
Authenticated Group Key Agreement and Friends�Giuseppe Ateniesey Michael Steiner Gene TsudikUSC Information Sciences Institute IBM Research Laboratory USC Information Sciences InstituteMarina Del Rey, CA R�uschlikon, Switzerland Marina Del Rey, CAateniese@isi.edu sti@zurich.ibm.com gts@isi.eduAbstractMany modern computing environments involve dynamic peergroups. Distributed simulation, multi-user games, confer-encing and replicated servers are just a few examples. Giventhe openness of today's networks, communication amonggroup members must be secure and, at the same time, e�-cient. This paper studies the problem of authenticated keyagreement in dynamic peer groups with the emphasis one�cient and provably secure key authentication, key con�r-mation and integrity. It begins by considering 2-party au-thenticated key agreement and extends the results to GroupDi�e-Hellman key agreement. In the process, some newsecurity properties (unique to groups) are discussed.1 IntroductionThis paper is concerned with security services in the contextof dynamic peer groups (DPGs). Such groups are common inmany network protocol layers and in many areas of moderncomputing and the solution to their security needs, in par-ticular key management, are still open research challenges[19]. Examples include replicated servers (such as database,web, time), audio and video conferencing and, more gener-ally, collaborative applications of all kinds. DPGs tend to berelatively small in size, on the order of a hundred members.Larger groups are harder to control on a peer basis and aretypically organized in a hierarchy of some sort.Recently, several key agreement protocols geared for DPGswere proposed in [20]. They were obtained by extendingDi�e-Hellman key agreement [11] to n parties. These pro-tocols perform initial key agreement (IKA) within a group.Once a group is formed and the initial key is agreed upon,group members may leave (or be excluded) and new mem-bers may join. Moreover, entire groups may join and en-tire sub-groups may need to be excluded. Any member-ship change must cause a corresponding group key change�Work supported by the Defense Advanced Research ProjectAgency, Information Technology O�ce (DARPA-ITO), under con-tract DABT63-97-C-0031.yNames appear in alphabetical order.In proceedings of the 5th ACM Conference on Computerand Communication Security, November 2-5, 1998. SanFrancisco, CA.

in order to preserve key independence.1 Since re-runningfull IKA for each membership change is expensive, othersupporting protocols are necessary. The operations sup-ported by these protocols are collectively called auxiliarykey agreement (AKA). AKA protocols, also based on Di�e-Hellman extensions, have been developed in [21]. Both IKAand AKA protocols have been shown secure against passiveadversaries.2This paper leverages the results of [20, 21] to developpractical and secure authenticated key agreement protocolsfor DPGs. We also consider other relevant security featuressuch as key con�rmation, key integrity and entity authenti-cation. In doing so, we discover that the meaning of theseand other familiar notions need to be rede�ned in a groupsetting.Our long-term goal is the development of a comprehen-sive protocol suite and a toolkit for secure communicationin DPGs. Although the focus is on relatively small non-hierarchical groups, no speci�c communication paradigm (e.g.,RPC, connection-oriented) is favored, and no assumptionsare made about either the topology or technology of theunderlying network.The remainder of the paper is organized as follows. We�rst discuss the general requirements and issues in authen-ticated key agreement. After presenting some necessary ter-minology in Section 3 and 4 we proceed (in Section 5) to de-velop a 2-party authenticated key agreement protocol basedon the Di�e-Hellman method. We then extend the proto-col to n parties (i.e., a DPG) and demonstrate security ofthe result in Section 6.1. Next, we consider complete groupkey authentication (bilateral among all group members) inSection 6.2 and discuss key integrity and key con�rmationfeatures. The paper concludes with the discussion of othergroup security services that are contingent upon authenti-cated key agreement.Disclaimer: most proofs in this paper are fairly infor-mal in nature. Work is under way to construct more rigorousformal proofs within the con�nes of the random oracle model[4] and the 2-party authentication model of Bellare et al.[3].2 Key Establishment ProtocolsKey establishment protocols can be roughly classi�ed in twocategories: key agreement protocols [21] and centralized key1Informally, this means that old keys cannot be known to newmembers and new keys cannot be known to former members.2The security is based on the polynomial indistinguishability of aDi�e-Hellman key from an arbitrary random value.1

distribution protocols based on some form of a trusted thirdparty (TTP). Although, in this paper we focus on (con-tributory) key agreement, we briey note several featuresof centralized key distribution that make it unsuitable forDPGs:� A TTP that generates and distributes keys for a mul-titude of groups is a single point of failure and a likelyperformance bottleneck.� Since all group secrets are generated in one place, aTTP presents a very attractive attack target for ad-versaries. This is especially the case if a TTP servesas the key generation/distribution center for multiplegroups.� Environments with no hierarchy of trust are a poormatch for centralized key transport. (For example,consider a group composed of members in di�erent,and, perhaps competing, organizations or even di�er-ent countries.)� Some DPG environments (e.g., ad hoc wireless net-works) are highly dynamic and no group member ispresent all the time. However, most key distributionprotocols assume �xed centers.� It might not be acceptable for a single party to gener-ate the group key. For example, every party may needassurance that the resulting group key is fresh and ran-dom (e.g., in case the key is later used for computingdigital signatures).� Achieving perfect forward secrecy (Def. 3.7) and resis-tance to known-key attacks (Def. 3.8) in an e�cientmanner is very di�cult in the centralized key distribu-tion setting.Although we argue in favor of distributed, contributory keyagreement for DPGs, we also recognize the need for a cen-tral point of control for group membership operations suchas adding and deleting members. This type of a role (groupmembership controller) serves only to synchronize the mem-bership operations and prevent chaos. However, the exis-tence and assignment of this role is orthogonal to key estab-lishment and is largely a matter of policy.3 Goals and De�nitionsIn addition to key independence alluded to above and re-sistance to all types of passive attacks, desired propertiesfor a practical key agreement protocol typically include thefollowing:� Perfect Forward Secrecy (PFS)� Resistance to Known-Key Attacks� Key Authentication� Key Con�rmation and Key IntegrityAll of these are necessary to achieve resistance to active at-tacks mounted by an increasingly powerful adversary. And,as always, ironclad security must be achievable with the low-est possible cost.We now present some de�nitions for the above and otherterminology used in this paper. (Some of these are adaptedfrom Menezes et al. [18])

De�nition 3.1 A key agreement protocol is a key es-tablishment technique whereby a shared secret key is derivedby two or more speci�ed parties as a function of informationcontributed by, or associated with, each of these, such thatno party can predetermine the resulting value.De�nition 3.2 A key agreement protocol is contributoryif each party equally contributes to the key and guaranteesits freshness.For example, according to this de�nition, the basic two-party Di�e-Hellman protocol is contributory. On the otherhand, the ElGamal one-pass [18] protocol is not contributoryas only one of the parties contributes a fresh exponent.De�nition 3.3 LetR be an n-party key agreement protocol,M be the set of protocol parties and let Sn be a secret keyjointly generated as a result of R. We say that R providesimplicit key authentication if each Mi 2 M is assuredthat no party Mq =2 M can learn the key Sn (unless aidedby a dishonest Mj 2M).De�nition 3.4 A protocol provides key con�rmation ifa party is assured that its peer (or a group thereof) actuallyhas possession of a particular secret key.De�nition 3.5 A contributory key agreement protocol pro-vides key integrity if a party is assured that its particularsecret key is a function of only the individual contributionsof all protocol parties. In particular, extraneous contribu-tion(s) to the group key cannot be tolerated even if it doesnot a�ord the attacker(s) with any additional knowledge.De�nition 3.6 An authenticated group key agreementprotocol is a key agreement protocol which provides implicitkey authentication.De�nition 3.7 A protocol o�ers perfect forward secrecy(PFS) if compromise of a long-term key(s) cannot result inthe compromise of past session keys.De�nition 3.8 A protocol is said to be vulnerable to known-key attack if compromise of past session keys allows: 1)a passive adversary to compromise future session keys, or2) an active adversary to impersonate one of the protocolparties. (See [6, 5], for details.)4 Protocol PreliminariesThe following notation is used throughout the paper:n number of protocol parties (group members)i; j indices of group membersMi i-th group member; i 2 [1; n]G unique subgroup of ZZ�p of order q with p; q primeq order of the algebraic group� exponentiation base; generator3in group Gxi long-term secret key of Miri random (secret) exponent 2 ZZq generated by MiSn group key shared among n membersSn(Mi) Mi's view on a group keyKij long-term secret shared by Mi and Mj , with i 6= jThroughout the paper, all arithmetic is performed in thecyclic group G of prime order q which is a subgroup of ZZ�pfor a prime p such that p = kq + 1 for some small k 2 N.3� can be computed by repeatedly selecting a random elementb 2 ZZ�p and computing � = b(p�1)=q mod p until � 6= 1.2

No practical methods are known to compute partial in-formation with respect to discrete logarithms (DL) in sub-group with this setting. Most DL-based schemes have beendesigned using a prime order subgroup. One of the advan-tages of working in such a group is that all the elements(except the unity element) are generators of the subgroupitself. Moreover, using subgroup of prime order seems to bea prudent habit [1]; it also results in increased e�ciency.When operating in subgroups it is important to take intoaccount the attacks outlined in [1, 15]. To prevent mas-querading or leaking of (even partial) information of thesecret values, each party has to verify that the (purport-edly random) values it receives are in fact elements of thesubgroup.4Note that p, q and � are public and common to all users.Since they need to be generated only once (or very seldom),it is desirable to make the generation process unpredictablebut veri�able to prevent the selection of weak or specialprimes. One approach is to use the NIST method for se-lecting DSA primes as described in the FIPS 186 document[13].In this context, the ability of an active adversary C tomodify or inject messages is quite \limited". In fact, anymessage m can be written as m = �c mod p, where � is agenerator of the unique cyclic subgroup of ZZ�p having orderq and c some exponent (perhaps unknown). Later on, wewill suppose that the adversary C operates on this type ofelements.5 Authenticated 2-party Key AgreementIn this section we develop an extension to the Di�e-Hellman(DH) [11] key agreement protocol that provides key authen-tication. We explicitly avoid requiring any cryptographictools (e.g., symmetric encryption) other than those neces-sary for a normal DH key agreement.Before turning to the actual protocol, it is important toemphasize that there already exist secure protocols for au-thenticated DH-based key agreement. However, some arenot contributory (such as El Gamal), some require moremessages or assume a priori access to certi�ed long-termkeys, while others do not o�er PFS or are vulnerable to so-called known-key attacks. (For example, some of the proto-cols in the MTI protocol family [17].) An additional goal isto come up with a protocol that is easily extendible from 2-to n-party key agreement. Yet another, perhaps super�cial,issue has to do with minimizing the security dependenciesof a protocol. For example, an authenticated DH-based keyagreement can be easily constructed with the aid of conven-tional encryption. The security of the underlying protocolwould then be dependent not only on the di�culty of, forexample, the Di�e-Hellman Decision (DDH) problem (asfar as key agreement) but also on the strength of the con-ventional encryption (as far as key authentication). Ideally,it should be possible to base all the security properties of agiven protocol on a single hard problem such as the DDHproblem in prime-order subgroups.One protocol that satis�es the above criteria is A-DH,shown in Figure 1. It provides implicit key authenticationas stated by the following theorem.4Verifying the order of an element x by checking, for example, thatx(p�1)=q mod p 6= 1, is rather expensive. If p and q are carefullychosen such that the other prime factors of �(p)=2 are close to theorder of q, we can exclude elements of small order in an e�cientmanner by checking that x2 6= 1 mod q. Although this seems to besu�cient, the security of this method needs further study [15].

Protocol A-DH: Let p, q, G be as de�ned above, and let� be a generator of G.Initialization. Let x1 and x2 be two integers suchthat 1 � x1; x2 � q � 1. Let M1 and M2 be two par-ties wishing to share a key and let (x1; �x1 mod p) and(x2; �x2 mod p) be the secret and public keys of M1 andM2, respectively. Thus, the public values of the systemare (p; q; �;�x1 ; �x2). The actual protocol is as follows:Round 1:M1 selects random r1 2R ZZ�q ,M1 �!M2 : �r1 mod pRound 2:M2 selects random r2 2R ZZ�q , and computesK = F (�x1x2 mod p).M2 �!M1 : �r2K mod pWhen M1 receives J = �r2K mod p, computes K�1 modq and then Jr1K�1 mod p. The shared secret key is S2 =�r1r2 mod p. We can set the function F () such thatF (x) = xmod q or F (x) = h(x) where h is an appropriatehash function h : f0; 1g� �! ZZ�q .Figure 1: Authenticated Di�e-Hellman (A-DH)Theorem 5.1 The A-DH protocol is a contributory authen-ticated key agreement protocol.Proof (sketch): From the construction of the resultantsession key S2 = �r1r2 it is evident that A-DH is contribu-tory. Let C be an active adversary able to modify, delay, orinject messages.Attack on M2: Let S2(M2) be the key computed by M2. Itcan be expressed as S2(M2) = �c1r2 where c1 is a quantitypossibly known to C, i.e., C can substitute the �rst owwith �c1 . Then, computing �c1r2 requires C to compute�r2 . However, the only expression containing �r2 is �r2K inthe second protocol ow. But, computing �r2 from �r2K isintractable without the knowledge of K.Attack on M1: The key computed by M1 is S2(M1) =�c2r1K�1 where c2 is possibly chosen by C.1: Suppose that c2 = c3K where c3 is polynomially in-dependent of K and known to C. Then: S2(M1) =�c3KK�1r1 = �c3r1 However, computing �c3K suchthat c3 is known to C is intractable without computing�K which, in turn, is intractable without computingthe inverse of r2.2: Suppose now that c2 is polynomially independent ofK.Since S2(M1) is a function of K�1, it is not computableby C.On top of implicit key authentication, a practical key agree-ment protocol must: 1) provide perfect forward secrecy and2) be resistant to known-key attacks. These two propertiesare considered in the following theorems.Theorem 5.2 The A-DH protocol provides perfect forwardsecrecy (PFS).Proof (sketch): Suppose that the long-term key K =F (�x1x2 mod p) is compromised. Then, an adversary knowsboth �r1 mod p and �(r2K)K�1 � �r2 mod p. Given these,computing the session key S2 = �r1r2 mod p is equivalentto solving the DH problem in prime-order subgroups.3

Theorem 5.3 The A-DH protocol is resistant to known-keyattacks.Proof (sketch): Let S2(M1) and S2(M2) be the sessionkeys computed by M1 and M2, respectively. We can writeS2(M1) = �c1r1K�1 and S2(M2) = �c2r2 where c1, c2 arequantities possibly known to an active adversary C. There-fore, the only relevant values C can know are: �r1 , �r2K ,�r1K�1 , �r2 and the public keys ofM1 andM2. Hence, �nd-ing K is based on solving the DL problem while computing�K or �K�1 is at least as di�cult as the DH problem inprime-order subgroups.A nice feature of the A-DH protocol is that it does notrequire a priori knowledge of the long-term public keys ofthe parties involved. In fact, certi�cates can be piggy-backedonto existing protocol messages. This is a consequence of theprotocol's \asymmetry".6 Authenticated Group Key AgreementIn [20], a class of generic n-party DH protocols is de�ned.The security of the entire protocol class is shown secureagainst passive adversaries based on the intractability ofthe Di�e-Hellman Decision (DDH) problem. Several con-crete protocols were demonstrated that �t the requirementsof DPGs. Moreover, these protocols are shown to be opti-mal with respect to certain measures of protocol complexity[20, 2]. In this section we extend the GDH protocols to pro-vide implicit key authentication. In doing so, we make useof the A-DH protocol discussed in section 5.6.1 Authenticated GDH.2 protocolTwo practical protocols: GDH.2 and GDH.3 are de�ned in[20]. (Another protocol, GDH.1, is used for demonstrationpurposes only.) The GDH.2 protocol is minimal in termsof the total number of protocol messages. GDH.3, on theother hand, aims to minimize computation costs. Although,the discussion below focuses on extending GDH.2, we notethat all of the techniques we consider are easily adapted toGDH.3.Protocol GDH.2: Let M = fM1; . . . ;Mng be a set ofusers wishing to share a key Sn. The GDH.2 protocolexecutes in n rounds. In the �rst stage (n � 1 rounds)contributions are collected from individual group mem-bers and then, in the second stage (n-th round) the groupkeying material is broadcast. The actual protocol is asfollows:Initialization. Let p be a prime and q a prime divisorof p � 1. Let G be the unique cyclic subgroup of ZZ�p oforder q, and let � be a generator of G.Round i (0 < i < n):1) Mi selects random ri 2R ZZ�q .2) Mi �!Mi+1: f� r1���rirj jj 2 [1; i]g; �r1 ���riRound n:1) Mn selects random rn 2R ZZ�q .2) Mn �! ALL Mi: f� r1���rnri ji 2 [1; n[gFigure 2: Group Di�e-Hellman (GDH.2)We begin with a brief overview of GDH.2 in Figure 2.This basic protocol can be easily amended to provide im-

plicit key authentication in an e�cient manner. This vari-ation (A-GDH.2, shown in Figure 3) di�ers from the basicprotocol only in the last round, hence we are only concernedtherewith.We assume thatMn shares (or is able to share) with eachMi a distinct secret Kin.For example, we can set Kin = F (�xi � xnmodp) withi 2 [1; n � 1]. Where xi is a secret long term exponentselected by every Mi (1 � xi � q � 1) and �xi mod p is thecorresponding long-term public key of Mi.Protocol A-GDH.2:Rounds 1 to n� 1: identical to GDH.2Round n:1) Mn selects random rn 2R ZZ�q2) Mn �! ALL Mi: f� r1���rnri �Kin ji 2 [1; n[g.Upon receipt of the above, every Mi computes:�(r1���rnri �Kin)�K�1in �ri = �r1 ���rn = Sn.Figure 3: Authenticated Group Di�e-Hellman (A-GDH.2)In this protocol, each group member obtains an (implic-itly) authenticated shared key with Mn. Moreover, if wetrust Mn to behave correctly, a group member can also besure the key shared with Mn is the same keyMn shares withall other members.Theorem 6.1 A-GDH.2 is a contributory authenticated keyagreement protocol.Proof (sketch): From the construction of the resultantsession key Sn = �r1 ��� rn it is evident that A-GDH.2 iscontributory.Let C be an active adversary who can modify, delay, orinject messages. C's goal is to share a key with either Mi, fori 2 [1; n[, or with Mn by masquerading as some Mi. In caseof the former, all considerations of the proof in theorem 5.1apply.Assume that C wants to masquerade as Mi. Let Sn(Mn)be the key computed by Mn. It can be expressed as:Sn(Mn) = �cn � rnwhere cn is a quantity possibly known to C, i.e., in roundn�1 C can replace �r1 ��� rn�1 with �cn in the message fromMn�1 to Mn. C can also replace the other (n� 1) values inthe same message:� r1���rn�1rj (j 2 [1; n[)! �cjfor some known cj-s. This will cause Mn to output in thelast round: f �cj � rn � Kjn j j 2 [1; n[gNow, since C knows all cj, she also knows (or can easilycompute) all c�1j . Hence, C can compute:f �rn� Kjn j j 2 [1; n[gHowever, extracting information of Sn(Mn) is intractable ifthe DDH problem in prime-order subgroup is hard.Theorem 6.2 The A-GDH.2 protocol provides perfect for-ward secrecy.4

Proof (sketch): Suppose that all long-term keys fKin j i 2[1; n[g are compromised. Then, our adversary is able tocompute a subset of V = f��(S)j S � fr1; . . . ; rngg. But, asshown in [20], given V , it is intractable to �nd informationon the group key Sn = �r1;...rn , if the DDH problem inprime-order subgroup is hard.Resistance to known-key attacks. A-GDH.2 is resistantto passive known-key attacks since the the session keys donot contain any long-term information. Resistance to activeknown-key attacks, on the other hand, is somewhat dubiousfor reasons stated below.Let Sn(Mi) be the session key computed by each Mi. For0 < i < n � 1 we can re-write it as �ciriK�1in . For Mn,Sn(Mn) = �cnrn where ci is a quantity possibly known tothe adversary C. C also knows a subset of f��(S)j S �fr1; . . . ; rngg. Using these to �nd �Kin or �K�1in (for 1 �i � n�1), is intractable if the DDH problem in prime-ordersubgroup is hard.Despite the above, some forms of active known-key at-tacks are possible. Suppose, for example, that C tries toimpersonate M1. It starts by sending �c1 to M1 in the lastprotocol round (where c1 is selected by C). As a result,M1 computes: Sn(M1) = �c1r1K�11n . Since this key is cor-rupted (i.e., not shared with any other Mi), we can assumethat M1 will detect the problem and re-run the protocol.Suppose further that C somehow manages to discover thismalformed key.5 In the next protocol run, C can substitutethe message from Mn�1 to Mn with:�c1r1K�11n ; . . . ; �c1r1In other words, C substitutes only the �rst and the last sub-keys in the ow; the rest of the values are unchanged. Thiscauses Mn to compute Sn(Mn) = (�c1r1)rn . Mn will alsocompute (as a sub-key for M1):(�c1r1K�11n)rnK1n = �c1r1rnand will broadcast this value in the last protocol round. Theend-result is that C shares a key with Mn.There are a few issues with this type of attack. First, itrelies on the lack of key con�rmation which we discuss laterin the paper. Second, it does not �t the usual de�nitionof a known-key attack since C is only able to share a keywith Mn, not with the rest of the group. (We note thatknown-key attacks were only de�ned in the context of 2-party protocols. Their de�nition in a group setting remainsto be worked out.) Also, as noted in [5], a simple cure forknown-key attacks is by setting Sn = h(Sn(Mi)) where h() isan appropriate collision-resistant hash function such as SHA[14].6.2 Complete Group Key AuthenticationThe above protocol (A-GDH.2) achieves implicit key au-thentication in a relatively weak form since the key is not di-rectly authenticated between an arbitraryMi andMj (i 6= j).Instead, all key authentication is performed through Mn.This may su�ce in some environments, e.g., when the exactmembership of the group is not divulged to the individual5This assumption is what makes active known-key attacks veryunlikely in practice.

Mi's. Another reason may be that Mn is an entity trustedby all other members, e.g., Mn is an authentication server.According to De�nition 3.3, A-GDH.2 will result in allparticipants agreeing on the same key if we assume Mn be-haves correctly. However, no one { including Mn { can besure of other members' participation. In fact, one or moreof the intended group members may be \skipped" withoutdetection. Also, a dishonest Mn could partition the groupinto two without detection by group members. On the onehand, we assume a certain degree of trust in all group mem-bers (including Mn), e.g., not to reveal the group key tooutsiders. On the other hand, one might want to limit thistrust when it comes to group membership, i.e., Mn mightnot be universally trusted to faithfully include all (and only)group members.In more concrete terms, our failure model is based on:A malicious insider (group member) seeking toalter the group membership by excluding somemembers { possibly including itself { from partic-ipation in key agreement. For example, this maytranslate into attempting to physically circum-vent certain group members or corrupting inter-mediate values that subsequently contribute tothe excluded members' keys.On the other hand, our failure model speci�cally excludes:A malicious insider revealing the group key orany other group (or its own) secrets to outsiders.An insider (malicious ot otherwise) exhibitingany other form of anomalous behavior.In order to clarify the above, we introduce the followingfeature:De�nition 6.3 Let R be an n-party key agreement protocoland M be a set of protocol parties (DPG). We say that Ris a complete group key authentication protocol if, forevery i; j (0 < i 6= j � n) Mi and Mj compute the samekey Si;j only if Si;j has been contributed to by every Mp 2M. (Assuming that Mi and Mj have the same view of thegroup membership.)An alternative de�nition for complete group key authentica-tion is as authenticated group key agreement for all (Mi;Mj)pairs (0 < i 6= j � n).A-GDH.2 can be augmented to provide complete groupkey authentication as shown in Figure 4. (To better il-lustrate SA-GDH.2 and its di�erences with respect to A-GDH.2, a 4-party example is shown in Figure 5.)The biggest change in the present protocol, SA-GDH.2,is the requirement for a priori availability of all members'long-term credentials. In e�ect, each Mi is required to havetwo shared keys (one in each direction) with every otherMj .For every distinct ordered pair < i; j > (0 < i 6= j � n)let < Kij;K�1ij > denote the unidirectional key shared byMi and Mj and its inverse, respectively. Although it mayappear otherwise, individual key inverses of the form K�1ijdo not need to be computed (see below).Drawbacks: SA-GDH.2 is clearly more expensive than A-GDH.2. First, it requires n� 1 exponentiations from everyMi during stage 1 as opposed to i in A-GDH.2. Second, ifpairwise keys (Kij) are not pre-computed, as many as (n�1)additional exponentiations must be performed. Note thatin the last round, only one exponentiation is done since Mican pre-compute the value: (K�1i1 � � � K�1in) � ri immediatelyfollowing the i-th round.5

r1

r2r3r4

 GROUP
CONTROLLERS

α

α

1 2 3

4K14

r1
α

r2
α

r1r2
α

r1r2
α

r1r3
α

r2r3
α

r1r2r3
α

r1r3r4
α

K24 r1r2r4
α

K34

r1
α

1 2 3

4

K12 r1
α

K13 r1
α

K14 r1
α

K12 r2
α

K21 r1r2
α

K13K23 r1r2
α

K14K24

r1r2
α

K13K23

r1r3
α

K12K32

r2r3
α

K21K31

r1r2r3
α

K14K24K34

r2r3r4
α

K21K31K41 r1r3r4
α

K12K32K42 r1r2r4
α

K13K23K43Figure 5: An example/comparison of A-GDH and SA-GDH.2Advantages: unlike A-GDH.2, SA-GDH.2 allows each mem-ber to be explicitly aware of the exact group membership.This may be desired in some environments. Also, the pro-tocol is computationally symmetric, i.e., each member per-forms the same sequence of computational steps and thesame number of exponentiations.Theorem 6.5 SA-GDH.2 o�ers complete group key authen-tication.Proof (sketch): Suppose Mi and Mj compute the samekey while following the protocol correctly. LetKn = Sn(Mi) =Sn(Mj) and, suppose also, that some Mp 2 M, (p 6= i; j)has not contributed to this key. Let Vi; Vj denote the valuesreceived by Mi and Mj , respectively, in the last round ofthe protocol. Recall that:Sn(Mi) = (Vi)(K�11i ��� K�1ni)�riand, similarly:Sn(Mj) = (Vj)(K�11j ��� K�1nj)�rj =Since all other group members have contributed to the key,we can re-write Vi as (Vj is similar):Vi = �(r1���rnrpri)�(K�11i ��� K�1niK�1pi)Then, Sn(Mi) = �(r1���rnrp)� K�1piwhich must equal:Sn(Mj) = �(r1���rnrp)� K�1pjHowever, this is impossible since K�1pi and K�1pj are distinctand secret values.Remark 6.6 An interesting feature of SA-GDH.2 is its re-sistance to known-key attacks. Although we do not to treatthis topic in detail, it can be easily observed that an attackof the sort described in Section 6.1 cannot succeed againstSA-GDH.2.

6.3 E�ciency SummaryWe now consider the costs incurred by the protocols de-scribed above. The following two tables summarize, respec-tively, the communication and computation overhead of thefollowing:� GDH.2 { plain group key agreement [20].� A-GDH.2 - authenticated group key agreement as spec-i�ed in Section 6.1. Long-term keys Kin are assumedto be pre-computed.� A-GDH.2* - same as A-GDH.2 but long-term keys Kinare computed as part of the protocol; this also impliesthat public exponents of all group members must beaccumulated in the course of the protocol.� SA-GDH.2 { complete group key authenticationThe �rst table illustrates the communication, and the secondcomputation, costs. The latter is broken down into exponen-tiation, inverse computation and multiplication. Exponenti-ation is clearly the costliest operation as it requires O(log3p)bit operations in ZZ�p. Given a and p, �nding the inverse ofa 2 ZZ�p requires only O(log2p) bit operations (using the ex-tended Euclidean algorithm). Similarly, the multiplicationof a and b modulo p requires O(log2p) bit operations. (See[12], [18] for a complete treatment of modular operations.)The only somewhat surprising element of this analysis isthe relatively low additional cost of SA-GDH.2 as comparedto that of GDH.2 and A-GDH.2. Considering that it o�erscomplete group key authentication and several other usefulservices (when coupled with key con�rmation; see below)the added overhead is well justi�ed.7 New Services in Group SettingAs mentioned in the introduction, key con�rmation (Def. 3.4and [18]) is an important feature in key agreement protocols.Its purpose is to convince one or more parties that its peer(or a group thereof) is in possession of the key. It can beargued that key con�rmation is not absolutely necessary ifcommunication immediately follows key agreement, i.e., if aproper key is subsequently used for bi-directional data ows,key con�rmation is achieved as a side-e�ect. However, in6

Protocols:Communication Costs: GDH.2 A-GDH.2 A.GDH.2* SA-GDH.2rounds n n n nbroadcasts 1 1 1 1total msgs n n n ntotal bandwidth (n2 + n)=2� 1 (n2 + n)=2� 1 n2 n2msgs sent per Mi 1 1 1 1msgs received per Mi 2 2 2 2Protocols:Computation Costs: GDH.2 A-GDH.2 A.GDH.2* SA-GDH.2exponentiations for Mi i+ 1 i+ 1 i+ 2 nexponentiations for Mn n n 2n� 1 ntotal exponentiations (n2 + 3n)=2� 1 (n2 + 3n)=2� 1 (n2 + 4n)=2� 2 n2inverses for Mi 1 1inverses for Mn 1total inverses n� 1 nmultiplications for Mi 1 1 2n� 2multiplications for Mn n� 1 n� 1 2n� 2total multiplications 2n� 2 2n� 2 2n2 � 2ngeneral, it is desirable to bundle key con�rmation with keyagreement for the following reasons:1. it makes key agreement both a more robust and moreautonomous operation2. doing otherwise can lead to an incorrectly computedkey not being detected later (since there may be adelay between key agreement and actual data commu-nication)On the other hand, it is not clear what key con�rmationmeans in a peer group setting. Complete key con�rmation(in the spirit of complete key authentication) would make itnecessary for all group members to compute the key andthen con�rm to all other members the knowledge of thekey. This would entail, at the very least, one round of n si-multaneous broadcasts. We take a more practical approachby concentrating on key con�rmation emanating from thegroup controller, the �rst group member to compute theactual key.It turns out that the construction of A-GDH.2 (and SA-GDH.2) makes key con�rmation fairly easy to add. The onlychange to both protocols is the addition to the last protocolmessage (the broadcast from Mn) of:�F (Sn(Mn))where Sn(Mn) denotes the key as computed by Mn and F ()is as previously de�ned.Upon receipt of the broadcast, each Mi computes its keySn(Mi) as before. Then, Mi veri�es the computed key:�F (Sn(Mi)) ?= �F (Sn(Mn))In both A-GDH.2 and SA-GDH.2, key con�rmation cou-pled with implicit key authentication, has a nice side-e�ectof providing entity authentication of Mn to all other groupmembers. Informally, this is because the upow messagein round i can be viewed as a random challenge (ri beingMi's nonce) submitted to Mn (indirectly, through all otherMj ; j > i). The last broadcast, then, can be viewed as Mn'sreply to Mi's challenge encrypted under a secret key shared

among Mi and Mn. To support our claim that the aboveresults in entity authentication of Mn we need to show thatMn's reply is fresh. (That Mn's reply is authentic has beenshown in Section 6.1.) Freshness, however, is evident fromthe way Mi computes the key: by exponentiating the valuereceived from Mn with (ri � K�1in).Remark 7.1 In SA-GDH.2, for each Mi, key con�rmationalso results in entity authentication of all Mj, for i < j � n.Including key con�rmation in SA-GDH.2 leads us to aninteresting observation:At the end of the protocol, each Mi knows thatthe key it holds, Sn(Mi), has been contributed toby every group member.This follows directly from the complete group key authenti-cation property coupled with key con�rmation. Recall thatthe former assures that, if any two distinct parties (Mi andMj) share a key, that key must be contributed to by ev-ery group member. Adding key con�rmation allows us toachieve a stronger goal: any group member can unilaterallyestablish that it is in possession of a correct key which hasbeen contributed to by every member. This is both a noveland important feature of SA-GDH.2 and a new security ser-vice unique to group key agreement.De�nition 7.2 (informal) A group key agreement protocolo�ers group integrity if each protocol party is assured ofevery other protocol party's participation in the protocol.Group integrity should not be confused with entity authen-tication. It is a weaker notion since group integrity does notguarantee freshness/timeliness. It only guarantees all par-ties' participation in the protocol and, likewise, all parties'awareness of the group membership.De�nition 7.3 (informal) A group key agreement protocolis veri�able contributory if each protocol party is assuredof every other protocol party's contribution to the group key.7

Protocol SA-GDH.2:Round i (0 < i < n):1) Mi receives a set of n intermediate values: fVk j1 �k � ng. (M1 which can be thought of as receiving anempty set in the �rst round):Vk = (�(r1��� ri�1rk)�(Kk1��� Kk(i�1)) if k � (i� 1)�(r1��� ri�1)�(Kk1��� Kk(i�1)) if k > (i� 1)2) Mi updates each Vk as follows:Vk =8<: (Vk)Kik�ri = �(r1��� rirk)�(Kk1 ��� Kki) if k < i(Vk)Kik�ri = �(r1 ��� ri)�(Kk1 ��� Kki) if k > iVk if k = iRemark 6.4 In the initial round M1 sets V1 = �1.Round n:1) Mn broadcasts a set of all Vk values to the group.2) On receipt, each Mi selects the appropriate Vi where:Vi = �(r1��� rnri)�(K1i ��� Kni)Mi proceeds to compute:(Vi)(K�11i ��� K�1ni)�ri = �r1 ��� rnFor the above, instead of computing n� 1 individual keyinverses of the form K�1ji , each Mi computes only a singlecompound inverse P�1i = (K�11i � � � K�1ni) where Pi =(K1i � � � Kni)Figure 4: Group Di�e-Hellman with Complete Key Authen-tication (SA-GDH.2)Note that veri�able contributory implies group integritywhile the reverse is not true. For example, group integritycan be obtained by requiring every Mi to sign and forward(to all others) a statement certifying to its participation inthe protocol. Also, veri�able contributory property does notimply that a group key is not contributed to by an outsideparty. As discussed in the section 7.1, an adversary can stillinject some input into the group key.7.1 The Elusive Key IntegrityKey integrity (Def. 3.5) is orthogonal to both key authenti-cation and key con�rmation. A key agreement protocol mayo�er one or both of the latter while at the same time notguaranteeing key integrity. Consider the following (3-party)SA-GDH.2 example:This protocol o�ers complete group key authentication,key con�rmation and, entity authentication of M3. At theend, all parties wind up computing the same key. How-ever, an adversary can exponentiate by a constant all val-ues sent in round 1 (and/or round 2) and remain unde-tected. Suppose the adversary simply squares all values inround 2. Then, what M3 actually receives is: �r1 � K12� 2;�r1� K13� r2� K23� 2; �r2 � K21� 2As a result, M3 computes S3(3) = �r1� r2� r3� 2 and bothM1 and M2 compute the same value, i.e., the quadraticresidue of the intended key. The key con�rmation checkdoes not help since the adversary introduces its input be-fore Mn computes the group key.

Protocol SA-GDH.2 (example):Round 1: M1 selects random r1 2R ZZ�q .M1 �!M2 : �r1 � K12 ; �r1 � K13Round 2: M2 selects random r2 2R ZZ�q .M2 �!M3 : �r1 � K12 ; �r1� K13� r2� K23 ; �r2� K21Round 3: M3 selects random r3 2R ZZ�q , computesgroup key S3(3) and broadcasts:M3 �! M1;M2 : �r1 � K12� K32� r3 ; �r2� K21� K31� r3 ;�F (S3(3))M2 computes S3(2), M1 computes S3(1) and, �nally, bothM1 and M2 con�rm the correctness of their respectivekeys against �F (S3(3)).We observe that, in SA-GDH.2, the adversary is onlyable to introduce multiplicative (in the exponent) input,i.e., it can cause the key to be KC for some value C. Theconstruction of the protocol precludes the adversary fromintroducing any other type of input, e.g., additive in theexponent.This leads us to pose the following question:How important is key integrity in a veri�able con-tributory key agreement protocol?In practice, we expect that key integrity can be easily as-sured via an external data integrity mechanism (e.g., SSL)used hop-by-hop in the upow stage of the protocol. Conse-quently, if every protocol message between Mi and Mi+1 inthe i-th (0 < i < n) protocol round is integrity-protected,the adversary is no longer able to introduce any \noise" intothe group key. Note that the last, broadcast message doesnot need to be protected; any modi�cation will be detectedby the key con�rmation check.8 Other Security ServicesThe primary motivation for obtaining a group key (in anymanner; whether centralized or contributory) is the abilityto communicate securely and e�ciently once a key isestablished. If all DPG members share a key, they can com-municate using symmetric encryption. This is more e�cientthan schemes not requiring key establishment.For example, key establishment can be avoided as fol-lows. A DPG member encrypts a message using a symmetricencryption function with a secret key K and then sends thecipher-text to the entire group along with n� 1 versions ofthe key K; each encrypted using a public key of a member.Although this simple scheme has no (cryptographic) startupoverhead, it is not contributory and becomes too expensiveif the group is large or the volume of message tra�c is high.Furthermore, it requires every member to be aware of theexact group membership at all times; something that can (ifdesired) be avoided with key agreement.We believe that there are other incentives to consider.In particular, a shared group key can be used to provide anumber of useful services (in an e�cient manner):� Authentication to outsiders� Intra-group authentication� Non-repudiation of group membership� Private communication within group� Private communication between outsiders and group8

� Group signaturesFor example, we can use a secret group key (such as the oneagreed upon in A-GDH.2) to derive a corresponding groupDi�e-Hellman public key which can be subsequently em-bedded in a group certi�cate. This would allow any groupmember to use DSA [13] (or any El Gamal family) signaturesto authenticate itself (as a group member) to both insidersand outsiders. The same group public key can be viewedas long-term group Di�e-Hellman exponent and outsiders(including other groups) can establish shared keys with theentire group in a trivial manner. Similarly, a group secretkey can be used to derive an El Gamal public key-pair; thepublic component thereof can be embedded in a group cer-ti�cate. Outsiders can then use this key with El Gamalpublic key encryption to communicate in secret with theentire group.9 Group Key Agreement and Byzantine AgreementGroup key agreement (GKA), in general, has similarities tothe well-known byzantine agreement (BA) problem ([16])but there are a number of distinguishing features. The faultmodel in GKA is not byzantine since we certain degree oftrust is assumed among the group members, e.g., not toreveal the group key.The standard BA requirements are: agreement, validityand termination. The validity requirement usually means:if all honest participants have the same input then they willagree on that value, otherwise they will agree on an an ar-bitrary value. Although termination and agreement wouldbe required by complete authenticated key agreement too,the validity requirement is quite di�erent, namely that theagreement is private to the participants6 and that it is bothfresh and random. Therefore, we claim that BA alone is notenough to build a robust GKA protocol.7On the other hand, GKA has similarities with securemultiparty computation (SMPC, e.g [9, 10]). In fact, GKAcan be viewed as a special case of SMPC. However, we notethat general SMPC techniques typically yield highly ine�-cient protocols.10 Conclusions: On-going and Future WorkThis paper represents the third tier in developing securityprotocols and services for DPGs. The �rst tier was providedby group Di�e-Hellman key agreement [20] and the second,by extensions of the latter to support group membershipchanges [21]. This paper incorporates other important ser-vices (key authentication, key con�rmation and entity au-thentication) into group key agreement.We are currently working on the prototype implementa-tion of the protocols described above. This includes bothGDH.2-based and GDH.3-based protocols. (GDH.3 is akey agreement model aimed at minimizing computations bygroup members [20]; protocols presented above are easily6Note that BA protocols in general do not care aboutcon�dentiality.7Despite the above, BA could be used for key con�rmation (Section7) but that would represent overkill: BA protocols in the best-possiblesettings (signatures) require at least (t+ 1) rounds to tolerate t fail-ures. If we set t = 0 (since we do not worry about byzantine faults) westill need a parallel broadcast of n signatures which is rather costly.Moreover, the bene�ts of BA over the simple key con�rmation methodsketched in Section 7 are unclear.

grafted onto GDH.3.) In addition, we are designing authen-ticated key agreement protocols based on the Burmester-Desmedt model [7, 8] which is very e�cient in certain en-vironments, e.g., broadcast LANs. Our long-term goal isto develop a general-purpose toolkit for key agreement andrelated security services in DPGs. Initial clients for thetoolkit may include voice conferencing over IP, replicatedWeb servers and private (closed) mailing lists.In summary, this work is merely an initial attempt toanalyze the requirements and issues in authenticated, con-tributory key agreement for DPGs. It is quite likely thatthe protocols presented here can be improved. We antici-pate that practical experience with real DPG applicationswill result in a better understanding of group security needsand services.11 AcknowledgementsThe authors gratefully acknowledge the comments of M.Waidner, M. Reiter and the anonymous referees.References[1] R. Anderson and S. Vaudenay. Minding your p's and q's. InAdvances in Cryptology { Asiacrypt'96, 1996.[2] C. Becker and U. Wille. Communicationcomplexity of groupkey distribution. In ACM Conference on Computer andCommunication Security, November 1998.[3] M. Bellare, R. Canetti, and H. Krawczyk. A modular ap-proach to the design and analysis of authentication and keyexchange protocols. In ACM Symposium on Theory of Com-puting, 1998.[4] M. Bellare and P. Rogaway. Entity authentication and keydistribution. In Advances in Cryptology { CRYPTO, 1993.[5] M. Burmester. On the risk of opening distributed keys. InAdvances in Cryptology { CRYPTO, 1994.[6] M. Burmester and Y. Desmedt. Towards practical provensecure authenticated key distribution. In ACM Conferenceon Computer and Communication Security, 1993.[7] M. Burmester and Y. Desmedt. A secure and e�cient con-ference key distribution system. In Advances in Cryptology{ EUROCRYPT, 1994.[8] M. Burmester and Y. Desmedt. E�cient and secure confer-ence key distribution. In Cambridge Workshop on SecurityProtocols, volume 1189 of Lecture Notes in Computer Sci-ence, pages 119{129. Springer-Verlag, Berlin Germany, April1996.[9] R. Canetti. Studies in secure multiparty computation andapplications. PhD Thesis, Dept. of Computer Science andApplied Mathematics, Weizmann Institute of Science, May1995.[10] D. Chaum, C. Crepeau, and I. Damgaard. Multiparty un-conditional secure protocols. In ACM Symposium on Theoryof Computing, 1988.[11] W. Di�e and M. Hellman. New directions in cryptography.IEEE Transactions on Information Theory, IT-22(6):644{654, November 1976.[12] N. Koblitz. A Course in Number Theory and Cryptography.Springer-Verlag, Berlin Germany, Berlin, 1987.[13] NIST Computer SystemsLaboratory. Digital signature stan-dard (draft). FIPS PUB 186, May 1994.[14] NIST Computer Systems Laboratory. Secure hash standard(draft). FIPS PUB 180-1, May 1994.[15] C. Hoon Lim and P. Joong Lee. A key recovery attack ondiscrete log-based schemes using a prime order subgroup. InAdvances in Cryptology { CRYPTO, 1997.9

[16] N. Lynch. Distributed algorithms. Morgan Kaufmann, SanFrancisco 1996.[17] T. Matsumoto, Y. Takashima, and H. Imai. On seekingsmart public-key-distribution systems. Transactions of theIECE, E69, 1986.[18] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook ofapplied cryptography. CRC Press series on discrete mathe-matics and its applications. CRC Press, 1996. ISBN 0-8493-8523-7.[19] J. Smith and F. Weingarten. Research challenges for the nextgeneration internet, May 1997. Report from the Workshopon Research Directions for NGI.[20] M. Steiner, G. Tsudik, and M. Waidner. Di�e-hellmankey distribution extended to groups. In ACM Conferenceon Computer and Communication Security, pages 31{37,March 1996.[21] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A newapproach to group key agreement. In IEEE InternationalConference on Distributed Computing Systems, May 1998.

10

