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Abstract

This dissertation is about regional climatemodeling over SouthAmerica, the analysis ofmodel
sensitivities to cloud parameterizations, and the development of novel model evaluation tech-
niques based on climate networks.
In the first part we focus on simulations with the COnsortium for Small scale MOdeling

weather prediction model in CLimate Mode (COSMO-CLM) and provide the first thorough
evaluation of this dynamical regional climatemodel over SouthAmerica.We analyze the sensi-
tivity of simulated tropical precipitation to the parametrization of cumulus convection versus
subgrid-scale clouds in the radiation scheme and find them to be of similar magnitude. It is
shown that model runs with different representations of subgrid-scale clouds in the radiation
scheme produce substantially different cloud ice and liquid water contents. This impacts sur-
face radiation budgets and in turn convection and precipitation. Considering all evaluated vari-
ables in synopsis, the model performs best with the nondefault cumulus convection scheme
from the Integrated Forecasting System Cy33r1 and with the nondefault statistical scheme for
subgrid-scale clouds in the radiation scheme. Despite several remaining deficiencies, such as a
poor simulation of the diurnal cycle of precipitation, a severe underestimation of the frequency
of heavy precipitation events, and a substantial austral summer warm bias over northern Ar-
gentina, this new setup considerably reduces long-standing model biases, which have plagued
COSMO-CLM across tropical domains.
In the second part we introduce new performance metrics for climate model evaluation

with respect to spatial covariabilities. In essence, these metrics consist of dissimilarity mea-
sures for climate networks constructed from simulations and observations. We develop both
local and global network dissimilarity measures to facilitate the depiction of local dissimilari-
ties in the form of bias maps as well as the aggregation of those local to global dissimilarities
for the purposes of climate model intercomparison and ranking. To cover as wide a range of
applications as possible, ourmeasures are defined for directed as well as for undirected climate
networks with and without edge weights and/or node weights. In order to demonstrate their
capabilities, we employ them for a comparison of regional climate simulations with COSMO-
CLM and with the STatistical Analogue Resampling Scheme (STARS) over South America.
In the first of two such studies, simulations are both driven by and evaluated against reanal-
ysis data, and the evaluation is carried out for different variables and seasons. We quantify
model performances with the new bivariate metrics as well as with conventional univariate
root-mean-square errors of climatological mean values and variances. While we mostly find
agreement in model ranking according to the different metrics, there are also cases in which
the network structure is reproduced better by a model which is less favored by a conventional
measure or vice versa. This demonstrates the complementarity of the different model evalu-
ation approaches. In the second study, we focus on monsoon season precipitation networks
and evaluate the COSMO-CLM and STARS simulations against Tropical Rainfall Measuring
Mission 3B42 V7 observations. We consider climate networks based on positive and based
on negative rank correlations between rainfall anomaly time series at different locations as
well as based on spatial synchronizations of extreme rain events. We find greater differences
in model performance between network types for a fixed but arbitrary climate model than
between climate models for a fixed but arbitrary network type and identify two sources of un-
certainty in this respect. Firstly, interannual climate variability limits fidelity, particularly in
the case of the extreme event network, and secondly, larger geographical link lengths render
link misplacements more likely, most notably in the case of the anticorrelation network. Both
contributions are quantified using suitable ensembles of bootstrap and random networks.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit regionaler Klimamodellierung über Südamerika, der
Analyse vonModellsensitivitäten bezüglichWolkenparametrisierungen und der Entwicklung
neuer Methoden zur Modellevaluierung mithilfe von Klimanetzwerken.
Im ersten Teil konzentrieren wir uns auf das COnsortium for Small scale MOdeling model

in CLimate Mode (COSMO-CLM) und führen die erste umfassende Evaluierung dieses regio-
nalen Klimamodells über Südamerika durch. Es stellt sich heraus, dass die untersuchten Ab-
hängigkeiten simulierter tropischer Niederschläge von den Parametrisierungen feuchter Kon-
vektion sowie subgitterskaliger Wolken im Strahlungsschema von ähnlicher Größenordnung
sind. Weiterhin führen Modellläufe mit verschiedenen Parametrisierungen subgitterskaliger
Wolken im Strahlungsschema zu substanziell verschiedenen Wolkenwasser- und eisgehalten.
Dies führt zu veränderten Strahlungsbudgets, was wiederum Veränderungen in konvektiver
Aktivität und imNiederschlag nach sich zieht. Insgesamt erhält man die besten Simulationser-
gebnisse bei Verwendung des Konvektionsschemas des Integrated Forecasting System Cy33r1
und der statistischen Parametrisierung subgitterskaliger Wolken im Strahlungsschema. Mit
der neuen Konfiguration verringern sich, trotz verbleibender Mängel wie einer ungenauen
Wiedergabe des mittleren Niederschlagstagesgangs, einer beträchtlichen Unterschätzung der
Häufigkeit von Starkniederschlagsereignissen und deutlich zu hoher Sommertemperaturen
über Nordargentinien, die typischen und seit langer Zeit bestehenden systematischenModell-
fehler des COSMO-CLM in tropischen Breiten.
Im zweiten Teil führen wir neue Metriken für die Evaluierung von Klimamodellen bezüg-

lich räumlicher Kovariabilitäten ein. Im Kern bestehen diese Metriken aus Unterschiedsma-
ßen für den Vergleich von simulierten mit beobachteten Klimanetzwerken. Wir entwickeln
lokale und globale Unterschiedsmaße zum Zwecke der Darstellung lokaler Unterschiede in
Form von Fehlerkarten beziehungsweise der Rangordnung von Modellen durch Zusammen-
fassung lokaler zu globalen Netzwerkunterschieden. Zur Abdeckung eines möglichst breiten
Anwendungsspektrums sind unsereMaße sowohl für gerichtete als auch für ungerichteteNetz-
werke mit und ohne Kanten- und/oder Knotengewichten definiert. Zu Demonstrationszwe-
cken verwenden wir die neuen Metriken für einen Vergleich regionaler Klimasimulationen
mit COSMO-CLM undmit dem STatistical Analogue Resampling Scheme (STARS) über Süd-
amerika. In der ersten zweier solcher Studien nutzen wir Reanalysedaten sowohl für den An-
trieb der Simulationen als auch als Referenz für deren Evaluierung, die für verschiedene Varia-
blen und Jahreszeiten durchgeführt wird. Die Leistungsfähigkeit derModelle wird sowohlmit
den neuen bivariaten Metriken als auch mithilfe von konventionellen univariaten mittleren
quadratischen Abweichungen in klimatologischen Mittelwerten und Varianzen quantifiziert.
Während die sich gemäß der verschiedenen Metriken ergebenden Modellrangfolgen weitest-
gehend übereinstimmen, finden wir auch Fälle, in denen die Netzwerkstruktur von einemMo-
dell besser wiedergegeben wird, das gemäß einer konventionellen Metrik schlechter abschnei-
det oder umgekehrt, was die Komplementarität der verschiedenen Evaluierungsmethoden de-
monstriert. In der zweiten Studie konzentrieren wir uns auf Niederschlagsnetzwerke während
der Monsunperiode und evaluieren die COSMO-CLM- und STARS-Simulationen gegen Be-
obachtungen der Tropical Rainfall Measuring Mission 3B42 V7. Wir konstruieren Klimanetz-
werke basierend auf positiven und negativen räumlichen Rangkorrelationen zwischen Nieder-
schlagsanomaliezeitreihen sowie basierend auf räumlichen Synchronisationen von Extremnie-
derschlagsereignissen. Wir finden größereWiedergabetreueunterschiede zwischen Netzwerk-
typen bei festem Modell als zwischen Modellen bei festem Netzwerktyp und identifizieren
diesbezüglich zwei Unsicherheitsquellen. Zum einen begrenzt die natürliche jährliche Klima-
variabilität die Wiedergabetreue, insbesondere im Fall des Extremereignisnetzwerks. Zum an-
deren führen größere geografische Kantenlängen zu einer erhöhtenWahrscheinlichkeit fehler-
hafter Kantenanordnung, insbesondere im Fall des Antikorrelationsnetzwerks. Beide Beiträge
quantifizieren wir mit geeigneten Ensembles von Bootstrap- und Zufallsnetzwerken.
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Preface

This dissertation integrates research results that were obtained in the framework of a graduate
school project which had the initial objective to analyze sensitivities of the South American cli-
mate to changes of the regional vegetation as they have occurred, are occurring or may yet occur in
response to regional climate and land-use changes. It was planned to quantify those sensitivities by
running the regional climate model COSMO-CLM under various greenhouse gas and vegetation
change scenarios.
Since it was initially unknown whether COSMO-CLM was actually able to simulate the South

American climate with state-of-the-art fidelity, my first task was to provide a thorough evaluation of
themodel performance over this region. I found that, with a setup that worked well over Africa, the
model produced severe precipitation biases over tropical South America, and it tookme almost one
year to find a model configuration that considerably alleviated the problem. Everything I learned
during those months is presented in Pt. I.
Dealing with these difficulties I developed a strong interest in the general problem of climate

model evaluation. Hence, in the following, I shifted my research focus to this topic. I began to
cooperate with Jan H. Feldhoff on the development of new evaluation methods using complex net-
work theory. The principle idea here was to employ networks as a tool to evaluate climate models
with respect to the spatial covariabilities in the climate system. This work, which I sadly had to
finish without Jan, is presented in Pt. II.

The initially planned climate sensitivity analysis will be realized in future research projects car-
ried out at the Potsdam Institute for Climate Impact Research (PIK). For them, the results of this
dissertation constitute a sound basis.
Since many people have inspired, guided and supported my research efforts over the past three

years, results are presented by us in the following. Essential contributions by Jan H. Feldhoff are
pointed out at the appropriate location.
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I.

Regional ClimateModel Sensitivities to
Parameterizations of Cumulus Convection
and Stratiform Subgrid-Scale Clouds over

South America
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1. Introduction I

Since the beginning of numerical atmospheric modeling and despite many efforts, deficiencies in
the representation of cloud processes in climate models have remained a source of much uncer-
tainty in climate projections (Randall et al., 2003, 2007; Stocker et al., 2013).This is because clouds
significantly influence thermodynamic and hydrological budgets, but need to be parameterized in
mesoscale models (cf. Ch. 3; Tompkins, 2002).
A variable intimately related to clouds and of paramount importance for climate impact research

is precipitation. In light of climate change, questions related to the hydrological cycle are:Where do
humans have to adapt to changes in water availability (Parry et al., 2007; Liersch et al., 2012; Schewe
et al., 2014)? Are extreme rain events going to be more frequent or intense (Marengo et al., 2009;
Toreti et al., 2013; Fischer et al., 2013a)? Howwill ecosystems such as the Amazon rainforest respond
to changes in precipitation patterns (Salazar et al., 2007; Cook et al., 2011; Warszawski et al., 2013)?
Deficiencies in parameterizations of cloud processes are reflected in precipitation biases, among

other things. Particularly in the tropics, cumulus convection is an important process in this re-
spect and its parameterization has received much attention (e.g. Betts and Jakob, 2002; Bechtold
et al., 2004; Arakawa, 2004; Santos e Silva et al., 2012). However, since cumulus convection involves
many coupled processes between the surface, the planetary boundary layer, and the free troposphere
(Bechtold et al., 2004), the quality of its representation by climate models depends on several other
model components as well.
One example of such amodel component is the parameterization of radiative transfer as radiation

influences energy budgets at the surface and throughout the atmosphere, and thus codetermines
the amount of energy that is potentially available for cumulus convection. While radiative transfer
impacts clouds, clouds also impact radiative transfer. This opens a feedback loop from clouds to
clouds that shall be the main topic of the first part of this dissertation.
We are going to investigate how changes in the representation of stratiform nonprecipitating

subgrid-scale clouds in the parameterization of radiative transfer influence cumulus convection
and precipitation. Sensitivities of this kind have been found in earlier studies: In simulations with
the Regional Climate Model (RCM) COSMO-CLM over Europe, Hohenegger et al. (2008) discov-
ered a strong sensitivity of convective summertime rainfall to whether or not subgrid-scale clouds
were considered in the radiative transfer calculations; in simulations with another RCM over North
America, Xu and Small (2002) found a substantial sensitivity of monsoon season rainfall to the
choice of the radiation scheme; and Morcrette et al. (2008) reported that a revision of the radiative
transfer parameterization of the Integrated Forecasting System (IFS) of the European Centre for
Medium-range Weather Forecasts (ECMWF) led to significant improvements of simulated cumu-
lus convection over tropical continents.
We found similar sensitivities during our quest for a good COSMO-CLM setup for South Amer-

ica. The COSMO model in CLimate Mode (COSMO-CLM or CCLM; Rockel et al., 2008a) is the
climate version of the COnsortium for Small scale MOdeling (COSMO) model (Baldauf et al.,
2011), which is the operational numerical weather prediction model of the German Weather Ser-
vice and other members of the COSMO consortium.The development of CCLM is steered by the
CLM-Community, which has more than 50 member institutions from Europe, Asia, Africa, and
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1. Introduction I

the Americas. CCLM has been extensively applied over European domains (e.g. Jaeger et al., 2008;
Zahn and von Storch, 2008; Hohenegger et al., 2009; Davin and Seneviratne, 2012) but also over
the Indian subcontinent (Dobler and Ahrens, 2010), over East Asia (Fischer et al., 2013b), and over
Africa (Nikulin et al., 2012).The latter two applications were spurred by the COordinated Regional
climate Downscaling EXperiment (CORDEX) initiative (Giorgi et al., 2009).
Previously, there had been three documented CCLM applications over South America: Böhm

et al. (2003) had tested an early model version in combination with different soil hydrology param-
eterizations over the semi-arid Northeast region of Brazil; Rockel and Geyer (2008) had evaluated
precipitation over the whole continent as simulated with the standard European model setup; and
Wagner et al. (2012) had compared simulated sea level pressures, precipitation, and 2m tempera-
tures to observations over the southern part of the continent.
With our first CCLM simulation over South America, for which we used a model setup that

worked well over Africa (Panitz et al., 2013), we essentially reproduced the bias pattern of strong
underestimation/overestimation of rainfall over tropical continents/oceans that Rockel and Geyer
(2008) had found in their study across tropical domains. We had hoped for a better result since in
comparison to them, we did not just use a different model setup but also a later model version.
In order to improve simulation results, we first examined model sensitivities to the representa-

tion of land surface-atmosphere and ocean surface-atmosphere interactions. For example, we tried
different values for the root depth of rainforest trees since that should impact the moisture available
for evapotranspiration and in turn atmospheric humidity and precipitation; we experimented with
different options for the calculation of the shortwave land surface albedo to check whether the in-
duced changes in the surface energy balance would enhance precipitation over land; and we tuned
the oceanic evaporation rate up and down, assuming that this would lead to precipitation changes
over ocean and land. Yet all of those experiments led either to tiny overall improvements only or to
reduced biases for one variable/area/time of the year at the expense of an increased bias for another
variable/area/time of the year.
Afterwe had ruled out the representation of atmosphere-surface interactions over land and ocean

as very important for an accurate simulation of precipitation, we turned our attention to the atmo-
sphere. Given that precipitation originates from clouds, it appeared natural to examine the represen-
tation of clouds in the model. It turned out that CCLM offers two options for the parameterizations
of both subgrid-scale cumuliform and subgrid-scale stratiform clouds. Choosing the nondefault
options in both cases led to the substantial improvements we had hoped for.

The details of this model sensitivity study are presented in the following. We include results for
more variables than just precipitation to provide a first comprehensive evaluation of CCLM over
South America. At the same time, to our knowledge, this is the first RCM sensitivity study compar-
ing simulations with a relative humidity and a statistical scheme for the representation of subgrid-
scale stratiform clouds in the parameterization of radiation in combination with different parame-
terizations of cumulus convection.

There has been a range of attempts to simulate the South American climate with other RCMs.
While some studies focus on model evaluation (Nicolini et al., 2002; Seth and Rojas, 2003; Solman
et al., 2013), others provide regional climate projections based on greenhouse gas emission or land-
surface change scenario runs of general circulation models (Correia et al., 2008; Marengo et al.,
2010, 2012a). We are going to relate our evaluation results to those obtained in these studies.
Part I is structured as follows.The paradigm of numerical climate modeling that CCLM adheres

to is introduced in Ch. 2. In Ch. 3 we outline the idea of physical parameterization in the context of
atmospheric modeling, and describe the subgrid-scale cloud parameterization schemes available in
CCLM. In Ch. 4 we explain the concept of regional climate modeling and give a general description
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of CCLM. Our understanding of the term climate model evaluation is stated in Ch. 5. In Ch. 6 we
then delineate the design of our CCLM sensitivity-evaluation study over South America. Its results
are presented in Ch. 7. We conclude with a summary and discussion in Ch. 8.
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2. Numerical AtmosphericModeling and
Meteorological Reanalysis

The Intergovernmental Panel on Climate Change (IPCC) defines climate in a narrow sense as the
statistical description of weather over long periods of time (Baede, 2001). In line with this definition,
the numerical climate modeling paradigm we are concerned with in this part is the statistical analy-
sis of long-term weather simulations with suitably extended Numerical Weather Prediction (NWP)
models.

The basic ideas of numerical atmospheric modeling were developed about a century ago, yet
they could only be put in practice with the advent of electronic digital computers in the 1940s, most
notably with the completion of the Electronic Numerical Integrator And Computer (ENIAC) in
1945 (McCartney, 1999; Donner et al., 2011).The first long-range numerical simulation of the atmo-
spheric general circulationwas carried out by Phillips (1956) with amodel that only had two vertical
levels and 16× 17 horizontal grid cells. It was a great success as a definite three-celled meridional cir-
culation corresponding to the Hadley, Ferrel, and Polar cells appeared after one month’s simulation.
This seminal work thrilled the meteorological community and led to the development of several
Atmospheric General Circulation Models (AGCMs or just GCMs as we are only concerned with the
atmosphere and not with the ocean here) by research groups based in the US and the UK (Donner
et al., 2011).

Due to limited computer resources and different objectives of the respective research commu-
nities, NWP and numerical climate modeling evolved separately in their early stages. Back then,
weather forecasting was limited to short-term prediction over small areas with modelers focusing
on the efficiency of their numerical methods, while climatemodels have been global from the outset
with modelers concentrating on conservative numerical formulations and advanced atmospheric
physics. Global weather forecasting began in the 1970s with the establishment of the ECMWF. Syn-
ergies between the disciplines became evident in the 1980s when numericalmodel formulations had
converged and NWP groups recognized the need to adopt the more sophisticated representation
of physical processes from GCMs.This development in connection with the ever increasing model
complexity made it worthwhile to create unified atmospheric modeling systems, the first of which
came into production use in the 1990s.The unified approach to NWP and numerical climate mod-
eling is the standard nowadays; for a comprehensive review of the scientific and technical benefits
of exploiting these synergies see Donner et al. (2011).

In the following we want to shed some light on the physical principles that are fundamental to
state-of-the-art numerical atmospheric models. Shortly after Abbe (1901) recognized that meteorol-
ogy is essentially the application of hydrodynamics and thermodynamics to the atmosphere, Bjerk-
nes (1904) proposed a set of equations that to this day is considered the basis of an exact scientific
description of atmospheric dynamics. Besides the thermodynamic equation of state for air, this set
comprises the hydrodynamic equations of motion, the mass continuity equation, and the equation
of energy conservation. Adding the budget equations for atmospheric humidity yields the following
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2. Numerical Atmospheric Modeling and Meteorological Reanalysis

basic dynamic equations,

ρ
dv
dt

= −∇p + ρg − 2ρΩ × v , (2.1)

dρ
dt

= −ρ∇ ⋅ v , (2.2)

ρ
dqx
dt

= −∇ ⋅ Px + Sx , (2.3)

ρ
de
dt

= −p∇ ⋅ v −∇ ⋅ F , (2.4)

with the material derivative d/dt = ∂/∂t + v ⋅∇, the total pressure p, the wind velocity vector v, the
total mass density of moist air ρ, the gravitational acceleration vector g, and the angular velocity
vector of the earth rotation Ω, that brings about the Coriolis force. The total mass density ρ has
contributions from dry air and humidity in three phases. We use

x =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d for dry air,
v for water vapor,
l for liquid water,
i for ice

(2.5)

to indicate the different constituents. If ρx is the partialmass density of constituent x, then qx = ρx/ρ
gives its mass concentration in the mixture, i.e. qx is the specific humidity of water vapor, liquid
water, ice for x = v, l, i, respectively, and qd + qv + ql + qi = 1.The total pressure p = pd + pv is the
sum of the partial pressures of dry air and water vapor. For later reference we note that based on
the ideal gas law,

qv =
pv Rd/Rv

p − pv(1 − Rd/Rv)
(2.6)

relates qv, p, and pv, where the factor Rd/Rv = 0.622, the ratio of the specific gas constants of dry
air and water vapor, accounts for the different molar masses of the two gases. In the moisture bud-
gets (2.3), Px represents the sedimentation, i.e. precipitation flux of liquid water and ice associated
with precipitation, and Sx denotes the mutual sources and sinks of humidity associated with phase
transitions.The energy budget (2.4) reflects that changes of state due to atmospheric motion are ap-
proximately adiabatic, which implies that changes of the specific internal energy e of an air parcel
are either due to work done by adiabatic compression/expansion or due to energy fluxes F that are
of neither hydrodynamic nor thermodynamic nature, namely those associated with radiation and
precipitation. Note that the influence of viscosity is neglected in (2.1) and (2.4) by virtue of the high
Reynolds number of atmospheric flows (Cushman-Roisin and Beckers, 2011).

Besides the basic dynamic equations (2.1) to (2.4), further physical laws and empirical relation-
ships are needed to describe atmospheric processes such as radiative transfer, cloud microphysics
or land surface-atmosphere interactions, and to finally obtain a closed system of equations that
describes the dynamics of the atmosphere in some approximation. To facilitate a numerical inte-
gration of this system from some initial atmospheric state, the space-time continuum needs to be
discretized. The natural spatial coordinates are those of the spherical or geographical coordinate
system. Somemodels use pressure as their vertical coordinate.The kind of discretization of the hor-
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(a) (b) (c)

Figure 2.1.:Three grid types used for numerical atmospheric modeling.The pole singularities of the
classical spherical grid (a) can be avoided using a reduced grid (b) or an icosahedral grid
(c), for example (fromWashington et al., 2009).

izontal coordinates defines the grid type of the model; the classical equidistant sampling of latitude
ϕ and longitude λ is just one possibility (cf. Fig. 2.1).
Since finer discretization implies greater computational cost, spatial and temporal model resolu-

tions enhanced as computer resources grew. Classical GCMs operate at horizontal resolutions of the
order of 100 km and thus resolve large-scale circulation patterns with horizontal sizes of the order of
1000 km. Since at this scale, vertical accelerations are small, it is common to neglect them in the ver-
tical component of the Navier-Stokes equation (2.1). Further omittance of the vertical component
of the Coriolis force in view of the much stronger gravitation yields

∂p
∂z

= −ρg , (2.7)

which signifies an atmosphere in hydrostatic balance; hence this is called the hydrostatic approxima-

tion.The atmospheric model applied in this study was designed for horizontal resolutions down to
the order of 1 km. As vertical accelerations become important at those scales, the model does not
rely on this approximation and hence is labeled nonhydrostatic.
Numerical atmospheric models are not just used to produce weather forecasts and climate sim-

ulations but also to improve the observational evidence of historical climate change.The approach
known as reanalysis was pioneered by ECMWF and consists of a consistent meteorological data
assimilation over an extended period, i.e. of running a NWP model while continuously nudging
(von Storch et al., 2000), i.e. correcting it towards historical meteorological observations using a
single data assimilation system throughout the reanalysis period. The result is a comprehensive
four-dimensional picture of our atmosphere and as such it is the most accurate and consistent me-
teorological record we have. Care has to be taken inasmuch as reanalysis data quality varies from
variable to variable and depends on the relative influences of model and observations (Kalnay et al.,
1996; Trenberth et al., 2001;Marshall, 2002). In this thesis we use data from the latest reanalysis prod-
uct of the ECMWF (Dee et al., 2011) as boundary conditions for dynamical downscaling (cf. Ch. 4),
as input data for statistical resampling (cf. Ch. 11), and for several model evaluation purposes.
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3. Parameterization of Clouds

The nonlinearity of the Navier-Stokes equation has fundamental implications for its discretization.
As an example, let us consider the continuity equation of atmospheric water vapor [cf. Eq. (2.3)],

∂(ρqv)
∂t

+∇ ⋅ (ρqvv) = ρe − ρc, (3.1)

where e from now on denotes the rate of evaporation and c is the rate of condensation, i.e. the right-
hand side of (3.1) expresses water vapor sources and sinks.The left-hand side describes the passive
advection of water vapor by the atmospheric flow.
Discretizing equations like (3.1) means tessellating the space-time continuum into polytopes, av-

eraging every field over these polytopes and specifying the evolution equations of these discretized
fields. Let us focus on the discretization of space to see what it does to (3.1). Since differentiation is
a linear operation, grid-volume averaging of (3.1) yields

∂ ⟨ρqv⟩
∂t

+∇ ⋅ ⟨ρqvv⟩ = ⟨ρe⟩ − ⟨ρc⟩ , (3.2)

with ⟨ ⋅ ⟩ denoting the average over some fixed but arbitrary grid volume.The most interesting part
of (3.2) is the nonlinear term∇ ⋅ ⟨ρqvv⟩. Following Reynolds (1894), we decompose any field f into
its grid-scale (GS) average and subgrid-scale (SGS) fluctuations around this average, i.e. f = ⟨ f ⟩+ f ′.
Then ⟨ f ′⟩ = 0 and it is easy to see that for a product of two quantities, ⟨ f g⟩ = ⟨ f ⟩ ⟨g⟩+ ⟨ f ′g′⟩ holds.
Under the usual assumption that SGS fluctuations of ρ are negligible, the grid-volume average of
qv evolves according to

∂(⟨ρ⟩ ⟨qv⟩)
∂t

+∇ ⋅ (⟨ρ⟩ ⟨qv⟩ ⟨v⟩) = ⟨ρ⟩ ⟨e⟩ − ⟨ρ⟩ ⟨c⟩ −∇ ⋅ (⟨ρ⟩ ⟨q′vv
′
⟩). (3.3)

The equations of motion of ⟨qv⟩ and qv differ by the last term on the right-hand side of (3.3),
which describes the transport of moisture by SGS eddies. While the horizontal components of this
transport only become relevant at the kilometer scale (Schättler et al., 2013), divergences of the ver-
tical eddy covariances of wind and advected quantities like specific humidity are too fundamental
to be neglected at typical horizontal resolutions of regional and global climate models (Donner
et al., 2011), which range from a few to hundreds of kilometers. They are essential for the vertical
stabilization of the atmosphere and closely related to the formation of clouds.
Unfortunately, statistics of unresolved dynamics like ⟨q′vv′⟩ cannot be directly derived from first

principles (Donner et al., 2011). In lieu thereof, one tries to devise conceptual models of the relevant
SGS processes with the objective to express the desired statistics in terms of GS quantities like ⟨qv⟩
and ⟨v⟩ and thereby to close the systemof evolution equations at the grid scale.1 Themost prominent
examples of such models are turbulence and convection schemes, which are supposed to represent
the quasi-random small-scale motions and the quasi-organized motions at the larger unresolved
scales, respectively (Mironov, 2009).

1This part of a parameterization scheme is called closure.
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3. Parameterization of Clouds

The numerical solution of the hydrodynamic and thermodynamic equations at the grid scale,
such as (3.3) without the SGS eddy covariance term, is the job of the dynamical core of an atmo-
spheric model (Donner et al., 2011). All other model parts are grouped under the umbrella term
model physics or physical parameterizations or just parameterizations. This includes schemes of
land-atmosphere interaction, cloud microphysics, and radiative transfer. Parameterizations of un-
resolved hydrodynamics and thermodynamics are special in the sense that they become less im-
portant as model grid resolution increases. For example, the parameterization of deep convection
becomes superfluous at the kilometer scale (Hohenegger et al., 2008).
Very important is the parameterization of processes related to the occurrence of clouds, whose

horizontal size ranges from meters for fragmentary small cumuli (Koren et al., 2008) to thousands
of kilometers for cloud sheets covering the mid-latitude oceans (Wood and Field, 2011). Clouds are
an integral part of the climate system. They strongly interact with both shortwave and longwave
radiation, they produce precipitation, and they are key players in the vertical transport of energy,
moisture, andmomentum (de Rooy et al., 2013). At the same time, they are overwhelmingly compli-
cated (Randall et al., 2003): Virtually all clouds are turbulent; the hydrometeors thatmake up clouds
range frommicrons tomillimeters in size and intricatemicrophysical processes control their forma-
tion, interaction, and sedimentation; complicated hydrodynamics and thermodynamics are associ-
ated with the occurrence of vertically extended clouds; different kinds of clouds may coexist in an
atmospheric column, with frequent interactions occurring between them; the interplay of clouds
with radiation depends on the geometry of a cloud field and its hydrometeorological composition;
and frequently clouds form mesoscale or even large-scale dynamical systems that interact with the
general circulation.
In consideration of these various cloud-related interactions between microphysics, multiscale

dynamics, and radiative transfer, Arakawa (2004) expressed the need to conceptually integrate the
respective processes and scales into one unified modeling framework. He did so in light of about
40 years of unintegrated cloud parameterization research which, despite great efforts and advances,
was not able to significantly reduce the uncertainty around climate projections that stems from
the representation of cloud processes in GCMs (Randall et al., 2003). Yet to date, unified cloud
parameterizations, let alone unified model physics, have remained elusive. Like most atmospheric
models, CCLM features independent parameterizations of SGS cumuliform (vertically developed)
and SGS stratiform (horizontally developed) clouds (Fig. 3.1). In the remainder of this chapter, we
describe the two schemes available in CCLM per SGS cloud type. This shall not only prepare the
reader for the reception of the results of our model evaluation/sensitivity study but it shall also
convey the conceptual complexity of the cloud parameterization problem.

3.1. Parameterization of Stratiform Clouds

Randall et al. (2003) define stratiform clouds as those clouds that are neutrally buoyant in an area-
averaged sense. In CCLM, it is assumed that precipitating stratiform clouds are covered by the GS
dynamics and microphysics; SGS stratiform clouds are thus treated as nonprecipitating, which sig-
nificantly simplifies their parameterization. In ourmodel evaluation studywe analyze the sensitivity
of simulation results to the representation of SGS clouds in the radiative transfer scheme by Ritter
and Geleyn (1992). For every grid volume, this scheme requires values of the cloud cover fraction
C and of the specific cloud liquid water and ice contents, qradl and qradi , respectively (cf. Sec. 3.2).
The job of the parameterization of SGS stratiform clouds is to provide their contributions to C, qradl ,
and qradi .
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3.1. Parameterization of Stratiform Clouds

Figure 3.1.: Schematic representation of the horizontal and vertical cloud distribution in an atmo-
spheric model with distinction between cumuliform (Cu/Cb) and stratiform (Ci, As/Ac,
St/Sc) clouds (from Slingo, 1987).While cumuliform clouds extend across severalmodel
layers, stratiform clouds occupy individual layers only.

SGS clouds exist due to fluctuations of the water vapor saturation deficit qdef = qv + ql + qi − q∗v
within a given grid volume, where q∗v is the saturation specific humidity of water vapor. For the
sake of simplicity, it is commonly assumed that qdef only varies horizontally inside a grid volume,
which requires a sufficiently high vertical resolution. Provided there are enough cloud condensa-
tion nuclei, the cloud cover fraction of a grid volume is equal to the fraction of the grid volume
with positive values of qdef. Accordingly, any parameterization of stratiform SGS clouds is based
on assumptions about the distribution of qdef within a given grid volume. Traditionally, there have
been two approaches to the problem, that differ in making these assumptions either implicitly or
explicitly (Tompkins, 2002).The older class of schemes simply expresses the stratiform cloud cover
fraction in terms of the GS relative humidity (Smagorinsky, 1960; Slingo, 1987). The more sophis-
ticated approach is explicit about the assumed qdef distribution and is closed by determining the
moments of this distribution (Sommeria and Deardorff, 1977). One parameterization of each type
is implemented in CCLM and described in the following.

3.1.1. A Relative Humidity Scheme

Relative Humidity (RH) schemes are based on the idea that SGS condensation starts before the GS
relative humidity has reached 100% and that the cloud cover fraction can be expressed in terms of
this GS relative humidity (Sundqvist, 1978). Let Cstr be the cloud cover fraction due to stratiform
clouds. RH schemes postulate that Cstr increases monotonically from zero at some critical GS rela-
tive humidity Uc < 1 to one at GS saturation. Tompkins (2002) points out that this is equivalent to
the assumption of a certain fixed variability of qdef in all grid volumes across the globe. As he goes
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Figure 3.2.: Some functions used in the RH scheme of CCLM. (a) Functional relationship between
SGS stratiform cloud coverCstr < 1 andGS relative humidity ⟨U⟩ < 1. (b) Vertical profile
of the critical relative humidity Uc with the height given by the sigma vertical coordi-
nate defined as the pressure p normalized by its surface value psurface. (c) Temperature
dependence of the cloud ice fraction fi.

on to state that grid volumes with 80% relative humidity undergoing deep convection are likely
to have different cloud characteristics than grid volumes with 80% relative humidity in a frontal
stratus cloud, this clearly is an oversimplification of reality. In the following we outline how CCLM
diagnoses the stratiform cloud cover fraction Cstr and the specific stratiform cloud water and ice
contents qstrl and q

str
i , which represent contributions from both GS and SGS stratiform clouds.

If there are GS clouds, i.e. if ⟨ql⟩ > 0 or ⟨qi⟩ > 0, then Cstr is set to one. Otherwise, a fractional
stratiform cloud cover is diagnosed according to

Cstr
= min2 {1, max{0,

⟨U⟩ −Uc
1 −Uc

}} , (3.4)

where ⟨U⟩ = ⟨qv⟩ / ⟨q
∗
v ⟩ is the GS relative humidity [cf. Fig. 3.2(a)]. SGS condensation begins at

the critical value Uc , which depends on height as depicted in Fig. 3.2(b). The saturation specific
humidity ⟨q∗v ⟩ is calculated under the assumption that mixed-phase clouds exist for temperatures
between −25○C and −5○C.Therefore, in this temperature range, ⟨q∗v ⟩ is a weighted sum of the sat-
uration specific humidities ⟨q∗vl⟩ of warm clouds (pure liquid water clouds) and ⟨q∗vi⟩ of cold clouds
(pure ice clouds),

⟨q∗v ⟩ = (1 − fi) ⟨q
∗
vl⟩ + fi ⟨q

∗
vi⟩ . (3.5)

The temperature dependence of the ice fraction fi is depicted in Fig. 3.2(c). On the basis of (2.6),
the saturation specific humidities of warm and cold clouds are calculated according to

⟨q∗vx⟩ =
⟨p∗vx⟩Rd/Rv

⟨p⟩ − ⟨p∗vx⟩ (1 − Rd/Rv)
, (3.6)

where p∗vx denotes the saturation vapor pressure over a plane surface of water (x = l) and ice (x = i),
which is calculated using the Magnus approximation (Tetens, 1930; Murray, 1967).
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3.1. Parameterization of Stratiform Clouds

The specific liquid water and ice contents of stratiform clouds are estimated according to

qstrx = max{
⟨qx⟩

2
, 0.005 fx ⟨q∗v ⟩} , (3.7)

where we defined fl = 1 − fi. Note that qstrx are the in-cloud liquid water and ice contents; to obtain
the respective grid volume average specific humidities, qstrx needs to be multiplied by Cstr.
In order to understand why qstrx < ⟨qx⟩ in the case of GS condensation, it is essential to know how

qstrx is used in the radiative transfer scheme.The latter is based on theBeer-Lambert law, according to
which the intensity of light is exponentially attenuated as it travels through homogeneous materials.
Given a vertically homogeneous grid volume of height ∆z, the presence of cloud liquid water or ice
reduces the intensity of vertically incident radiation by a factor of exp (−єx(λ) qx ∆z) at wavelength
λ and for each type x of hydrometeors. Horizontal averaging of this factor yields

exp (−єx ⟨qx⟩∆z) ⟨exp(−єx q′x ∆z)⟩ or, equivalently, (3.8)
exp (−єx α ⟨qx⟩∆z) . (3.9)

If q′x ≠ 0, then the second factor in (3.8) is greater than one because ⟨q′x⟩ = 0.This implies that α
in (3.9) is less than one because єx , ⟨qx⟩, and ∆z are all nonnegative. The factor 1

2 in (3.7) is one
possible choice for the value of α. We see that it represents a nonlinear effect of the SGS variability
of qx on the optical properties of GS stratiform clouds.
In the absence of GS condensation, the RH scheme diagnoses qstrx as proportional to (5‰ of)

the GS saturation specific humidity, which is a clear idealization of reality, but experience shows
that with the right tuning of the factor of proportionality, realistic values of planetary albedo and
outgoing longwave radiation can be obtained (Ritter and Geleyn, 1992).
In a final step, the RH scheme accounts for the special case of thin high cirrus clouds (Görsdorf

et al., 2011). If the stratiform cloud liquid water and ice content calculation yields values of qstrl = 0
and 0 < qstri < 8 × 10−6, then the value of the cloud cover fraction Cstr from (3.4) is reduced by the
factor

min{1, max{0,
7 + log10 q

str
i

1 + log10 8
}} . (3.10)

3.1.2. A Statistical Scheme

When CCLM is run with its statistical parameterization of SGS stratiform clouds, then this param-
eterization in fact pertains to warm SGS stratiform clouds only, i.e. cold stratiform clouds are con-
sidered to be present either at grid scale (if ⟨qi⟩ > 0, then Cstr = 1) or not at all (Cstr = 0 otherwise).
Warm SGS stratiform clouds are parameterized as proposed by Sommeria and Deardorff (1977).

This scheme is based on the assumptions that in warm nonprecipitating clouds, (i) the air is satu-
rated with water vapor, i.e. the relative humidity is at exactly 100% with respect to the saturation
vapor pressure over a plane surface of water, (ii) water droplets are carried along with air parcels,
which (iii) move adiabatically, and (iv) the entire system is always in thermodynamic equilibrium,
which implies that air and liquid water have the same temperature.The corresponding thermody-
namic reference process is the reversible water saturation adiabat (Saunders, 1957; Betts, 1973).The
two fundamental quantities that are conserved during this process are the total water specific hu-
midity qw = qv + ql and the liquid water potential temperature θl, which can be approximated by
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3. Parameterization of Clouds

Figure 3.3.: Schematic diagram of the distribution of the variables qw and θl inside a given grid
volume (from Sommeria and Deardorff, 1977). The saturation specific humidity q∗vl is
represented by the symbol qs in this diagram.

θl ≈ θ −
θ

T

L

cp
ql (3.11)

to an accuracy of a few percent (Betts, 1973). Here, L is the latent heat of vaporization, cp is the
specific heat capacity of dry air at constant pressure, and θ = T(p0/p)

κ is the potential tempera-

ture, which, with some fixed reference pressure p0 and the Poisson constant κ = Rd/cp = 0.285, is
approximately conserved during dry adiabatic motion of moist air.
In their model of warm SGS condensation, Sommeria and Deardorff (1977) assume that inside

a given grid volume, qw and θl are joint-normally distributed around the GS values ⟨qw⟩, ⟨θl⟩ with
variances σ2qw = ⟨q′wq′w⟩, σ2θ l = ⟨θ′lθ

′
l⟩ and covariance ⟨q

′
wθ

′
l⟩ (cf. Fig. 3.3).They state that this assump-

tion implies that those air parcels existing within any given grid volume have had complicated past
trajectories and have not selectively been subjected to rapid changes in qw and θl.The Gaussian as-
sumption is applied to the conservative variables instead of to ql and T since large changes in these
latter variables occur following a parcel within clouds and near cloud edges.
Based on the SGS distribution of qw and θl and using various thermodynamic identities, Som-

meria and Deardorff (1977) derive approximate expressions for the stratiform cloud cover fraction
and the stratiform cloud liquid water content,

Cstr
=
1
2
(1 +

Qd
Qc

) , (3.12)

Cstrqstrl =
σd
βl

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 for Qd ≤ −Qc ,
(Qd/Qc + 1)2/4 for − Qc < Qd < Qc ,
Qd for Qc ≤ Qd ,

(3.13)
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3.2. Cloud Cover Fraction and Cloud Liquid Water and Ice Content

where Qc = 1.6 is the critical value of Qd . Along their way to these results, the authors define

Tl = T −
L

cp
ql ≈

T

θ
θl, (3.14)

q∗l = q∗vl(Tl, p), (3.15)

βl = 1 +
L2⟨q∗l ⟩

Rvcp ⟨Tl⟩
2 , (3.16)

σ2d = ⟨q′wq
′
w⟩ + ⟨q∗l

′
q∗l

′
⟩ − 2 ⟨q′wq

∗
l
′
⟩ = ⟨(q′w − q∗l

′
)
2
⟩ , (3.17)

Qd =
⟨qw⟩ − ⟨q∗l ⟩

σd
. (3.18)

For typical values of ql in clouds, the liquid water temperature Tl is a few Kelvin lower than T . Note
that Tl is not the temperature of the cloud droplets since these are assumed to be in equilibriumwith
their environment; Sommeria and Deardorff (1977) only chose the name in analogy to that of θl.
The quantity ⟨q∗l ⟩ is calculated using (3.6) with ⟨Tl⟩ in place of ⟨T⟩ in theMagnus formula for ⟨p

∗
vl⟩.

The core variable of the scheme is Qd , the normalized deviation frommean saturation. To close the
system of equations, the standard deviation σd of qw − q∗l in the grid volume needs to be estimated,
which is done in the turbulence parameterization.This linkage of optical SGS cloud properties to
the turbulent SGS dynamics promises a representation of clouds that is more physically consistent
than with the RH scheme.
It is interesting to note that at GS saturation, when ⟨qw⟩ = ⟨q∗vl⟩ and the RH scheme diagnoses

Cstr = 1, the statistical scheme produces a typical value of Cstr = 0.65 since SGS fluctuations of hu-
midity and temperature leave a fraction of the grid volume unsaturated (Sommeria and Deardorff,
1977).The typical value is greater than 0.5 [cf. Eq. (3.12)] because when ⟨qw⟩ = ⟨q∗vl⟩, then typically
⟨ql⟩ > 0 due to SGS variability, which implies ⟨Tl⟩ < ⟨T⟩ and ⟨q∗l ⟩ < ⟨q∗vl⟩, i.e. Qd > 0.

3.2. Cloud Cover Fraction and Cloud LiquidWater and Ice Content

The radiative effect of a cloud depends on the cloud extent as well as on the concentration and on
the size distribution of its hydrometeors (Stephens, 1979).The radiative transfer scheme by Ritter
and Geleyn (1992) simplifies the latter aspect by introducing effective cloud droplet and ice crystal
sizes, which are inferred from the specific cloud liquid water content qradl and the specific cloud ice
content qradi , respectively. Accordingly, the scheme requires the input of q

rad
l , q

rad
i and of the cloud

cover fractionC of every grid volume.The three quantities are to represent contributions from both
cumuliform and stratiform clouds as the two types may coexist in a grid volume.
Symmetric contributions by cumuliform and stratiform clouds yield

C = Ccum
+ (1 − Ccum

)Cstr (3.19)
= Ccum

+ Cstr
− CcumCstr

= Cstr
+ (1 − Cstr

)Ccum. (3.20)

The form of (3.19) and (3.20) reflects that stratiform clouds can only overcast that fraction of a grid
volumewhich is not occupied by cumuliform clouds and vice versa.The contribution of cumuliform
clouds to the cloud cover fraction is assumed to be proportional to an effective cumulus cloud height,
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3. Parameterization of Clouds

Ccum
= min{1, max{0.05, 0.35

ztop − zbas

5000m
}} , (3.21)

where zbas and ztop are the cloud base and top heights, respectively. A relationship between the
horizontal and the vertical extent of cumulus clouds is suggested by observations (Plank, 1969).
The cumulus cloud cover fraction (3.21) is assigned to all layers between zbas and ztop. Cumulus
anvils are diagnosed if the temperature increases at the cloud top; in this case, Ccum is doubled in
the top level layer.The values of zbas and ztop are estimated in the cumulus convection scheme (cf.
Sec. 3.3).

While Ccum is diagnosed according to (3.21) irrespective of the chosen SGS stratiform cloud
scheme, the diagnosis of the liquid water and ice contents of cumulus clouds depends on this choice
in CCLM, given that

qradl = Ccumqcuml + (1 − Ccum
)Cstrqstrl , (3.22)

is the cloud liquid water content seen by the radiation scheme, where

qcuml = 0.01

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(1 − fi) ⟨q
∗
v ⟩ with the RH scheme,

⎧⎪⎪
⎨
⎪⎪⎩

⟨q∗vl⟩ for ⟨T⟩ ≥ 0
⟨q∗vi⟩ for ⟨T⟩ < 0

with the statistical scheme.
(3.23)

We note that the possibility of mixed-phase clouds and supercooled cloud droplets is not taken into
account with the statistical scheme [cf. Fig. 3.2(c)]. Note also the formal analogy between (3.23) and
the corresponding formula (3.7) for stratiform clouds in the RH scheme.The cloud ice content seen
by the radiation scheme is

qradi =

⎧⎪⎪
⎨
⎪⎪⎩

Ccumqcumi + (1 − Ccum)Cstrqstri with the RH scheme,
⟨qi⟩ with the statistical scheme,

(3.24)

where

qcumi = 0.01 fi ⟨q∗v ⟩ . (3.25)

A variable that is relatively easy to measure and therefore frequently validated is Ctot, the total
cloud cover of a grid column, i.e. the area fraction of the column that appears overcast when it is
viewed from above or below. Clouds from all layers contribute to Ctot; if k is the layer index, then

Ctot
= 1 − (1 − C1)∏

k≥2

1 −max {Ck ,Ck−1}
1 − Ck−1

(3.26)

is used to diagnose Ctot in CCLM.This formula yields Ctot = maxk Ck if Ck is constant or has one
local maximum only. In the case of multiple local maxima the result is somewhat more complex.
The assumptions behind (3.26) are that (i) a positive cloud cover fraction in adjacent layers k, k − 1
indicates clouds that vertically extend across those layers, hence a maximum overlap is assumed for
Ck ,Ck−1, while (ii) a vanishing cloud cover fraction in some layer k∗ indicates independent clouds
above and below that layer, hence a random overlap is assumed for Ck<k∗ ,Ck>k∗ , i.e. the clear-sky
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3.3. Parameterization of Cumuliform Clouds

fraction below cloudy layers k̂ < k∗ < ǩ is set equal to (1 − Ck̂)(1 − Cǩ). This cloud geometry
concept is used in the Ritter and Geleyn (1992) scheme as well, so (3.26) is consistent with the
radiative transfer calculations in CCLM.

3.3. Parameterization of Cumuliform Clouds

Cumuliform clouds differ from stratiform clouds by their pronounced vertical development.Their
presence is associated with strong vertical eddy transports of moisture, energy, and momentum.
They often generate precipitation.The parameterization of cumuliform clouds is therefore a greater
challenge than that of stratiformclouds. It has been regarded as perhaps themost difficult parameter-
ization problem in numerical atmospheric modeling (Donner et al., 2011). Arakawa (2004) defines
cumulus parameterization as the problem of formulating the statistical effects of moist convection
to obtain a closed system for predicting weather and climate. This definition reflects that cumuli-
form clouds form as a result of moist convection, i.e. of atmospheric convection in which the phase
changes of water play a considerable role. Consequently, cumulus parameterization schemes are also
referred to as convection parameterization schemes.

The classical objectives of such schemes are to provide the vertical profiles of heating/cooling
and drying/moistening tendencies as well as the surface precipitation generated by SGS cumulus
convection. These objectives can most easily be met, albeit with arguable precision, by so-called
moist-convective adjustment schemes, such as that proposed by Manabe et al. (1965). Based on
the GS relative humidity ⟨U⟩ and the GS temperature lapse rate ⟨Γ⟩, this schemes diagnoses moist
convection to occur where the air is supersaturated (⟨U⟩ > 100%) and conditionally unstable (⟨Γ⟩ >
⟨Γm⟩, where Γm is the moist-adiabatic temperature lapse rate). If these conditions are met, then the
scheme adjusts ⟨T⟩ and ⟨qv⟩ such that ⟨U⟩ = 100% and ⟨Γ⟩ = ⟨Γm⟩, and all the water condensed by
this process precipitates instantaneously (Manabe et al., 1965; Arakawa, 2004).

The so-called mass-flux schemes are of greater sophistication. These schemes include a cloud
model, which is closed by linking the grid-column average cloud-base mass flux to the GS environ-
ment in one way or another.The two convection schemes implemented in CCLM are of this kind.
Conceptually, they are both based on the cloud model developed by Yanai et al. (1973) in a diagnos-
tic study of tropical cumulus convection.This cloud model is made for horizontal grid resolutions
of some tens of kilometers, at which grid volumes with occurring cumulus convection are popu-
lated by an ensemble of cumulus clouds, which have a common base height but different depths [cf.
Fig. 3.4(a)].

The traditional simplified picture of cumulus convection is that it organizes itself into narrow,
intense saturated updrafts that are embedded in a slowly subsiding environment, and that air is ex-
changed turbulently at the cloud edges (Bjerknes, 1938; Randall et al., 2003). With this picture in
mind, Yanai et al. (1973) sketched a cumulus convection scheme, in which every cloud of the ensem-
ble has its individual vertical profile of humidity, dry and moist static energy, vertical velocity, and
of the rates of condensation, precipitation, and turbulent exchange with environmental air through
entrainment and detrainment, while the ambient air is characterized by a single vertical profile of
humidity, dry and moist static energy, and vertical velocity. With their scheme, Yanai et al. (1973)
wanted to retrieve bulk properties of tropical cumulus cloud clusters from observed large-scale bud-
gets of heat and moisture but it turned out that the scheme led to a system of equations with too
many unknowns. To make the problem tractable, Yanai et al. (1973) introduced some simplifica-
tions, such as a restriction of detrainment to the cloud tops, and they replaced the cloud ensemble
by representative bulk quantities [cf. Fig. 3.4(b)].The bulk cloud properties they retrieved with this
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(a) (b)

Figure 3.4.: Schematic view of (a) an ensemble of cumulus clouds and of (b) the bulk model of such
an ensemble (from Yanai et al., 1973).The bulk quantities are the rates of entrainment
є and detrainment δ, the in-cloud and environmental vertical mass fluxes Mc and M̃,
respectively, the specific cloud liquid water content ¯̄l , the rates of environmental evapo-
ration e, in-cloud condensation c, and rain r, the in-cloud moist static energy ¯̄hc , and
the environmental dry and moist static energies s̃ and h̃, respectively. All of these quan-
tities are defined for every bulk cloud layer and they are linked by a set of hydrodynamic
and thermodynamic equations.The conditions at the bulk cloud bottom and top as well
as in its environment are determined from the large-scale atmospheric state, under the
assumption that the cloud ensemble as a whole is in equilibrium with the large-scale
dynamics.

simplified scheme were realistic.
Now, the parameterization problem in numerical atmospheric modeling is reverse in the sense

that the large-scale tendencies due to SGS cumulus convection are its sought quantities (Arakawa
and Schubert, 1974). Nevertheless, the bulk representation of an ensemble of cumulus clouds turned
out to be a fruitful idea. It was adopted by the designers of cumulus parameterization schemes such
as Tiedtke (1989). An adapted version of his scheme is implemented in CCLM and described in the
following.

3.3.1. The Tiedtke Scheme

Let us first recall the purpose of cumulus parameterization schemes from the equation point of view.
As already alluded to at the beginning of this chapter, their purpose is to specify those tendencies
in GS budget equations of moisture and energy, best expressed in terms the water vapor specific
humidity qv and the specific dry static energy s = cpT+ gz, that are due to SGS cumulus convection.
The left-hand side of (3.3) can be written as

⟨ρ⟩ [
∂ ⟨qv⟩

∂t
+ ⟨v⟩ ⋅∇ ⟨qv⟩] + ⟨qv⟩ [

∂ ⟨ρ⟩
∂t

+∇ ⋅ (⟨ρ⟩ ⟨v⟩)] , (3.27)

where the second term vanishes due to mass continuity [cf. Eq. (2.2)]. As Tiedtke (1989) states, the
horizontal eddy flux divergences of s and qv can be neglected if the net lateral transports across
the boundary of a grid volume by cumulus convection are small in comparison to the transport by
the GS flow.This usually is the case at horizontal resolutions of some tens of kilometers or coarser
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(Schättler et al., 2013) and (3.3) becomes

∂ ⟨qv⟩
∂t

+ ⟨v⟩ ⋅∇ ⟨qv⟩ = −
1
⟨ρ⟩

∂ (⟨ρ⟩ ⟨q′vw′⟩)
∂z

+ ⟨e⟩ − ⟨c⟩ , (3.28)

wherew is the vertical velocity component.While dry static energy is conserved during unsaturated
motion, it is changed by phase transitions of water and by radiation. Similarly, the budget equation
for qv, one obtains

∂ ⟨s⟩
∂t

+ ⟨v⟩ ⋅∇ ⟨s⟩ = −
1
⟨ρ⟩

∂ (⟨ρ⟩ ⟨s′w′⟩)
∂z

− L(⟨e⟩ − ⟨c⟩) + ⟨Qrad⟩ , (3.29)

where Qrad is the rate of heating/cooling due to radiation.Then it is common to decompose the ver-
tical SGS eddy covariances into contributions from turbulence and cumulus convection, amongst
others, i.e. ⟨s′w′⟩ = ⟨s′w′⟩tur + ⟨s′w′⟩cum + ⟨s′w′⟩... and similarly for qv, so that the different SGS
processes contribute linearly to the overall GS tendencies (Mironov, 2009).

The Tiedtke (1989) scheme is based on an extension of the Yanai et al. (1973) bulk cloudmodel by
cumulus downdrafts, which in reality occur in association with convective precipitation. Accord-
ingly, the eddy covariances due to cumulus convection have contributions from updrafts (↑) and
downdrafts (↓),

⟨ρ⟩ ⟨s′w′
⟩
cum

= M↑
(s↑ − ⟨s⟩) +M↓

(s↓ − ⟨s⟩) (3.30)

and similarly for qv. Because of the approximation s̃ = ⟨s⟩ and q̃v = ⟨qv⟩ [cf. Fig. 3.4(b)], (3.30) does
not include contributions from environmental subsidence.
Cumulus convection also adds tendencies in condensation and evaporation to the right-hand

sides of (3.28) and (3.29). In the Tiedtke (1989) scheme, these are ⟨c⟩cum = c↑ for condensation
occurring in updrafts and ⟨e⟩

cum
= e↓ + eδ + ep for evaporation in downdrafts that keep these

saturated, evaporation of detrained cloud water and evaporation of precipitation in the unsaturated
subcloud layer, respectively.
Due to the higher number of unknowns in his scheme, Tiedtke (1989) needs to impose more

closure assumptions than Yanai et al. (1973).The conversion from cloud water into precipitation is
assumed to happen at a constant relative rate for all cloud layers higher than 1500m above cloud
base, which ensures nonprecipitating shallow cumuli. Entrainment and detrainment into and from
the bulk cloud can be turbulent and organized. We are going to elaborate on the organized part
below.The rates of turbulent entrainment and detrainment of updrafts are set proportional to the
updraft mass flux M↑ and similarly for the downdrafts.The latter are assumed to begin at the GS
level of free sinking following Fritsch and Chappell (1980), where M↓ is set proportional to M↑ at
cloud base.

The principle closure of the scheme, defined by Arakawa (2004) as the hypothesis that links the
existence and overall intensity of cumulus activity to large-scale processes, diagnoses the type of
cumulus convection and specifiesM↑ at cloud base. Tiedtke (1989) distinguishes shallow, deep and
mid-level convection, imposing different closures for the different convection types. Only one type
of convection can be present in a grid column at a time. While shallow and deep convection are
thought to have their roots in the planetary boundary layer, mid-level convection is thought to
result from an elevated instability in frontal systems.

The discrimination of deep from shallow convection is based on the ratio of the total, i.e. vertically
integrated, GS moisture convergence to the vertical moisture flux at the surface. Moist convection
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Figure 3.5.: Schematic skew-T diagram illustrating the definitions of the Lifting Condensation Level
(LCL), the Level of Free Convection (LFC), and the Equilibrium Level (EL) (from Szoke,
2002).The thick solid line is the actual atmospheric temperature profile; the thin solid
line is the temperature of a surface air parcel that is lifted through this atmosphere in
a gedankenexperiment, first dry-adiabatically until saturation at the LCL, then moist-
adiabatically.The level where the parcel would first become positively buoyant with re-
spect to its environment is the LFC; the level where it would then first become neutrally
buoyant again is the EL.The Convective Available Potential Energy (CAPE) is defined
as the vertical integral of the positive buoyancy between the LFC and the EL.
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3.3. Parameterization of Cumuliform Clouds

is deemed deep/shallow when this ratio is above/below a fixed threshold. This way of distinction
is suggested by the observation that deep cumulus convection is frequently associated with large-
scale convergence in the lower troposphere while shallow tradewind cumuli can even form under
a subsidence inversion.

Whether free convection (shallow or deep) can occur in a grid column is determined by a trigger.
The trigger of the Tiedtke (1989) scheme consists of a test air parcel that is dry-adiabatically lifted
from the lowestmodel layer through theGS atmosphere to the level of saturation (cf. LCL in Fig. 3.5).
Departure humidity and temperature of the parcel are set to ⟨qv⟩ and ⟨T⟩+0.5 K, with ⟨qv⟩ and ⟨T⟩
from the lowest model layer. The temperature perturbation is to account for SGS variability. Free
convection is diagnosed if the parcel is positively buoyant at the level of saturation. In this case, this
level defines the cloud base height zbas and the values of s and qv of the parcel at this level are used
as lower boundary conditions for the bulk cloud model.The cloud top height ztop is determined by
the level where the parcel becomes neutrally buoyant again (cf. EL in Fig. 3.5).

Otherwise, the grid column is checked for the possibility of mid-level convection, which in con-
trast to free convection does not have its roots in the planetary boundary layer. To that end, adiabatic
test parcels with environmental properties are lifted by one layer from the second lowest and subse-
quently higher model levels. If the parcel becomes buoyant and if the respective layer has positive
vertical velocity ⟨w⟩ and relative humidity ⟨U⟩ > 90%, then this layer is considered the cloud base
of mid-level convection. Cloud top height and bulk model boundary conditions for s and qv are
then derived the same way as in the case of free convection.

The type of convection determines the cloud base mass flux. In the case of free convection, M↑

andM↓ at cloud base are determined under the assumption that the integrated moisture content of
the subcloud layer remains constant, i.e.

[M↑
(q↑v − ⟨qv⟩) +M↓

(q↓v − ⟨qv⟩)]bas

= −∫

zbas

zsurface
[⟨ρ⟩ ⟨v⟩ ⋅∇ ⟨qv⟩ +

∂
∂z

(⟨ρ⟩ ⟨q′vw
′
⟩
tur)]dz, (3.31)

which follows from (3.28) and (3.30). In the case of mid-level convection, the updraft mass flux at
the cloud base is set equal to the vertical mass transport by the GS flow, i.e. M↑

bas = ⟨ρ⟩bas ⟨w⟩bas,
which makes all the vertically advected moisture available to moist convection.

In addition, the type of convection determines the constants of proportionality in the updraft
rates of turbulent entrainment and detrainment. In rough accordance with observations, the con-
stants are set three times greater for shallow than for deep and mid-level convection. And also the
rate of organized entrainment into the updraft depends on the type of convection as only for deep
and mid-level convection, this type of entrainment is assumed to occur; its intensity is set propor-
tional to the GS moisture convergence below the level of maximum vertical velocity, as suggested
by Lindzen (1988). Irrespective of the type of convection, organized detrainment of the complete
updraft mass flux is distributed to the zero-buoyancy level and the level above.

Besides GS tendencies in s and qv, the CCLM implementation of the Tiedtke (1989) scheme also
provides tendencies in horizontal momentum and chemical tracers that are due to the passive verti-
cal transport of these quantities by cumulus convection. Let ψ be a horizontal wind component or
the concentration of a chemical tracer, then

⟨ρ⟩
∂ ⟨ψ⟩

∂t

cum
= M↑

(ψ↑
− ⟨ψ⟩) +M↓

(ψ↓
− ⟨ψ⟩) (3.32)
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3. Parameterization of Clouds

parameterizes this transport, where the fluxesM↑ψ↑ andM↓ψ↓ change with height as a result of the
passive lateral inflow and outflow of ψ into and out of updraft and downdraft by entrainment and
detrainment. At cloud base, ψ↑ and ψ↓ are determined the same way as s, qv, and qc . Further revi-
sions that led from the original Tiedtke (1989) scheme to its current CCLM implementation include
a smoother phase transition to mixed-phase clouds, organized detrainment of cloud ice, and a low-
ered relative humidity threshold for the reevaporation of rain below cloud base (Brockhaus et al.,
2009). A comprehensive description of the CCLM implementation of the Tiedtke (1989) scheme
can be found in Doms et al. (2011a).

3.3.2. The IFS Scheme

The second cumulus convection scheme implemented in CCLM is a copy of the scheme imple-
mented in the ECMWF IFS Cy33r1 (Bechtold et al., 2008).This scheme was originally based on the
Tiedtke (1989) scheme but underwent numerous revisions in the meantime.

The first of these revisions was described by Gregory et al. (2000) and comprises three changes.
The first change applies to the diagnosis of deep versus shallow convection which was replaced by a
cloud depth criterion, with deep/shallow convection being diagnosed for a convective cloud depth
of more/less than 200 hPa.The second change pertains to the shallow convective closure where the
subcloud moisture balance (3.31) was replaced by an analogous subcloud dry static energy balance.

The third change concerns the deep convective closure. Based on the finding by Ceselski (1974)
that low-level convergence is neither necessary nor sufficient for deep moist convection to occur,
Fritsch and Chappell (1980) advocated to link the intensity of deep convection to the Convective
Available Potential Energy (CAPE) and Nordeng (1994) showed that this improves the simulated
tropical transient convective activity. CAPE is defined as the vertical integral of the positive buoy-
ancy that is available to an ascending surface air parcel between its LFC and EL (cf. Fig. 3.5). CAPE
ismeasured in joules per kilogramof air. Based on the virtual temperature Tv ≅ T(1+(Rv/Rd−1)qv)
it can be expressed as

CAPE = ∫

zEL

zLFC
g
T
parcel
v − ⟨Tv⟩

⟨Tv⟩
dz. (3.33)

It is assumed that cumulus convection leads to an exponential depletion of CAPE. Accordingly, the
revised closure for the updraft mass flux at cloud base isM↑

bas ∝ CAPE/τ with an adjustment time
scale τ that in a second revision was set proportional to the convective turnover time scale.

This second revision of the scheme is described by Bechtold et al. (2008). Scaling factors are
introduced that reduce the turbulent and organized entrainment into updrafts with height in order
to mimic the effects of a cloud ensemble. Organized entrainment into the updraft is now limited
to deep convection and linked to the GS relative humidity instead of the GS moisture convergence,
which benefits the representation of tropical variability.
Further innovations with respect to the Tiedtke (1989) scheme include the introduction of orga-

nized entrainment (Nordeng, 1994) and detrainment for the downdraft, trigger parcel ascents for
the diagnosis of free convection from multiple levels with temperature and humidity perturbation,
a more sophisticated conversion of cloud liquid water and ice to precipitation following Sundqvist
(1978), and partially revised values for the various parameters of the scheme. A comprehensive de-
scription of the IFS Cy33r1 convection scheme is given by the ECMWF (2009).
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4. Dynamical Downscaling and CCLM

Climate impactmodels often requiremeteorological input data at horizontal resolutions that cannot
be supplied by GCMs due to computational constraints. This particularly pertains to the surface
climate in regions of complex topography. Different downscaling methods have been devised to
bridge this gap (Wilby and Wigley, 1997). The most common approach is to run a climate model
over a limited area at the desired resolution using interpolated GCM output as lateral boundary
conditions (Dickinson et al., 1989; Giorgi, 1990). This method is termed dynamical downscaling

and the corresponding atmosphericmodels are called limited areamodels or regional climatemodels

(RCMs).
The idea of one-way nesting a high-resolution limited area model into a GCM was originally

born in the weather forecasting community and then adopted by climatemodelers (Dickinson et al.,
1989).Themethod is pragmatic andmuch simpler to apply than a two-way nesting where RCM and
GCM are run in parallel to feed aggregated RCM results back to the GCM at run time (Phillips and
Shukla, 1973). This ease comes at the cost of unrepresented interactions between RCM-scale and
GCM-scale dynamics and it aggravates inconsistencies at theRCMdomain boundaries (Zhang et al.,
1986; Warner, 1989), which occur in a two-way nesting framework as well, not just due to different
spatial resolutions but also because, in most applications, the employed regional and global models
differ in both their dynamical core and their parameterization schemes.
To handle these inconsistencies in the one-way nesting framework, Davies (1976) suggested to

introduce a sponge zone extending across the n outermost grid points of the RCM grid, where
the RCM variables are gradually blended with the GCM variables to facilitate a smooth transition
between the two grids. Technically, this can be realized by adding an extra term to the tendencies
of every prognostic variable ψ as per

(
∂ ⟨ψ⟩

∂t
)

lateral boundary

= µi (⟨ψ⟩
lateral boundary

− ⟨ψ⟩) , (4.1)

where ⟨ψ⟩lateral boundary represents the boundary data and µi decays exponentially with grid-cell
distance i = 1, . . . , n to the domain edge.This approach is also adopted in the RCM CCLM that we
employ in this study.
Our simulations are performed with CCLM version 4.25.3, which has about 300 000 lines of

code and around 300 namelist parameters. A typical model run using 256 processors of the PIK
high-performance cluster roughly takes one day per simulation year. This means that any brute
force scanning of the parameter space to the end of finding an optimummodel setup is doomed to
failure.The only feasible way to improvement is via insights into the simulated physical system and
into the conceptualization of this system in the model.
Since CCLM was designed for climate simulations on highly resolved horizontal grids down to

mesh sizes on the order of 1 km, it is based on the nonhydrostaticNavier-Stokes equations (cf. Ch. 2).
These are discretized on a rotated spherical coordinate system to have as regular a grid as possible
within the simulation domain; in a typical application, the pole is tilted such that the equator runs
through the center of the domain [cf. Fig. 4.1(a)]. Also for numerical reasons, CCLM uses terrain-
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4. Dynamical Downscaling and CCLM

(a) (b)

Figure 4.1.: (a) Rotated spherical coordinate system (solid blue) with its North Pole tilted to 30○N,
40○W with respect to the geographical coordinate system (broken orange) and (b)
schematic diagram of a terrain-following vertical coordinate over a bell-shaped moun-
tain (from Doms et al., 2011b).

following vertical coordinates, whichmeans that the bottommodel level represents the atmospheric
layer directly atop the earth’s surface, the topmodel level represents a flat atmospheric layer at some
prescribed height, and the intermediate levels represent atmospheric layers of gradually increasing
flatness with height [cf. Fig. 4.1(b)].

The dynamical core of CCLM is based on a finite difference numerical scheme.The discretized
model variables are staggered on an Arakawa-C/Lorenz grid (Cushman-Roisin and Beckers, 2011;
Lorenz, 1960), which means that scalars such as ⟨ρ⟩, ⟨qx⟩, ⟨p⟩, and ⟨T⟩ are defined at grid volume
centers while the three velocity components ⟨u⟩, ⟨v⟩, and ⟨w⟩ are defined at grid volume faces, i.e.
halfway between the centers. Several time integration schemes are implemented. In our application
we use a total variation diminishing version of a 3rd order Runge-Kutta split-explicit scheme (Liu
et al., 1994; Doms et al., 2011b).

The cloud parameterizations of CCLM distinguish between GS and SGS clouds. A bulk water-
continuity model describes the GS clouds (Doms et al., 2011a). It includes prognostic equations
for water vapor, rain, snow, cloud liquid water, and cloud ice. SGS clouds are considered as either
cumuliform or stratiform and are parameterized as described in Ch. 3. Radiative transfer is parame-
terizedwith the Ritter andGeleyn (1992) scheme that is based on a delta-two-stream approximation
of the radiative transfer equations with three spectral intervals in the solar and six in the thermal
part of the radiation spectrum. In addition to the standard atmospheric gases the radiative prop-
erties of aerosols and of liquid water and ice clouds are taken into account. SGS turbulence is pa-
rameterized with a prognostic turbulent kinetic energy closure at level 2.5 according to Mellor and
Yamada (1982) that includes effects from SGS condensation and evaporation (Raschendorfer, 2001).
Per default, soil processes are parameterized by the multi-layer soil model TERRA-ML (Schrodin
and Heise, 2001), plants are modeled following the biosphere-atmosphere transfer scheme by Dick-
inson et al. (1986), and the bare surface is parameterized according to Dickinson (1984).
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5. WhatWe Talk aboutWhenWe Talk about Climate
Model Evaluation

The overarching topic of this thesis is the evaluation of numerical atmospheric models. When we
writemodel evaluation we mean a model quality assessment based on the comparison of simulated
with observed values of some observables of the simulated system. While this task is frequently
referred to as model validation in the scientific literature, we prefer the former over the latter term
for reasons well compiled by Oreskes (1998) and summarized in the following.
To begin with, a model validation does not make any sense if taken literally. We adhere to the

argument by Popper (1937, 1963) that scientific models or theories can only be proven wrong, never
right. If valid is understood in the strict sense of objectively true this implies that any attempt of a
model validationmust fail, which reduces the term ad absurdum.
Nevertheless, many scientists have used and are using the term, thinking of a valid model as one

without obvious flaws or defects. As Oreskes (1998) argues, using the term with this less strict defi-
nition in mind is fine for communication within the scientific community, yet it turns problematic
when model validation studies are read by nonexperts.This is because, commonly, the language of
such studies is excessively affirmative, which in combination with the term model validation com-
municates an overly positive level of confidence in model quality.
In conclusion, Oreskes (1998) advocates the use of the more logically sound and less suggestive

termmodel evaluation. It also is the more general of the two terms (Hodges and Dewar, 1992). Next
to simulation-observation comparisons onemay evaluate a model’s conceptualization of reality, the
number and measurability of its input parameters, or its numerical formulation. Yet within this
thesis we are solely going to use the term in the narrow sense stated at the outset of this section.
Modelers and observers of the climate system have cross-fertilized each other for decades. Com-

parisons of simulations with observations of atmospheric dynamics have been done since the very
first attempts of their numerical modeling (Donner et al., 2011). Early model evaluations focused
on the atmospheric energy cycle, the zonal-mean circulation, and regional surface climatologies.
Subsequent ones examined the three-dimensional structure of the general circulation and atmo-
spheric variability at various time scales, paying particular attention to mid-latitude synoptic dis-
turbances and to the El Niño Southern Oscillation. With the rising concern over anthropogenic
climate change and a concurrent increase of model utilization for future climate projections, recent
evaluations have investigated the ability of climate models to replicate historical climate variations.
Many methods and metrics have been devised to quantify the degree of agreement between sim-

ulation and observation. Very simple ones are employed in the first part of this thesis. In the second
part we then introduce and apply more sophisticated metrics based on climate networks.
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6. The Sensitivity Study: Preliminaries

In the next chapter we present the results of the first comprehensive CCLM evaluation over South
America. In particularly, we examine the importance of the representation of SGS clouds for a faith-
ful simulation of precipitation over the tropical part of the continent. While it is well documented
that cumulus parameterization is crucial in this regard (Betts and Jakob, 2002; Bechtold et al., 2004;
Santos e Silva et al., 2012), less is known about the sensitivity of simulated precipitation characteris-
tics to the parameterization of nonprecipitating SGS clouds.

6.1. Study Design

We comparatively evaluate four CCLM hindcast simulations with model setups that differ in the
chosen parameterizations of moist convection and of SGS clouds in the radiative transfer scheme
but that are identical in other respects.These parameterizations are the ones described in Ch. 3; the
labels we use to refer to the corresponding 2 × 2 model setups are displayed in Tab. 6.1.
We run the model on the CORDEX South America domain, which implies a horizontal reso-

lution of 0.44○, i.e. of about 50 km. The computational grid includes an additional ten grid point
wide sponge zone for boundary data relaxation (cf. Ch. 4) and consists of a total of 166× 187 points
(Fig. 6.2).The vertical coordinate is set to have 40 levels reaching up to 30 km above sea level, and
as suggested by Panitz et al. (2013) for tropical domains, we adjust the Rayleigh damping height to
18 km.
In order to account for the deep roots in tropical rainforests, we lower the bottom of the deep-

est hydrologically active soil layer of TERRA-ML to 8m (Nepstad et al., 1994; Baker et al., 2008). In
accordance with Galbraith et al. (2010), we also increase the optimum temperature for stomatal con-
ductance from 20○C to 25○C. Values for external model parameters such as land surface elevation,
surface roughness length, and leaf area index are adapted from the ECOCLIMAP data set (Smiatek
et al., 2008).
Our evaluation period covers 14 years from 1998 to 2011. Model runs are started in 1990 to allow

for a spin-up of 8 years. Interpolated ERA-Interim reanalysis data (Dee et al., 2011) are used as initial
and lateral boundary conditions.

setup label cumulus convection scheme nonprecipitating SGS cloud scheme

TR Tiedtke (Sec. 3.3.1) relative humidity (Sec. 3.1.1)
TS Tiedtke statistical (Sec. 3.1.2)
IR IFS (Sec. 3.3.2) relative humidity
IS IFS statistical

Table 6.1.: Labels and parameterization schemes of CCLM setups.
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Figure 6.2.: Computational domain for CCLM simulations. The model evaluation is restricted to
the CORDEX South America domain (colored). Marked are further the region we refer
to as Amazonia in Sec. 7.2 (solid box), the locations of the five flux towers (Tab. 6.3),
data recorded at which we employ below, and the climatological locations of the SACZ
(southernmost dashed line) and of theAtlantic ITCZ in austral summer (middle dashed
line) and winter (northernmost dashed line). Colors indicate surface elevation as it is
represented in the model.

6.2. The South American Climate

The South American continent extends across several climate zones from 10○N to 55○S. Along its
western shore, the Andes form a narrow but high orographic barrier (Bookhagen and Strecker,
2008). In line with climatological conditions, vegetation types vary considerably. While tropical
South America is dominated by the vast Amazonian rainforest, various kinds of wood- and shrub-
lands, savannas, and deciduous forests are found in the subtropics, and grasslands and semideserts
prevail in southern South America. Climatically, throughout the year, the continent is framed by
the Inter Tropical Convergence Zone (ITCZ) in the north, westerly winds in the south, and sub-
tropical high pressure systems over the Pacific and Atlantic oceans in the west and east, respectively
(Garreaud et al., 2009).
In austral winter, the ITCZ rain band retreats to northwestern South America, leaving the south-

ern Amazon basin, the adjacent savanna, and northeastern Brazil in their dry season (Vera et al.,
2006a; Liebmann et al., 2007).The westerlies carry extratropical cyclones to the south of the conti-
nent, supplying precipitation to the southwestern coast and to southeastern SouthAmerica (Mendes
et al., 2010).
In austral summer, the greatest part of the continent is subject to the South American Monsoon

System (SAMS; Zhou and Lau, 1998; Vera et al., 2006b; Marengo et al., 2012b). Next to the ITCZ,
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6.3. Observational Data

this comprises the South Atlantic Convergence Zone (SACZ), a band of moisture convergence
and abundant precipitation extending southeastward from central Amazonia (Nogués-Paegle et al.,
2002; Carvalho et al., 2004). Further low-level features of the SAMS include a thermal depression
called the Chaco low over northwestern Argentina and the South American Low-Level Jet (SALLJ;
Marengo et al., 2004), which transports large amounts of moisture from Amazonia to the subtropi-
cal plains through a narrow channel between the Andes and the Brazilian Plateau.The most promi-
nent feature of the high-level circulation in austral summer is a large anticyclonic circulation called
the Bolivian high, which can be considered together with the low-level Chaco low as a response
to the strong convective heating in the Amazon region. The SAMS is characterized by enhanced
convective activity and heavy precipitation in tropical South America. Moist convection has a pro-
nounced diurnal cycle, is frequently organized in squall lines or othermesoscale convective systems,
and is modulated by extratropical frontal systems (Molion, 1993; Silva Dias et al., 2002; Rickenbach
et al., 2002; Salio et al., 2007).

6.3. Observational Data

We employ site measurements and various gridded data sets for the model evaluation. Prior to
any comparison, the gridded data are interpolated from their native grid to the rotated spherical
coordinate system of CCLM. In the case of radiative fluxes, cloud cover, and precipitationwe apply a
first-order conservative remapping scheme (Jones, 1999). Temperature, geopotential, and winds are
interpolated bilinearly. Winds are additionally rotated in order to account for the relative rotation
of grids.
We evaluate precipitation against the Tropical Rainfall Measuring Mission (TRMM) 3B42 V7

daily satellite product, which starts in 1998 and comes at a native resolution of 0.25○ (Huffman
et al., 2007). It arguably is the best precipitation data set available for tropical South America given
its high resolution and the comparatively large uncertainties of gauge measurement data in the area
(Carvalho et al., 2012). The product is based on measurements by radar, infrared and microwave
sensors aboard numerous satellites, and calibrated by station data. While it is available up to 50○

latitude, the TRMM precipitation radar data only extend to 36○ latitude so that we constrain our
analysis to latitudes north of 40○S, where the data are most reliable. We do not consider this a
problem since our study focuses on the tropical climate of South America, and since inter-setup
differences of modeled precipitation characteristics are small at more southern latitudes.
Total cloud cover is compared to the International Satellite Cloud Climatology Project (ISCCP)

D2 monthly means from 1998 to 2007 which have a native resolution of 2.5○ (Rossow and Schiffer,
1999).The cloud cover estimates are based on satellite observations of infrared and visible radiation
and have an uncertainty of about 5%.
Surface shortwave and longwave net radiation are evaluated against the NASA/GEWEX Surface

Radiation Budget (SRB) release-3.0 monthly estimates from 1998 to 2007 at a native resolution of 1○

(Stackhouse Jr. et al., 2011), which are based on various input data including temperature and mois-
ture profiles from the NASA Global Modeling and Assimilation Office GEOS-4 reanalysis product,
and cloud parameters from ISCCPDX data.The estimates have uncertainties of about 20W/m2 for
shortwave and 5 W/m2 for longwave radiation.
2m temperatures are compared to the Climatic Research Unit (CRU) TS3.21 monthly observa-

tions from 1998 to 2011 at the native resolution of 0.5○ (Harris et al., 2013). This data set covers
land points only, but since CCLM adopts the ERA-Interim sea surface temperatures we expect only
minor differences of oceanic 2m temperatures between different model runs.
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K34 K67 CAX RJA BAN

longitude [○W] 60.21 54.96 51.46 61.93 50.16
latitude [○S] 2.61 2.86 1.72 10.08 9.82
height [m] 50.0 63.0 51.5 60.0 40.0
coverage [y] 7 4 3 3 3

Table 6.3.: Locations, measurement heights, and temporal data coverages of the Large-scale Bio-
sphere-atmosphere Experiment in Amazonia (LBA) flux towers at Manaus Km34 (K34),
SantarémKm67 (K67), Caxiuanã (CAX), Reserva Jaru (RJA), and Bananal Island (BAN).

850 hPa geopotential and wind are evaluated against ERA-Interim reanalysis data. As a bench-
mark reference, we also include ERA-Interim data in the evaluation of the other variables. Besides,
this allows us to identify biases introduced by the lateral boundary conditions.
In order to compare simulation results to site measurements at high temporal resolution we in-

clude data recorded at the towers of the LBA-ECOCD-32 Brazil Flux Network (Saleska et al., 2009).
This data set comprises hourly measurements from nine sites during the years 1999 to 2006. How-
ever, for most sites, this time frame is not entirely covered, and at some sites the vegetation is unnat-
ural, which is a problem since the land cover data used by CCLM in the corresponding grid cells
represent natural vegetation. Choosing sites with natural vegetation only that, in addition, provide
at least 3 years of precipitation, temperature, and net radiation data, we end up with the towers at
Manaus Km34 (K34), Santarém Km67 (K67), Caxiuanã (CAX), Reserva Jaru (RJA), and Bananal
Island (BAN).Their locations, measurement heights, and temporal data coverages are displayed in
Tab. 6.3 (cf. Fig. 6.2). All measurements were taken just above the canopy so that they may well
be compared to the modeled surface fluxes and atmospheric variables at 2m height. We compare
tower measurements to data from the closest model grid cell, considering only times, when tower
data are available.
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7. The Sensitivity Study: Results

In the following, we first evaluate seasonal mean values of precipitation, total cloud cover, 2m tem-
perature, surface net shortwave and longwave radiation, as well as 850 hPa geopotential and wind
over the whole evaluation domain.Then, we focus our analyses on Amazonia, where we start with
an evaluation of the seasonal cycles and summertime diurnal cycles of precipitation, 2m temper-
ature, and surface net radiation at the flux tower sites (cf. Fig. 6.2), followed by an evaluation of
the distribution of summertime daily precipitation intensities, and concluded with a comparison of
summertime mean cloud profiles simulated with the different CCLM setups.

7.1. Seasonal Mean Values

To keep the climatological mean value evaluation compact, we limit it to the austral summer (De-
cember-January-February, DJF) and winter (June-July-August, JJA) seasons.This should suffice to
obtain a general impression of the performance of CCLM over the region, since DJF and JJA com-
prise the months of the southernmost and northernmost locations of the ITCZ, which means that
the two seasons characterize the South American climate extremes.

7.1.1. Precipitation

We commence with the central variable of this study. DJF and JJA mean precipitation are shown
in Fig. 7.1. In DJF, the TRMM and ERA-Interim data exhibit the typical monsoon season rainfall
patternwith precipitationmaxima along the ITCZ, the SACZ, and the easternAndes (cf. Bookhagen
and Strecker 2008).

The CCLM simulations show quite different qualities in reproducing this pattern. With the TR
setup, the model generates contrasting biases of more than 50% overestimation over the oceanic
part of the ITCZ and more than 50% underestimation over land except along the Andes south of
20○S. As alluded to in the introduction, the rediscovery of this bias pattern was the starting point
for this sensitivity study. Rockel and Geyer (2008) had shown this land-sea contrast of precipitation
biases to occur over tropical domains around the globe when the CCLM is run with the TR SGS
cloud schemes, and Panitz et al. (2013) partially confirmed this finding in recent CCLM simulations
over Africa.
Substituting the IFS for the Tiedtke scheme smoothes rainfall patterns and reduces biases over

land as well as over oceans. Especially the oceanic wet bias is almost completely removed and over
the Andes the model produces less excessive precipitation. Gregory et al. (2000) found a similar
smoothing of spatial rainfall patterns as well as rain rate reductions along the maritime ITCZ in
global seasonal forecasts with the ECMWF IFS after changing trigger and closure of deep convec-
tion from those based on moisture convergence as proposed by Tiedtke (1989) to ones based on
cloud depth and CAPE, respectively. Further modifications of the trigger and of entrainment rates
led to qualitatively similar precipitation changes though (Bechtold et al., 2004). Since these are just
some of the differences between the two cumulus convection schemes (cf. Sec. 3.3.2), it is difficult
to tell which of the differences are most responsible for the improvements seen in Fig. 7.1.
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Figure 7.1.: Mean precipitation versus TRMM observations during austral summer (DJF, upper
three rows) and austral winter (JJA, lower three rows) from 1998 to 2011. For each sea-
son, the top row shows the seasonal mean, themiddle row shows the absolute (sim−obs),
and the bottom row the relative ((sim−obs)/obs) difference to the observation, which is
displayed in the leftmost column, followed by ERA-Interim, and the CCLM simulations
with the TR, TS, IR, and IS setup (from left to right).
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7.1. Seasonal Mean Values

In comparison to simulations with the RH scheme, those with the statistical scheme show a fur-
ther reduction of the dry bias over land. With the IS setup, the dry bias in western Amazonia is
reduced to 30%—a magnitude also found with other RCMs (Marengo et al., 2009; Solman et al.,
2013); in eastern Brazil we see a mix of over- and underestimations. While a strong sensitivity of
simulated precipitation to the cumulus parameterization could be expected, the large sensitivity to
the representation of SGS clouds in the radiation scheme is remarkable. We are going to elaborate
on this latter sensitivity below.
Some biases, however, are common to all model setups and are also shared by other climate mod-

els. For instance, the overestimation of precipitation along the Andes (except at its eastern slopes
between 0○ and 20○S) is a feature of ERA-Interim, the reanalyses CFSR and MERRA (Carvalho
et al., 2012), and many RCMs (Marengo et al., 2009; Solman et al., 2013).
Another example is the dry bias of up to 50% in northern Argentina, which is shared by all simu-

lations while it is not seen in the ERA-Interim data, but observed in CFSR and MERRA (Carvalho
et al., 2012). Observations have shown that monsoon-season rainfall is highly stochastic in this re-
gion and characterized by a heavy-tail distribution (Boers et al., 2013), which implies that heavy
rain events (> 20mm/day) contribute considerably to the total precipitation. Some of these events
are caused by the world’s largest mesoscale convective systems (Vera et al., 2006b), which suggests
that such systems are not well reproduced by CCLM—in fact we show in Sec. 7.2.3 that CCLM
strongly underestimates the frequency of heavy rain events over Amazonia.The particular impor-
tance of these events for the mean DJF precipitation over northern Argentina probably explains the
respective dry bias.
Along the coast around the outlet of theAmazon river, the baseline land-sea bias contrast remains

with all CCLM setups. It also is a feature of other climatemodels (Marengo et al., 2009; Solman et al.,
2013; Joetzjer et al., 2013) and of ERA-Interim. In CCLM, it might therefore result from inaccurate
boundary conditions. In fact, ERA-Interim wind uncertainties in the Atlantic ITCZ are consider-
able as direct observations are essentially limited to satellite scatterometer measurements (Žagar
et al., 2011) and since there is comparably little wind information in tropical mass field observations
(Žagar et al., 2005). Findings by Bechtold et al. (2014, Fig. 11) suggest that a better representation of
the diurnal cycle of convection (cf. Sec. 7.2.2) could reduce the coastal bias contrast. Alternatively,
one could attribute it to an interplay of an incorrect representation of the local land-sea circulation
and amischaracterization of the soilmoisture-precipitation feedback: An erroneous land-sea breeze
circulation with too little rainfall over land dries out the soil. In reality this would lead to stronger
convection over land (Taylor et al., 2012), which would counterbalance the model deficit, but with
the two cumulus convection schemes employed here, dryer soils inhibit convection (see Hoheneg-
ger et al. (2009) for CCLM with the Tiedtke scheme and Taylor et al. (2012) for ERA-Interim with
the IFS scheme). Presumably, the deficient simulation of this feedback also aggravates the aforemen-
tioned dry bias over northern Argentina.
In JJA, we see the same land-sea bias contrast as in DJF, which is again most pronounced for the

TR setup and least for IS. Again, a switch of the convection scheme from Tiedtke to IFS reduces
biases over land and oceans while a swap from the RH to the statistical scheme mainly yields in-
creased precipitation over land. With the TR setup, the rainfall maximum over southeastern South
America is underestimated by up to 50%, as by the RCMs evaluated by Solman et al. (2013). Moving
from TR to IS, this bias gradually declines. For the IS setup, the modeled mean rainfall pattern re-
sembles the TRMM observation. Remaining deficiencies include dry biases in northeastern Brazil
and northern Amazonia, as well as wet biases in the Gulf of Mexico, in northern Argentina, and in
Chile, all of which are also shared by ERA-Interim.
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Figure 7.2.: Mean total cloud cover versus ISCCP observations from 1998 to 2007. Layout as de-
scribed in Fig. 7.1, without relative biases.

7.1.2. Total Cloud Cover

Sincewe observed amajor sensitivity ofmodeledmean precipitation to the parameterization of SGS
clouds, we also expect major differences in the simulated cloud cover between model setups.The
DJF and JJAmean values of total cloud cover are shown in Fig. 7.2 and they indeed vary considerably
between simulations. Compared to the ISCCP data, the TR setup generally yields a too high mean
cloud cover over the oceans in summer andwinter. As could be expected, a change of the convection
scheme results in smaller cloud cover changes than a change of the representation of SGS clouds in
the radiation scheme.With the IFS scheme, it is generally less cloudy than with the Tiedtke scheme.
The IR setup yields the smallest overall biases in both seasons.
Substituting the statistical for the RH scheme yields increased (reduced) cloud cover in regions

with frequent (rare) incidences of deep convection. This pattern of change is most clearly visible
in DJF when we find a sharp boundary between these regimes approximately along a great circle
through 10○S, 90○W and 30○S, 30○W. It suggests that with the statistical scheme, CCLM generates
less stratiform clouds, such that the total cloudiness is reduced in regions where stratiform clouds
prevail, such as over the cool sea surface temperatures of the eastern Pacific (Mechoso et al., 2005).
In regions with frequent deep convective activity we suppose that a more vigorous convective activ-
ity acts to counterbalance the by itself less frequent occurrence of stratiform clouds and leads to a
greater overall cloudiness.This interpretation is consistent with the concurrently enhanced mean
precipitation rates over Amazonia (cf. Fig. 7.1) and we are going to substantiate it below.
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Figure 7.3.: Mean shortwave net radiation at the surface versus SRB observations from 1998 to 2007.
Layout as described in Fig. 7.2.

7.1.3. Surface Shortwave Net Radiation

Since there is a direct relation between cloud cover and radiation budgets, we investigate the latter
in the following. The DJF and JJA mean values of net surface shortwave radiation are displayed
in Fig. 7.3. Compared to the SRB estimates, the TR setup severely underestimates shortwave net
radiation, especially over the oceans. Similar to precipitation, biases of the same kind andmagnitude
were found over Africa (Panitz et al., 2013).
Employing the IFS instead of the Tiedtke scheme considerably mitigates the biases, as does sub-

stituting the statistical for the RH scheme. The differences between model setups are by far more
pronounced over sea than over land. With the IS setup, the modeled shortwave net values resemble
the SRB estimates in summer and winter.The remaining biases are underestimations (overestima-
tions) inside (outside) the convergence zones ITCZ and SACZ.

The reduced surface shortwave net biases suggest amore correct representation of daytime clouds.
As put forward byMorcrette et al. (2008), more solar radiation reaching the surface yields enhanced
convection over tropical land masses.Thus the continuous increase of surface shortwave net radia-
tion fromTR to IS are in line with the respective increases of precipitation over the South American
continent.
Related to the consistency between different variables, we observe an odd situation north of 20○S

(the equator) in austral summer (winter). In this area, a comparison of simulations with different
parameterizations of SGS clouds shows a positive correlation of total cloud cover and net surface
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Figure 7.4.: Mean longwave net radiation at the surface versus SRB observations from 1998 to 2007.
Layout as described in Fig. 7.2.

shortwave radiation. We discuss this apparent contradiction and provide a solution in Sec. 7.2.4.

7.1.4. Surface Longwave Net Radiation

In order to complete the radiation budget evaluationwe nowdiscussDJF and JJAmean values of the
modeled net surface longwave radiation (Fig. 7.4). Since the daytime radiation budget is shortwave
dominated, longwave results primarily represent nighttime conditions. In comparison to the SRB
data, the smallest biases are obtained with the IR setup.
Over land, using the IFS instead of the Tiedtke scheme mostly reduces biases while using the

statistical instead of the RH scheme generally increases the outgoing longwave radiation, i.e. renders
the net surface longwave radiation more negative, which leads to mixed bias changes.
Over sea, we observe increased outgoing longwave radiation for both, a swap of the cumulus

parameterization to the IFS scheme, and a swap of representation of SGS clouds in the radiation
parameterization to the statistical scheme—with a greater sensitivity to the latter change. With the
IS setup, the outgoing longwave radiation is generally overestimated.
Considering the inter-setup differences of net surface shortwave and longwave radiation together,

we conclude that with the statistical scheme, CCLMproduces optically thinner clouds thanwith the
RH scheme. For Amazonia in DJF, the validity of this conclusion is evidenced in Sec. 7.2.4.
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Figure 7.5.: Mean 2m temperature versus CRU observations from 1998 to 2011. Layout as described
in Fig. 7.2. Biases are height corrected with a constant lapse rate of 6.5 K/km.

7.1.5. 2 m Temperature

As an example of a variable which depends on the surface fluxes of radiation and precipitation, we
evaluate the 2m temperature, the DJF and JJA mean values of which are shown in Fig. 7.5. The
bias patterns with respect to CRU observations are height corrected with a constant lapse rate of
6.5 K/km and do not differ much between model setups. Biases are greater in austral summer than
in winter.
All year round we find a cold bias in Amazonia, which we reconsider in Sec. 7.2.1 because of the

discrepancies between CRU temperatures and thosemeasured on the flux towers. Cold biases along
the Andes and over the Guiana Highlands are mostly shared by ERA-Interim, as is a warm bias in
the Atacama desert.
While CCLM mostly produces too low temperatures, we find a pronounced DJF warm bias in

northern Argentina, which is common to many RCMs (Solman et al., 2013). In part, we attribute it
to the severe dry bias in this region and season that we discussed in Sec. 7.1.1, since the respective pre-
cipitation and temperature biases significantly anticorrelate (99% confidence level) across CCLM
setups, and because the soil receives a lot of insolation in this area during summer (cf. Fig. 7.3),
which makes it susceptible to dry stress.
However, a linear regression reveals that the dry bias does not fully explain the warm bias.The

work by Wagner et al. (2012) suggests that its fundamental source is located outside the region
of occurrence: The authors evaluated CCLM simulations over extratropical South America and
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Figure 7.6.: Mean fields of 850 hPa geopotential (colors) and wind (vectors) versus ERA-Interim
reanalyses from 1998 to 2011. Layout as described in Fig. 7.2.

found a substantial sensitivity of northern Argentinean DJF 2m temperatures to the forcing data.
Downscaling a GCM simulation, CCLM generated a warm bias of similar magnitude to the one
found here. Yet, when forced by ERA40 reanalysis data, themodel produced a slight cold bias. Since
the predominant DJF low-level inflow to the region is from north, the warm bias might reflect
modeling errors over the tropical part of the continent, possibly including a poor representation of
the SALLJ. To check this hypothesis, we evaluate the 850 hPa circulation next.

7.1.6. Low-Level Circulation

The DJF and JJA mean fields of 850 hPa geopotential and wind are displayed in Fig. 7.6.The ERA-
Interim data show the westerlies in the south, the subtropical anticyclones over the Atlantic and
Pacific oceans, the monsoon circulation in summer, and strong trade winds over the tropical At-
lantic and northeastern Brazil in winter.
In DJF, CCLM generally exaggerates the relative strength of the Chaco low over northern Ar-

gentina, which leads to a regional bias cyclonic circulation that deflects the inflow of moist Amazo-
nian air to the east.This probably contributes to the summer dry bias in northern Argentina.
Over western Amazonia, pressure is too high throughout the year and with all setups, which

indicates too weak diabatic heating and is consistent with the underestimation of (convective) pre-
cipitation in this area (cf. Fig. 7.1).
Generally, there is a strong dependence of pressure and circulation biases on the representation
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of SGS clouds in the radiation parameterization. With the RH scheme, the geopotential is mostly
overestimated and we find an all-year bias anticyclone over the subtropical Atlantic as well as a bias
antimonsoon circulation in DJF. In simulations with the statistical scheme, the overall low-level
pressure and circulation biases are strongly reduced. In DJF, we find a bias cyclonic circulation
over the subtropical Atlantic. It explains the northeast displacement and intensification (increased
moisture convergence) of the respective SACZ rainband (cf. Fig. 7.1).

Throughout the year and more pronounced with the IFS convection scheme, there is a bias pres-
sure dipole over the Pacific between 0○ and 30○S (10○N and 20○S) in summer (winter), which causes
bias westerly/northwesterly winds off the Peruvian coast.The reason for this bias remains unclear as
does the source of the warm bias during northern Argentinean austral summer. A full understand-
ing of the latter would require further analyses of surface fluxes and atmospheric profiles, which are
beyond the scope of this study.

7.2. Amazonia

In the followingwe focus on simulation results overAmazonia. Solman et al. (2013) have foundmost
discrepancies between climate simulations with different RCMs over this part of South America,
which suggests a generally high modeling uncertainty in the region. Fortunately, all flux towers
meeting the criteria mentioned in Sec. 6.3 are located in this area, so that we can compare modeled
seasonal and diurnal cycles to site measurements. Further below in this section we present DJF
statistics of different model variables over Amazonia, which is defined as a latitude-longitude box
from 0○S to 10○S and from 50○W to 70○W (cf. Fig. 6.2).

7.2.1. Seasonal Cycles

We start with the seasonal cycles of precipitation, net surface radiation, and 2m temperature at
the five flux tower sites (cf. Tab. 6.3 and Fig. 7.7). In order to assess measurement uncertainties we
include cycles from the gridded data sets TRMM, SRB, andCRUas theywere used for the evaluation
of seasonal mean values above.
While the TRMM and SRB estimates mostly agree with the tower measurements, we find sub-

stantial differences between observed temperatures.The tower top temperatures are systematically
lower than those estimated by the CRU.The greatermeasurement height of 40 to 60m of the towers
alone cannot explain the differences of typically 1 to 2K.We presume that they aremainly due to the
different meteorological conditions above a closed rainforest canopy, as represented by the tower
measurements, and at a regular rainforest weather station, as represented by the CRU data.The fact
that the differences are smaller in dry than in wet season supports this presumption. Since modeled
2m temperatures represent values above vegetation, the tower top data are the more suitable refer-
ence.This implies that the Amazonian cold bias diagnosed in Sec. 7.1.5 is at least less severe or even
negligible, especially during the wet season.
In the following we discuss the results for each site individually, as measured cycles as well as

model biases vary considerably between them.
Among the five towers, the K34 tower is themost centrally located in theAmazon basin. Together

with the CAX site it has the least pronounced dry season with monthly mean precipitation rates
remaining above 3mm/day throughout the year; most rain falls in March-April-May. Both charac-
teristics are reproduced by all CCLM simulations.The peak rain rates are strongly underestimated
by all simulations though, especially with TR and IR.The net surface radiation is underestimated

59



7. The Sensitivity Study: Results

K34

p
re

c
ip

it
a

ti
o

n
 [

m
m

/d
a
y
]

0
5

1
0

1
5

K67 CAX RJA BAN

TRMM/SRB/CRU
tower
TR
TS
IR
IS

s
u

rf
a

c
e

 n
e

t 
ra

d
ia

ti
o

n
 [

W
/m

2
]

1
0

0
1

5
0

2
0

0

2
 m

 t
e

m
p

e
ra

tu
re

 [
°C

]

J A J O

2
4

2
6

2
8

3
0

J A J O J A J O J A J O J A J O

month

Figure 7.7.: Mean seasonal cycles of precipitation (top row), net surface radiation (middle row),
and 2m temperature (bottom row) modeled with the CCLM with four different setups
(Tab. 6.1) versus measurements at the five LBA flux tower sites (columns, Tab. 6.3). Also
included are cycles from the gridded data sets TRMM, SRB, and CRU for precipitation,
radiation, and temperature, respectively.

with all model setups in all months and by up to 50W/m2 in January-February-March. The sea-
sonal cycles of 2m temperatures do never differ by more than 1 K between setups, have too small
amplitudes, and show an average underestimation of 1 K.
At the K67 site, the seasonal cycles of all three variables are well captured with the IS setup,

whereas with the other setups, the model is either too dry, too warm, or overestimates the net radi-
ation’s interseasonal variability.

The CAX tower is located close to the Amazon river delta and we recognize the severe dry bias
discussed in Sec. 7.1.1. For all model setups we find a strong underestimation of net radiation from
April to August. Note that according to the SRB data the latter problem is less significant.The dis-
crepancy between ground measurement and satellite product might be due to the complex shape
of the coastline, which is nearby and cannot be properly represented at a horizontal resolution of
1○. Temperatures differ by up to 2K between model setups with drier simulations being warmer. In
September-October-November-December the model is too warm with all setups.

The rainforest around the RJA site is subject to a high amplitude seasonal cycle of precipitation
with mean rates below 2mm/day in JJA and at up to 15mm/day in DJF. The rain peaks are un-
derestimated with all model setups but apart from that the seasonal cycle is well captured by the IS
simulation. Surface net radiation is underestimated with all model setups in all months.The temper-
ature cycle is simulated well with the IS setup while with the others, temperatures are overestimated
by up to 2K.

The BAN site, situated in a transition region between rainforest and savanna, features the most

60



7.2. Amazonia

K34

p
re

c
ip

it
a

ti
o

n
 [

m
m

/h
]

0
.0

0
.4

0
.8

K67 CAX RJA BAN

tower hourly
tower 3−hourly
TR
TS
IR
IS

s
u

rf
a

c
e

 n
e

t 
ra

d
ia

ti
o

n
 [

W
/m

2
]

0
2

0
0

4
0

0

2
 m

 t
e

m
p

e
ra

tu
re

 [
°C

]

3 6 9 12 15 18 21

2
4

2
8

3
2

3 6 9 12 15 18 21 3 6 9 12 15 18 21 3 6 9 12 15 18 21 3 6 9 12 15 18 21

local time

Figure 7.8.: Mean DJF diurnal cycles of precipitation, net surface radiation, and 2m temperature,
simulated with CCLM versus measured at the LBA flux towers. Layout as described in
Fig. 7.7.

pronounced dry season. With every setup, the model underestimates rainfall during the onset of
the wet season, which results in temperature overestimations by 3 to 4K. Inter-setup differences are
large for precipitation and, consequently, temperature.
In summary, we find a systematic underestimation of surface net radiation at the western sites

K34 and RJA. As previously pointed out in Sec. 7.1.1, the model is not able to generate monthly
mean rain rates of more than 10mm/day over Amazonia. Temperatures show a strong response to
precipitation at all sites subject to (simulated) dry stress. We do not see this response at the K34
site because there no simulation is dry enough to let soil moisture control evaporation rates (Koster
et al., 2004) and in turn temperatures.The IS setup yields the best overall performance.

7.2.2. Diurnal Cycles

In the following we focus on the austral summer season since this is the wettest season at all flux
tower sites except K34.The DJF diurnal cycles of precipitation, net surface radiation, and 2m tem-
perature at the LBA flux towers are depicted in Fig. 7.8.
We observe that the underestimations of net surface radiation diagnosed before occur mainly

at daytime. We find the strongest of those underestimations at the K34 site and see that it results
in temperatures being 4K too low at noon. At all sites except CAX, the amplitude of the diurnal
temperature cycle is too small for simulations with the IFS convection scheme.
However, the most striking deviations between modeled and measured diurnal cycles are found

for precipitation. While CCLM simulates peak rain rates at noon or earlier at all sites, the measure-
ments show them between 15 and 18 h local time—except at the K67 tower, where precipitation does
not have a pronounced diurnal cycle. Especially at the CAX site there is a large difference between
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morning and afternoon rain rates that is not adequately captured by CCLM.
The problem of a proper representation of the diurnal cycle of convective precipitation over land

is shared by various RCMs and GCMs (e.g. Dai et al., 1999; Betts and Jakob, 2002; Grabowski et al.,
2006; da Rocha et al., 2009; Nikulin et al., 2012). The reason for the too early precipitation peak
was found to be a too easy triggering of moist convection by many convection schemes (Dai et al.,
1999; Bechtold et al., 2004). Dai et al. (1999) conclude that “this keeps the model atmosphere from
building up high CAPE and prevents intense precipitation from occurring.” Bechtold et al. (2014)
show that slowing down the convective adjustment over tropical land can indeed lead to a higher
buildup of CAPE prior to the onset of deep convection, which then occurs later and features greater
peak rain rates. As these changes are shown to also result in enhanced mean precipitation, we think
that CCLM’s inability to simulate monthly mean precipitation rates of more than 10mm/day over
Amazonia can be attributed to its poor representation of the diurnal cycle of convection.
Considering the diurnal and seasonal cycles of precipitation, net surface radiation, and 2m tem-

perature in synopsis, the model is most accurate at the K67 tower. According to Vera et al. (2006b,
Fig. 5), occurrences of deep convective systems are rare around this site.This exemplifies that the
model does fine where it does not need to simulate such systems.

7.2.3. Precipitation Intensities

So far, we have only evaluated climatological mean rain rates. When it comes to climate impacts,
especially those of extreme events, there is yet another important characteristic of rainfall—the
statistics of daily precipitation intensity. In the following, we evaluate two of these statistics over
Amazonia in DJF from 1998 to 2011 (Fig. 7.9).
CCLM and ERA-Interim show considerable biases in the frequency distribution of daily rain

amounts. Both simulate too many wet days (> 0.1mm/day) and too infrequent heavy rain events
(> 20mm/day), i.e. they rain a bit every day instead of remaining dry on some days and raining
fiercely on others.These problems are shared by many climate models (Dai, 2006). Especially with
the IFS convection scheme, the underestimation of the number of days with less than 0.1mm/day
by CCLM is dramatic.
ERA-Interim strongly overestimates the frequency of dayswith 5 to 16mmprecipitation.Depend-

ing on its setup, CCLM produces too many days with precipitation between 1 to 9 (TR) and 3 to
17mm/day (IS). A swap of the representation of SGS clouds in the radiation parameterization from
the RH to the statistical scheme moves the frequency distribution to higher intensities.
As a result of those differences, the contributions of light (< 10mm/day), moderate (10 to 20mm/

day), and heavy (> 20mm/day) rain events to precipitation totals vary across models and setups.
According to the TRMM data, heavy rainfall should contribute 55%, light and moderate rainfall
only 20% and 25%, respectively. In contrast, ERA-Interim and CCLM with the IS setup attribute
the largest contribution to light precipitation with about 45% and consequently underestimate the
contribution of heavy rain events.
With the other setups, CCLMoverestimates the contribution of light rainfall aswell, but simulates

that of heavy rainfallmore adequately.With the TR setup, heavy rainfall even contributesmore than
60% due to the very low total precipitation in combination with the simulation of some extreme
events of more than 100mm/day. Such extremes are only generated with the Tiedtke convection
scheme. A swap of the representation of SGS clouds in the radiation parameterization from the RH
to the statistical scheme yields a favorable doubling of the contribution of moderate rain events to
the total precipitation.
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Figure 7.9.: Simulated and observed statistics of daily precipitation intensities over Amazonia inDJF
from 1998 to 2011. (top) Relative contributions of daily precipitation amounts from dif-
ferent intensity classes to the total amount, with discrimination between light (< 10mm/
day), moderate (10 to 20mm/day), and heavy (> 20mm/day) precipitation events. (mid-
dle) Frequency distribution of daily rain amounts according to TRMM, interpolated to
the CCLM and ERA-Interim grids. (bottom) Model-to-TRMM ratios of these frequen-
cies for ERA-Interim and the four CCLM runs, with TRMM data interpolated to the
respective grids.

7.2.4. Cloud Profiles

In Sec. 7.1 we have shown that simulations with the statistical parameterization of nonprecipitating
SGS clouds typically feature higher (lower) net surface shortwave (longwave) radiation than with
the RH scheme. At daytime, this sums up to a greater total net radiation (cf. Fig. 7.8) which enables
more vigorous convection and higher rain rates (cf. Figs. 7.1 and 7.8). We now want to illuminate
how it is possible that the enhanced shortwave and reduced longwave net values coincide with an
increased total cloud cover over Amazonia in DJF. To that end, the respective space-time averages
of simulated vertical profiles of cloud cover fraction C and cumulus cloud cover fraction Ccum as
well as of specific cloud ice and liquid water contents qradi and qradl are depicted in Fig. 7.10.
We observe that with the statistical scheme, on average, clouds contain 40% less water and 75%

less ice thanwith the RH scheme. An analysis of the distribution of simulated stratiform cloud cover
Cstr reveals that this reduction is due to a practically complete disappearance of nonprecipitating

63



7. The Sensitivity Study: Results

p
re

s
s
u

re
 [

h
P

a
]

0 20 40

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

cloud cover fraction C  [%]

20 0

cumulus cloud cover fraction C
cum

 [%]

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0 20 40

specific cloud liquid water content q
l

rad
 [mg/kg]

40 20 0

specific cloud ice content q
i

rad
 [mg/kg]

TR

TS

IR

IS

Figure 7.10.: Mean DJF vertical profiles of cloud cover fraction C and cumulus cloud cover fraction
Ccum [left, Eqs. (3.19) and (3.21)] as well as of specific cloud ice content qradi and spe-
cific cloud liquid water content qradl [right, Eqs. (3.22) and (3.24)] over Amazonia, as
simulated with the four CCLM setups from 1998 to 2011.

SGS clouds with the statistical scheme, i.e. with this scheme, all simulated clouds over Amazonia in
DJF are either convective or GS. In contrast, warm and cold nonprecipitating SGS clouds do occur
with the RH scheme, which leads to the respective increases in qradl and qradi .
A reduced cloud water content results in an atmosphere that is more translucent, the net surface

shortwave radiation increases and more energy is available for buoyancy and convection. Conse-
quently, we observe enhanced mean convective cloud cover Ccum at all levels (cf. Fig. 7.10) and
greater mean rain rates (cf. Fig. 7.1) with the statistical scheme.
Consistent with these changes we also find a marked increase of the mean high cloud cover

(Fig. 7.10), probably due to more frequent occurrences of cirrus forming from the anvils of thun-
derstorm clouds. (Not shown:The Amazonian DJF mean high cloud cover has a diurnal cycle that
lags the convection cycle by about four hours and is strongly amplified with the statistical scheme.)
This increase is the primary reason for the 5% to 15% increase in DJF mean total cloud cover over
Amazonia found in simulations with the statistical scheme (Fig. 7.2). Since high cirrus clouds are
typically optically thin, their increased frequency of occurrence does not contradict a concurrently
enhanced net surface shortwave radiation.

64



8. Summary andDiscussion I

In the first part of this dissertation we provide the first comprehensive evaluation of CCLM over
South America. Our analyses focus on precipitation, cloud cover, and surface radiation. We com-
pare the performance of the model with four different setups, which differ in the parameterizations
of SGS clouds.

The simulated climate is proven to be highly sensitive to the parameterization choices, partic-
ularly in tropical latitudes. While precipitation biases are large with the default parameterization
schemes which are an adapted version of the Tiedtke (1989) scheme for cumulus convection and
a RH scheme for nonprecipitating SGS clouds, they can be strongly reduced using the cumulus
convection scheme from the ECMWF IFS Cy33r1 and a statistical scheme for nonprecipitating SGS
clouds. With the latter setup, biases are within the range of those produced with other state-of-the-
art RCMs. CCLM is now ready for applications such as regional climate projections or the inves-
tigation of climate sensitivities to land-use change in South America, and can take part in RCM
ensemble studies over the region via frameworks such as CORDEX. Furthermore, our findings will
help to improve the model’s performance over other tropical domains.
Since a large fraction of tropical precipitation falls out of cumulus clouds, it was expected that

simulated precipitation is sensitive to the parameterization of cumulus convection. We reveal that
its sensitivity to the parameterization of SGS clouds in the radiation scheme can be of similar mag-
nitude. We explain this latter sensitivity via the surface radiation budget. With the statistical in
place of the RH SGS cloud scheme, ice and liquid water contents of clouds are strongly reduced,
which allows more solar radiation to reach the surface. As previously described by other authors
(Hohenegger et al., 2008; Xu and Small, 2002; Morcrette et al., 2008), this allows for more vigorous
moist convection and, in turn, enhanced precipitation rates. To our knowledge, this is the first RCM
sensitivity study to compare simulations with a statistical and a RH scheme for the parameterization
of nonprecipitating SGS clouds in combination with different schemes for the parameterization of
cumulus convection. Although we only present results for a specific RCM over a specific domain,
our findings may benefit the development of other numerical atmospheric models over other do-
mains as well.
For the variables considered in this study, the CCLM setup with the IFS convection and the sta-

tistical nonprecipitating SGS cloud scheme yields the best overall performance. Remaining model
biases include an all-year dry bias over Amazonia with a pronounced land-sea bias contrast around
the Amazon river outlet. The low-level pressure is generally overestimated over the tropical part
of the continent. A substantial austral summer dry bias is present in northern Argentina and con-
tributes to a pronounced warm bias found in the same region and season. Temperatures are gener-
ally too low in the tropics when compared to the CRU data. However, when considering the LBA
flux tower measurements, this bias may be less distinct or even negligible in some cases.

The remaining dry biases occur in areas over which mesoscale convective systems propagate
frequently in nature. Besides northern Argentina (Vera et al., 2006b; Boers et al., 2013), these areas
include Amazonia, where mesoscale organization of moist convection usually occurs in the form of
squall lines that develop at the northeastern coast of SouthAmerica as a result of sea-breeze induced
instabilities and then propagate westward across the Amazon basin (Garstang et al., 1994; Cohen
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et al., 1995). Such propagating mesoscale convective systems cannot be captured in simulations
with conventional cumulus convection schemes because these schemes do not admit the nonlocal
and nonequilibrium diurnal physics that governmesoscale convective organization (Pritchard et al.,
2011). Hence it is reasonable to assume that a considerable fraction of the remaining precipitation
dry biases over tropical and subtropical South America are associated with a deficient simulation
of propagating mesoscale convective systems.
Moreover and probably connected to this deficiency, we find considerable remaining misrepre-

sentations of the diurnal precipitation cycle and of the distribution of daily precipitation amounts
over Amazonia. From a general point of view, our study underlines the important role clouds play
in the climate system.The model sensitivities we find illustrate the complicated feedbacks between
the radiative and hydrological properties of clouds and the impacts they exert on other parts of the
system. Overall, our results confirm that the parameterization of clouds remains one of the most
important and difficult problems in numerical atmospheric modeling.
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9. Introduction II

The analysis presented in the previous part was an example of a conventional climate model evalu-
ation in the sense that it was limited to the simulation-observation comparison of statistics of time
series representing individual locations. We examined the simulation quality of temporal mean val-
ues and frequency distributions. Other statistics considered in comparable univariate model evalu-

ation studies include extreme value percentiles (Ban et al., 2014), temporal variabilities at various
time scales (Randall et al., 2007; Lin et al., 2009), season onset dates and lengths (Liebmann et al.,
2007), and serial correlations (Koster and Suarez, 2001).The results are often presented in the form
of bias maps, which in turn may be spatially aggregated to root-mean-square deviations (Willmott,
1981; Decker et al., 2011) or Taylor diagrams (Taylor, 2001; Pincus et al., 2008).
In the second part of this thesis we develop and apply new performancemetrics for climatemodel

evaluation. Such an effort was explicitly requested by the Fourth Assessment Report of the IPCC
(Randall et al., 2007; Lucarini and Ragone, 2011), given that the quantification of the accuracy of
numerical climate simulations is necessary not only for model improvement as exemplified above,
but also for the assessment of the uncertainty of future climate projections (Wigley and Raper, 2001;
Stott andKettleborough, 2002;Murphy et al., 2004), for the selection or weighting of climate simula-
tions for climate impact studies (Pierce et al., 2009; Christensen et al., 2010), and where hypotheses
about climate dynamics, feedbacks, or sensitivities are tested by means of numerical simulation to
advance our general understanding of the climate system (Held, 2005; Lucarini, 2008).
In its Fifth Assessment Report the IPCC acknowledges that model performance metrics have

been increasingly applied in the meantime (Flato et al., 2013). Yet a closer look at the referenced
model intercomparison studies (Gleckler et al., 2008; Pincus et al., 2008; Waugh and Eyring, 2008;
Reichler and Kim, 2008; Cadule et al., 2010) reveals that themetrics employed therein are still based
on univariate statistics.This is suboptimal considering that such statistics are only partly represen-
tative of the complicated spatiotemporal dynamics of the climate system. In particular, they cannot
capture the fundamental statistical relationships between dynamics at different locations.
Walker (1928) ascribed the first finding of connections between weather in different parts of the

earth to Hoffmeyer who pointed out the association between pressure over the North Atlantic and
weather in Europe in 1878. In the meantime, a multitude of such connections has been found in
the form of recurrent spatial patterns of meteorological anomalies relative to the respective clima-
tological mean fields. Prominent examples of such fluctuating anomaly patterns include the North
Atlantic Oscillation (Hurrell, 1995), the Madden-Julian Oscillation (Madden and Julian, 1994), and
the El Niño Southern Oscillation (Trenberth, 1997).
A promising recent approach to the quantification and analysis of these spatial relationship pat-

terns is based on network theoretical concepts. In a climate network, nodes correspond to meteoro-
logical2 anomaly time series at different locations and links between the nodes represent statistical
relationships between the corresponding time series (Fig. 9.1).This identification sets the stage for

2Wewritemeteorological here and in the following because in this dissertation we are only concerned with atmospheric
dynamics. In general, of course, climate networks may represent spatiotemporal dynamics within and/or between
any of the five components of the climate system, which are the atmosphere, the hydrosphere, the cryosphere, the
lithosphere, and the biosphere (Baede, 2001).
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Figure 9.1.: Climate networks represent statistical relationships ri j between anomaly time series
yi(t), y j(t) that represent meteorological2 variability around climatological mean val-
ues at locations i, j.

the application of various network analysis methods and promises new insights into the spatial in-
terdependency structure of atmospheric dynamics (Tsonis and Roebber, 2004; Tsonis et al., 2006).
The climate network approach has been applied to investigate monsoon system dynamics (Boers
et al., 2013; Stolbova et al., 2014), to study impacts of El Niño events (Tsonis and Swanson, 2008;
Gozolchiani et al., 2011), to detect dynamical transitions in the climate system (van derMheen et al.,
2013; Rehfeld et al., 2014), and to predict selected weather and climate events (Ludescher et al., 2013;
Boers et al., 2014).
Only lately the community has begun to employ climate networks for multivariate model eval-

uation purposes (Fountalis et al., 2013; Steinhaeuser and Tsonis, 2013; Fountalis et al., 2014). In
these studies, network nodes are first grouped into geographically connected subsets with strong
internal network connectivities, and these clusterings are then compared between networks con-
structed from observed and simulated data. A potential drawback of this approach is that relevant
information may be lost by the clustering; in any case only a fraction of the information contained
in the climate networks enters the comparison.3 Our objective is to advance the network approach
to climate model evaluation by developing tools for network comparison that take the full network
structure into account.
We will introduce such tools in the following chapter. Later on, we are going to demonstrate

their capabilities as model performance metrics in two RCM evaluation studies over South Amer-
ica, where we compare the performance of CCLM to that of a statistical RCM. The latter will be
introduced in the chapter after the next.

3Climate model evaluation with empirical orthogonal functions (Lau, 1981; Miller et al., 2006; Handorf and Dethloff,
2012) has the same conceptual limitation.
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A network or graph is a set of items, called vertices or nodes, with connections between them, called
edges or links.The study of complex system dynamics with network theoretical concepts has thrived
for some time (Newman, 2003; Boccaletti et al., 2006). Applications covermany branches of science
as virtually any multidimensional dynamical system may be considered a network of dynamically
interacting components. Beyond climate science, network methods have been employed for the
analysis of financial markets (Lux and Marchesi, 1999), social dynamics (Erbach-Schoenberg et al.,
2014), neural activity (Zhou et al., 2006; Vértes et al., 2012), genetic regulatory systems (de Jong,
2002; Ho and Charleston, 2011), and transportation networks (Woolley-Meza et al., 2013), to name
just a few examples.
Various types of graphs have been devised to mathematically describe differently networked sys-

tems. Among climate networks, one can find any of the examples given in Fig. 10.1: With different
node and link types one can distinguish nodes from different atmospheric layers and intra-layer
from inter-layer links (Donges et al., 2011); node weights are useful to take varying grid cell sizes
into account (Zemp et al., 2014); link weights allow for the representation of varying strengths of
connection between nodes (Berezin et al., 2012); and with directed links one can capture the direc-
tion of atmospheric flows (Boers et al., 2014). For the sake of simplicity, wewill focus our derivations
on undirected climate networks first. A generalization of our concepts to directed networks will be
discussed towards the end of Sec. 10.2.

10.1. Climate Network Construction

Undirected climate networks are usually constructed as follows. In the first step, i = 1, . . . ,N lo-
cal meteorological time series xi(t) are preprocessed to anomaly time series yi(t), often including
some filtering in the time or frequency domain. Then, the relationship between any two of those
anomaly time series is estimated using some undirected statistical dependence measure, which re-
sults in a symmetric N × N matrix of relationship coefficients ri j. This matrix can already be in-
terpreted as the representation of a fully connected undirected network of N nodes and with link
weights ri j. Statistical dependencies are calculated between anomaly time series yi(t) to have net-
works representing nontrivial spatial relationships of fluctuations around climatological mean val-
ues. If they were calculated between the precursor time series xi(t) they would mainly represent
relationships between mean seasonal cycles.
Statistical dependencemeasures that have been used to construct climate networks include linear

correlations (Tsonis and Roebber, 2004; Yamasaki et al., 2008) as well as nonlinearmeasures such as
mutual information (Donges et al., 2009a; Barreiro et al., 2011), event synchronization (Malik et al.,
2012; Boers et al., 2013), and transfer entropy (Runge et al., 2012). Given that atmospheric dynam-
ics are nonlinear, dependences between time series can be expected to be nonlinear too. Following
up this reasoning, Donges et al. (2009b) constructed surface air temperature networks with cor-
relations and with mutual information, but did not find any major structural differences between
them.Therefore, we stick to the simpler correlation measures where appropriate. In order to study
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(c)

(b)

(d)

(a)

Figure 10.1.: Examples of climate network types. Undirected networks with (a) only a single node
type and a single link type, (b) a number of discrete node and link types, and (c) varying
node and link weights versus (d) a directed network (from Newman, 2003).

spatial relationships between binary extreme event time series, we employ the event synchroniza-
tion, which was originally introduced to measure synchronicity and time delay patterns between
electroencephalogram signals (Quiroga et al., 2002).
To simplify the network analysis, the matrix (ri j) is usually further processed to a binary adja-

cencymatrix with components ai j = 1 if nodes i and j are connected and ai j = 0 otherwise (Donges
et al., 2009b; Simpson et al., 2013).These unweighted links are typically assigned according to the
significance of the respective statistical relationship, i.e. by setting ai j to 1 iff ri j exceeds some thresh-
old value. If the statistical dependence measure is such that rii represents a trivial relationship of a
time series with itself, then aii is set to zero for all i. In this typical case (ai j) represents a network
that mathematicians call a simple graph.
In summary, undirected climate networks are typically constructed according to

{xi(t)}
P
↦ {yi(t)}

S
↦ (ri j)

T
↦ (ai j), (10.1)

where P represents the preprocessing algorithm that turns the original time series into anomaly
time series, S is the statistical dependence measure used to quantify undirected bilateral statistical
relationships between anomaly time series, and T denotes the thresholding of statistical relationship
coefficients that yields simple graph adjacency matrices.
An important trait of climate networks is that they are spatially embedded, whichmeans that their

nodes are associated with points in a metric space.The embedding can have a considerable effect
on the network structure (Boccaletti et al., 2006; Donges, 2012). In particular, the strength (in the
ri j case) or existence (in the ai j case) of a link between two nodes i and j is usually related to the
distance d(i , j) of the nodes.This relationship can be quantified by the dependence of the average
link strength ⟨ri j⟩ or link density ⟨ai j⟩ on the node distance d(i , j). Another consequence of the
embedding is that climate network nodes typically represent subsets of themetric space that vary in
size.This volumetric information can be taken into account by node weights (Heitzig et al., 2012).
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10.2. Dissimilarity Measures for Climate Networks

We will now introduce new dissimilarity measures for climate networks represented by matrices of
both the (ri j) and the (ai j) type.We are going to denote the two networks to be compared A and B,
and we will assume them to have a common set of N nodes, which presumes that model output and
observations are mapped onto a common grid or location set prior to network construction. Such
a spatial interpolation of data prior to comparison is commonplace in climate model evaluations.
Given the correspondence of nodes between networks A and B, we can aim at a local network

comparison, i.e. at the assessment of network dissimilarity from the perspective of each individual
node/location.These local dissimilarities can then be depicted in the formof biasmaps, and they can
be spatially aggregated to obtain an estimate of the global network dissimilarity. With this picture
in mind we are going to define local and global network dissimilarity measures in the following.
Please note that, in principle, we could as well work with network similarity instead of dissimilar-

ity measures.The two are typically equivalent as for a bounded similarity measure s(A, B) ∈ [0, 1]
an equivalent dissimilarity measure is given by d(A, B) = 1 − s(A, B). Yet we prefer to quantify
network dissimilarity since it enables the aforementioned map plots of local dissimilarities, which
shall resemble the bias maps found in typical climate model evaluation studies. We think that this
increases the chances for the network approach to be appreciated by the climate model evaluation
community.

The network science community has already tackled the problem of quantifying graph similarity
from the perspective of individual nodes since potential applications are abundant. It has devel-
oped a concept termed vertex similarity and has applied it to compare nodes of the same (Jaccard,
1901; Leicht et al., 2006) and of different (Blondel et al., 2004; Zager and Verghese, 2008) networks.
The older and simpler concept of structural equivalence considers nodes similar if they have many
common network neighbors (Lorrain and White, 1971; Leicht et al., 2006) while the more recent
concept of regular equivalence considers nodes similar if the nodes they are connected to are them-
selves similar (Blondel et al., 2004; Zager and Verghese, 2008). To make sense, the latter concept
requires transitivity of similarity through network links and therefore does not apply to networks
where nodes are linked iff the entities they represent are dissimilar. Since networks of this latter kind
can occur in our context, as we are going to exemplify by anticorrelation climate networks in Ch. 13,
we define local network dissimilarity measures in accordance with the concept of structural equiv-
alence. To our knowledge, we are the first to employ this concept to quantify the (dis)similarity of
nodes of different networks.
We will begin with the simplest case of simple graphs, continue with the cases of edge-weighted

and node-weighted undirected graphs, and end with the most general case of directed graphs with
and without edge and node weights.

10.2.1. Simple Graphs

Let us first recall some basic graph theoretical notions. A simple graph G = (V , E) consists of a
vertex setV = {1, . . . ,N} and an edge set E = {{i , j}∶ i , j ∈ V}. It can be represented by a symmetric
binary N × N adjacency matrix (ai j) with a zero diagonal and ai j = 1⇔ {i , j} ∈ E. Nodes which
are connected are called neighbors.The set of all nodes connected to node i is i’s neighborhood.The
number of its neighbors is i’s degree ki and can be written as

ki =
N
∑
j=1

ai j . (10.2)
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The average degree over all nodes, divided by N − 1, is the link density ρ of the network,

N(N − 1)ρ =
N
∑
i, j=1

ai j =
N
∑
i=1

ki = 2 ∣E∣ . (10.3)

In other words, ρ is the probability to find a link between two randomly chosen nodes of the net-
work.
Now let us consider two such simple graphs with adjacency matrices (aAi j) and (a

B
i j). One way

to compare them from the perspective of an individual node i is to compare the neighborhoods of
i in the two networks.This can be done by comparing the ith columns or rows of (aAi j) and (a

B
i j).

A simple distance function for such binary vectors was proposed by Hamming (1950) based on the
logical operation exclusive or, which, using arithmetic operations, can be written as

aAi j XOR aBi j = ∣aAi j − aBi j∣ = (aAi j − aBi j)
2
= aAi j + aBi j − 2a

A
i ja

B
i j (10.4)

for aAi j , a
B
i j ∈ {0, 1}. Apparently, XOR detects differences between binary variables, whichHamming

(1950) usedwhen he defined his binary vector distance as the sumover the exclusive ors of the vector
components. Applying his idea to our problem of comparing network neighborhoods, we define the
Local Hamming Distance (LHD) Hi between simple graphs A and B at node i as

Hi(A, B) =
N
∑
j=1

aAi j XOR aBi j . (10.5)

The LHD counts the number of nodes, which are either a neighbor of i in network A but not in B or
vice versa. It is thus equal to the minimal number of adjacency relation changes necessary to make
the two neighborhoods match. A global network dissimilarity measure corresponding to the LHD
is easily defined by

H(A, B) =
N
∑
i=1

Hi(A, B) =
N
∑
i, j=1

aAi j XOR aBi j , (10.6)

and we callH(A, B) theGlobal Hamming Distance (GHD) of A and B (cf. Zhou et al., 2006; Donges
et al., 2009b).
Figure 10.2(c) shows LHDs between regional climate networks over South America with degree

fields displayed in Figs. 10.2(a) and (b).We observe large LHDs in areas with large degree discrepan-
cies, which is a behavior we expect from a local network dissimilarity measure. A less ideal behavior
becomes apparent over theAtlantic off theArgentinian coast, where both degree fields concordantly
display some fine structure that is related to the Malvinas Current. We observe that the LHD field
features the same fine structure, which hints at a positive correlation between LHD and degree.

This correlation is unfavorable because it implies that the LHD has no absolute meaning. Imag-
ine two nodes i , j with kAi = kBi ≠ kAj = kBj . Equal LHD values at these nodes would mean different
relative agreements of neighborhoods. It is therefore difficult to interpret LHD values without con-
sidering the degrees. We would like to have a more intuitive difference measure which quantifies
the dissimilarity of neighborhoods relative to their size. An equivalent problem has been encoun-
tered by those studying vertex similarity concepts (Leicht et al., 2006).While, to our knowledge, the
network science community has always made do with ad hoc normalizations (Jaccard, 1901; Salton,
1989; Ravasz et al., 2002), we take a different approach in the following.
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Figure 10.2.: Comparison of example climate networks based on 1996–2011 DJF 2m temperature
anomaly time series over South America (cf. Ch. 12). Panels (a) and (b) show degree
fields of such networks constructed fromERA-Interim reanalysis data and fromCCLM
simulation data, respectively. Panels (c) and (d) show Local Hamming Distances [Eq.
(10.5)] and Degree-conditional Neighborhood Dissimilarities [Eq. (10.12)] between
these networks, respectively. Note that the grayscale below (b) is also valid for (a).

Our starting point is a statistical null model which explains the observed LHD-degree depen-
dence: Let i be some fixed node with degrees kAi in graph A and k

B
i in graph B, and let us assume i’s

neighborhoods in A and B to be statistically unrelated.This can be modeled considering aAi≠ j and
aBi≠ j to be random binary variables that are statistically independent between networks and equal
to one with identical probability within networks. Using Eq. (10.4), this null model yields an LHD
expectation value of ⟨Hi(A, B)⟩ = kAi + kBi − 2k

A
i k

B
i /(N − 1).

Beyond illustrating the relationship between LHD and degree, this null model can be used to
define a new local network dissimilarity measure, which is degree-independent. To that end, we
relate the actually measured LHD value Hi(A, B) to the null model probability distribution of pos-
sible LHD values for the degrees kAi and k

B
i . More specifically,Hi(A, B) is mapped to its null model

p-value, i.e. to the probability of the LHD to take a value less than or equal to Hi(A, B), if i’s neigh-
borhoods of size kAi in A and k

B
i in B were statistically unrelated.

We now derive a formula for those p-values, i.e. we derive the Cumulative Distribution Function
(CDF) of LHDs generated by our null model. According to (10.2) and (10.4) we can write

Hi(A, B) = kAi + kBi − 2∑
j≠i

aAi ja
B
i j . (10.7)

The sum in Eq. (10.7) counts the number of common neighbors of i in A and B. We denote this
number by Ni(A, B) and have

Ni(A, B) =
1
2
(kAi + kBi −Hi(A, B)) . (10.8)

For fixed kAi and kBi , this implies a one-to-one correspondence between Ni(A, B) and Hi(A, B),
with changes of the former by +1 corresponding to changes of the latter by −2. Let us denote LHDs
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Figure 10.3.: Null model p-values of Hi(A, B) for kAi = 120, kBi = 100,N = 1000, both from 10 000
Monte Carlo trials (solid lines) and from Eq. (10.10) (dashed lines).The dotted line is
the log p approximation used in Eqs. (10.21) and (10.23).

generated with the null model by h = kAi + kBi − 2n, in the spirit of Eq. (10.8). The null model
probability of node i to have exactly n common neighbors in the two networks is equal to the
probability of having exactly n successes in kBi draws without replacement from a population of
size N − 1 containing kAi successes.This probability is given by

P (n; kAi , k
B
i ,N) = (

kAi
n
)(

N − 1 − kAi
kBi − n

)(
N − 1
kBi

)

−1
, (10.9)

the probability density function of a hypergeometric distribution (Graham et al., 1989; Petkovšek
et al., 1996). Note that P (n; kAi , k

B
i ,N) is symmetric with respect to exchanging kAi with kBi . The

desired p-value formula results from (10.9) via

p (Hi(A, B); kAi , k
B
i ,N) = P (h ≤ Hi(A, B); kAi , k

B
i ,N)

= P (n ≥ Ni(A, B); kAi , k
B
i ,N)

=

min{kAi ,kBi }
∑

n=N i(A,B)
P (n; kAi , k

B
i ,N) . (10.10)

In order to numerically evaluate this complementary CDF of a hypergeometric distribution, we
use the HyperQuick algorithm devised by Berkopec (2007). This algorithm has the advantage of
being easily logarithmized, which is important because of the following observation.The p-values
of LHDs between climate networks from observational and simulated meteorological data studied
in Ch. 12 and Ch. 13 turn out to typically be many orders of magnitude smaller than one. In other
words, the climate models studied here are much better than our null model. To still be able to
reasonably visualize p-values, we move to their logarithms.The agreement of our analytical result
for p (Hi(A, B); kAi , k

B
i ,N) and its Monte Carlo simulation is exemplified in Fig. 10.3.
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Unfortunately, log p is degree-dependent, again. For instance, for its minimum value

min
h
log p (h; kAi , k

B
i ,N) = log P (min{kAi , k

B
i } ; k

A
i , k

B
i ,N)

=

min{kAi ,kBi }−1
∑
i=0

log
max{kAi , k

B
i } − i

N − 1 − i
(10.11)

we find that, per simultaneous increment of both degrees, minh log p decreases by approximately
− log ρ for small link densities ρ. To overcome this problem, we rescale log p by its minimum value,
thus defining a new local network difference measure

di(A, B) = 1 −
log p(Hi(A, B); kAi , k

B
i ,N)

minh log p(h; kAi , k
B
i ,N)

, (10.12)

which we call the Degree-conditional Neighborhood Dissimilarity (DND). As Fig. 10.2 exemplifies,
the DND frees the LHD from its degree correlation. Note that di(A, B) is only defined if kAi and
kBi are both positive. The definition is independent of the base of the logarithm. Note also that
an equivalent Degree-conditional Neighborhood Similarity can easily be defined by si(A, B) = 1 −
di(A, B).

The DND can only take values in [0, 1], with a value of zero (one) meaning maximally (min-
imally) overlapping neighborhoods of node i in the two networks, given the degrees. Note that
di(A, B) = 0 does not imply a local agreement between networks. Rather, it means the greatest pos-
sible agreement given the degrees.Therefore, while a zero LHD implies a zero DND, the converse
is not true. The DND should therefore always be considered together with either the LHD or the
degrees of the compared networks.
Another advantage of the DND over the LHD pertains to artifacts originating from the spatial

embedding of climate networks (Rheinwalt et al., 2012). As we can see in Fig. 10.2, nodes that are
closer to the domain boundary tend to have smaller degrees, and owing to the correlation between
the degrees and the LHD, this boundary effect is passed on to the LHD. Per construction, the DND
does not show this artifact.

10.2.2. Edge-Weighted Graphs

As outlined in the Sec. 10.1, simple graphs representing atmospheric dynamics usually result from
a binarization of a matrix of statistical relationship coefficients ri j. Such a procedure artificially
degrades the network information content. Moreover, it usually involves the introduction of bina-
rization parameters, which many properties of the resulting simple graphs depend on.
In the model evaluation context it may be desirable to omit this problematic procedure, i.e. to

directly evaluate the simulation accuracywith respect to the (ri j)matrix. To that end, a dissimilarity
measure for such matrices is needed. We will now introduce one for ri j being Pearson correlation
coefficients.
In formal analogy to the Local Hamming Distance, we define the Local Correlation Distance

(LCD) Ci between networks A and B at node i as

C2
i (A, B) =∑

j≠i
(F (rAi j) − F (rBi j))

2
, (10.13)

with F∶ (−1, 1)→ (−∞,∞), r ↦ arctanh r. (10.14)
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The use of the Fisher transformation (Fisher, 1915) F in the LCD definition is motivated as follows.
The confidence interval width of Pearson correlation estimates depends on their value. An ri j value
around 0 usually has a wider confidence interval than a value close to ±1.Therefore, at correlation
coefficient values around 0, we expect ∣rAi j − rBi j∣ to be greater than at values close to ±1. The use
of Fisher transformed coefficients balances this disparity. For normally distributed time series, the
standard estimation error of F(ri j) is approximately independent of ri j (Fisher, 1915, 1921; Fieller
et al., 1957; Fieller and Pearson, 1961). Thus, in definition (10.13), differences of ri j values close to
±1 contribute as much to Ci(A, B) as those at values around 0. Furthermore, using the nontrans-
formed correlation coefficients in (10.13) would make Ci(A, B) dependent on ∑ j≠i rXi j, X = A, B,
analogously to the relationship between LHD and degree in the case of simple graphs. Employing
the Fisher transformation prevents such a dependency and hence renders a DND analog for corre-
lation networks unnecessary.
For later reference, we define the Global Correlation Distance (GCD) C of networks A and B by

C2
(A, B) =∑

i
C2
i (A, B) = ∑

i, j≠i
(F (rAi j) − F (rBi j))

2
. (10.15)

In principle, the ansatz just outlined for networks based on Pearson correlations can be applied
to networks based on any measure of statistical relationship. However, as we have tried to argue,
prior to any distance calculation, relationship coefficients should be transformed such that their
uncertainties become value-independent. Formeasures of statistical relationship that currently lack
an estimation error theory similar to that of Fisher (1915) for correlations, this should be seen as an
incentive to close the research gap.

10.2.3. Node-Weighted Graphs

The time series behind climate network nodes often represent atmospheric dynamics averaged over
grid cells of varying size. For example, the cells of a geographical grid [cf. Fig. 2.1(a)] decrease in
area as latitude increases. Instead of counting the number of grid cells a given grid cell is connected
to, it makes more sense to measure the total area represented by the grid cells a given grid cell is
connected to (Tsonis et al., 2006). In mathematical terms, this can be achieved by considering a
node-weighted degree

k∗i =∑
j
ai jw j (10.16)

with node weights wi proportional to grid cell areas. Heitzig et al. (2012) have formalized this idea
to the concept of node splitting invariance and provide a recipe for defining a node-weighted version
of any network measure. We basically follow their idea to introduce node-weighted variants of our
network dissimilarity measures.
We define the node-weighted LHD H∗

i and GHD H∗ according to

H∗
i (A, B) =∑

j
(aAi j XOR aBi j)w j , (10.17)

H∗
(A, B) =∑

i
wiH

∗
i (A, B) =∑

i, j
wi (a

A
i j XOR aBi j)w j , (10.18)

and observe that H∗ penalizes link misplacements in proportion to the product of the areas of the
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grid cells in question. Analogously, we define the node-weighted LCD C∗
i and GCD C∗ by

C∗
i
2
(A, B) =∑

j≠i
(F (rAi j) − F (rBi j))

2
w j , (10.19)

C∗2
(A, B) =∑

i
wiC

∗
i
2
(A, B) = ∑

i, j≠i
wi (F (r

A
i j) − F (rBi j))

2
w j . (10.20)

Deriving a node-weighted version of the DND is less straightforward. In formal analogy to Eq.
(10.12), d∗i (A, B) should be a function of the node-weighted LHD H∗

i (A, B), the node-weighted
degrees k∗Ai , k

∗B
i , and the number of nodes N . In contrast to ki , however, any rearrangement of

i’s neighborhood potentially changes k∗i , depending on the spectrum of node weights. The com-
binatoric null model approach that led from LHD to DND is thus unsuitable for a derivation of
d∗i (A, B). We could numerically compute the node-weighted null model CDF using Monte Carlo
techniques, but a general closed-form analytical solution appears to be out of reach.
As the node-weighted DND should equal the DND in the case of constant node weights, we

can nevertheless provide an approximation to the unknown d∗i (A, B) based on an approximation
to di(A, B): In Fig. 10.3 we observe that the function log p (h; kAi , k

B
i ,N) may be approximated

by a straight line through its extreme points, preserving its strict monotonicity and range of values.
These extreme points are the least and greatest possible LHDvalue for fixed degrees kAi , k

B
i .The least

possible LHD value occurs in the case of a greatest possible neighborhood overlap and is equal to
∣kAi − kBi ∣.The greatest possible LHD value goes along with a least possible neighborhood overlap
and is given by kAi + kBi if this number is less than N . In this case, the linear approximation of log p
in Eq. (10.12) yields

di(A, B) ≈
Hi(A, B) − ∣kAi − kBi ∣

kAi + kBi − ∣kAi − kBi ∣
=
Hi(A, B) − ∣kAi − kBi ∣

2min{kAi , k
B
i }

(10.21)

= 1 −
Ni(A, B)

min{kAi , k
B
i }
, (10.22)

and the expression (10.22) shows that in this case and approximation, the DND is equivalent to the
structural vertex similarity measure introduced by Ravasz et al. (2002). If kAi + kBi ≥ N , then the
roles of zeros and ones in the LHD calculation swap, and the greatest possible LHD value becomes
(N − 1 − kAi ) + (N − 1 − kBi ). In this case we obtain

di(A, B) ≈
Hi(A, B) − ∣kAi − kBi ∣

2N − 2 − kAi − kBi − ∣kAi − kBi ∣
=

Hi(A, B) − ∣kAi − kBi ∣

2 (N − 1 −max{kAi , k
B
i })
. (10.23)

Since the hypergeometric distribution is log-concave (Hörmann, 1994), log p (h; kAi , k
B
i ,N) is a con-

cave function in h (Bagnoli and Bergstrom, 2005). Consequently, the approximate DND values are
always less than or equal to their true counterparts. Following the same line of thought and using
Wi = ∑ j≠i w j, we can define an analogous approximation to the node-weighted DND by

d∗i (A, B) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H∗
i (A, B) − ∣k∗Ai − k∗Bi ∣

2min{k∗Ai , k
∗B
i }

if k∗Ai + k∗Bi ≤ Wi ,

H∗
i (A, B) − ∣k∗Ai − k∗Bi ∣

2 (Wi −max{k∗Ai , k
∗B
i })

otherwise.

(10.24)
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10.2.4. Directed Graphs

Generalizations of our network dissimilaritymeasures to the case of directed graphs can be obtained
by treating outgoing and incoming links separately. In this section we will consider networks with-
out node weights only, both to keep things concise and because a generalization to the case with
node weights is straightforward.
Let ri j or ai j describe a link that goes out of i and comes into j. With this convention, the ith

row (column) of (ri j) or (ai j) represents the outgoing (incoming) links of node i.The numbers of
outgoing and incoming links, termed the out-degree k+i and the in-degree k

−
i of node i, respectively

(Boccaletti et al., 2006), are given by

k+i =∑
j
ai j and k−i =∑

j
a ji . (10.25)

We can define the out-LHD H+
i and the in-LHD H−

i between graphs A and B at node i by

H+
i (A, B) =∑

j
aAi j XOR aBi j and H−

i (A, B) =∑
j
aAji XOR aBji (10.26)

and see that the GHD can be reobtained via

H(A, B) =∑
i
H+

i (A, B) =∑
i
H−

i (A, B). (10.27)

The corresponding out-DND d+i and in-DND d−i are then simply given by

d±i (A, B) = 1 −
log p(H±

i (A, B); k
±A
i , k

±B
i ,N)

minh log p(h; k±Ai , k
±B
i ,N)

, (10.28)

based on the same formulas as the undirected DND [Eq. (10.12)]. For edge-weighted graphs, out-
LCD and in-LCD can be defined analogously to out-LHD and in-LHD.

10.2.5. Normalization to Network Size

All network dissimilarity measures devised so far are extensive, i.e. they can be expected to grow
with N if simultaneously the link density ρ is kept constant. To obtain intensive versions of our
dissimilarity measures we need to normalize the various sums in their definitions by the number of
summands. We are going to denote the intensive dissimilarity measures by the lowercase version of
the letter that denotes their extensive brothers, which, by the way, is why we used a lowercase letter
for the DND in the first place. If we assume ∑i wi = N , which is equivalent to an average node
weight of 1, we can even define intensive dissimilarity measures for node-weighted graphs without
any additional complication, according to

h∗i (A, B) =
H∗

i (A, B)
N − 1

, h∗(A, B) =
H∗(A, B)
N(N − 1)

=
1
N

∑
i
wih

∗
i (A, B), (10.29)

c∗i
2
(A, B) =

C∗
i
2
(A, B)

N − 1
, c∗2(A, B) =

C∗2(A, B)
N(N − 1)

=
1
N

∑
i
wic

∗
i
2
(A, B). (10.30)
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10.3. RandomNetworkModels

Random network models will help us to develop a feeling for the magnitude of dissimilarity we can
expect between climate networks constructed from simulated and from observational reference
data. Using such models, we can generate networks that have certain properties in common with
the reference network but whose structure is otherwise random, to then quantify the dissimilarity
between these random networks and the reference network.This tells us which performance could
be expected from the evaluated climate models if they reproduced the structure of the reference
network with respect to those certain properties alone. We are going to employ the following three
random network models to obtain such benchmarks.

Erdős-Rényi (ER) Model With this most simple random network model we mimic the perfor-
mance of a worst possible climate model by generating simple graphs which have nothing in com-
mon with the reference graph but the link density ρ (Erdős and Rényi, 1959). Links are randomly
assigned such that every nondiagonal component ai j of the adjacencymatrix equals 1 with uniform
probability ρ. Using (10.3) and (10.4), we can easily compute the expectation value of the normalized
GHD h between a simple graph A and ER random graphs B with the same link density ρ = ⟨aBi≠ j⟩
according to (cf. Donges et al., 2009b)

N(N − 1) ⟨h(A, B)⟩ = ⟨H(A, B)⟩ = 2N(N − 1)ρ − 2∑
i, j

aAi j ⟨a
B
i j⟩

⇒ ⟨h(A, B)⟩ = 2ρ − 2ρ2 = 2ρ(1 − ρ). (10.31)

Since h(A, B) is the average of hi(A, B) over all nodes i, the normalized LHD between a simple
graph and ER random graphs with the same link density is of the same average magnitude.

Viger-Latapy (VL) Model We use this model to generate connected simple graphs with the same
degree sequence (ki) as the reference graph (Viger and Latapy, 2005). Per definition, the graphs
generated by the VLmodel also conserve the link density of the reference network, so we can expect
them to be closer to the latter than the ER random graphs.

Spatially Embedded Random Network (SERN) Model This model was introduced to estimate
the effects of spatial node embedding on network structure (Barnett et al., 2007). Recently, it was
used to study the effect of domain boundaries on network measures in regional climate networks
(Rheinwalt et al., 2012). Graphs generated with the SERN model have the same link density and
the same geographical link length distribution as the reference graph, with geographical link length
meaning the geographical distance between the nodes/locations connected by a given link. Since
the degree sequence is not conserved by this model it is not clear a priori if the SERNs will be closer
to or farther from the reference graph than the VL random graphs.
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In Ch. 4 we introduced dynamical downscaling with RCMs such as CCLM as a means to bridge the
resolution gap between available GCM output and required climate impact model input. Another
approach to the solution of this problem is statistical downscaling. Its main advantage over dynami-
cal downscaling is that it is computationallymuch less expensive. Reviews of statistical downscaling
methods have been given by Wilby and Wigley (1997); Xu (1999), and Maraun et al. (2010). Clas-
sical tools such as regression models, weather pattern-based techniques, and conditional weather
generators exploit statistical relationships between historical coarse- and high-resolution weather
data to downscale GCM future climate projections.

The statistical downscaling tool we employ here is the STatistical Analogue Resampling Scheme
(STARS) version 2.4. It was devised as a simple means of generating ensembles of, first local and
later regional, future climate projections under global warming scenarios by resampling from past
daily meteorological observations such that a prescribed temperature trend is matched (Werner
and Gerstengarbe, 1997; Orlowsky et al., 2008). Since the resampling is conditioned by the temper-
ature trend only, STARS is located somewhere between classical statistical downscaling methods
and stand-alone climate modeling approaches (Orlowsky et al., 2010).
Any climate simulation generated with STARS consists of a day-to-day mapping from the sim-

ulation period, characterized by the prescribed temperature trend, to the observation period.This
means that each day of the simulation period is assigned some day from the observation period
with its respective meteorological data.The conditional resampling typically yields different assign-
ment probabilities for the different observation days; under a warming scenario, warmer days are
more likely to be assigned.The day-to-day mapping is applied to every meteorological variable in
all locations, which ensures physical consistency across variables and locations but for any such
inconsistency in the observations.
A Monte Carlo method is used to generate the day-to-day mapping based on temperature data

only. The way this is done in single-location, i.e. local applications is sketched in Fig. 11.1. In the
first step, the scheme generates a first approximation by creating an ensemble of yearwise resam-
plings of the observational daily temperature time series (i.e. entire years are drawn at randomwith
replacement) and then choosing the resampling whose trend is closest to the prescribed trend. In
the second step, this first approximation is stochastically fine-tuned by iteratively exchanging 12-
day4 blocks of data so as to further improve the trend fit. The main difference in multi-location,
i.e. regional applications is that the trend comparisons, the yearwise resamplings of step one, and
the block exchanges of step two all become multidimensional. To reduce the computational cost of
regional applications, usually, a cluster analysis is used to identify climatologically similar locations
and only one representative location per cluster is considered in the construction of the day-to-day
mapping, with a location being considered representative for a cluster if its climatology is closest to
this cluster’s centroid climatology. For further details of the resampling scheme see Orlowsky et al.
(2008).
4In principle, the block length is a freely adjustable model parameter, but for the STARS simulations we refer to in the
following two sections, the default value of 12 days was applied. Experience tells that this is a reasonable choice with
regard to the conservation of persistence in weather time series.
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Figure 11.1.: Basic principle of STARS (contributed by Jan H. Feldhoff): At first (top panel), entire
years from the observation period are resampled for their yearly means (red dots) to
approximate a prescribed trend line (blue).Then, by iteratively replacing 12-day blocks
(bottom panel), the resulting time series is further tuned to improve the matching of
the actual (red dot) and prescribed (blue dot) yearly mean values.

The STARS approach towards climate modeling has two fundamental limitations per definition.
Firstly, the quality of the model output data is limited by the quality of the model input data, and
secondly, as resampling cannot create any new weather situations, the applicability of STARS is lim-
ited to similar input and output climates. Quite recently, Wechsung and Wechsung (2014) exposed
possible consequences of an ignorance of the latter limitation. They mathematically proved that,
essentially, STARS translates short-term interannual covariabilities between temperature and its co-
variables into long-term climate trends. Using the example of centennial STARS climate projections
for Germany they revealed that this conceptual flaw of the scheme yields reputedly unrealistic cen-
tennial precipitation and radiation trends. Fortunately, these findings do not devaluate the results
we present in the following since we employ decadal STARS climate projections for illustrational
purposes only.
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12. Bivariate versus Univariate ClimateModel
Evaluation

In a first application we want to demonstrate how the bivariate network approach to climate model
evaluation complements conventional univariate approaches. To that end, we compare the perfor-
mances of the regional climate models CCLM and STARS over South America, measuring these
performances by the Global Hamming Distance of climate networks versus root-mean-square de-
viations of climatological mean values and variances. In other words, we evaluate the simulation
quality of bivariate spatial covariabilities versus univariate means and variabilities. We include two
RCMs in the evaluation to get model rankings for each combination of error measure, season, and
variable considered. Two error measures are proven complementary if we can show that their appli-
cation yields different model rankings for a certain variable in a certain season. To keep the study
simple, we use ERA-Interim (ERAI) reanalysis data as our observational reference, as initial and
lateral boundary conditions for the dynamical downscaling with CCLM, and as input data for the
statistical resampling with STARS. We consider 2m temperature, precipitation, 500 hPa geopoten-
tial height, and sea level pressure in austral summer and winter.

12.1. Study Design

In the following we outline our study design in detail. We first describe the simulation setup of
CCLM and STARS, then introduce our network constructionmethods, thereafter define ourmodel
performance measures, and finally sketch how we enable a fairer model intercomparison using a
bootstrap.

12.1.1. Climate Model Simulations

As a rule of thumb, the length of a STARS simulation period should not exceed the length of the
observation period from which data is fed into the model.This rule is supposed to prevent unnatu-
rally low variability in the model output. Since ERAI data are available from 1979, Jan H. Feldhoff
simulated the period from 1996 to 2011 based on daily input data from 1979 to 1995 and the re-
analysis temperature trend from the simulation period. The simulation domain (cf. Fig. 12.1) is a
latitude-longitude box from 13.7○N to 55.8○S and from 82.3○W to 33.8○W. Given the native ERAI
grid resolution of approximately 0.7○ in both latitude and longitude, this domain contains exactly
N = 7000 grid cells. Jan used STARS version 2.4 in combination with 8 representative locations
which were determined by clustering the local time series with respect to their temperature and
precipitation climatology (cf. Ch. 11). By running the scheme multiple times, he generated an en-
semble of 200 climate realizations.

The CCLM simulation was set up with the IS configuration, which we found to yield the best
performance over South America in Pt. I. We ran the model over the CORDEX domain again (cf.
Fig. 12.1), but this time covering the period 1979 to 2011 to let the model spin up properly during the
first 17 years of simulation. For the evaluation, the model output from 1996 onwards is temporally
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Figure 12.1.: CCLM’s domain of computation including the sponge frame (colored), the CORDEX
South America domain (dotted), and the common domain of evaluation (dashed),
which is also the STARS simulation domain. Colors indicate surface elevation.

aggregated to daily mean values, which are then interpolated back to the coarser ERAI grid, conser-
vatively (Jones, 1999) in the case of precipitation and bilinearly otherwise. Note that since STARS
was set up to resample ERAI data its output is on the ERAI grid already.

12.1.2. Network Construction

We construct undirected climate networks from austral summer (DJF) and winter (JJA) space-time
series xi(t) of daily mean 2m temperature (T2M), precipitation (PREC), 500 hPa geopotential
height (Z500), and sea level pressure (SLP).We choose T2MandPRECbecause these are the surface
variables of greatest importance to the biosphere and the anthroposphere, and Z500 and SLP since
these represent the atmospheric circulation in the middle troposphere and at the earth’s surface,
respectively.
Our constructionmethods follow the general recipe given in Sec. 10.1: (i) Tomake our time series

xi(t) represent synoptic weather situations, we filter them with a central moving average of length
l = 7 days. (ii) From these smoothed time series we compute anomalies yi(t) with respect to local
climatological mean time series. (iii) Statistical relationships between any two of the anomaly time
series are quantified by linear correlation coefficients ri j. (iv)These coefficients are thresholded such
that only the 1%most positive correlations are represented by links in a corresponding simple graph.
Note that a link density of ρ = 0.01 is considered an effectual trade-off between structural richness
and statistical significance (Donges et al., 2009b). Sensitivities of our results to the parameters l and
ρ are discussed in Sec. 12.2.3.
Steps (ii) and (iii) of the construction procedure need some special attention because their details

differ between T2M, Z500, and SLP on the one hand, and PREC on the other hand. In order to
conduct step (ii), we need an approximation of the climatological mean time series at each location
in daily resolution, which we construct by calculating the 1996–2011 mean values of the moving
average time series for each calendar day, and further smoothing the resulting time series with a
7-day Gaussian filter to account for the rather short evaluation period.
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For the practically unbound variables T2M, Z500, and SLP we subtract the climatological mean
time series from themoving average time series to obtain approximately normally distributed anomaly
time series yi(t). Undirected statistical relationships between the latter are quantified by Pearson
correlation coefficients (Pearson, 1895).
In the case of PREC, which has a natural lower bound of zero, we divide the moving average time

series by the climatological mean time series instead of subtracting it. Since the resulting anomaly
values are not normally distributed (Li et al., 2013), we quantify statistical relationships by Spear-
man rank correlation coefficients (Spearman, 1904), handling ties according to themid-rankmethod
(Kendall, 1945).We prefer this division by climatological daily values over their subtraction, because
only the scaling guarantees a common rank of all zero precipitation events. Moreover, since mean
and variance of stationary precipitation time series can be well reproduced with exponential distri-
butions (Li et al., 2013), the scaling makes the anomaly time series approximately homoscedastic in
time. To avoid division by zero, we define a minimum climatological value of 0.1mm/day, which we
divide by whenever it is underrun. We chose this value since it is usually referred to as the smallest
measurable daily precipitation amount. In our data, this case actually occurs only in northern Chile
and over the adjacent part of the Pacific ocean.
It should be noted that climate networks are often constructed by thresholding the matrix of the

absolute values of correlation coefficients (Tsonis and Roebber, 2004; Donges et al., 2009a,b). In the
context of network comparison, however, this could lead to the problematic situation in which, for
two networks with adjacency matrices (aAi j) and (a

B
i j), a

A
i j = 1 is due to a positive correlation while

aBi j = 1 is due to a negative correlation. Hence, although the relation of i to j is of wholly different
nature in the two networks, a comparison of them would yield agreement. In order to prevent this
case we focus on positive correlations.

12.1.3. Bivariate and Univariate Model Error Measures

Our network dissimilarity measure of choice for this study is the normalized node-weighted Global
Hamming Distance (GHD) h∗ [cf. Eqs. (10.18) and (10.29)]. Node weights wi are introduced to
take into account grid cell sizes, which vary considerably between the equator and the southern
domain boundary. Provided that grid cell i is at latitude ϕi , we set wi ∝ cos(ϕi), with the factor of
proportionality chosen such that∑i wi = N .
We evaluate CCLM and STARS in the conventional univariate way by the Root-Mean-Square

Error (RMSE; Willmott, 1981) of climatological mean values and the Root-Mean-Square Log Error
(RMSLE; Golding, 1998; Gregg and Casey, 2004) of climatological standard deviations. To ensure
comparability to the node-weighted GHD, we use node-weighted versions e∗ of the RMSE and
l∗ of the RMSLE. For observed (A) and simulated (B) spatial fields of climatological mean values
µi = ⟨xi(t)⟩t and variances σ

2
i = ⟨(xi(t) − µi)

2⟩t , these are defined by

e∗2(A, B) =
1
N

N
∑
i=1

wi (µ
A
i − µBi )

2
and l∗2(A, B) =

1
N

N
∑
i=1

wi (log
σA
i
σB
i
)

2

. (12.1)

The measures h∗, e∗, and l∗ are comparable in that they are equal to zero in the case of perfect
agreement and grow with disagreement.They are complementary in that they are based on distinct
features of the underlying space-time series, namely the mean value and variance fields in the case
of e∗ and l∗, and the spatial correlation matrix in the case of h∗.
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Figure 12.2.: Schematic diagram of our model evaluation study in which regional climate simula-
tions with CCLM and STARS are both driven by and evaluated against ERAI reanaly-
sis data. Climate networks for different variables and seasons are constructed after all
model output has been interpolated onto a common grid. The inclusion of networks
from bootstrapped ERAI and CCLM time series enables a fair model intercomparison
of CCLM and STARS. Random networks that mimic selected properties of the ERAI
reference network are generated to provide baseline performances. The red double-
headed arrows indicate network comparisons with the Global Hamming Distance.

12.1.4. A Fairer Model Intercomparison with Bootstraps

Before we begin with our evaluation of CCLM and STARS, we still need to address a fundamental
difference between the climate simulations done with the two models. Since the CCLM simulation
is driven with reanalysis data, it more or less precisely replicates the weather history of the evalua-
tion period. STARS, in contrast, scrambles its input data, which implies that, even if the resampling
schemewas fedwith data from the evaluation period, its outputwould only have the correct chronol-
ogy with negligibly small probability. Since we evaluate both models against ERAI data from the
evaluation period, this will result in a performance advantage for CCLM as long as there is interan-
nual variability in the data.
To overcome this bias in our evaluation study design, we need to somehow adjust the CCLM and

STARS simulations with respect to their chronological order. Because fitting the STARS simulations
with any fixed chronology is impossible, the only way is to strip the CCLM simulation of its correct
chronology. If we did not have any computational constraints, that could be achieved by driving
CCLM with an ensemble of resampled lateral boundary data. Alternatively, we can resample the
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output data of our single CCLM run with some simplified version of STARS. As described in Ch. 11,
in its first step, STARS randomly draws entire years of data with replacement. Such a resampling is
known as bootstrap among statisticians (Efron, 1979).
Consequently, we bootstrap the CCLM output by randomly drawing entire seasons with replace-

ment, such that the length of the bootstrapped time series equals the original, and apply this resam-
pling synchronously to the whole output time series field to conserve spatial relationships.This way,
we generate an ensemble of 200 STARS-like climate realizations, which we denote by CCLMb.
In the same manner, we bootstrap the ERAI data. With the resulting 200 ERAIb climate realiza-

tionswe intend to quantify the optimummodel performance in the sense that, in our setting, perfect
CCLM and STARS simulations would yield statistics of h∗(ERAI, CCLMb) and h∗(ERAI, STARS)
that resemble those of h∗(ERAI, ERAIb), and similarly for e∗ and l∗. A graphic summary of the
setup of our evaluation study is given in Fig. 12.2.

12.2. Results

In the first part of the results section, we focus on the network part of our evaluation study. Sub-
sequently, we compare model performance rankings according to bivariate versus univariate error
measures to demonstrate that the former do complement the latter in climate model evaluation
studies. We finish with a short discussion of the robustness of our results with respect to variations
in the network construction parameters.

12.2.1. Bivariate Evaluation

As an introduction to the network part of our evaluation study we take a look at distributions of
normalized node-weighted GHDs h∗ between the ERAI reference network and model networks of
austral summer 2m temperature time series (Fig. 12.3).
As expected, we find the ERAIb networks to bear the closest resemblance, i.e. the smallest GHD

to the reference network, while the randomnetworkmodels are at the other end of the performance
spectrum. Among the latter, the ER model yields graphs with the least similarity to the reference
graph, as hypothesized in Sec. 10.3.The VL model does not perform much better either although it
conserves the reference network’s degree sequence. Much smaller GHDs are attained by the SERN
model, which tells us that the geographical link length distribution of the reference DJF T2M net-
work containsmuch information about the network structure.The reason is that links in our climate
networks represent the 1% most positive correlation coefficients and thus tend to be short, because
those greatest correlations tend to occur between close-by locations. We will come back to this as-
pect and discuss it in greater detail in Ch. 13. Note that all random network models produce very
narrow h∗(ERAI, ⋅ ) distributions due to the rather low link density and the high number of nodes
(law of large numbers); for a better visualization, the cusps of these distributions were cut off in
Fig. 12.3.
Of the RCMs, we find that STARS outperforms CCLM.There are remarkable differences in the

shape of the distributions, those of the bootstrap ensembles ERAIb and CCLMb being more than
twice as wide as that of the STARS ensemble.This shows that unbiased bootstrapping yields greater
variability then biased bootstrapping. As we see in Fig. 12.4, this difference in variability is most
pronounced for T2M.The reason is that the STARS resampling algorithm is conditioned by a T2M
trend only (cf. Ch. 11), and that the constraints this imposes are passed on to the other variables
only inasmuch as these are statistically related to T2M.
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Figure 12.3.: Histograms of normalized node-weighted GHD h∗ between the ERAI reference net-
work and model networks of austral summer 2m temperature time series.The SERN,
VL, and ER random network models were set up to reproduce the reference network’s
geographical link length distribution, degree sequence, and link density, respectively
(cf. Sec. 10.3). Note that h∗ has been scaled by the expectation value ⟨h(ERAI, ER)⟩ of
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random network with the same link density ρ [Eq. (10.31)].
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Figure 12.4.: Same as Fig. 12.3 for 2m temperature, precipitation, 500 hPa geopotential height, and
sea level pressure (from top to bottom) in austral summer (left) and winter (right).
Note that the random networks were omitted here.
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We have left out the GHD distributions of the random networks in Fig. 12.4 because their posi-
tion hardly differs between variables. For CCLMb, ERAIb, and STARS, we observe that GHDs are
greatest for PREC and least for Z500 across data sets and seasons.This indicates that, out of those
variables considered in this study, the dynamics of precipitation are hardest and those of the 500 hPa
geopotential are easiest to model.
Comparing the ensemble average GHDs across models, we find that STARS has a rather constant

relative distance to ERAIb, which simply reflects the functional principle of the statistical model (cf.
Ch. 11). In contrast, the performance of CCLM varies strongly between variables. Compared to
STARS, it generates T2M, PREC, and SLP networks that are less similar, and a Z500 network that is
more similar to the respective reanalysis reference.These larger deviations at the surface reflect that
model physics have a larger impact there than in the free troposphere, which is mainly governed by
large-scale thermo- and hydrodynamics.
Performance differences between seasons are smaller than those between models. In austral win-

ter (JJA), the modeling of Z500 by CCLM is slightly less accurate than in summer (still only 8%
of the STARS realizations perform better than the single CCLM run).This might be attributed to
a higher complexity of the extratropical cyclogenesis during winter (Mendes et al., 2010) and its
relatively greater influence on the South American climate due to the JJA northward displacement
of general circulation patterns.

12.2.2. Bivariate versus Univariate Evaluation

In Fig. 12.5 we compare RCM performance rankings according to h∗ versus according to e∗ or l∗.
We find only agreement in rankings for T2MandPREC,with STARS performing better thanCCLM.
Yet there is disagreement for the pressure variables in DJF, most visibly in panel (i) for Z500, where
h∗ and e∗ yield different rankings, and in panel (n) for SLP, where h∗ and l∗ disagree.
We also note a consistent difference in model rankings according to e∗ versus according to l∗.

While the mean-based RMSE favors STARS in all cases but panel (k), the variance-based RMSLE
favors STARS for T2M and PREC, i.e. in half of all cases only. This demonstrates that statistical
resampling is unbeatable at retaining mean values, but that dynamical downscaling can catch up at
retaining variabilities.With respect to retaining spatial covariabilities, this study clearly sees STARS
in front again.

12.2.3. Sensitivity to Network Construction Parameters

So far, we have only presented results for one set of network construction parameters, namely l =
7 days for the length of the moving average and ρ = 0.01 for the link density of all simple graphs.
However, calculations were carried out for a wider range of these parameters.We found that varying
l ∈ [3, 11] and ρ ∈ [0.005, 0.02] did not alter the results qualitatively.
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Figure 12.5.: Mean-based RMSE e∗ and variance-based RMSLE l∗ versus covariance-based GHD
h∗ for 2m temperature, precipitation, 500 hPa geopotential height, and sea level pres-
sure (from top to bottom) in austral summer (left) and winter (right). Coloring as in
Fig. 12.4; the single CCLM run is depicted by an accentuated red dot.The units of e∗

and l∗ are specified inside the subplots.
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13. Precipitation Climate Networks of the South
AmericanMonsoon System

The evaluation study presented in the previous chapter saw STARS outperform CCLM in terms of
the value retained by statistical versus dynamical downscaling over South America—an outcome
that confirms the results of earlier similar model evaluation studies (Orlowsky et al., 2008, 2010;
Lutz et al., 2013). Now one might argue that a comparison of simulation data against the driving
reanalysis data does not constitute a proper model evaluation, but that the latter would require a
comparison against independent observational data.

This point is well taken since reanalysis data are a blend of historical weather observations with
a NWP model simulation (cf. Ch. 2). As pointed out by Kalnay et al. (1996), different reanalysis
output variables are subject to different relative influences of the observations and the model. Ac-
cording to these relative influences, the authors classify the output variables of the NCEP/NCAR
40-year reanalysis. For the variables considered in the previous chapter, this classification also ap-
plies to the ERAI reanalysis. It sees the 500 hPa geopotential height among the variables that are
most strongly influenced by observational data and that are therefore most reliable; the 2m temper-
ature and the sea level pressure are considered intermediately reliable because, although they are
affected by observed data, they are also strongly influenced by the model; and precipitation is in
the class of the least reliable variables since there are no precipitation observations included in the
ERAI data assimilation.

Therefore, in the following, we use the network approach to reevaluate our STARS and CCLM
simulations over South America with regard to precipitation—this time against a reference network
built from independent observational data. Also, to add spatial detail to the evaluation, we deploy
our newly developed local network dissimilarity measures LCD, LHD, and DND alongside their
global counterparts GCD and GHD (cf. Ch. 10).

13.1. Study Design

A graphic representation of the design of our reevaluation study is given in Fig. 13.1. Next to our
STARS and CCLM simulations, we include the ERAI reanalysis in this evaluation to enable an as-
sessment of the value added by statistical and dynamical downscaling. Moreover, we again include
random networks and networks based on bootstrapped space-time series, both for the same rea-
sons as in the previous evaluation.This time, however, we only generate random networks with the
SERN model, because it clearly outperformed the VL and ER models in the previous evaluation,
and can thus be considered the best representative of a worst-case model performance.

13.1.1. Precipitation Reference Data

We employ daily precipitation estimates from the TRMM3B42V7 satellite product as our reference
observational data (cf. Ch. 6).The reevaluation starts in 1998 since theTRMMdata are only available
from that year onwards. We also need to shorten the latitudinal extent of the evaluation domain
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Figure 13.1.: Schematic diagram of our model reevaluation study in which regional climate simula-
tions with CCLM and STARS are driven by ERAI reanalysis data and evaluated against
TRMM observations. ERAI data are included in the evaluation to enable an assess-
ment of the value added by statistical and dynamical downscaling. Monsoon season
climate networks are constructed from daily precipitation space-time series after all ob-
served and simulated data have been interpolated to the ERAI grid. Networks from
bootstrapped space-time series enable a fairer model intercomparison (in the cases
of CCLM and ERAI), or represent an optimum model performance (in the case of
TRMM), and are denoted by the suffix b. Random networks generated with the SERN
model represent a pessimum model performance.The red double-headed arrows indi-
cate network comparisons with our local and global network dissimilarity measures.
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Figure 13.2.: DJF 1998–2011 mean values (top) and 90th percentiles (bottom) of daily precipitation
amounts inmm/day asmeasured byTRMMandmodeled byCCLM,ERAI, and STARS
(from left to right). Note that the 90th percentiles have been divided by 2 to fit into the
same scale as the mean values. Grid cells with 90th percentiles equal to zero in any of
the observed or simulated data sets are hatched in (e–h). The locations of the Andes
(solid), the Amazon basin (dash-dotted), the ITCZ (dotted) and the SACZ (dashed)
are sketched in (a).

because the reliable TRMM data only extend to 36○S (cf. Fig. 12.1). To facilitate a proper network
comparison, the TRMMdata are conservatively interpolated from their native 0.25○ grid to the 0.7○

ERAI grid.
We concentrate our analysis on the austral summer season DJF, when a monsoon system devel-

ops over tropical South America and provides for most of the annual precipitation (Zhou and Lau,
1998; Vera et al., 2006b; Marengo et al., 2012b). Our reevaluation domain is depicted in Fig. 13.2,
where we show the DJF mean values and 90th percentiles of daily precipitation amounts as mea-
sured by TRMM and modeled by CCLM, ERAI, and STARS from 1998 through 2011.The TRMM
data exhibit the typical pattern of abundant rainfall in the Intertropical and the South Atlantic Con-
vergence Zone (ITCZ and SACZ, respectively), and along the eastern slopes of the Andes.

These main rainfall patterns are reproduced by the models but we find substantial differences in
intensities. Regarding the seasonal mean values, CCLMmostly underestimates rainfall, while ERAI
and STARS are closer to TRMM except along the Andes, where we find strong overestimations.The
90th percentiles, which quantify the intensity of extreme rain events, are mostly and substantially
underestimated by all models. While TRMM shows values greater than twice the respective mean
values throughout the study domain, the models simulate a smaller ratio at most locations. Such in-
tensity underestimations of extreme rainfall events are shared by many climate models (Dai, 2006).

13.1.2. Network Construction

Precipitation climate networks are built from DJF 1998–2011 daily precipitation space-time series.
Since we discard the incomplete seasons January-February 1998 and December 2011 from our anal-
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Figure 13.3.: Schematic of local precipitation time series preprocessing to extreme event and
anomaly time series. We start with daily precipitation values from the austral summer
seasons DJF of 1998 through 2011 (dark orange, topmiddle) and their 3-day moving av-
erages (dark cyan, top middle).The 90th percentile of all of those daily values (red, top
left) is the threshold used to define extreme events (bottom left).The phase-averaged
3-day moving averages, further smoothed by a 7-day Gaussian filter (blue, top right)
serve as a climatological DJF time series, to which we scale the 3-day moving averages
of each individual season to obtain anomalies (bottom right).

ysis, this implies time series lengths of M = 1170 days. Our domain/network comprises N = 5460
grid cells/nodes. We focus on networks without node weights to enable an application of the DND.
This is reasonable since LHD and GHD results do not change qualitatively when node weights rep-
resenting grid cell sizes are introduced, which is because grid cells do not vary much in size within
the domain. To capture different aspects of precipitation dynamics, we employ two statistical rela-
tionship measures for network construction—the Event Synchronization (ES; Quiroga et al., 2002)
and the Spearman Rank correlation coefficient (SR; Spearman, 1904).

The ESmay be used to analyze the spatial synchronicity structure of extreme precipitation events
(Malik et al., 2012), which has been done over South America based on the TRMM 3B41 V7 data
by Boers et al. (2013). We adopt the network construction method described in the latter study.
It is based on a transformation of precipitation time series to binary extreme event time series as
depicted in the left half of Fig. 13.3. At each location, daily precipitation above the 90th percentile
of its climatological (DJF 1998–2011) distribution is defined as an extreme event. Grid cells at which
the 90th percentile is zero in any of the observed or simulated data sets [hatched in Fig. 13.2(e–
h)] are discarded from the analysis. Between two extreme event time series at different locations,
the ES then quantifies the degree of event synchronization, with two events contributing to ES if
they can be uniquely associated within a maximum period of 3 days. Since no variance-stabilizing
transformation is known for ES, we confine the ES network evaluation to the respective simple
graph whose links represent the ρ = 2% highest ES values and which we denote by ESp.
Besides focusing on extremes, we also aim at evaluating the general spatiotemporal precipitation

dynamics. To that end we employ the SR network construction method described in Sec. 12.1.2,
which requires preprocessing of the original precipitation values to anomalies with respect to the
1998–2011 climatology (cf. right half of Fig. 13.3). Deviating from the previous evaluation, we apply
a 3-day instead of a 7-day moving average filter here to make the SR and ES networks represent
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precipitation dynamics at approximately the same time scale. From the matrix of rank correlation
coefficients we derive three networks. The matrix as it stands defines an edge-weighted network,
which we denote by SR. Simple graphs representing the 2%most positive and the 2%most negative
SR values are defined to disentangle these two different kinds of correlation, and are denoted by
SRp and SRn, respectively.
Altogether, our networks are constructed following the recipe (10.1), where in the present case,

xi(t) are the local daily precipitation time series, P represents their preprocessing to anomaly or
extreme event time series yi(t) (cf. Fig. 13.3), S = SR, ESmarks the application of a statistical depen-
dence measure to all pairs of time series which results in a matrix (ri j) of correlation or synchro-
nization strengths, and T denotes the thresholding that yields the simple graph adjacency matrices
(ai j) according to

ai j =

⎧⎪⎪
⎨
⎪⎪⎩

Θ[τ(ρ) − ri j] for SRn,
Θ[ri j − τ(ρ)] − δi j for SRp, ESp,

(13.1)

with the Heaviside functionΘ, the Kronecker delta δi j, and the threshold τ set such as to obtain the
desired link density ρ.
It should be noted that the modeling accuracy of these networks is, in principle, independent of

general rain amount biases. Two pairs of time series can have the same correlations even if standard
deviations or means of the time series differ. Similarly, two pairs of (extreme) event time series can
agree in synchronicity despite disagreement in the event-defining threshold.Therefore, the discrep-
ancies between observed and modeled precipitation mean values and 90th percentiles we see in
Fig. 13.2 do not preclude agreement in the SR or ES network structures.

13.2. Results

Before we study dissimilarities between modeled and observed precipitation networks, we analyze
the topologies of the different network types, so as to simplify the subsequent interpretation of
network dissimilarities.

13.2.1. Network Topologies

We first want to take a look at the degree fields of our simple graphs. For the SR network, we define
a quantity similar to the degree by the mean Fisher transformed rank correlation,

fi =
1

N − 1∑j≠i
F(ri j). (13.2)

The fi and ki fields of the different networks based on TRMM, CCLM, ERAI, and STARS data are
shown in Fig. 13.4.The fi fields are mostly positive, which shows that positive correlations between
anomaly time series predominate.The few locations of negative fi differ in position between data
sets. Spatial contrasts between fi values are least pronounced for TRMM and most for CCLM.
Although SRn and SRp links encode fundamentally different statistical relationships, the degree

fields of the respective networks roughly agree in exhibiting and locating three distinct regions of
enhanced degree indicated by colored boxes in Fig. 13.4(i). All models reproduce this general pat-
tern. As to the climatological interpretation of the SRp network, we notice that the regions of large
degree are adjacent to the zones of most abundant seasonal rainfall (cf. Fig. 13.2), while over those
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Figure 13.4.: Mean Fisher transformed SRs [top, Eq. (13.2)] and degrees [Eq. (10.2)] of SRn, SRp,
and ESp simple graphs (from top to bottom) from rainfall data measured by TRMM
and modeled by CCLM, ERAI, and STARS (from left to right). Degrees are shaded
according to the lower color scale and have been rescaled to their average (N − 1)ρ.
Note further that the ESp and SRp degrees have been multiplied by 2 to fit them into
one scale with the SRn degrees.The three colored 7○×7○ boxes in (i) define the regions
referred to later in the text and in Fig. 13.6.
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Figure 13.5.: Dependence of rank correlations (b) and simple graph link probabilities (c) on geo-
graphical node distance for TRMM, CCLM, ERAI, and STARS networks, based on
binned node distances and their absolute number distribution (a). The link probabil-
ities in (c) are the conditional probabilities of finding two nodes linked given their
distance. A great-circle distance of 10○ corresponds to a geographical distance of ap-
proximately 1113 km.

zones themselves (Amazon basin, ITCZ, SACZ), degrees are low, just like over the very dry south-
ern hemispherical Pacific coast. This is explained as follows. Precipitation time series in very dry
regions are mostly constant and can therefore not be correlated to other more rainy, less constant
time series; the abundant rainfall in the convergence zones is associated with frequent localized
convective rain events (Vera et al., 2006b), hence the low correlation levels there; and in the in-
termediately wet regions adjacent to the convergence zones, wet and dry periods alternate, which
causes large intraregional correlations there. Below, we show that the SRp network links are indeed
purely intraregional, and we give a climatological interpretation of the SRn network. For a detailed
climatological interpretation of the ESp network we refer the reader to Boers et al. (2013).
We proceed by analyzing the dependence of mean correlations and simple graph link probabili-

ties on the geographical distance of nodes (Fig. 13.5). While it is known that correlations between
precipitation time series decay with distance (Huff and Shipp, 1969) and a similar behavior has
been found for synchronizations of extreme precipitation events (Malik et al., 2012), details of the
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SR and ES decays have not yet been compared and we do not know at which distance to expect the
anticorrelations represented by the SRn network.
Figure 13.5(b) shows an approximately exponential decay of F(ri j) values with node distance

for short distances, followed by predominating anticorrelations for intermediate great-circle dis-
tances between about 15○ and 55○.The distribution of F(ri j) values becomes bimodal at distances
beyond 60○, with positive and negative modes representing correlations and anticorrelations be-
tween anomaly time series in the diagonally opposite corners of the domain; deviations of mean
F(ri j) values from zero at those distances are therefore not statistically significant. While all mod-
els reproduce these characteristics, STARS and particularly CCLM overestimate the absolute values
of both themost positive and themost negative correlations; ERAI follows the TRMMobservations
more closely. We find corresponding deviations in the rank correlation thresholds defining the SR
simple graphs: The 2nd and 98th percentiles of SR are -0.16/-0.24/-0.18/-0.23 and 0.43/0.58/0.48/
0.47 for TRMM/CCLM/ERAI/STARS, respectively.
For the three simple graphs, the link probability as a function of geographical node distance

is shown in Fig. 13.5(c); the related absolute number distribution of node distances is depicted in
Fig. 13.5(a). Most of the 2% strongest anticorrelations turn out to connect anomaly time series 10○

to 40○ away from each other. SRp and ESp link probabilities decay differently for distances beyond
about 10○. In line with F(ri j) values, SRp link probabilities go to zero at about 15○, while some
nodes much farther apart are linked in the ESp graph. Distinctly positive rainfall anomaly correla-
tions are hence confined to be short ranged, while some of the 2% strongest extreme rainfall event
synchronizations over South America are found between locations thousands of kilometers apart.
Across graph types, CCLM produces too many short- and too few long-range links, which means
that themodel underestimates the strength of teleconnections relative to local anomaly correlations
and event synchronizations. ERAI and STARS show less coherent deviations from TRMMwith the
reanalysis following the observations most closely, overall.
To shed somemore light on the network topologies, Fig. 13.6 depicts RGB color coded connectiv-

ities to the three regions C, M, Y defined by colored boxes in Fig. 13.4(i). In the TRMM SRn graph,
we find nodes south of Y connected to C and nodes in and northeast of C connected to Y. More-
over, we find nodes north of Y connected toM and nodes west of M connected to Y. Rainfall dipole
patterns underlying these regional connectivities have been studied in the climatological literature.
The M-Y anticorrelation has been associated with active and break phases in the South American
monsoon system (Jones and Carvalho, 2002).The C-Y one corresponds to the well-studied SACZ
seesaw pattern, which is caused by middle-latitude frontal systems propagating into the tropics
(Nogués-Paegle and Mo, 1997; Carvalho et al., 2004). In contrast to SRn, the SRp and ESp graphs
are dominated by short-range links and no interregional connections are found. The models re-
produce the general patterns of connectivity to the regions C, M, Y for every graph type, yet with
reduced accuracy for SRn compared to SRp and ESp. In particular, anticorrelations between C and
the maritime SACZ are underestimated by every model (cf. Fig. 13.4), and CCLM overestimates the
strength of the M-Y anticorrelation.

13.2.2. Global Network Dissimilarities

Global correlation and Hamming distances of modeled to TRMM precipitation networks for the
four different network types are depicted in Fig. 13.7. For each of the three simple graph types, the
SERNmodel (cf. Sec. 10.3) was used to generate an ensemble of 200 randomnetworks with the same
distribution of geographical link lengths as the respective reference TRMM graph. We have seen
that the climate models basically reproduce those distributions with their network-type dependent
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Figure 13.6.: Connectivities to the regions marked by colored boxes in Fig. 13.4(i) for the TRMM,
CCLM, ERAI, and STARS (from left to right) SRn, SRp, and ESp (from top to bottom)
graphs. For each node i, the connectivity to the three regions [marked again by black
boxes in (e)] is transformed to an RGB color with additive color mixing. We use cyan,
magenta, and yellow for links to C, M, and Y, respectively, with color intensities pro-
portional to the number of links between i and the respective region. In formulas, if i
is connected to nC, nM, and nY nodes in boxes C, M, and Y, respectively, we calculate
a 24-bit RGB color code of (255 nC/100, 255 nM/100, 255 nY/100) as all boxes contain
exactly 100 nodes, and apply an additional hue shift by 180○ (Agoston, 2005). Note that,
since the hypothetical case of a node connected to all C,M, and Y nodes does not occur,
white has a purely decorative meaning.
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Figure 13.7.: Global correlation and Hamming distances of modeled to TRMM precipitation net-
works for the four different network types SR, SRn, SRp, ESp (from left to right).The left
and right scales apply to the GCDs and GHDs, respectively.The latter have been renor-
malized by the expectation value of the GHD to an Erdős-Rényi random network with
the same link density [Eq. (10.31)]. For ensemble networks (TRMMb, CCLMb, ERAIb,
STARS, SERN, 200 realizations each), the range of ±1 standard deviation around the en-
semble mean is shaded. Lines without uncertainty shading represent single realization
networks (CCLM, ERAI).The uncertainties of h(TRMM, SERN) are invisibly small.

character [cf. Fig. 13.5(c)].The SERNmodel performances quantify what could be expected from a
correct such reproduction alone; the smaller the GHD between SERNs and the respective TRMM
network, the more topological information on the latter is contained in its link length distribution.
Figure 13.7 reveals that performance differences betweenCCLMandCCLMborERAI andERAIb

are minor, which shows that CCLM and ERAI global network dissimilarities to TRMM mainly
reflect model deficiencies. Nevertheless, from here on we will compare STARS network errors to
those of CCLMb and ERAIb only and thereby facilitate a fairer model intercomparison.
From the bootstrap network ensemble spread of GCDs and GHDs we can also learn something

about the interannual variability present in each data set. Irrespective of their type, networks from
bootstrapped observational data feature spreads about twice as large as those from bootstrapped
reanalysis data and even less variability is present in the CCLMb and STARS ensemble data. The
SRp graph exhibits the smallest interannual variability of all simple graphs—a persistence that is
arguably due to the predominance of short-range links in this network (cf. Radebach et al., 2013).
Coming back to the SERN model, we observe that its performance varies considerably between

graph types. These variations are associated with differences between the respective geographical
link length distributions [cf. Fig. 13.5(c)]. In the case of the SRp graph, the distribution is highly
informative about the network topology. It allows to infer that only short-range links exist in the
network and that geographical neighbors are most likely also topological neighbors. Aside from the
existence of several long-range links, this also holds true for the ESp graph, hence the superiority
of the SERN model over the ER model for these two graph types. Analogously, the contrastingly
poor SERNmodel performance for the SRn graph is due to the flatness of the respective link length
distribution.
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Figure 13.8.: Why in our networks long-range links are statistically more susceptible to misplace-
ment than short-range links. (a) Schematic of a simple graph where the color of a node
represents the time series behind it with similarity between colors corresponding to
similarity between time series. Note that just like our precipitation climate networks,
this schematic graph features roughly constant nearest geographical neighbor distances
and decreasing node similarity with increasing geographical node distance. (b) Mean
absolute differences between Fisher transformed correlation coefficients ri j , rik for
geographically close nodes j, k versus di j, the geographical distance between nodes
i , j. Since the estimation errors of the Fisher transformed rank correlations are value-
independent (Fieller et al., 1957; Fieller and Pearson, 1961), plot (b) shows that with
increasing di j, correlation differences ri j − rik for geographically close nodes j, k be-
come less robust with respect to the estimation errors of ri j , rik . As ri j − rik becomes
less robust, so does the relative ranking of ri j , rik and, hence, the thresholding of ri j , rik
to ai j , aik [Eq. (13.1)].Therefore, in the SRn and SRp graphs, themisplacement of a long-
range link [ j-l versus k-l in (a)] is more likely than the misplacement of a short-range
link [i- j versus i-k in (a)]. To give an idea of link misplacement likelihoods, probabil-
ities of false relative rankings of ri j , rik at different σ levels are marked in (b). The σ
levels were calculated using a BART estimator for the effective sample size M′ < M to
account for autocorrelations in the anomaly time series (Thiébaux and Zwiers, 1984).

Conspicuously, SERN and climatemodel performances vary quite similarly between graph types.
Since SERNs and climate model networks have nothing in common but their link length distribu-
tion [cf. Fig. 13.5(c)], the similarity must have something to do with the latter. Yet the explanation
of the performance differences between graph types cannot be the same for the random network
model and the climatemodels since CCLM, ERAI, and STARS place links in amanner that is clearly
not random (cf. Fig. 13.6). We think that the differences in climate model performances between
graph types can be explained by differences in the mean geographical link length between graph
types in connection with the conjecture that in our networks long-range links are statistically more
susceptible to misplacement than short-range links.
In Fig. 13.8(b) we give a numerical validation of this conjecture for our SR networks; an analogous

validation for the ES network is unfeasible at this point as no variance-stabilizing transformation is
known for the ES. A heuristic motivation of the conjecture is possible with the help of an analogon
frompsychology, regarding the networknodes in Fig. 13.8(a) as grown-uphumans, forwhich, owing
to the developmental process of perceptual narrowing (Scott et al., 2007), it is easier to discriminate
between familiar than between unfamiliar types of perceptual stimuli: Because nodes j and k are
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more similar to the close node i than to the distant node l , it is easier for i than for l to distinguish
between j and k. Thus, in terms of links, j-l is more likely to be confused with k-l than i- j with
i-k.The connection between node similarity and link dissimilarity, that is implicit to this analogon,
is established via the statistical dependence measures SR and ES and constitutes the core of the
conjecture.
In simple terms, the SRn graph is harder to reproduce than the other simple graphs because

its links are longer. We propose to account for this purely geometric-statistical effect by relating
climate model performances to the respective SERN model performance, which nicely quantifies
the effect. And just as h(TRMM, SERN) represents a worst case performance scenario, the GCDs
and GHDs between TRMM and TRMMb networks constitute optimum performance limits for
CCLMb, ERAIb, and STARS. In the sense of Murphy (1993), relating climate model performances
to these benchmarks yields a more informative measure of the actual climate model skills when
comparing performances between different network types. We thus define a model skill score that
takes both benchmarks into account by

S(A;R,O , P) =
h(R, P) − h(R,A)
h(R, P) − h(R,O)

(13.3)

for model A with reference R = TRMM, optimum O = TRMMb, and pessimum P = SERN.This
yields average (over CCLMb, ERAIb, and STARS) model skill scores of 0.480(8)/0.624(4)/0.606(11)
for SRn/SRp/ESp, respectively. Like Fig. 13.6, this suggests that the SRn graph is hardest to model,
even after taking the link length effect into account. As per Welch’s t-test (Welch, 1947), the av-
erage SRp and ESp skill scores are not significantly different at the 5% α level. Compared to the
untransformed GHDs, the skill scores display considerably increased similarity between network
types which means that large parts of the performance differences between network types can be
attributed to type-specific network uncertainties due to climate variability and spatial embedding.
Amodel performance intercomparison for the individual network types is permitted as all differ-

ences between ensemble mean GCD or GHD values are significant at the 5% α level according to
Welch’s t-test. We find that STARS performs worse than ERAI for every network type considered.
The best models are ERAI for the edge-weighted SR network and the SRp graph, and CCLM for
the SRn and ESp graphs. The poor SR performance of CCLM is in line with its abovementioned
overestimation of absolute correlation values [cf. Fig. 13.5(b)].
A comparison of the SRp column of Fig. 13.7 with Fig. 12.4(c) shows that it doesmake a difference

if STARS and CCLM are evaluated against independent observational data or against their driv-
ing reanalysis data. In our reevaluation against TRMM, STARS and CCLM perform about equally
well (h(TRMM,CCLM) < ⟨h(TRMM, STARS)⟩ < ⟨h(TRMM,CCLMb)⟩), while in the evalua-
tion against ERAI, STARS clearly outperforms CCLM (h∗(ERAI, CCLM) > ⟨h∗(ERAI, STARS)⟩ <
⟨h∗(ERAI, CCLMb)⟩).

13.2.3. Local Network Dissimilarities

We now come to the application of the new local network dissimilarity measures. LCDs, LHDs,
and DNDs between TRMM and model precipitation networks are depicted in Fig. 13.9. We do
not show the LHDs between ESp graphs because they are dominated by the degree dependence
which motivated the introduction of the DND, nor the DNDs between SRn graphs since they are
undefined in many locations due to a multitude of isolated nodes in these graphs.
Starting with the LCD, we find virtually no spatial variability in ci(TRMM,TRMMb), which is
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Figure 13.9.: Ensemble mean local differences of TRMMb, CCLMb, ERAIb, and STARS (from left
to right) to TRMM precipitation networks. SR (a–d) network LCDs [Eq. (10.13)], SRn
(e–h) and SRp (i–l) graph LHDs [Eq. (10.5)], SRp (m–p) and ESp (q–t) graph DNDs
[Eq. (10.12)]. Note that the LHDs have been renormalized by (N − 1)ρ, analogously to
the degrees (Fig. 13.4).The color scale next to (p) is also applicable to (q–t). Hatching in
(e–l) puts LHDs in relation to hi(TRMM, SERN) of the respective graph type; same for
DNDs in (m–t); light hatching indicates insignificantly different values at the 5% α level
according to Welch’s t-test (Welch, 1947); heavy (no) hatching indicates a significantly
better (worse) local performance by the random network model.
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due to the use of the Fisher transformation in the LCD definition [Eq. (10.13)] if we consider dif-
ferences between TRMM and TRMMb correlations to quantify estimation errors.The contrasting
spatial dependence of climate model LCDs hints at model deficiencies with spatially inhomoge-
neous consequences. Higher correlation differences common to all models can be observed along
the Andes, in northeastern Brazil and over the Pacific south of 20○S while lower values occur over
the Atlantic south of the SACZ. We observe LCD contrasts along the coasts and find a larger LCD
spread across models over land than over sea.The largest correlation distances to TRMM are pro-
duced by CCLM over central Brazil.

The LHDs of SRn and SRp simple graphs are clearly degree-dependent (cf. Fig. 13.4). We see that
high LCDs may coincide with high LHDs as for instance over the Pacific off the Chilean coast for
STARS or over central and northeastern Brazil for CCLM. Yet where correlations are not strong
enough to be represented by links in the simple graphs, high LCDsmay come along with low LHDs
as can be observed along the Andes.
Hatching in Fig. 13.9(e–t) visualizes the respective relative local SERNmodel performances. Light

hatching indicates insignificantly different local network dissimilarities at the 5% α level according
to Welch’s t-test (Welch, 1947) while heavy (no) hatching indicates a significantly better (worse)
local performance by the randomnetworkmodel. In linewithGHDresults (cf. Fig. 13.7), the climate
models perform better inmost locations. Yet there are areas where mere knowledge of the observed
all-domain link length distribution allows for a better neighborhood prediction than the use of a
climate model. With the LHD, these areas differ considerably between models.
A more coherent picture only emerges with the DND, shown for SRp and ESp graphs in Figs.

13.9(m–p) and 13.9(q–t), respectively. We observe larger DNDs over land than over sea and find
particularly high values in the Guiana Highlands and along the Andes. DNDs between TRMM and
TRMMb are much larger for the ESp than for the SRp graph. Climatic uncertainties of extreme
event synchronizations are most pronounced in the Amazon basin and along the eastern slopes
of the Andes, which is consistent with the outstanding noisiness of TRMM’s ESp degree field in
those areas [cf. Fig. 13.4(m)]. In line with the respective GHDs (Fig. 13.7), the ESp DNDs to TRMM
increase slightly from TRMMb to CCLMb to ERAIb to STARS while their spatial patterns do not
vary much across data sets. This shows that most of the differences between TRMM and climate
model ESp graphs can be explained by interannual climate variability.
In this context, note that, generally, the local network difference fields based on the original

CCLM and ERAI time series do not differ much from the respective bootstrap ensemble mean
fields.The latter are smoother and feature slightly larger values but apart from that show the same
spatial patterns. Hence, where climate model bootstrap network dissimilarities to TRMM clearly
exceed the corresponding difference between TRMM and TRMMb, network imperfections cannot
be explained by climatic uncertainty but must be due to model deficiencies.
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In the second part of this dissertation we introduce new performance metrics for climate model
evaluation based on climate networks.These metrics enable the evaluation of climate models with
respect to spatial covariabilities and thus offer a bivariate model evaluation perspective. New net-
work dissimilarity measures for the comparison of climate networks constructed from simulated
and observed spatiotemporal data constitute the core of our approach. We define both local and
global network dissimilarity measures to facilitate the depiction of local dissimilarities in the form
of network bias maps as well as the aggregation of those local network dissimilarities to global ones
for the purposes of climate model intercomparison and ranking. To cover as wide a range of appli-
cations as possible, our measures are defined for directed as well as for undirected climate networks
with and without edge weights and/or node weights.
For graphs without edge weights, we adopt the distance function proposed by Hamming (1950)

to define the Local and the Global Hamming Distance (LHD and GHD). We demonstrate that the
LHD comeswith a disadvantageous degree dependence, whichwe propose to overcome using a suit-
able statistical null model, relating the actual LHD value to the null model probability distribution
of possible LHD values given the degrees of the respective node.This way a second local network
dissimilarity measure is defined which we call the Degree-conditional Neighborhood Dissimilarity
(DND).The relationship between network LHD and DND is similar to the one between absolute
and relative precipitation biases. Large LHDs can coincide with small DNDs and vice versa. The
two measures should therefore always be considered conjointly to prevent misinterpretations. Our
ansatz to render the LHD degree-independent via a statistical null model goes beyond existing ad
hoc normalization methods used by the vertex similarity community to solve the equivalent prob-
lem occurring when comparing different nodes of the same network (Leicht et al., 2006). As our
ansatz has the virtue of an explicit probabilistic motivation and is easily transferred to the equiva-
lent vertex similarity problem, we propose it to supersede the ad hoc approaches common in that
field.
For climate networks with edge weights, we argue that a suitable dissimilarity measure should

account for estimation uncertainties inherent to the edge weights, as the latter usually represent
the strength of statistical relationships between time series at different locations. For the case of the
edge weights being correlation coefficients, we propose to employ the variance-stabilizing Fisher
transformation for this purpose and define the Local and theGlobal CorrelationDistance (LCDand
GCD). For other measures of statistical relationship, our argument should be seen as an incentive
to develop lacking estimation error theories.
We apply our novel network dissimilarity measures to comparatively evaluate regional climate

simulations over South America with a statistical and a dynamical regional climate model. In the
first of two such studies, simulations are both driven by and evaluated against ERA-Interim (ERAI)
reanalysis data. The evaluation is done for the 2m temperature, precipitation, the 500 hPa geopo-
tential, and sea level pressure in austral summer (DJF) and winter (JJA).
For each variable and season, climate networks are constructed based on spatial correlations be-

tween anomaly time series, and compared using the GHD.We find that the statistical model STARS
is better at reproducing the network structure of the 2m temperature, precipitation, and sea level
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pressure time series, while the dynamical model CCLM performs better for the 500 hPa geopoten-
tial.The least and the greatest network dissimilarities across models and seasons are found for the
500 hPa geopotential and for precipitation, respectively.This indicates that spatial covariabilities of
the 500 hPa geopotential are easiest and those of precipitation are hardest to model. The special
position of the 500 hPa geopotential comes as no surprise since it is the only upper-level variable,
i.e. it is undisturbed by orographic or other surface-based influences, and since its dynamics have
been found relatively easy to model before (Steinhaeuser and Tsonis, 2013).The difficulty of precip-
itation modeling does not astonish us either, given the results of the first part of this dissertation,
and considering the outstanding complexity of precipitation dynamics in general (Huff and Shipp,
1969; Matsoukas et al., 2000; Peters et al., 2001).The plausibility of this outcome demonstrates the
suitability and reliability of our network approach to climate model evaluation.
In parallel, we quantify model performances with conventional univariate root-mean-square de-

viations in climatological mean values and variances. When we compare model rankings according
to dissimilarities between climate networks versus conventional model error measures, we mostly
find agreement, but there are also cases in which the network structure was better reproduced by
a model which was less favored by a conventional measure or vice versa, most notably for sea level
pressure and the 500 hPa geopotential. Although the construction of climate networks and their
comparison takes more effort than applying rather simple univariate model error measures, these
complementary findings demonstrate the novelty and justification of our approach.
Since reanalysis precipitation data are not necessarily reliable, in a second application we reevalu-

ate the STARS and CCLM simulations against observational data provided by the Tropical Rainfall
Measuring Mission (TRMM) 3B42 V7. We focus on the austral summer season when a monsoon
system develops over tropical and subtropical South America. ERAI data are included in the reeval-
uation to enable an assessment of the value added by statistical and dynamical downscaling. In this
study, we deploy all of our newly developed network dissimilarity measures.
Different types of precipitation networks are constructed to capture different aspects of the mon-

soon system dynamics. Based on spatial rank correlations between anomaly time series, we define
an edge-weighted graph called SR and two simple graphs with links representing the 2%most posi-
tive and the 2% most negative correlations called SRp and SRn, respectively. Another simple graph
called ESp is based on the 2% strongest spatial synchronizations between extreme event time series.
We show that the ESp and SRp graphs are dominated by short-range links while teleconnections
prevail in the SRn graph. Visualizing these teleconnections using an RGB color model, we reveal
that they represent the two major rainfall dipoles of the South American monsoon system. It is
shown that these teleconnections are reasonably well reproduced by CCLM and STARS. A distinct
shortcoming of CCLM is that, for all graph types, it produces too many short- and too few long-
range links, which implies that the model underestimates the strength of teleconnections relative
to local anomaly correlations and event synchronizations.
Global distances between TRMM and ERAI/CCLM/STARS simple graphs vary strongly across

network types, which allows us to uncover how climate variability and spatial embedding effects
impose limits on the fidelity of network reproduction. It is shown that as geographical link lengths
increase, so does the likelihood of their misplacement, which explains why GHDs are much larger
for the SRn than for the SRp and ESp graphs. We employ Spatially Embedded Random Networks
(SERNs) to model this effect. The fraction of network differences due to interannual climate vari-
ability is quantified using a bootstrap approach. We find that the ESp graph is most affected by this
source of uncertainty, in agreement with the fickle nature of extreme events. Based on SERN and
bootstrap network dissimilarities to TRMM, amodel skill score is defined that accounts for themen-
tioned uncertainties. According to this score, the SRp and ESp graphs are reproduced with similar
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and higher fidelity than the SRn graph.This result makes sense inasmuch as more than the former
graphs, the latter contains nontrivial information about the system dynamics.
Comparing performances between the reanalysis and the RCMs, we find that CCLM performs

better than ERAI at two out of four network types, while STARS performs worse than ERAI in all
cases. As both CCLM and STARS were driven by ERAI data, this suggests that dynamical down-
scaling may retain value at the resolution of the driving data while statistical resampling can only
impair data quality. For the SRp graph, our reevaluation against the independent TRMMdata yields
a relative performance ranking of CCLM versus STARS that is opposite to the one obtained in the
first evaluation against the driving reanalysis data.
From the ensemble spread of bootstrap network distances to TRMMwe infer that ERAI and even

more so CCLM and STARS underestimate the interannual variability of the precipitation dynamics
encoded in our networks. As for the reanalysis, this finding complements documented deficiencies
in reproducing the variability of spatiotemporal rainfall totals over tropical continents (Bechtold
et al., 2008; Nikulin et al., 2012).The loss of large-scale variability in the CCLM simulations might
have been prevented by spectral nudging (Castro et al., 2005; Rockel et al., 2008b). In the case of
STARS, we conclude that its resampling algorithm tends to reduce the variability present in its input
data.
We suspect deficiencies in cloud physics parameterizations of contributing substantially to the

variability underestimations by ERAI and CCLM since simulated precipitation characteristics over
monsoon season South America have been shown in Pt. I to be highly sensitive to modifications of
these parameterizations while the latter are known to lack flexibility in reacting to variations in the
large-scale environment (Bechtold et al., 2008, 2014). Another factor are model parameters that in
reality vary from year to year but are represented by climatological mean values in ERAI (Loveland
et al., 2000; Dee et al., 2011) and CCLM (Smiatek et al., 2008; Doms et al., 2011a), such as aerosol
concentrations, forest albedos, and leaf area indices, which means that the models are unable to
account for interannual variabilities in aerosol or land-atmosphere feedbacks due to, e.g. volcanic
eruptions, bushfires, and droughts.
Fromour local network dissimilaritymeasures, theDNDproves to bemost useful to identify com-

monalities across data sets. Larger DNDs over land than over sea are consistent with land surface-
atmosphere interactions being more complex than sea surface-atmosphere interactions, and rela-
tively high DNDs in the Guiana Highlands and along the Andes confirmmodel deficiencies in sim-
ulating precipitation over complex terrain (Bachner et al., 2008; Ward et al., 2011). Using the DND,
we also reveal that for the given observational record length, differences between ESp graphs are
dominated by the interannual variability of extreme events, which impedes a reasonable evaluation
of their spatial synchronization at this point.

The situation is different for the correlation networks and we findmodel-specific spatial patterns
in the LHD and LCD fields. The largest SR, SRn, and SRp network dissimilarities of CCLM to
TRMM are found over central and northeastern Brazil. We suppose these biases to be associated
with an erroneous northward displacement of the SACZ (cf. Pt. I). A common deficiency of ERAI,
CCLM, and STARS is an underestimation of the relative strength of the maritime part of the SACZ
precipitation seesaw. As both the reanalysis and the dynamicalmodel employ prescribed sea surface
temperatures (Pt. I; Dee et al., 2011), this might be due to an imperfect ocean-atmosphere coupling
(Braconnot et al., 2007).
In general, the value of the network approach to climate model evaluation stands and falls with

the information content of the network considered. Byway of example, we have shown that formon-
soon season precipitation networks over South America, simple graphs from negative correlations
are more interesting than simple graphs from positive correlations. Future efforts towards promot-
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ing the approach should thus focus on designing networks that represent pertinent spatiotemporal
relationships in climate dynamics. Only when a couple of such networks are found can we expect
the climate modeling community to include the network approach in their standard repertoire of
model evaluation methods.
Furthermore, it should be investigated whether the novel model performance metrics provide

an added value for the assessment of uncertainties of future climate projections. Ideally, the perfor-
mance of climate models measured by the network metrics in hindcast simulations of some recent
climate period would correlate with their accuracy in reproducing observed climate change during
the past century.
Beyond climate science, the network approach to model evaluation has the potential to benefit

modelers of real-world multidimensional dynamical systems of any background. For instance, it
could be used to evaluate models of social dynamics (Erbach-Schoenberg et al., 2014), financial
markets (Lux and Marchesi, 1999), neural activity (Zhou et al., 2006; Vértes et al., 2012) or genetic
regulatory systems (de Jong, 2002; Ho and Charleston, 2011). The key is to consider multidimen-
sional dynamical systems as networks of dynamically interacting components.

The new network dissimilarity measures by themselves can be employed to compare networks
of any functional or structural background as long as these have a common set of nodes. They
might be useful additional tools for investigations of network evolution (such as in Spoormaker
et al., 2010; Radebach et al., 2013) or for studying the impact of disorders and disasters on network
topologies (similar to Greicius et al., 2007; Lynall et al., 2010;Woolley-Meza et al., 2013; Levermann,
2014). Further attention should be paid to the issue of estimation uncertainty for networks that are
based on measured or sampled data. Dissimilarities between network structures should be given
less weight if they are subject to greater uncertainties. We have provided a solution for the arguably
simplest case of networks based on correlation coefficients. More work on this matter needs to be
done and is certainly worthwhile, given that uncertainty is ubiquitous where science meets reality.
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