of subunit IV (Zito et al., 1998) contribute to the formation of the Qo pocket in C. reinhardtii. The luminal EF loop in subunit IV comprises a short sequence of four amino acids, PEWY, which is strictly conserved in all bc-type cytochrome complexes (Degli Esposti et at., 1993). From crystallographic data, it has been possible to establish the position of the PEWY sequence with respect to heme b6 at a distance which allows van der Waals contacts. The side chains of the PEWY sequence contribute to the internal folding of the Qo pocket. We have shown previously that this region is indeed deeply involved in the function of the Qo site and plays a critical role in cytochrome b6f turnover (Zito et al., 1998). In the present work, we demonstrate that the PEWY region, unequivocally involved in Qo pocket formation, is strictly required for a functional binding of plastoquinol at the Qo site. Its alteration to a PWYE sequence abolishes both the binding of plastoquinone/plastoquinol and LHCII kinase activation. The resulting mutant is locked in a state I configuration.

Results

The pwye mutant is a non-phototrophic strain that accumulates cytochrome b6f complexes

We have demonstrated that the glutamic residue in the PEWY sequence of the EF loop of subunit IV has a critical role in the turnover of the cytochrome b6f complex (Zito et al., 1998) even though it is not strictly required for its function (Crofts et al., 1995). We further investigated by site-directed mutagenesis the contribution of the PEWY sequence to the function of cytochrome b6f complexes, carrying out permutation of its three last residues, which yields a PWYE sequence.

Our first attempt to recover phototrophic clones from a transformation of the ΔpetD strain, deleted for the petD gene, with plasmid pdPWYE proved unsuccessful. Therefore, the PWYE mutation is detrimental to photosynthesis. We then used the wild-type strain as a recipient for transformation with plasmid pdPWYE which carries, in addition to the PWYE mutation, a selectable marker, the aadA cassette, that confers resistance to spectinomycin to the transformants (Goldschmidt-Clermont et al., 1991). With this strategy, we recovered several transformants that were non-phototrophic, which confirmed the detrimental character of the mutation.

Photosynthesis mutants of C. reinhardtii can be classified easily according to their fluorescence induction pattern upon continuous illumination. Figure 1 (left panel) shows a typical induction curve for the wild-type strain of C. reinhardtii. It reaches a steady-state level (F\text{stat}) well below the F\text{max} level attained in the presence of DCMU, a PSII inhibitor that prevents reoxidation of the primary quinone acceptor by the plastoquinone pool. In contrast, the fluorescence yield of the pwye mutant increases continuously upon illumination (Figure 1, right panel), reaching the same level as that attained in the presence of DCMU. However, the fluorescence kinetics were much slower in the absence than in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethyleurea (DCMU). This is indicative of a block in electron transfer at the step of reoxidation of the plastoquinol pool (Delepeilaire and Bennoun, 1978). In these circumstances, several turnovers of PSII occur before the plastoquinone pool is fully reduced, which eventually prevents reoxidation of the PSII primary quinone acceptor. Thus, the spectinomycin-resistant transformants that contained the modified PWYE sequence showed fluorescence induction kinetics typical of that of mutants lacking cytochrome b6f (Lemaire et al., 1987; Kuras et al., 1997; Zito et al., 1997).

We then probed the content in three major cytochrome b6f subunits in the pwye mutants. Two transformants are presented together with a wild-type control in Figure 2. Surprisingly, these mutants, although blocked in the reoxidation of the plastoquinol pool, still accumulated the major subunits of the cytochrome b6f complex at about the wild-type level. In particular, the content of subunit IV, which bears the PWYE mutation, was unaltered in the mutants.

The cytochrome b6f complex from the pwye mutant is unable to perform plastoquinol oxidation

In order to gain further insight into the step at which electron transfer through the cytochrome b6f complex was
blocked in the mutants, we studied, by time-resolved flash spectroscopy, the cytochrome b6f-related absorbance changes. Electron transfer through the cytochrome b6f complex is coupled to a charge translocation across the membrane that is detected as the slow phase (phase b) of the 515 nm electrochromic shift (Joliot and Delosme, 1974). As previously reported (Finazzi et al., 1997), the $t_{1/2}$ of phase b, measured under anaerobic conditions using non-saturating flashes, is ~2.5 ms in the wild-type (Figure 3A). In the pwye mutant, the charge separation in the reaction centers can still be detected as the fast phase of the 515 nm electrochromic shift, which corresponds to the value of 1 on the ordinate scale of Figure 3A. No subsequent signal changes were detected in the millisecond time range where the cytochrome b6f contribution occurs.

The absence of phase b is indicative of a loss of charge translocation across the membrane, i.e. of a loss of electron transfer in the low potential chain (the redox path comprising the b_1 and b_6 hemes). The Q cycle mechanism, as proposed by Mitchell (1975) and modified by Crofts et al. (1983), predicts that electron transfer into both the f and b_6 hemes occurs in a concerted step. Therefore, the lack of phase b could indicate either a specific block in the electron transfer step from the plastosemiquinone to cytochrome b_1 or an impairment of the overall, concerted plastoquinol oxidation at the Qo site. To distinguish between these possibilities, we have measured the kinetics of the redox changes of cytochrome f (Figure 3B): the fast oxidation step retained similar kinetics in the wild-type and in the pwye mutant. However, its amplitude was larger in the mutant, due to the drastic decrease in the rate of cytochrome f re-reduction. The latter reaction was slower than in the wild-type by about three orders of magnitude. We previously have observed such a delayed re-reduction of cytochrome f in a mutant lacking the cytochrome b6f complex but retaining a soluble form of cytochrome f (Kuras et al., 1995b). Therefore, we attribute the loss of cytochrome b6f function in the pwye mutant to a complete block in the concerted electron transfer reaction from plastoquinol to cytochrome f and heme b_1.

The pwye mutant lacks plastoquinone/plastoquinol binding at the Qo site of the cytochrome b6f complex

In order to distinguish between a block in electron transfer from a bound plastoquinol to the Rieske protein and the absence of plastoquinol binding at the Qo site, the electron paramagnetic resonance (EPR) characteristics of the Rieske center in the pwye mutant were examined. The EPR spectrum of the Rieske cluster and more specifically its g_{c}-trough has been reported to be sensitive to the redox state of the Qo site quinone in the cytochrome b6f complex from spinach (Riedel et al., 1991). A similar effect has been observed previously with cytochrome bc$_1$ complexes from mitochondria (de Vries et al., 1979) and purple bacteria (Matsuura et al., 1983) as well as with cytochrome bc complexes from Gram-positive bacteria (Liebl et al., 1990). Although the exact position of the g_{c}-trough in the different redox states of the Qo site quinone varies between b6f, bc$_1$ and the Gram-positive bc complex, the spectral alterations were produced consistently by the interaction of an oxidized quinone with the Rieske center (for a discussion, see Ding et al., 1992), whereas only very minor spectral differences were observed between an empty Qo site and a quinol-bound site.

The upper panel of Figure 4 shows EPR spectra of wild-type C.reinhardtii thylakoids under conditions where the FeS center is reduced but the plastoquinone pool was either oxidized (continuous line) or reduced (dotted line). The observed shift of the g_{c}-trough in C.reinhardtii corresponds well with what has been observed for spinach b6f complex (Riedel et al., 1991). In addition to this shift, the appearance of a new FeS center with g_1 at 1.93 is observed in C.reinhardtii. A more detailed characterization of the Rieske center and the $g = 1.93$ species in wild-type C.reinhardtii will be reported elsewhere (F.Baymann and W.Nitschke, in preparation). As can be seen in the lower panel of Figure 4, the g_{c}-trough of the pwye mutant was no longer sensitive to the redox state of the plastoquinone.
Fig. 4. EPR spectra of thylakoids from C. reinhardtii wild-type and pwye mutant. Samples were incubated in the presence of either 5 mM ascorbate (continuous lines) or 10 mM dithionite (dotted lines) in order to reduce the Rieske protein while keeping the plastoquinone pool either oxidized or reduced. Instrument settings: microwave frequency, 9.42 GHz; temperature, 15 K; microwave power, 6.3 mW; modulation amplitude, 1.6 mT.

pool. No signal corresponding to an interaction with a plastoquinone was observed. The g_x-trough remained in the position corresponding to an empty or plastoquinol-binding site in the wild-type. From these experiments, we conclude that the $pwye$ mutant has lost its ability to bind plastoquinones. Since (i) the affinity of an intact Qo site for quinones and quinols is rather similar (Ding et al., 1992) and (ii) there is no electron transfer from plastoquinol to cytochrome b and heme b_1 in the mutant, we also conclude that the g_x-trough in the mutant points to an empty Qo site and not to a quinol-binding site. Thus the Qo site of the $pwye$ mutant has lost its ability to bind both plastoquinone and plastoquinol molecules.

State transitions are abolished in the $pwye$ mutant

The loss of plastoquinol binding at the Qo site of the cytochrome bf complex in the $pwye$ mutant offered a unique opportunity to study the specific role of the Qo site in LHCII kinase activation.

We placed the $pwye$ mutant in conditions that promote either state I or state II in a wild-type strain. In order not to depend on the photosynthetic electron transfer properties of the strains, the suitable conditions for each state were established in total darkness as previously described (Wollman and Delepelaire, 1984): cells were placed either in oxidizing conditions by a strong aeration under vigorous stirring (state I conditions) or in reducing conditions by an incubation in the absence of oxygen (state II conditions). Figure 5 shows the fluorescence induction kinetics recorded in the presence of DCMU for three strains placed in state I or state II conditions. The $pwye$ mutant was compared with the wild-type, here used as a positive control, and a cytochrome b_6f minus strain, the $ΔpetD$ strain, used as a negative control since it cannot undergo state transitions (Lemaire et al., 1987; Wollman and Lemaire, 1988). The maximal fluorescence yield from the wild-type strain dropped by ~40% in state II as compared with state I, as expected from the transfer of a major fraction of LHCII from PSII to PSI, that acts as a strong fluorescence quencher (Bonaventura and Myers, 1969). In contrast, neither the cytochrome bf minus mutant nor the $pwye$ mutant displayed a fluorescence quenching in state II conditions as compared with state I. Rather, the fluorescence yield increased in state II conditions, a phenomenon previously observed in strains locked in a state I configuration when the plastoquinone pool is fully reduced (Bulte and Wollman, 1990).

We then used a photoacoustic approach (Delosme et al., 1994, 1996) as an independent tool to determine the distribution of the antenna pigments between the two photosystems in state I and state II. Figure 6 shows a quantum yield spectrum in the red region for the same three strains used in Figure 5. Differences in the efficiency of excitation transfer from the various pigment holochromes to the reaction centers appear as spectral variations of
the quantum yield of charge separation. Thus, an even connection to the reaction centers of all chlorophyll holochromes, which corresponds to a constant quantum yield, would produce a flat spectrum. The typical PSI + PSII spectrum provides a reference spectrum showing the state of connection of the light-harvesting antenna when the two types of reaction centers are active. In state I, the PSI spectrum from the wild-type, obtained by blocking PSII photochemistry by pre-illumination in the presence of hydroxylamine and DCMU, displays a large drop in quantum yield in the absorbance region of LHClI (from 680 nm and below) which is consistent with the chlorophyll a/b-containing antenna being connected primarily to PSII centers. In state II, the PSI spectrum shows a much higher sensitization by the LHClI-associated pigments. It is close to the PSI + PSII spectrum, indicating that most of the antenna is now connected to PSI. In contrast to the wild-type situation, the quantum yield spectrum of PSI hardly changes between state I and state II conditions in both the cytochrome b6f minus mutant and the pwy mutant. The four PSI spectra display a similar trough, peaking at 650 nm, which indicates a disconnection of LHClI from PSI, typical of a state I configuration.

The pwy mutant lacks LHClI kinase activation in state II conditions

The fluorescence and photoacoustic experiments with the pwy mutant both agree with the conclusion that LHClI is not transferred from PSII to PSI in state II conditions. In order to assess whether the block in state I configuration originates from a lack of kinase activation, we performed an in vivo protein phosphorylation experiment. Thylakoid membranes were purified from cells that were pre-incubated for 90 min with 33P and placed for 20 min in state I and state II conditions in a 33P-free medium as previously described (Wollman and Lemaire, 1984).

Figure 7 shows an autoradiograph of an electrophoretogram from the pwy mutant and the wild-type that displays the labeling pattern of the thylakoid membrane polypeptides in the 25–40 kDa region. In the wild-type, the phosphorylation of all phosphopolypeptides that correspond to antenna proteins, CP26, CP29, and LHClI, increases drastically in state II as compared with state I, whereas the PSII phosphoprotein D2 shows an opposite behavior as we reported previously (Delepelaire and Wollman, 1985). In contrast, the pwy mutant displays a low and constant level of phosphorylation on CP26, CP29, D2, and LHClI-P11, whatever the state conditions. We also noted the absence of phosphorylation of LHClI-P13 and LHClI-P17 in pwy, which is typical of a mutant locked in state I (Wollman and Lemaire, 1988). Thus, the LHClI kinase cannot be activated in reducing conditions in the pwy mutant.

Discussion

PEWY and PWYE structures in the Qo site

The PEWY to PWYE conversion in the EF loop of subunit IV, which is positioned on the luminal side of the thylakoid membrane, led to a full inactivation of the electron transfer through the cytochrome b6f complex, without altering the assembly of its constitutive subunits. Thus a fully inactive protein could accumulate to wild-type amounts in the thylakoid membrane from C.reinhardtii. This is an unprecedented phenotype since the other cytochrome b6f mutants isolated thus far were either defective in the assembly of this oligomeric protein or only partially altered in their electron transfer properties (Wollman and Lemaire, 1988; Finazzi et al., 1997; Zito et al., 1997, 1998). The experiments we describe here show that the loss of function is caused by a loss of the ability of plastoquinol to bind to the Qo pocket of the protein complex.

The PEWY motif, as well as most of the other residues that are close to the Qo site of cytochrome bc1, is conserved in all cytochrome bc1/b6f complexes (Degli Esposti et al., 1993). Since the homology extends well beyond this region, it is possible to resort to the X-ray structure of cytochrome bc1. Indeed, the structure of chicken and bovine mitochondrial cytochrome bc1 have been determined independently in the presence of various inhibitors by three different groups (Xia et al., 1997; Iwata et al., 1998; Zhang et al., 1998). Comparison of this region shows a similar conformation of the Qo pocket for the different structures [Protein Data Bank accession Nos. 1bc6, 3bcc (Zhang et al., 1998); 1bg6 (Iwata et al., 1998); 1qcr (Abola et al., 1997; Xia et al., 1997)]. Figure 8 shows a view of the PEWY region with respect to the b1 heme. The proline, glutamate, and tyrosine residues are lining the bottom of the Qo pocket, whereas the tryptophan is facing toward the exterior of the protein. The proline occupies a key position which splits the bottom of the Qo pocket into two parts which are directed toward either the high or the low potential chain: it is able to interact with the inhibitor stigmatellin in the vicinity of the Rieske protein in its proximal position (see 3bcc) and with the inhibitor myxothiazol, which is directed toward the heme and also interacting with the glutamate (Iwata et al., 1998). The tyrosine also lies in the vicinity of the b1 heme. Therefore, the residues from the PEWY sequence are likely to provide the steric constraints for a proper positioning of the plastoquinol at the bottom of the Qo pocket, and the permutation of the (P)EWY residues to (P)WYE should induce severe perturbations in this region. If we assume that the polypeptide chain is not undergoing a drastic reorganization, we can infer that the bulky side chain of the tryptophan should hinder proper interactions between the plastoquinol and the b1 heme. On the other hand, the glutamate residue, whose carboxylic group was facing
Consequences of the PEWY to PWYE conversion on LHCII protein kinase activation

A loss of plastoquinol binding at the Qo site offers a unique opportunity to check whether this site is actually part of the kinase activation process that leads to state transitions in vivo. Indeed, we observed that the pwye mutant showed no increased protein phosphorylation in reducing conditions and was blocked in a state I configuration. The block in state I cannot be ascribed to some undirect effect due to the inability of the cytochrome b_6f complexes to sustain electron flow in the pwye mutant. Since the transitions were performed in darkness, in conditions where cytochrome b_6f complexes do not participate in electron transfer (Bennoun, 1983). Thus our data demonstrate that kinase activation requires quinol binding at the Qo site. The fact that the phosphorylation pattern of the pwye mutant was identical to that in strains that lack the cytochrome b_6f complex, with a typical loss of phosphorylation of LHC-P13 and LHC-P17 and a low and constant phosphorylation of LHC-P11, CP29 and CP26, shows that the bands that remain phosphorylated in the mutant originate from a kinase activity that is distinct from that of the regulated LHCII kinase (Wollman and Lemaire, 1988). The loss of inducible phosphorylation of the antenna protein correlated with a lack of fluorescence quenching in state II conditions. Thus no antenna pigments became detached from PSII in state II conditions, as further substantiated by the quantum yield spectrum of PSI, which showed no increased contribution in the absorbance region of LHCII in state II conditions as compared with state I conditions.

LHCII protein kinase activation under physiological conditions

Our study supports the conclusion drawn by Vener and colleagues (Vener et al., 1995, 1997) that was based on in vitro experiments performed with spinach thylakoids. These authors used an acid shift from pH 7.4 to 4.3 to switch the plastoquinone pool from a fully oxidized state to a partially reduced state. Since the kinase is not active in acidic conditions, they resorted to a reverse pH shift to pH 7.4 to observe kinase activation. In the latter case, the plastoquinone pool was reoxidized rapidly but kinase activity was retained as long as a plastoquinol remained bound to the cytochrome b_6f complex at the Qo site. Flash-induced reoxidation of the bound plastoquinol by PSI deactivated the LHCII kinase. These experiments thus argued for a critical role for a bound plastoquinol at Qo in kinase activation in vitro. They also pointed to a much higher affinity of the Qo site for plastoquinol than has been suggested in several other studies (Ding et al., 1992; Kramer et al., 1994; Finazzi et al., 1997). With such a high affinity, living algae such as C.reinhardtii would be permanently in state II since the plastoquinone pool is partially reduced even when the cells are kept in aerobic conditions and darkness, owing to the continuing electron flow due to chlororespiration (Bennoun, 1982). This is not observed: C.reinhardtii cells are much closer to state I than to state II in vivo, under aerobic conditions. An extensive increase in plastoquinone reduction, such as a shift to anaerobic conditions or the use of uncouplers to activate glycolysis, is required to produce kinase activation.

outside the protein not far from the heme, is now directed toward the pocket and should induce there steric and electrostatic perturbations. This configuration accounts fairly well for the loss of plastoquinol binding in the pwye mutant, as documented in the present study by our EPR and visible spectroscopy analysis.
The cyt b6f Qo site controls LHCl kinase activation

Materials and methods

Cell growth conditions
Wild-type strain (mt+) derived from the strain 137C and transformants were grown on Tris-acetate-phosphate (TAP) or minimum media, pH 7.2 at 25°C under 6 and 60 µEm/s of continuous illumination, respectively. Wild-type and mutant cells were placed in state I and state II conditions in darkness, either by vigorous stirring to ensure a strong aeration (state I) or by an incubation in anaerobic conditions, upon addition of glucose and glucose oxidase (state II) (Wollman and Delepelaire, 1984). State II conditions could be obtained similarly by adding 5 µM FCCP to aerobic cells in the dark (data not shown).

Mutagenesis and plasmids
Plasmid pdWQ (Kuras and Wollman, 1994), which encompasses the whole petD-coding region, was used to perform site-directed mutagenesis according to the method of Kunkel (1985). pdWQ single strand was used to anneal the mutagenic oligonucleotide PWYE 5'-TATATTACA-GGTTAQATTTCAATCCATGTTAAGTTTCAAG-3' leading to the plasmid pdDPwye. Letters in bold indicate the mutated nucleotides, while a new EcoRI restriction site, used for restriction fragment length polymorphism (RFLP) analysis, is underlined. Plasmid pdDKpwy was constructed by introducing the 1.9 kb Smal–EcoRV fragment of plasmid pUC-antX-AAD containing the aadA cassette (Goldschmidt-Clermont et al., 1991) in the same orientation as the petD gene in the EcoRV site of plasmid pdDPwye.

Chloroplast transformation in *Chlamydomonas reinhardtii*

The ΔpetD strain, bearing a deletion of the petD gene, and wild-type strains (Kuras et al., 1995a) were transformed by tungsten particle bombardment according to Boynton et al. (1988) using a device, operating under vacuum, built in the laboratory according to Takahashi et al. (1996). At first we used pdDPwye to bombard the non-photosynthetic ΔpetD strain and transformants were selected on minimum medium at 60 µEm/s. We then used plasmid pdDPkwy to bombard the wild-type strain. Transformants were selected on TAP medium for the expression of the aadA cassette in the presence of 100 µg/ml of spectinomycin.

Protein isolation, separation and analysis
Whole cells, grown to a density of 3×10^6 cells/ml, were resuspended in 100 mM dithiothreitol and 100 mM Na_2CO_3 and solubilized in the presence of 2% SDS at 100°C for 1 min. Polypeptides were separated by denaturing SDS-PAGE (8 M urea, 12–18% acrylamide). Protein analyses were performed by immunoblotting, using specific antibodies against cytochrome b6f complex subunits as described in Kuras and Wollman (1994).

In vivo phosphorylation of antenna proteins
Cells grown at 3×10^6 cells/ml were harvested and resuspended in a phosphate–depleted medium containing 1 µCi/ml of ^32P. Then they were treated as described in Wollman and Delepelaire (1984).

Fluorescence measurements
Fluorescence measurements were performed at room temperature on a home-built fluorimeter, using a light source at 590 nm. The fluorescence response was detected in the far red region in the near IR region.

Absorption spectroscopy
Cells were collected during the exponential phase of growth (2×10^6 cells/ml) and resuspended in HEPES-NaOH 20 mM pH 7.2 in the presence of 10% Ficoll to avoid cell sedimentation. Spectroscopic measurements were performed at room temperature with a home-built spectrophotometer described by Joliot et al. (1980) and modified as in Joliot and Joliot (1984). The slow phase of the electrochromic signal (phase b according to Joliot and Delosme, 1974), which is associated with electron transfer through the cytochrome b6f hemes, was measured at 515 nm, where a linear response is obtained with respect to the transmembrane potential (Junge and Witt, 1968). Deconvolution of the b phase from the membrane potential decay was performed as described in Zito et al. (1998). Cytochrome f redox changes were also calculated essentially as described in Zito et al. (1998). All measurements were performed in the presence of 1 µM FCCP to collapse the transmembrane electrochemical proton gradient (Joliot and Joliot, 1994)
Photoacoustic spectroscopy

The quantum yield spectrum of PSI or PSII + PSII was recorded in both state I and state II conditions, as described by Delosme et al. (1994, 1996).

EPR measurements

EPR spectra were recorded on broken thylakoids of both the mutant and wild-type strains of *Chlamydomonas reinhardtii* using a Bruker ESP300e X-band spectrometer fitted with an Oxford Instruments He-cryostat and temperature control system. Samples were reduced by 5 mM ascorbate or 20 mM dithionite and incubated in darkness for 2 min prior to freezing.

Acknowledgements

We thank Frauke Baymann, Yves Choquet and Fabrice Rappaport for stimulating discussions and critical reading of the manuscript, and Ed Berry for early communication of the coordinates of cytochrome *bc*2, F.-A.W. greatly acknowledges the early interest of Alma Gal in the present study. This work was supported by the CNRS (UPR 1261).

References

The cyt bf Qo site controls LHClII kinase activation