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Abstract — Random finite sets are natural represen-
tations of multi-target states and observations that al-
low multi-sensor multi-target tracking to fit in the uni-
fying random set framework for Data Fusion. Although
a rigorous foundation has been developed in the form
of Finite Set Statistics, optimal Bayesian multi-target
filtering is not yet practical. Sequential Monte Carlo
(SMC) approzimations of the optimal filter are compu-
tationally expensive. A practical alternative to the opti-
mal filter is the Probability Hypothesis Density (PHD)
filter, which propagates the PHD or first moment in-
stead of the full multi-target posterior. The propagation
of the PHD involves multiple integrals which do not ad-
mit closed form. We propose to approzimate the PHD
by a set of weighted random samples which are propa-
gated over time using a generalised SMC method. The
resulting algorithm is very attractive as it is general
enough to handle non-linear non-Gaussian dynamics
and the computational complexity is independent of the
(time-varying) number of targets.

Keywords: Multi-target Tracking, Optimal Filtering,
Particle Methods, Point Processes, Random Sets, Se-
quential Monte Carlo.

1 Introduction

Multi-sensor multi-target tracking is a class of dy-
namic state estimation problems in which the entity
of interest is a set that is random in the number of
elements as well as the values of individual elements
[2]. Finite random sets are therefore natural and intu-
itive representations of multi-target states and multi-
target measurements. The modelling of multi-target
dynamic using random sets naturally leads to tracking
algorithms which incorporate track initiation, a proce-
dure that has mostly been performed separately in tra-
ditional tracking algorithms. More importantly, ran-
dom sets provide a rigorous unified framework for the
seemingly unconnected sub-disciplines of data fusion
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7], [11].

Although stochastic geometrical models, including
deformable templates and random finite sets have long
been used by statisticians to develop techniques for
object recognition in static images [1], this represen-
tation has been largely overlooked in the data fusion
and tracking literature until recently [10], [11]. The
first systematic treatment of multi-sensor multi-target
tracking, as part of a unified framework for data fu-
sion using random set theory was the work of Mahler
[10], [11]. By reconceptualising all sensors as a sin-
gle meta sensor, the target set as a single meta target
with multi-target state, and the observations collected
by the sensor suite as a single set of measurements of
the meta sensor, the multi-sensor multi-target tracking
problem can be rigorously cast in a Bayesian frame-
work.

Analogous to single-target tracking, Bayesian multi-
target tracking (in the random finite set framework)
propagates the multi-target posterior density recur-
sively in time. This involves the evaluation of multiple
(set) integrals and the computational intractability is
more severe than its single-target counterpart. More-
over, naive Sequential Monte Carlo (SMC) methods
have an efficiency decreasing exponentially with the
number of targets.

The Probability Hypothesis Density (PHD) filter
proposed by Mahler [12],[13] is a tractable alternative
to the optimal multi-target filter. It is a recursion prop-
agating the PHD or first moment of the multi-target
posterior. Under the assumption that the predicted
multi-target density is Poisson, this recursion is exact
and completely characterises the statistics of the dy-
namic Poisson point process of interest. We emphasise
here that the PHD is a function defined on the space
where individual targets live, but it is not a probability
density. It is positive and integrable, but does not nec-
essarily integrate to unity. Unfortunately, the PHD



propagation equations involve multiple integrals that
have no computationally tractable closed form expres-
sions even for the simple case where individual targets
follow a linear Gaussian dynamic.

In this article, we propose to approximate the PHD
using a SMC method; i.e. the PHD is represented by
a large set of weighted random samples (or particles)
which are propagated over time using importance sam-
pling and re-sampling strategies. SMC methods are
extremely powerful tools which have had an impact on
optimal (Bayesian) filtering [4], [5]. However, a direct
application of standard SMC methods to propagate the
multi-target PHD would fail as the PHD is not a prob-
ability density function and the PHD recursion is not a
standard Bayes recursion. In this paper, a probabilistic
interpretation of the PHD recursion is given which al-
lows the derivation of an efficient SMC implementation
of the PHD filter. The proposed algorithm is general
enough to handle non-linear non-Gaussian dynamics.
The salient feature of this algorithm is that its compu-
tational complexity is independent of the time-varying
number of targets, though the number of particles can
be adaptively allocated in such a way that a constant
ratio between the number of particles and the expected
number of targets is maintained. Numerical studies
shows surprisingly good performance, even very short
tracks are picked up among clutter.

The rest of the paper is organised as follows. Section
2 briefly reviews the basics of random finite set, opti-
mal multi-target tracking and the PHD recursion. Sec-
tion 3 describes a particle implementation of the PHD
recursion. Simulation results are presented in Section
4. Finally, some potential extensions are discussed in
Section 5.

2 Random Finite Set Model of
Multi-target Dynamics

In a single-target system, the state and measure-
ment at time k are two vectors of possibly different
dimensions, while in a multi-target system the state
and measurement are two collections of individual tar-
gets and measurements. The state and measurement
of a single-target system evolve in time with their di-
mensions unchanged. However, this is not the case
with a multi-target problem. As the multi-target state
and measurement evolve in time, the number of indi-
vidual targets and measurements may change, i.e. the
dimensions of the multi-target state and multi-target
measurement also evolve in time.

Multi-target state and multi-target measurement at
time k are naturally represented as finite sets X and
Zy. For example, if at time k there are M(k) tar-
gets located at zg1,...,2 k) € FEs then, Xp =

{Zra, T} € Es. Similarly, if N(k) observa-
tions zx,1, ..., 2K n(k) € Fo are received at time k, then
Zk = {21, 26,N (k) } © Eo where some of the N (k)
observations may be due to clutter. Analogous to sin-
gle target system, where uncertainty is characterised
by modelling the state and measurement by random
vectors, uncertainty in a multi-target system is char-
acterised by modelling multi-target state and multi-
target measurement as random finite sets (RFS) Zj
and X on the state and observation spaces F; and F,
respectively. A formal definition of a random finite set
is given in Section 2.1.

Given a realisation Xj_1 of the multi-target state
at time k£ — 1, the multi-target state at time k£ can be
modelled by the RFS

Ek = Sp(Xp—1) UBg(Xp—1) UT

where Si(X%—1) denotes the RFS of targets that have
survived at time k, By (Xj—1) denotes the RFS of tar-
gets spawned from Xj_; and I'y denotes the RFS of
targets that appear spontaneously at time k. The sta-
tistical behaviour of the RFS =y, is characterised by the
conditional probability “density” fip—1(Xx|Xr—1) in
an analogous fashion to the Markov transition density
for random vector. The notion of probability density
for RFS is formalised in Section 2.1.

Similarly, given a realisation X}, of the multi-target
state at time k, the multi-target measurement can be
modelled by the RFS

Y = Ek(Xk) @] Ck(Xk)

where Ei(X}) denotes the RFS of measurements gen-
erated by X}, and Cy(X}) denotes the RFS of clutter
or false alarms. The statistical behaviour of the RFS
Y is described by the conditional probability “den-
sity” gx(Zk|Xk) in an analogous fashion to the likeli-
hood function for random vector observations.

Let ppjx(Xk|Zo:x) denote the multi-target posterior
“density”. Then, the optimal multi-target Bayes filter
is given by the recursion

Prjk—1( Xk Zo:k—1)
- / Futtet (Xe X0Pit o (X | Zosi—1 s (dX) (1)

Prjk (X&| Zo:x)
_ 9k (Zr) Xi)Prje—1 (Xk| Zo:k—1)
J 96 (Zk| X)Prji—1 (X Zo:g—1) s (dX)

(2)

where 1t is a dominating measure to be discussed later.
The main difference between the recursion (1-2) and
standard clutter-free single-target filtering is that Xy
and Zj can change dimension as k changes. In most
cases, the above recursion cannot be done analytically.



In Section 2.3, we outline a sequential Monte Carlo
approach to implement this recursion. Section 2.1
presents a formal definition of RFS and formalises the
notion of density. In Section 2.2, we outline how f 1
and gx may be constructed from the underlying physi-
cal model of the sensors, individual target dynamics as
well as target births and deaths. Sections 2.1 and 2.2
can be omitted without loss of continuity provided the
notions of RFS and its density are accepted on faith.

2.1 Random Finite Sets

For completeness, this section outlines some back-
ground materials on random finite sets (RFS) or sim-
ple point processes. Background materials on RFS are
abundant in the spatial statistics literature; see for ex-
ample [3], [15]. However, works with an inclination to
multi-target tracking are quite new; the major body
of work appears to be that of Mahler [7], [10]. The
monograph [11] is an excellent introduction accessible
to a wide range of readers.

Given a compact subset FE of R", let F(FE) denote
the collection of finite subsets of E. A random fi-
nite set = on F is defined as a measurable mapping
from a probability space (22,4, P) to the collection
(F(E),B(F)) of finite subsets of E

E:0— F(E).

The probability measure P on the sample space {2 in-
duces a probability law for =, which can be specified
in terms of probability distribution, void probabilities
or belief function. The probability distribution Pz on
the (Borel) subsets B(F) of F(FE) is the most natural
description of the probability law for =

P=(T)=P="Y7) = P({w:E(w) € T}).

However, from random set theory [7], [14], the proba-
bility law for Z can also be given in terms of the belief
function B= on the bounded Borel subsets of E

1E(w) € 5}).

An equivalent description that is closely related to the
belief function is the void probability v= [3], [15], on
the bounded Borel subsets of E

v2(8) = P({w : [E@) N S| = 0}) = B=(5°).

Note that the above discussion is still valid when E is
replaced by any locally compact Haussdorff separable
space. We will use E to denote either the state space
E; or observation space Fj.

A direct extension of Bayesian reasoning to multi-
target systems can be achieved by interpreting the
probability density p=z of a RFS = as the Radon-
Nikodym derivative of the corresponding probability

distribution Pz with respect to an appropriate dom-
inating measure p, i.e P=(T) = [, p=(X)u(dX). In
spatial statistics, the dominating measure that is often
used is given by [6]

wT) = ZV(TﬂEi)/iL (3)

where A\’ denotes the Lebesgue measure on E°.

For any Borel subsets U C F(E;), V C F(E,)
let Pyx(U|Zo.x) = P(Ex € U|Zo.) denote the poste-
rior probability measure, Py,_1(U|Xx—1) = P(Ex €
U|X;-1) and Py(V|Xy) = P(Xr € V|Xi) denote
the conditional probability measures which describes
the multi-target Markov motion and measurement re-
spectively. Then the multi-target posterior density
Prjk(X&|Zo:x), transition density fir—1(Xp|Xp—1) and
likelihood g (Z| X)) used in (1-2) are the Radon-
Nikodym derivatives of Pk|k('|ZO:k); Pk\k—l('|Xk71)
and Py (-|X) respectively i.e.

Py U Zo.r) = /pk|k(Xk|Z0:k)us(ka),
u

Pupr U] Xy) = /M Futtos (X X )pis (dX0),

PO = | ozl Xunaldza).

%
where ps and p, are dominating measures on the Borel
subsets of F(E,) and F(E,) respectively.

2.2 Finite Set Statistics

In this section, key concepts in finite set statistics
and its relationship with conventional spatial statistics
are highlighted.

Individual target motion in a multi-target problem
is often modelled by a transition density on Es while
the measurement process is modelled as a likelihood on
E,. Consequently, multi-target transition density and
likelihood as Radon-Nikodym derivatives (of measures
on the Borel subsets of F(E;) and F(E,)) are difficult
to construct. Finite set statistics [7], [11] provides an
alternative notion of density for a RFS based on belief
function. Since belief functions are defined on subsets
of Eg, E,, models for multi-target motion and measure-
ment of the form Byp—1(S|Xk—1) = P(Ex C S| Xk-1),
Bk (T|Xy) = P(X, C T|Xk) can be easily constructed.
However, belief functions are non-additive, hence their
Radon-Nikodym derivatives are not defined. This
problem can be addressed by the introduction of set
integrals and set derivatives [7].

For a given function f : F(E) — [0,00), the set
integral over a bounded Borel subset S C E is defined
al

= 3 l X Z; i X X;
/Sf(X)(SX:ZZ;Z_! /S fHz1, oz )N (dy .. day),



Note that using the dominating measure given by Eq.
(3), we have for any U = U2, S,

/M F(x

For a set function F' : B(E) —

uax) = [ jsx. (4)

[0,00) its density f :

F(E) — [0,00) is defined by
&:/fuwx

S
The set derivative of a function F': B(E) — [0,00) at
a point z is a mapping (dF), : B(E) — [0,00) defined
as

F = 1 .
(@F)a(8) =, dm, )

where A, denotes a neighbourhood of z. Note that this
is a simplified definition, see [7] for a proper definition.
Furthermore, the set derivative at a finite set X =
{x1,...,x,} is defined by the recursion

(dF){zl ..... xn}(s) = (d(dF>{zl ..... In—l})zn (S)v

where (dF')y = F by convention.
Central to finite set statistics is the generalised fun-
damental theorem of calculus
= / f(X)oX
s

f(X) =

which allows the density of a non-additive set func-
tion to be determined constructively. It is clear from
Eq. (4) that (dB=z)(y(0) = dPz/du, i.e. the density
of the belief function Pz is, in fact, the density of the
corresponding probability measure P= with respect to
the dominating measure . Consequently, the multi-
target transition density frx—1(Xx|Xx—1) and likeli-
hood gx(Zk|Xk) can be determined explicitly by

Jrpoe—1 (Xn| Xp—1) (dBrk—1(-|Xk-1))x,(0),
96(Zk|Xk) = (dBrr (| Xk)) 2, ().

Finite set statistics converts the construction of multi-
target densities from multi-target models into comput-
ing set derivatives of belief functions. Procedures for
analytically differentiating belief functions have also
been developed [7], [11] to facilitate the task for prac-
tising tracking engineers.

2.3 Multi-target Particle Filter

The propagation of the multi-target posterior den-
sity recursively in time involves the evaluation of mul-
tiple set integrals and hence the computational re-
quirement is much more intensive than single-target
filtering. Particle filtering techniques permits recur-
sive propagation of the full posterior [4], [5]. The

(dF)x(0) < F(S

single-target particle filter can be directly generalised
to the multi-target case. Assume at time k — 1, a set
of weighted particles {w,(:zl, X ,@1}1]\;1 is available, the
particle filter proceeds as follows at time k

Multi-target Particle filter

At time k > 1,
Step 1: Sampling Step

e Fori =1,...,N, sample )?]gl) ~ qk ( |X]C 1,Zk)

and set
9k (ZkU}S)) Trie—1 ()z;?)
qk (X;EZ) X;ii_)l,Zk)

_ x")
@) = o

e Normalise weights: ZN 1 15;(;) =

Step 2: Resampling Step

e Resample { o, X éi)}il to get {w,(;), ’ii)}N

i=1

In this context, the importance sampling density
qr. (- |X;C 1, Zk) is a multi-target density and X() ~

ar (¢ Xk )1, Z) is a sample from a point process.
There are many possible ways to perform the resam-
pling step. Most methods consists of copying each par-
ticle X ,gi) N, ,gi) times under the constraint Zfil N, ,gi) =
N to obtain {X(i)}N The (random) resampling
mechamsm is chosen such that E[N (Z)] N ag) where

ak > 0, ZZ 1 ak = 1 is a sequence of weights set
by the user. This resampling step could be achieved
using multinomial resampling but the efficient strat-
ified resampling algorithm described in [9] has bet-
ter statistical properties. The new weights are set to
w,(c) o w,(;)/ ,(;) ZN 1 w,(:) = 1. Typically, al(c) = @l(:)
but alternatively we can select a,(c) x (QE,(;))”
€ (0,1).

In this algorithm, each particle corresponds to a
sample from a point process and the particles can thus
be of varying dimensions. The main practical prob-
lem with this approach is the need to perform im-
portance sampling in very high dimensional spaces if
many targets are present. Moreover, it can be difficult
to come up with an efficient importance distribution
and the choice of a naive importance distribution like
ar(+] X,gi)l, Zk) = frjr—1(] X,ii)l) will typically lead to
an algorithm whose efficiency would decrease exponen-
tially with the number of targets for a fixed number of
particles.

where



2.4 The PHD Filter

The Probability Hypothesis Density (PHD) of a RFS
is the analogue of the expectation of a random vec-
tor. The expectation of a random set, however, has no
meaning since there is no notion of addition for sets.
Nevertheless, an indirect construction can be used by
representing random sets as random counting measures
or random density functions.

A finite subset X € F(FE) can also be equivalently
represented by the counting measure Nx (on the Borel
subsets of E) defined by Nx(S) = > .y 1s(z) =
|X NS|, where the notation |A| denotes the number
of elements in A. Alternatively, the density dx of Nx
can also be used to represent the finite set X. Indeed,
dx = D ,cx Oz, where §, denotes the Dirac delta func-
tion centred at x. Consequently, the random finite set
= can also be represented by a random counting mea-
sure Nz defined by N=(S) = |EN S| or its random
density 6= = ) .= 0. These representations are com-
monly used in the point process literature [3], [15].

Using the random density representation, the first
order moment (or PHD) Dz of a RFS = is defined by

D=(z) = E[é=(z)] = /5X(x)PE(dX).

It can be shown that [12],[13]

- /fz({iﬂ} UW)OW = (dfz).(FE).

The PHD Dz of = is a unique function (except on a
set of measure zero) on the space E. Given a mea-
surable region S C FE, the PHD measure of S, i.e.
[ D=(x)X(dx), gives the expected number of elements
of = that are in S. The peaks of the PHD of = provide
estimates for the elements of =.

Let % denote PHD of the spontaneous birth RFS 'y,
brjk—1 (-] §) denote the PHD of the RFS By ,_1({¢})
spawned by a target with previous state &, egr—1 (§)
denote the probability that the target still exist at time
k given that it has previous state &, fx—1 (-|-) denote
the transition probability density of individual targets,
gk (+] ) denote the likelihood of individual targets, ci
denotes clutter probability density, A\ denotes aver-
age number of Poisson clutter points per scan, and pp
denotes probability of detection. Define the PHD pre-
diction and update operators ®y;_1, ¥ respectively
as

)Z/ﬁm4@£M@M%HWWW (5)

wk,z(-r)
VO F D e )

(Prp—10)(z

a(z), (6)

for any integrable function o on Eg, where

Prjk—1(, &) eklk—1(8) frp—1(2] §) + brjr—1 ([ §),
v(r) = 1-pp(z),
Yrz(z) = pp(x)gr(z| ),
ke(z) = Apeg(2).

Let Dy, denote the PHD of the multi-target pos-
terior py,. Assuming that the RFS involved are Pois-
son, it was shown in [12],[13] that the PHD recursion
is given by

Dy = (Vg 0 pi—1) (Di—1jp—1) - (7)

Observe that the prediction operator ®_; is affine
while the update operator ¥y, is highly non-linear. The
update operator appears to be linear at first glance
since it only scales the argument. However, the scaling
factor is a highly non-linear function of the argument.

3 Sequential Monte Carlo Im-
plementation of the PHD Fil-
ter

In this section, we detail a novel Sequential Monte
Carlo (SMC) method to implement the recursion de-
scribed by (5)-(6). A particle interpretation of the pre-
diction and update operators is presented first followed
by the full algorithm.

3.1 The prediction operator

Suppose that at time step k — 1, we have a function
a1 characterised (exactly) by the set of particles and

L1 -
weights {w!” 2" 1P e,

Ly—1

Z wk 15 (1) :L')

(the notation {wk 1,30,(6)1 ZLkll is used interchange-

ably with ZLk Iw,C 16, @ ) Then

Oékl

(Prjp—10k-1)(zK) = /¢k\k 17k, §)ak—1(§)N(dE)

+ Yr(xr)
Ly

:Zw

To obtain a particle approximation of ®,_iak—1,
we apply importance sampling to each of its terms. Let

10k ( $k,$§€) 1)+ vk (zr)

{z l)}Lk ! be Lp_1 samples from the proposal density



ar (- |zk 1> Zk) and {a:k }fki;:‘c’;l be Ji i.i.d. samples
from another proposal density pg(-| Zx) i.e.

zl(j) -~ { - ((

We can_now define the approximate prediction op-
erator @k‘k 1 that maps the particle representation

L1
{wk vzk 1

|zk 17Zk2) 5 1= 1, "'7Lk71
| Zk), i=Lg_1+1,...,Lk—1+ Jg

i—1  to another particle representation

(4) Lk 1+Jk
{wklk g ke as follows

Lp_1+Jg
_ (1)
(Dppp_rc—1)(ag) = E wk‘k,l(gm;i)(xk)

where
oo (o) ol

. T (2O N
oy = )
Jkpk(1£)|zk)’

Note that we started with ag_1 having Ly particles,
which are then predicted forward by the kernel ¢,
to another set of Li_1 particles. Additionally, we also
have Jy new particles arising from the birth process.
The number of new particles Ji can be a function of
k to accommodate the varying number of new born
targets at each time step. Assuming that the total
mass of v has closed form, then typically Ji is chosen
to be proportional to this mass, i.e. Ji = p [ v (2)dz
so that on average we have p particles per new born
target.

wLp_q

t=Lk 141, L1+ Ji

3.2 The update operator

For the update step of the recursion, assume that

we have from the prediction a function ay,—; charac-

terised by {wk|k 1 (1)}1-L:’“1’1+J’“

operator gives

. Applying the update

Lk 1+Jk
(Vragp—1)(z) = Z )515;')()
i=1
where
(1)
(i) _ (i) Vi, (2),) (i)
w = |v(x + _— ., (8
' - zgk i) + it | e )
Ly _1+Jk
Ci(z) = Z s (@ iy (9)

The update operator maps the function with parti-

l)}Lk 1+Jk

cle representation {wkl 10T into one with

particle representation {wk ,xk)}Lk % by modify-
ing the weights of these particles according to Eq. (8).

3.3 Particle propagation

For any k > 0, let o = {wk ,zk } | denote a par-
ticle approximation of Dy;. The algorlthm is designed
such that the concentration of particles in a given re-
gion of the state space, say A, represents the expected
number of targets in A.

Using the PHD recursion, a particle approximation
of the PHD at time step k£ > 0 can be obtained from a
particle approximation at the previous time step by

ok = (Vg o Ppjp—1)k—1. (10)
Note that since oy has Ly = Li_1 + Ji particles, the
number Ly, of particles increases over time even if the
number of targets does not. This is very inefficient,
since computational resource is wasted in exploring re-
gions of the state space where there are no targets. On
the other hand if Ly is fixed then the ratio of particles
to targets would fluctuate as the number of targets
changes. In other words, at times we may have an in-
sufficient number of particles to resolve the targets (up
to the PHD limitations) while at other times we may
have an excess of particles for a small number of tar-
gets or no target at all. It would be computationally
more efficient to adaptively allocate approximately say
p particles per target at each time epoch.

Since the expected number of targets Ny, (given
by the total mass ka‘k (€| Zo.k)dE) can be estimated

o Ly 1+
by N = > ;51" sz(cj)v

number of particles L = pN k|k- Furthermore, we also
want to eliminate particles with low weights and mul-
tiply particles with high weights to focus on the impor-

tant zones of the space. This can be achieved by re-
l)}Lk 1+Jk

it is natural to have the

sampling L = pﬁ k|% Particles from {w,(j
and redistributing the total mass Ny, among the Ly
resampled particles.

3.4 Algorithm

Based on the elements presented above, it is possi-
ble to propose the following generic particle filtering
algorithm for the operator recursion.

Particle PHD filter

At time k > 1,
Step 1: Prediction step

e Fori=1,...,Lr_1, sample i,(j) ~ qk ( |:ck 1,Zk)

and compute the predicted weights

@ Dk (51(;)’ 951(;) 1) (3)

Wrlk—1 = ~ W Zq-
qk( (Z 1‘5; 1;Zk)




e Fori=Ly 1+1,....,Lg_1+ Jx, sample
&~ pe (1 Z1)
and compute the weights of new born particles

—@) 1 i (%’(j))
wk\k—l - Tkm

Step 2: Update step
e For each z € Zj, compute

Lg_1+Jx

Celz)= > @),
j=1

e Fori=1,...,Lg_1 + Ji, update weights

~()
() _ |, =00 bz (@7) | )
Wy [U(xk )+ Z n(2) + Cr(2) Wrlk—1-
Z2EZy
Step 3: Resampling step
o Compute the total mass ]Vk‘k = Zfﬁ[ﬁ‘]k ﬁ,(cj)
S ONIESOR E
e Resample {wk [Nk, T}, } to  get
i=1

{wz(:)/ﬁk\kaxz(:)}zl-

Care must be taken when implementing the resam-
pling step for the particle PHD filter. In this case,
the new weights {wl(;)}f + are not normalised to 1
but sum to ]\Afk‘k. Similarly to the standard case,
each particle %g) is copied N, ,gi) times under the con-
straint 3741 N,gi) = Ly, to obtain {mg)}f:’“‘l. The
(random) resampling mechanism is chosen such that
E[ngi)] = Lkag) where ag) > 0, ZiL:’“'l’lJr']k ag) =1
is a sequence of weights set by the user. This is
achieved using stratified resampling [9]. However,

the new weights are set to w,(:) x 15,(:) /oz,(f) with

ijl w,(j) = ]Vk‘k instead of ZZL:’“l w,(:) = 1. Typi-
cally, a,(j) = ~,(j)/ Nkl 1 but alternatively we can select

ag) x (ﬁ,(:))” where v € (0,1).

This filter reduces to the standard particle filter in
the case where there is only one target with no birth,
no death and no clutter.

In the standard particle filtering context, choosing
the importance distribution so as to minimise the (con-
ditional) variance of the weights, is well known. In the
PHD context, this becomes much more difficult and is
the subject of further study.

4 Simulations

For visualisation purposes, a one-dimensional sce-
nario is considered. The targets move along the line
segment [—100;100]. The states of the targets consist
of position and velocity, while only position measure-
ments are obtained. Targets can appear or disappear
in the scene at any time. We assume a Poisson model
for spontaneous target birth. Without loss of general-
ity, we consider targets with linear Gaussian dynamics.
Note that the algorithm presented is general enough to
handle non-linear non-Gaussian dynamics. In the first
example the data shows four trajectories with no clut-
ter, see Figure 1. Figure 2 plots the PHD of position
against time. Observe that all four trajectories are au-
tomatically initiated and tracked.
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Figure 1: 4 tracks, no death, no birth
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Figure 2: PHD of position

In the second example, we consider an unknown and
time varying number of targets observed in clutter.
The targets appear spontaneously according to a Pois-
son process with intensity 0.2 (| 0,1). For simplicity
we consider no spawning. Each existing a target has
a (state independent) probability of survival e = 0.8.
The clutter process is Poisson with uniform intensity



over the region [—100; 100] and has an average rate of
10. Figure 3 shows the tracks with clutter on the po-
sition measurements and Figure 4 plots the PHD of
position against time. Observe from Figure 4 that the
PHD filter shows surprisingly good performance, even
very short tracks are picked up among clutter.
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Figure 3: birth rate 0.2, death rate 0.2, clutter rate 10

position

Figure 4: PHD of position

5 Conclusion

In this paper, we have highlighted the relationship
between Radon-Nikodym derivative and set derivative
of random finite sets. Our main contribution is a se-
quential Monte Carlo implementation of the probabil-
ity hypothesis density filter for multi-target tracking.
We have demonstrated the efficiency of the algorithm
in simulations. There are various potential extensions
to this work. First, choosing the importance distribu-
tions so as to minimise the (conditional) variance of the
weights is a challenging problem. Second, it would be
of great practical interest to be able to model targets
of different types.

References

[1] A.J. Baddeley and M.N.M. van Lieshout, “ICM
for object recognition”. In Y. Dodge and J. Whit-
taker (eds.), Computational Statistics, volume 2.
Heidelberg: Physica/Springer, pp. 271-286, 1992.

[2] Y. Bar-Shalom and X-R. Li, Multitarget-
Multisensor Tracking: Principles and Techniques,
Storrs, CT: YBS Publishing, 1995.

[3] D. Daley and D. Vere-Jones, An introduction
to the theory of point processes, Springer-Verlag,
1988.

[4] A. Doucet, S. J. Godsill and C. Andrieu, “On
sequential Monte Carlo sampling methods for
Bayesian filtering,” Stat. Comp., 10, 197-208,
2000.

[5] A. Doucet, N. de Freitas, and N. J. Gordon,
Sequential Monte Carlo Methods in Practice,
Springer-Verlag, May 2001.

[6] C. Geyer, “Likelihood inference for spatial point
processes”, in Stochastic Geometry likelihood and
computation, Barndorff-Nielsen et. al (eds.), pp.
79-140, 1999.

[7] I. Goodman, R. Mahler and H. Nguyen, Math-
ematics of Data Fusion, Kluwer Academic Pub-
lishers, 1997.

[8] J. Goutsias, R. Mahler and H. Nguyen (eds.),
Random Sets Theory and Applications, Springer-
Verlag New York, 1997.

[9] G. Kitagawa, “Monte Carlo filter and smoother

for non-Gaussian nonlinear state space models”,

J. Comp. Graph. Stat., vol. 5, no. 1, pp. 1-25,

1996.

R. Mahler. “Global integrated data fusion” , Proc.

7th Nat. Symp. on Sensor Fusion, Vol. 1, (Un-

classified) Sandia National Laboratories, Albu-

querque, ERIM Ann Arbor MI, pp. 187-199, 1994.

R. Mahler, An Introduction to Multisource-

Multitarget Statistics and Applications, Lockheed

Martin Technical Monograph. March 15, 2000.

R. Mahler, “A theoretical foundation for

the Stein-Winter Probability Hypothesis Den-

sity (PHD) multi-target tracking approach,”

Proc.2002 MSS Nat’l Symp. on Sensor and Data

Fusion, Vol. T (Unclassified), San Antonio TX,

June 2000.

R. Mahler, “Approximate multisensor-multitarget

joint detection, tracking and identification using

a first order multitarget moment statistic,” IEEFE

Trans. AES, to appear.

G. Matheron, Random sets and integral geometry,

J. Wiley, 1975,

D. Stoyan, D. Kendall, and J. Mecke, Stochas-

tic Geometry and its applications, John Wiley &

Sons, 1995.



