
Constructing Secure Hash Functions from Weak
Compression Functions: The Case for Non-Streamable Hash

Functions

Moses Liskov

Computer Science Department
The College of William and Mary

Williamsburg, Virginia, USA
mliskov@cs.wm.edu

Abstract. In a recent paper, Lucks espoused a “failure-friendly” approach to hash function
design [12]. We expand on this idea in two main ways. First of all, we consider the notion
of a weak ideal compression function, which is vulnerable to strong forms of attack, but is
otherwise random. We show that such weak ideal compression functions can be used to create
secure hash functions, thereby giving a design that can be used to eliminate attacks caused
by many unusual properties of compression functions.
Furthermore, the construction we give, which we call the “zipper hash,” is ideal in the sense
that the overall hash function is indistinguishable from a random oracle when implemented
with ideal building blocks.
The zipper hash function is relatively efficient, requiring two compression function evaluations
per block of input, but it is not streamable. We also show how to create an ideal compression
function from ideal weak compression functions, which can be used in the standard iterated
way to make a streamable hash function. However, a comparison of these two constructions,
as well as consideration of certain recent attacks against iterated hash functions, lead us to
the conclusion that non-streamable hash functions may be worth considering.

Keywords: Hash function, compression function, Merkle-Damg̊ard, ideal primitives, non-streamable
hash functions, zipper hash.

1 Introduction

The design of hash functions is a long-studied problem that has become recently more relevant
because of significant attacks against commonly-used hash functions [20, 18, 19, 17, 1]. It is much
easier to create collision functions, which take input of a particular size and produce output of a
reduced size, than a full hash function directly. It is common practice to follow the basic concept of
the Merkle-Damg̊ard construction [6, 13]: composing a compression function with itself, each time
incorporating a block of the message, until the entire message is processed. If f is the compression
function and x is an input divisible into l blocks of the appropriate size, then

H(x) = f(f(. . . f(IV, x1), x2), . . . , xl))

is the basic iterated hash function. There are two main ways in which this basic method has
evolved: first of all, to handle messages of arbitrary length, a message may have to be padded so
that the block size divides the length. In addition, the length of the initial message is included in
the padding so that distinct messages remain distinct after padding: this, along with fixing an IV ,
is called Merkle-Damg̊ard strengthening. Second, a finalization function g is often used after all the
message blocks have been processed. Among other properties, this allows the output size of the
compression function to be different from the output size of the hash function.
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Figure 1: The modern iterated hash function

The iterated hash function construction is elegant and natural, and is additionally attractive in
that it is streamable, that is, a message may be hashed piece by piece with a small, finite amount of
memory. Furthermore, this construction is known to be collision-resistant as long as the underlying
compression function is collision-resistant [6, 13]. However, there are reasons to question the iterated
hash function design now.

An underlying theme in the recent high-profile attacks on hash functions has been the use of
weaknesses in the compression function to build up an effective attack against the overall hash
function. Furthermore, many attacks have been published recently that accomplish interesting black-
box attacks against iterated hash functions once compression-function weaknesses have been found.

Here we summarize some known black-box attacks against iterated hash functions. Let n be the
length of the output of a hash function H.

– Second collision attack. The basic attack goal here is to find a second collision on H once
we have found a first collision on H. In a well-known attack, this is trivial for basic iterated
hash functions: if H(x) = H(y) then for all strings z, H(x||z) = H(y||z) is another collision.
Merkle-Damg̊ard strengthening does not solve this problem completely, since the attack still
works if |x| = |y|. [14, 12]

– Joux multicollision attack [9]. It is easier than expected to find multicollisions: that is, a set
of many distinct inputs that all hash to the same value. For a generic hash function, finding a t-
way collision should require hashing an expected 2n·(t−1)/t messages. However, Joux showed that
finding a t-way collision can also be done by making (log2 t)2k/2 compression function queries,
where k is the output size of the compression function. Essentially, the attack is to find one-block
collisions for the compression function that can be chained together (by a brute force birthday
attack). Once we have r such collisions, we can generate a 2r-way collision by choosing one input
for each colliding pair.

– Fixed-point attack [11, 7]. The goal here is to come up with a second preimage for one of a
set of known messages. If the target set is of size 2t, it is easy to see that a second preimage can
be found in a generic attack in time 2n−t. This attack improves upon this by finding expandable
messages based on fixed points for the collision function. Among other examples, the compression
function in any Davies-Meyer block cipher-based hash function (such as the SHA family as well
as MD4 and MD5) is suscpetible to fixed-point attacks[11]. This allows an attack where, after
hashing 2t mesage blocks, a second preimage can be found in time t2n/2 + 1 + 2n−t+1. Fixed
points are used to circumvent Merkle-Damg̊ard strengthening; with fixed points, one can build
“expandable messages,” which let us recover a second preimage of the correct length.

– The “herding” attack [10]. This is an attack against the use of a hash function for commit-
ments. The idea is to find a 2t-way collision (using the Joux attack) at a value H(x), and then
find a preimage of a commitment H(x) that starts with an arbitrary z by trying random values
y until H(z||y) is one of the 2t-way collisions.

In order to combat attacks like the Joux attack and the Kelsey-Kohno herding attack, Lucks
proposed that the internal state of an iterated hash function should be larger than the output,
thus preventing the usefulness of finding compression function collisions by brute force [12]. Lucks



proposed double-pipe hash as a way to implement this, effectively using two compression function
computations per block of message, in order to increase the size of the internal state securely. Lucks
proved that, assuming the underlying compression function was ideal (i.e., a random oracle), the
double-pipe hash compression function yields a collision-resistant hash function.

At the core of Lucks’ paper, however, was an even more important idea: that we should attempt
to design hash functions that remain secure even when the compression functions on which they are
based can be attacked.

We seek to improve on the work of Lucks in two ways. First of all, Lucks only attempts to make
a hash function resilient to brute-force collision attacks against the compression function. It would
be better to make a hash function resilient to actual flaws in the compression function as well.
Therefore, we will weaken our assumptions about the underlying compression function as much as
possible. We will still consider an ideal form of a compression function, but we will explicitly allow
attacks against it, in order to model a weak but minimally secure compression function.

Second, following the work of Coron, Dodis, Malimaud, and Puniya [4], we wish to find ways of
strengthening hash functions to a high standard. Coron et al show that the basic Merkle-Damg̊ard
construction is not ideal in the sense that even with an ideal compression function, we cannot prove
the hash function is indistinguishable from a random oracle. However, with an ideal finalization
function (among other alternate modifications), iterated hash functions can be shown to be indis-
tiguishable from a random oracle when implemented with ideal components. Assuming individual
components to be ideal has been established as a reasonable model for the analysis of hash functions
for some time [2], and since we will use this model, we should attain strong results, as Coron et al
do.

1.1 Our Results

In this paper, we formalize the notion of a weak ideal compression function, and show that such
compression functions can be used to make stronger ideal primitives. Namely, we give a construction
we call the “zipper hash” that makes an ideal hash function from weak ideal compression functions.
The zipper hash is a very simple and elegant design; it requires 2l compression function evaluations
for an l-block input. (Additionally, this concept of a weak ideal primitive may be of independent
interest.)

Then, we go on to use weak ideal compression functions to make an ideal compression function.
This construction is based on the zipper hash, and requires four compression function evaluations
to run. We show that the Lucks double-pipe compression function is not an ideal construction, but
offer a simple modification of it that is ideal. Thus, the compression function we consider comparable
requires eight underlying compression function evaluations per block of input.

Finally, we analyze the efficiency of our schemes. We go on to make a case for considering non-
streamable hash functions like our zipper hash in practice. We note that streamable hash functions
always follow the essential Merkle-Damg̊ard structure, so to avoid general attacks against iterated
hash functions, one must consider non-streamable hash functions.

2 Notation and definitions

2.1 Hash functions and compression functions

Before we explore these issues, we must give a basic introduction to the concept of hash functions and
compression functions. An n-bit hash function family is a functions H : K×{0, 1}∗ → {0, 1}n where
K represents the set of “keys” from which one is chosen at random. Note that hash functions must
be defined as families: any specific hash function H : {0, 1}∗ → {0, 1}n cannot be collision-resistant,
because a collision H(x) = H(x′) exists, and the algorithm that merely outputs (x, x′) would always
find it. Thus, we imagine that the hash function we use is randomly drawn from a larger family, and



the “key” represents the individual member of the family. Note that we do not think of the key as
secret: indeed, once the representative is chosen, the key will be known to all.

Compression functions must also be defined in terms of families. An (m, k)-bit compression
function family is a function f : Kf × {0, 1}m × {0, 1}k → {0, 1}k. Again, here, Kf represents the
set of keys for the compression function.

2.2 Ideal hash functions and compression functions

Typically, an ideal n-bit hash function is thought of as a random function H : {0, 1}∗ → {0, 1}n.
Here, there is no notion of key; the idea of choosing a random key for the hash function is abstracted
away, represented as part of the randomness in the oracle.

An ideal (m, k)-bit compression function, similarly, is a random function f : {0, 1}m×{0, 1}k →
{0, 1}k.

2.3 Ideal weak compression functions

In our construction we do not want to go so far as to assume that the compression functions are
random oracles, as this would imply that they are collision resistant, and immune to all forms of
attack. Instead, we will model our ideal compression function as a random oracle with additional
attack oracles that provide results of successful attacks, and yet still give answers consistent with a
random oracle.

This can be implmented in a variety of ways, depending on what the attack oracle does. We
imagine that there is an oracle for the compression function f , so that on a new query (x, y), a
random output value z is returned. The following list describes the attack oracles for a variety of
compression function security levels.

– Ideal compression function. No attack oracle, only the f oracle.
– Collision-tractable compression function: On invoking the attack oracle with no input,

the oracle returns random values (x, x′, y, y′, z) such that f(x, y) = z = f(x′, y′) where (x, y) 6=
(x′, y′).1

– Second preimage-tractable compression function: On invoking the attack oracle on input
(x, y), the oracle returns a random pair of values (x′, y′) such that f(x′, y′) = f(x, y).

– Preimage-tractable compression function: On invoking the attack oracle on input z, the
oracle returns a random pair of values (x, y) such that f(x, y) = z.

– Partially-specified preimage-tractable compression function: On invoking the attack
oracle on input (x, z), the oracle returns a random value y such that f(x, y) = z.

– Two-way partially-specified preimage-tractable compression function: There are two
attack oracles. On querying the first (called f−1) on input (x, z), the oracle returns a random
value y such that f(x, y) = z. On querying the second (called f∗) on input (y, z), the oracle
returns a random value x such that f(x, y) = z.

This last form of ideal compression function we will name for convenience a weak ideal compression
function. It should be clear that we can implement any form of compression function higher on the
list with a weak ideal compression function (for instance, to implement the attack oracle for a
preimage-tractable compression function, on input z, we pick a random x and query our first attack
oracle on (x, z) to obtain y, then return (x, y)).

1 That is, x, x′, y, y′, and z are generated at random; if known values of f do not prohibit the property
f(x, y) = z = f(x′, y′), then those outputs are given, otherwise new ones are selected until known values
of f do not cause a problem. Once the attack oracle returns a query, it affects how f will respond to (x, y)
or (x′, y′).



In fact, this form of weak compression function is susceptible to every form of (black-box) attack
we are aware of.2 An ideal weak compression function cannot be used simply in an iterated way to
make a hash function. For instance, if the padding function appends padding that depends only on
the length of the input, we can find a collision by creating a random m-bit message x, computing z =
f(x, IV ), and then querying the attack oracle f∗(IV, z) to get a random x′ such that f(x′, IV ) = z.
Then, since the padding changes x and x′ in the same way (because they are the same length), H(x)
and H(x′) will be the same, as they collide after one block, and the remaining blocks are the same.

Nonetheless, there is cryptographic strength implied in this notion of an ideal weak compression
function, because despite the attacks we explicitly allow against it, we still imagine that the results
of such attacks will be random.

Note that we are being quite generous with our attack oracles here. For an actual compression
function, there is no guarantee that (for instance) a y such that f(x, y) = z even exists, let alone
many such y. It may be more reasonable to think of our ideal compression function as a random
quasigroup: that is, for every (x, z) there is a unique random y such that f(x, y) = z, and similarly,
for every (y, z) there is a unique random x.

2.4 Ideal hash functions and compression functions based on weak ideal compression
functions

Following Coron et al [4], and paraphrasing closely from their paper, we will use the following
methodology to prove that our constructions are sound. Let C be a Turing machine with access to
an oracle: C will represent the construction and its oracle(s) will represent the ideal primitive the
construction is made from.

Let Γ represent the oracle(s) for the underlying ideal primitive(s), and let ∆ represent the
oracle(s) for the ideal version of the primitive we try to construct with C.

We say that C is (tA, tS , q, ε)-indifferentiable from ∆ if there is a simulator S such that for all
distinguishers A,

|Pr[AC,Γ = 1]− Pr[A∆,S = 1]| < ε,

where (1) S answers as many different types of oracle queries as Γ provides, and S has oracle
access to ∆ and runs in time at most tS , and (2) A runs in time at most tA and makes at most
q queries of its various oracles. We say that C is computationally indifferentiable from ∆ if for all
security parameters α it holds that C is (tA(α), tS(α), q(α), ε(α))-indifferentiable from ∆, where tA
and tS are polynomial in α, where q(α) ≤ tA(α), and where ε is negligible in α.

3 The zipper hash construction

The zipper hash is a general hash function construction. To build an n-bit hash function, we need
two independent (m, k)-bit compression functions f0 and f1, as well as a padding function P , an
initialization vector IV , and a finalization function g : {0, 1}k → {0, 1}n. On input x, P is guaranteed
to return a value such that x ◦ P (x) is a string that can be broken down into m-bit blocks, and for
all x 6= x′, x ◦ P (x) 6= x′ ◦ P (x′). Given all these pieces, the zipper hash function works as follows:

1. Let x1, . . . xl be m-bit strings such that x1 ◦ . . . ◦ xl = x ◦ P (x).
2. H1 is computed as f0(x1, IV ), and H2, . . . ,Hl are computed iteratively as Hi = f0(xi, Hi−1).
3. H ′

1 is computed as f1(xl,Hl), and H ′
2, . . . , H

′
l are computed iteratively as H ′

i = f1(xl−i+1,H
′
i−1).

4. Output H(x) = g(H ′
l).

This construction is called the zipper hash as its structure is reminscent of a zipper. See figure 2.
2 Of course, we cannot capture non-black-box attacks when we try to view our primitives as ideal.
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Figure 2: The zipper hash function

4 Proof of security

Let C be the Turing machine that implements the zipper hash. We will prove that C is computa-
tionally indifferentiable from an ideal hash function ∆, using two ideal weak compression functions
represented by Γ , where g is the identity function.3

To briefly sketch the proof, the simulator answers oracle queries for the weak ideal compression
functions randomly, except when a query is the last one needed to compute the hash function on
some value, in which case the simulator assumes that the query was in the forward direction for the
last compression function evaluation, and queries ∆ and gives this value. It is nontrivial to show
that the simulator can always determine when a query amounts to the last one needed to compute
the hash function, but with careful record-keeping, we can do it in polynomial time.

We will then make the assumption that no unexpected coincidences occur: that is, for instance,
if (u, v) is given as a query to an oracle of Γ , that the randomly generated answer w is not equal to
any w that has been involved in a query before, nor is it equal to IV . We describe an event Bad, the
event that this assumption fails. We then prove (1) that if Bad never happens, the simulator will
simulate Γ perfectly, and (2) that Bad only happens with negligible probability over the course of
an attack.

4.1 Record keeping

In order to simulate Γ (the weak ideal compression functions) with access only to ∆, we use the
natural approach: we answer queries to Γ ’s oracles randomly as long as it follows the constraints:
(1) for each (x, y) pair, there is only one value z such that f0(x, y) = z, and only one value z′

such that f1(x, y) = z′, and (2) for any l m-bit values x1, . . . , xl, f0 and f1 have to be such that
∆(x1 ◦ . . . ◦ xl) = C(Γ ).

Meeting the first constraint is easy; we simply do the following on each query. When we receive
a query f(x, y)4, we check to see if we have defined an answer z = f(x, y); if so, we return z, and
if not, we generate a random z and note that z = f(x, y), and return z. When we receive an attack
query f−1(x, z), we pick a random y until we find one such that we have not defined an answer
z′ = f(x, y) for z 6= z′, and return that y, and note that z = f(x, y); we do similarly for an attack
query on f∗(y, z).

3 This will essentially prove that querying the zipper hash on a new message is indistinguishable from
querying g on a randomly-chosen value. If g has the property that it produces a random output on a
random input, the overall construction will remain ideal.

4 In this proof, when we refer to an f query, we mean either an f0 or f1 query. We use this convention
similarly when referring to f∗ or f−1 queries.



However, the most difficult part of record keeping is that we must be aware of when a query
imposes a constraint based on ∆. In order to do this, we will attempt to keep track of all “par-
tial chains.” A partial chain is a sequence of x values x1, . . . , xl, and two y-values y, y′ such that
f0(x1, f0(x2, . . . , f0(xl, f1(xl, . . . , f1(x1, y

′) . . .)) . . .)) = y. If a partial chain is such that y′ = IV then
y must be equal to ∆(x1 ◦ . . .◦xl). However, it may be computationally infeasible to keep track of all
partial chains that arise. Instead, we will keep track of only those that arise in expected ways, and
we will prove later that we will actually find all partial chains as long as no unexpected coincidences
occur.

For ease of notation, when we discover a partial chain, we will make a note of it, which we denote
Chain(x, y′, y). Effectively, this note means that if the initialization vector were y′, then H(x) would
output y.

Forward queries. We show how to keep track of this for one type of query at a time, starting with
forward queries. Without loss of generality, we assume that the query is on a new input pair (x, y).
If the query is an f0 query, we will not attempt to find whether any partial chains have been formed.
For f1 queries, we will check if any partial chains have been formed using this query at the end. If
so, we check if any of these partial chains are formed starting at IV , and if so, we use ∆ to find the
value we should set to be f1(x, y). If not, we pick f1(x, y) at random. If a query forms two or more
distinct partial chains starting at IV , the simulator gives up and halts. If the simulator doesn’t halt,
it will make notes of all partial chains that have been formed with the current query at the end.

If the query is f1(x, y) then we can check if this completes a single-block partial chain. If there
is a y′ such that f0(x, y′) = y then the value we return will form the chain Chain(x, y′, f1(x, y)). If
there is an x′ and a y′′ such that Chain(x′, y′′, y) and also there is a y′ such that f0(x, y′) = y′′ then
the value we return will form the chain Chain(x ◦ x′, y′, f1(x, y)).

Backward queries. Next, we consider “backward” queries, that is, a query f−1(x, z). Similarly to
forward queries, if the query is an f−1

1 query, we will not attempt to find whether any partial chains
have been formed. For f−1

0 queries, however, we will check if any partial chains have been formed
using this query at the beginning. If so, it may be that a partial chain has been formed starting at
IV , but we can do nothing to set the appropriate value to one matching ∆ in this case: it is too
late. However, this will not happen unless an unexpected coincidence occurs. Thus, once we have
found all partial chains that will be formed from the current query, we pick a random answer to it
and note the chains that are formed.

The result of a query f−1
0 (x, z) will form a single-block chain if it is already known that f1(x, z) =

y for some value y. In this case, we may note Chain(x, f−1
0 (x, z), y). The result of f−1

0 (x, z) will form
a longer chain if it is already noted that Chain(x′, z, y′) for some y′, and also f1(x, y′) = y is known
for some y, in which case we may note Chain(x ◦ x′, f−1

0 (x, z), y).

Squeeze queries. Finally, we consider “squeeze” queries, that is, a query f∗(y, z). Though squeeze
queries may form chains, we do not check for them.

4.2 The Bad event

We will prove that our simulator fools the adversary by proving that the distribution of the ad-
versary’s output in the real system (where S is not involved) is identical to the distribution of the
adversary’s output in the ideal system, conditioned on a certain “bad” event not happening. The
bad event Bad represents the event that a previously-used value is generated as the random answer
to a later query. To be precise, let us imagine that (xi, yi, zi) are all the triples of values such that
f0(xi, yi) = zi has been established in a query, and that (x′i, y

′
i, z

′
i) are all the triples of values such

that f1(x′i, y
′
i) = z′i has been previously established. Then Bad occurs on the next query if:



1. The latest query is an f(x, y) query that returns a value z equal to yi, zi, y
′
i or z′i for some i, or

z = IV .
2. The latest query is an f−1(x, z) query that returns a value y equal to yi, zi, y

′
i, or z′i for some i,

or y = IV .
3. The latest query is an f∗(y, z) query that returns some value x equal to xi or x′i for some i.

Lemma 1. If Bad does not happen when we simulate, the simulator will not halt during a query.

Recall that the simulator will only halt in one situation: if a forward f1 query completes more
than one partial chain that start at IV . Specifically, this happens when a forward query f1(x, y) is
such that for some x′ 6= x′′ and for some y′0 and y′1, we know Chain(x′, y′0, y) and Chain(x′′, y′1, y),
and f0(x, IV ) = y′0 and f0(x, IV ) = y′1. Therefore we can conclude that y′0 = y′1. In order for this to
happen, we must have noted both Chain(x′, y′, y) and Chain(x′′, y′, y) for some x′ 6= x′′.

Remark 1. If we note Chain(x, y′, y) then, when we note it, either y′ or y is a newly-generated
random query answer. This is clear from our description of S above.

Remark 2. First, we prove that if there is some pair of notes Chain(x0, y
′, y) and Chain(x1, y

′, y)
where the first block of x0 is not the same as the first block of x1, then Bad must have happened.
Assume, without loss of generality, that Chain(x0, y

′, y) was not noted later than Chain(x1, y
′, y).

Because of the way we notice chains, we note Chain(x1, y
′, y) only when computing either a forward

or backward query with x as the input value, where x is the first block of x1. Since x is not the
first block of x0, we do not note Chain(x0, y

′, y) at this time, so it must have been noted previously.
However, because of remark 1, when we note Chain(x1, y

′, y) either y′ or y must be a newly-generated
random query answer, so it can only be equal to the previously-known value of y if Bad occurs on
this query.

Remark 3. Next, we note that if x0 and x1 consist of at least one block, and there is some y such
that Chain(x ◦ x0, y

′, y) and Chain(x ◦ x1, y
′, y), where x is a single block, then either (1) there is

some w and some w′ such that Chain(x0, w
′, w) and Chain(x1, w

′, w) are already known, or (2) Bad
has happened.

Assuming that both Chain(x ◦x0, y
′, y) and Chain(x ◦x1, y

′, y) were discovered simultaneously (if
not, the previous argument shows that Bad happened), there are two cases:

– If both were discovered on a forward query f1(x,w), it must have been that both Chain(x0, w
′, w)

was known, and that w′ = f0(x, y′) for some w and w′. Furthermore, it must also be true that
Chain(x1, w

′′, w) was known, and that w′′ = f0(x, y′). But then, w′′ = f0(x, y′) = w′, so the first
condition holds.

– If both were discovered on a backward query f−1
0 (x,w′), then it must have been that Chain(x0, w

′, w)
was known for some w, and that f1(x,w) = y. We must also have noted Chain(x1, w

′, w′′) for
some w′′ such that f1(x,w′′) = y. If w = w′′ then the first condition holds. If not, then from
remark 1, whichever of f1(x,w) = y, f1(x, w′′) = y, Chain(x0, w

′, w), or Chain(x1, w
′, w′′) was

discovered last would have triggered Bad.

Remark 3. If there is some note Chain(x, y′, y) and Chain(x ◦ x1, y
′, y) where x is a single block,

then Bad has happened. Again, we may assume that Chain(x, y′, y) and Chain(x ◦ x1, y
′, y) were

discovered simultaneously. There are two cases:

– If both were discovered on a forward query f1(x, y′′), then it must have been known in advance
be that f0(x, y′) = y′′, and that Chain(x1, y

′′, y′′). However, Chain(x1, y
′′, y′′) is impossible unless

Bad happens, in view of remark 1.



– Similarly, if both were discovered on a backward query f−1
0 (x, z), then it must have been known

in advance that f1(x, z) = y and that Chain(x1, z, z), which again guarantees that Bad has
happened.

By remarks 2, 3, and 4, if Chain(x, y′, y) and Chain(x′, y′, y) are known for x 6= x′ then Bad must
have happened: if x is not a prefix of x′ of x′ or vice versa, we can descend by remark 2, getting
similar properties, until the first blocks of x and x′ are unequal. If x is a prefix of x′ or vice versa, we
can descend by remark 2 until we fall in to the case covered by remark 3. Therefore, the simulator
will never halt prematurely unless Bad has happened.

Lemma 3. If a query is ever made to S that would complete a partial chain, we note it unless
Bad happens.

Suppose a query is made to S that would complete a partial chain. There are three cases to
consider:

Case i: A partial chain is completed on a forward query. If the link determined by f(x, y) is used
anywhere other than at the end, it can only be used there if the value generated for f(x, y) triggers
the Bad event. If the link determined by f(x, y) only completes chains by adding on to the end, it
must be a query to f1, and then there are two cases: either the partial chain is one block long, which
we explicitly check for, or the partial chain is longer, in which case, a shorter, compatible partial
chain is already known. In either case, we note the newly completed partial chain.

Case ii: A partial chain is completed on a backward query f−1(x, z). Similarly, if the result of
this query is used anywhere other than at the beginning, it can only be used there if the result
triggers the Bad event. Again, if the result can be used at the beginning, it must be a f−1

0 query,
and our algorithm for the simulator is correct.

Case iii: A partial chain is completed on a “squeeze” query f∗(y, z). In this case, the chain could
only be completed if something is already known about f0 or f1 on input x where x is the result of
this query. If this were the case, the result of this query would trigger the Bad event.

Lemma 4. If a query is ever made to S that would complete a partial chain starting at IV , we
note it, and respond correctly, unless Bad happens.

The proof of this lemma is very similar to the proof of lemma 3. Note that by lemma 3, if a query
is made to S that completes any partial chain, and Bad has not happened, we note it. Therefore, we
need only consider two cases:

Case i: The partial chain Chain(x, IV, y) is noted on a forward query to f1. In this case, we obtain
y by querying ∆(x), so our answer is correct.

Case ii: The partial chain Chain(x, IV, y) is noted on a backward query to f−1
0 . If this is the case,

Bad must have happened, because this can only happen if the result of the final f−1
0 query was IV .

Lemma 5. The probability that Bad happens is negligible.

Note that initially, before any queries are made, Bad has not happened. If Bad has not happened
after the first q queries, then the probability that it happens on the q + 1st query is at most
(2q+1) ·max(2−m, 2−k). This is because there are at most (2q+1) answers (all the previous y and z
values, plus IV ) that would make Bad happen, out of 2m or 2k possible random answers, depending
on the type of query. Therefore, if the adversary makes a total of q queries, the probability that Bad
happens is at most Ω(q22−r), where r = min(m, k).

This completes the proof that the zipper hash function is indistinguishable from a random oracle
when it is made using two weak ideal compression functions.



5 Zipper hash-based compression function

The most natural criticism of the zipper hash in practice is that it is no longer streamable, as
iterated hash functions are. However, we can easily use the zipper hash construction to create an
ideal compression function rather than a full ideal hash function, which will allow us to use one of
the modified iterated constructions of Coron et al [4] and create a streamable, ideal hash function
from weak ideal compression functions.

Now that we have proven that the zipper hash is indifferentiable from a random oracle, if we
assume that we have an (m,m)-bit underlying compression function, we can make an (m,m)-bit ideal
compression function very simply: let f(x, y) = H(x ◦ y). By a simple restriction on our theorem,
this is indifferentiable from a random oracle from {0, 1}m × {0, 1}m → {0, 1}m, and is therefore an
ideal compression function.

In order to make the iterated hash function from this compression function comparable to the
zipper hash, however, we would have to follow the advice of Lucks [12] and somehow use a wide-pipe
hash to avoid the Joux attack and related concerns that arise in an iterated construction. This is
because the non-streamable zipper hash is not known to be vulnerable to these general black-box
attacks.

Lucks’ construction of a double-pipe compression function can be summed up as follows: if f is
a (2m,n)-bit compression function, then f ′(x, y1 ◦ y2) = f(x, y1 ◦ y2) ◦ f(x, y2 ◦ y1) is a (2m, 2n)-bit
compression function.

It is easy to see that this construction is not ideal: f ′(x, y ◦ y) = z ◦ z for some z, whereas this
is unlikely to be the case for an ideal compression function f ′. This flaw is easily avoided, however,
by the following modification. Assume that f0 and f1 are two independent (2m,n)-bit compression
functions, and let

f ′(x, y1 ◦ y2) = f0(x, y1 ◦ y2) ◦ f1(x, y2 ◦ y1).

Then it is easy to see how to simulate the f0 and f1 random oracles in the presence of a single
random oracle for f ′: to calculate f0(x, y), for instance, we query f ′(x, y), and split the result into
two halves, the first of which is f0(x, y), and the second of which is recorded as f1(x, yfl) where yfl

flips the first and second halves of y.
In order to use this modified double-pipe construction, we just have to use the zipper hash with

two different IV values, one for f0 and one for f1. The result is a compression function that requires
eight weak ideal compression function queries per evaluation. See figure 3.
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Figure 3: The zipper hash-based compression function after double-pipe transformation.



5.1 Amortizing streamability vs. efficiency

The full zipper hash requires 2 underlying compression function queries per input block. If we use
the zipper hash in the natural way as a compression function, the resulting iterated construction
(after double-piping) requires 8 underlying compression function queries per input block. However,
we can trade streamability for efficiency here, by using the zipper hash function on more blocks of
input at once.

For instance, we can make a (3m,m)-bit compression function by computing f(x1 ◦ x2 ◦ x3, y) =
H(x1 ◦ x2 ◦ x3 ◦ y). This requires 8 queries for 3 input blocks (16 queries for 3 input bocks after
applying the double-pipe transform), which is a significant savings compared to 24 queries for 3
input blocks. However, by having the compression function require more input, we are sacrificing
streamability: we must now buffer 3 input blocks instead of one, before we can apply the compression
function.

6 Efficiency

Note that the zipper hash requires 2l compression function evaluations on an input of l blocks. This
is relatively efficient, especially when we consider the potential benefits to performance we may get
by relaxing the security requirements on the compression function itself.

However, there is one drawback in that the zipper hash is not streamable: we have to scan the
message twice, so in principle, we cannot compute the zipper hash in fixed memory unless for some
reason it is feasible to access the input a second time. This is an especially significant point as it
is often desired that limited devices such as smart cards be able to compute hash functions with
limited available memory. However, there are some points in favor of this approach anyway:

– In applications on non-limited devices, streamability is not mission-critical. It may be worthwhile
to consider a non-streamable hash function like the zipper hash, especially if it has attractive
efficiency properties.

– Any streamable hash function is essentially an iterated hash function based on a compression
function. The program for the streamable hash function can be thought of as the “key” of the
compression function, while the incremental computation done by it can be thought of as the
compression function itself, where the internal state (including the memory) is the chaining value,
and where the computation of the final value is the finalization function. Thus, streamable hash
functions are inherently iterated hash functions, and thus vulnerable to certain attacks, including
all the attacks mentioned in the introduction. Therefore, if we want to avoid such attacks, we
will need to consider non-streamable hash functions.

– The zipper hash can be implemented using existing machinery: essentially all that is required is
two traditional Merkle-Damg̊ard hash function evaluations, plus one more compression function
evaluation and an XOR in the middle.

– At present, the zipper hash takes several times fewer compression function evaluations than
the best known construction using similarly weak compression functions (our zipper hash-based
compression construction). We make no claim that the zipper hash-based compression function
construction is optimal, but nonetheless, there is a sizable gap at the moment. Note that the
“most” streamable version of the zipper hash-based compression construction takes about 4
times as many evaluations. Though we can amortize some of the cost by using a multi-block
compression function, for any constant number of blocks to process simultaneously, the stream-
able version is always at least twice as expensive, thanks to the necessity of the double-pipe
transformation.



7 Conclusion

This paper is new in two ways. First of all, this is the first paper that we are aware of to foray into
non-streamable hash function design. Second, as far as we know, this is the first paper to explicitly
model weakly-secure primitives as ideal primitives with relevant attack oracles available. Here are
some open problems we consider worth investigating:

– Are there attacks against the generic zipper hash design that are better than brute force?
– What other non-streamable hash function designs are possible, and what properties do they

have?
– Is there a weaker version of an ideal compression function? And if so, can we use it to build

secure hash functions?
– Can this notion of a weak ideal primitive be used elsewhere?
– Can we make better constructions by representing our compression functions as ideal random

quasigroups?
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