Authenticated Group Key Agreement and Friends*

Giuseppe Ateniesel

USC Information Sciences Institute
Marina Del Rey, CA
ateniese@isi.edu

Abstract

Many modern computing environments involve dynamic peer
groups. Distributed simulation, multi-user games, confer-
encing and replicated servers are just a few examples. Given
the openness of today’s networks, communication among
group members must be secure and, at the same time, effi-
cient. This paper studies the problem of authenticated key
agreement in dynamic peer groups with the emphasis on
efficient and provably secure key authentication, key confir-
mation and integrity. It begins by considering 2-party au-
thenticated key agreement and extends the results to Group
Diffie-Hellman key agreement. In the process, some new
security properties (unique to groups) are discussed.

1 Introduction

This paper is concerned with security services in the context
of dynamic peer groups (DPGs). Such groups are common in
many network protocol layers and in many areas of modern
computing and the solution to their security needs, in par-
ticular key management, are still open research challenges
[19]. Examples include replicated servers (such as database,
web, time), audio and video conferencing and, more gener-
ally, collaborative applications of all kinds. DPGs tend to be
relatively small in size, on the order of a hundred members.
Larger groups are harder to control on a peer basis and are
typically organized in a hierarchy of some sort.

Recently, several key agreement protocols geared for DPGs
were proposed in [20]. They were obtained by extending
Diffie-Hellman key agreement [11] to n parties. These pro-
tocols perform initial key agreement (IKA) within a group.
Once a group is formed and the initial key is agreed upon,
group members may leave (or be excluded) and new mem-
bers may join. Moreover, entire groups may join and en-
tire sub-groups may need to be excluded. Any member-
ship change must cause a corresponding group key change

*Work supported by the Defense Advanced Research Project
Agency, Information Technology Office (DARPA-ITO), under con-
tract DABT63-97-C-0031.

TNames appear in alphabetical order.

In proceedings of the 5th ACM Conference on Computer
and Communication Security, November 2-5, 1998. San
Francisco, CA.

Michael Steiner

IBM Research Laboratory
Riischlikon, Switzerland

sti@zurich.ibm.com

Gene Tsudik

USC Information Sciences Institute
Marina Del Rey, CA
gts@isi.edu

in order to preserve key independence.! Since re-running
full TKA for each membership change is expensive, other
supporting protocols are necessary. The operations sup-
ported by these protocols are collectively called auxiliary
key agreement (AKA). AKA protocols, also based on Diffie-
Hellman extensions, have been developed in [21]. Both TKA
and AKA protocols have been shown secure against passive
adversaries.?

This paper leverages the results of [20, 21] to develop
practical and secure authenticated key agreement protocols
for DPGs. We also consider other relevant security features
such as key confirmation, key integrity and entity authenti-
cation. In doing so, we discover that the meaning of these
and other familiar notions need to be redefined in a group
setting.

Our long-term goal is the development of a comprehen-
sive protocol suite and a toolkit for secure communication
in DPGs. Although the focus is on relatively small non-

hierarchical groups, no specific communication paradigm (e.g.

RPC, connection-oriented) is favored, and no assumptions
are made about either the topology or technology of the
underlying network.

The remainder of the paper is organized as follows. We
first discuss the general requirements and issues in authen-
ticated key agreement. After presenting some necessary ter-
minology in Section 3 and 4 we proceed (in Section 5) to de-
velop a 2-party authenticated key agreement protocol based
on the Diffie-Hellman method. We then extend the proto-
col to n parties (i.e., a DPG) and demonstrate security of
the result in Section 6.1. Next, we consider complete group
key authentication (bilateral among all group members) in
Section 6.2 and discuss key integrity and key confirmation
features. The paper concludes with the discussion of other
group security services that are contingent upon authenti-
cated key agreement.

Disclaimer: most proofs in this paper are fairly infor-
malin nature. Work is under way to construct more rigorous
formal proofs within the confines of the random oracle model
[4] and the 2-party authentication model of Bellare et al.[3].

2 Key Establishment Protocols

Key establishment protocols can be roughly classified in two
categories: key agreement protocols [21] and centralized key

1Informally, this means that old keys cannot be known to new
members and new keys cannot be known to former members.

2The security is based on the polynomial indistinguishability of a
Diffie-Hellman key from an arbitrary random value.

)

distribution protocols based on some form of a trusted third
party (TTP). Although, in this paper we focus on (con-
tributory) key agreement, we briefly note several features
of centralized key distribution that make it unsuitable for

DPGs:

o A TTP that generates and distributes keys for a mul-
titude of groups is a single point of failure and a likely
performance bottleneck.

e Since all group secrets are generated in one place, a
TTP presents a very attractive attack target for ad-
versaries. This is especially the case if a TTP serves
as the key generation/distribution center for multiple
groups.

e Environments with no hierarchy of trust are a poor
match for centralized key transport. (For example,
consider a group composed of members in different,
and, perhaps competing, organizations or even differ-
ent countries.)

e Some DPG environments (e.g., ad hoc wireless net-
works) are highly dynamic and no group member is
present all the time. However, most key distribution
protocols assume fixed centers.

o [t might not be acceptable for a single party to gener-
ate the group key. For example, every party may need
assurance that the resulting group key is fresh and ran-
dom (e.g., in case the key is later used for computing
digital signatures).

o Achieving perfect forward secrecy (Def. 3.7) and resis-
tance to known-key attacks (Def. 3.8) in an efficient
manner is very difficult in the centralized key distribu-
tion setting.

Although we argue in favor of distributed, contributory key
agreement for DPGs, we also recognize the need for a cen-
tral point of control for group membership operations such
as adding and deleting members. This type of a role (group
membership controller) serves only to synchronize the mem-
bership operations and prevent chaos. However, the exis-
tence and assignment of this role is orthogonal to key estab-
lishment and is largely a matter of policy.

3 Goals and Definitions

In addition to key independence alluded to above and re-
sistance to all types of passive attacks, desired properties
for a practical key agreement protocol typically include the
following:

o Perfect Forward Secrecy (PFS)

e Resistance to Known-Key Attacks

o Key Authentication

o Key Confirmation and Key Integrity

All of these are necessary to achieve resistance to active at-
tacks mounted by an increasingly powerful adversary. And,
as always, ironclad security must be achievable with the low-
est possible cost.

We now present some definitions for the above and other
terminology used in this paper. (Some of these are adapted
from Menezes et al. [18])

Definition 3.1 A key agreement protocol is a key es-
tablishment technique whereby a shared secret key is derived
by two or more specified parties as a function of information
contributed by, or associated with, each of these, such that
no party can predetermine the resulting value.

Definition 3.2 A key agreement protocol is contributory
of each party equally contributes to the key and guarantees
its freshness.

For example, according to this definition, the basic two-
party Diffie-Hellman protocol is contributory. On the other
hand, the ElGamal one-pass [18] protocol is not contributory
as only one of the parties contributes a fresh exponent.

Definition 3.3 Let R be an n-party key agreement protocol,
M be the set of protocol parties and let S, be a secret key
jointly generated as a result of R. We say that R provides
implicit key authentication if each M; € M is assured
that no party M, ¢ M can learn the key Sy, (unless aided
by a dishonest M; € M).

Definition 3.4 A protocol provides key confirmation if
a party is assured that its peer (or a group thereof) actually
has possession of a particular secret key.

Definition 3.5 A contributory key agreement protocol pro-
vides key integrity if a party is assured that its particular
secret key is a function of only the individual contributions
of all protocol parties. In particular, extraneous contribu-
tion(s) to the group key cannot be tolerated even if it does
not afford the attacker(s) with any additional knowledge.

Definition 3.6 Anauthenticated group key agreement
protocol is a key agreement protocol which provides implicit
key authentication.

Definition 3.7 A protocol offers perfect forward secrecy
(PFS) if compromise of a long-term key(s) cannot result in
the compromise of past session keys.

Definition 3.8 A protocol is said to be vulnerable to known-
key attack if compromise of past session keys allows: 1)
a passive adversary to compromise future session keys, or
2) an active adversary to impersonate one of the protocol
parties. (See [6, 5], for details.)

4 Protocol Preliminaries

The following notation is used throughout the paper:
n | number of protocol parties (group members)
1,7 | indices of group members
M; | i-th group member; 1 € [1, n]
G | unique subgroup of Z; of order ¢ with p, ¢ prime
g | order of the algebraic group
a | exponentiation base; generator®in group G
z; | long-term secret key of M;
r; | random (secret) exponent € Zq generated by M;
Srn | group key shared among n members
M;’s view on a group key
K;; | long-term secret shared by M; and M, with ¢ # j

Throughout the paper, all arithmetic is performed in the
cyclic group G of prime order ¢ which is a subgroup of Z;
for a prime p such that p = kg + 1 for some small £ € N.

3a can be computed by repeatedly selecting a random element

b € Z} and computing a = p(P=1)/9 o4 p until o £ 1.

No practical methods are known to compute partial in-
formation with respect to discrete logarithms (DL) in sub-
group with this setting. Most DIL-based schemes have been
designed using a prime order subgroup. One of the advan-
tages of working in such a group is that all the elements
(except the unity element) are generators of the subgroup
itself. Moreover, using subgroup of prime order seems to be
a prudent habit [1]; it also results in increased efficiency.

When operating in subgroups it is important to take into
account the attacks outlined in [1, 15]. To prevent mas-
querading or leaking of (even partial) information of the
secret values, each party has to verify that the (purport-
edly random) values it receives are in fact elements of the
subgroup.*

Note that p, ¢ and « are public and common to all users.
Since they need to be generated only once (or very seldom),
it is desirable to make the generation process unpredictable
but verifiable to prevent the selection of weak or special
primes. One approach is to use the NIST method for se-
lecting DSA primes as described in the FIPS 186 document
[13].

In this context, the ability of an active adversary C' to
modify or inject messages is quite “limited”. In fact, any
message m can be written as m = o mod p, where o 1s a
generator of the unique cyclic subgroup of Z; having order
¢ and ¢ some exponent (perhaps unknown). Later on, we
will suppose that the adversary C operates on this type of
elements.

5 Authenticated 2-party Key Agreement

In this section we develop an extension to the Diffie-Hellman
(DH) [11] key agreement protocol that provides key authen-
tication. We explicitly avoid requiring any cryptographic
tools (e.g., symmetric encryption) other than those neces-
sary for a normal DH key agreement.

Before turning to the actual protocol, it is important to
emphasize that there already exist secure protocols for au-
thenticated DH-based key agreement. However, some are
not contributory (such as El Gamal), some require more
messages or assume a priori access to certified long-term
keys, while others do not offer PFS or are vulnerable to so-
called known-key attacks. (For example, some of the proto-
cols in the MTI protocol family [17].) An additional goal is
to come up with a protocol that is easily extendible from 2-
to n-party key agreement. Yet another, perhaps superficial,
issue has to do with minimizing the security dependencies
of a protocol. For example, an authenticated DH-based key
agreement can be easily constructed with the aid of conven-
tional encryption. The security of the underlying protocol
would then be dependent not only on the difficulty of, for
example, the Diffie-Hellman Decision (DDH) problem (as
far as key agreement) but also on the strength of the con-
ventional encryption (as far as key authentication). Ideally,
it should be possible to base all the security properties of a
given protocol on a single hard problem such as the DDH
problem in prime-order subgroups.

One protocol that satisfies the above criteria is A-DH,
shown in Figure 1. It provides implicit key authentication
as stated by the following theorem.

4Verifying the order of an element « by checking, for example, that
(P=1)/1 104 p # 1, is rather expensive. If p and ¢ are carefully
chosen such that the other prime factors of ¢(p)/2 are close to the
order of ¢, we can exclude elements of small order in an efficient
manner by checking that z2 #Z 1 mod ¢. Although this seems to be
sufficient, the security of this method needs further study [15].

Protocol A-DH: Let p, ¢, G be as defined above, and let
a be a generator of G.

Initialization. Let z; and z; be two integers such
that 1 < #1,22 < ¢ — 1. Let M; and M> be two par-
ties wishing to share a key and let (z1,a”" mod p) and
(x2,a” mod p) be the secret and public keys of M7 and
M, respectively. Thus, the public values of the system
are (p,q, a,a” «a®?). The actual protocol is as follows:
Round 1:

M selects random 71 €r Z;,

M, — My : o™ mod p
Round 2:

M selects random 72 €Er Z;,
K = F(a®™%2 mod p).

Ms — My : o™ mod p

When M; receives J = o™>% mod p, computes K~ mod
¢ and then JET mod p. The shared secret key is Sh =
a™" mod p. We can set the function F() such that
F(z) =2 mod g or F(x) = h(z) where h is an appropriate
hash function b : {0,1}* — Z.

and computes

Figure 1: Authenticated Diffie-Hellman (A-DH)

Theorem 5.1 The A-DH protocol is a contributory authen-
ticated key agreement protocol.

Proof (sketch): From the construction of the resultant
session key Sz = o172 it is evident that A-DH is contribu-
tory. Let C be an active adversary able to modify, delay, or
inject messages.

Attack on Ms: Let S3(M2) be the key computed by Mz. It
can be expressed as S (MQ) = a“'"™ where c¢; 1s a quantity
possibly known to C, i.e., C' can substitute the first flow
with a“*. Then, computing a“*"™ requires C to compute
a"?. However, the only expression containing a2 is a”2% in
the second protocol flow. But, computing a”* from « is
intractable without the knowledge of K.

Attack on M;: The key computed by M; is Sz(M;) =

m—1
cory K
a2t

ro K

where ¢z is possibly chosen by C'.

1: Suppose that ¢co = ¢3 K where ¢3 is polynomially in-
dependent of K and known to C. Then: S;(M1) =

acam(—lrl cs K

= a“" However, computing « such
that ¢3 is known to C'is intractable without computing
o™ which, in turn, is intractable without computing
the inverse of 75.

2: Suppose now that ¢z is polynomially independent of K.
Since So (M) is a function of K~ it is not computable

by C. i

On top of implicit key authentication, a practical key agree-
ment protocol must: 1) provide perfect forward secrecy and
2) be resistant to known-key attacks. These two properties
are considered in the following theorems.

Theorem 5.2 The A-DH protocol provides perfect forward
secrecy (PFS).

Proof (sketch): Suppose that the long-term key K =
F(a®®2 mod p) is compromised. Then, an adversary knows
both o™ mod p and alraB)KT! = 42 mod p. Given these,
computing the session key Sz = @™" mod p is equivalent
to solving the DH problem in prime-order subgroups. 0

Theorem 5.3 The A-DH protocol is resistant to known-key
attacks.

Proof (sketch): Let S;(Mi1) and S2(Mz) be the session
keys computed by M; and M;, respectively. We can write

S (M) = KT and Sz(M2) = a®"? where ¢1, ¢z are
quantities possibly known to an active adversary C. There-

fore, the only relevant values C' can know are: o', o"2%,

arlK_l, o and the public keys of M; and M. Hence, find-
ing K is based on solving the DL problem while computing

o™ or o™ " is at least as difficult as the DI problem in
prime-order subgroups. 0

A nice feature of the A-DH protocol is that it does not
require a priori knowledge of the long-term public keys of
the parties involved. In fact, certificates can be piggy-backed
onto existing protocol messages. This is a consequence of the
protocol’s “asymmetry”.

6 Authenticated Group Key Agreement

In [20], a class of generic n-party DH protocols is defined.
The security of the entire protocol class is shown secure
against passive adversaries based on the intractability of
the Diffie-Hellman Decision (DDH) problem. Several con-
crete protocols were demonstrated that fit the requirements
of DPGs. Moreover, these protocols are shown to be opti-
mal with respect to certain measures of protocol complexity
[20, 2]. In this section we extend the GDH protocols to pro-
vide implicit key authentication. In doing so, we make use
of the A-DH protocol discussed in section 5.

6.1 Authenticated GDH.2 protocol

Two practical protocols: GDH.2 and GDH.3 are defined in
[20]. (Another protocol, GDH.1, is used for demonstration
purposes only.) The GDH.2 protocol is minimal in terms
of the total number of protocol messages. GDH.3, on the
other hand, aims to minimize computation costs. Although,
the discussion below focuses on extending GDH.2, we note
that all of the techniques we consider are easily adapted to

GDH.3.

Protocol GDH.2: Let M = {M1,..., M.} be a set of
users wishing to share a key S,. The GDH.2 protocol
executes in n rounds. In the first stage (n — 1 rounds)
contributions are collected from individual group mem-
bers and then, in the second stage (n-th round) the group
keying material is broadcast. The actual protocol is as
follows:

Initialization. Let p be a prime and ¢ a prime divisor
of p — 1. Let G be the unique cyclic subgroup of Z; of
order ¢, and let o be a generator of G.

Round i (0 < i< n):

1) M; selects random r; €r Z;.

r,
2) Mi — M1 {a 77 |5 €[L4]}, o™
Round n:

1) My, selects random r, €r Z;.

2) M, — ALL My: {a~ 7 i € [1,n[}

Figure 2: Group Diffie-Hellman (GDH.2)

We begin with a brief overview of GDH.2 in Figure 2.
This basic protocol can be easily amended to provide im-

plicit key authentication in an efficient manner. This vari-
ation (A-GDH.2, shown in Figure 3) differs from the basic
protocol only in the last round, hence we are only concerned
therewith.

We assume that M, shares (or is able to share) with each
M; a distinct secret K.

For example, we can set K;, = F(a® "*modp) with
i € [1,m — 1]. Where z; is a secret long term exponent
selected by every M; (1 <z; <g¢—1) and a” mod p is the
corresponding long-term public key of M;.

Protocol A-GDH.2:

Rounds 1 to n — 1: identical to GDH.2

Round n:

1) My, selects random r, €r Z;

9) My — ALL Mi: {a 7 Sm|i € [1,n[}.

Upon receipt of the above, every M; computes:

T1Tn g Noge—1.
(- Kin) I\”L i _ Q™ — Sn

o

Figure 3: Authenticated Group Diffie-Hellman (A-GDH.2)

In this protocol, each group member obtains an (implic-
itly) authenticated shared key with M,. Moreover, if we
trust M, to behave correctly, a group member can also be
sure the key shared with M,, is the same key M,, shares with
all other members.

Theorem 6.1 A-GDH.21is a contributory authenticated key
agreement protocol.

Proof (sketch):
session key S, = o'’
contributory.

Let C be an active adversary who can modify, delay, or
inject messages. C’s goal is to share a key with either M;, for
i € [1,n[, or with M, by masquerading as some M;. In case
of the former, all considerations of the proof in theorem 5.1
apply.

Assume that €' wants to masquerade as M;. Let S, (M)
be the key computed by M,. It can be expressed as:

From the construction of the resultant
" it is evident that A-GDH.2 is

S(My) = o ™

where ¢y, 18 a quantity possibly known to C| i.e., in round
n—1 C can replace o™ "1 with o in the message from
My_1 to My. C can also replace the other (n — 1) values in
the same message:

LTt

a (e n])—a”

for some known c¢;-s. This will cause M, to output in the
last round:

{a% ™ S | j e [1n])

Now, since C knows all ¢;, she also knows (or can easily
compute) all cj_l. Hence, C' can compute:

{a™ i)y eln]}

However, extracting information of Sy, (Mn) is intractable if
the DDH problem in prime-order subgroup is hard. 0

Theorem 6.2 The A-GDH.2 protocol provides perfect for-
ward secrecy.

Proof (sketch): Suppose that all long-term keys {K;, | 1 €
[1,n[} are compromised. Then, our adversary is able to
compute a subset of V = {o™)| § € {r1,...,r,}}. But, as
shown in [20], given V| it is intractable to find information
on the group key S, = o' "™ if the DDH problem in
prime-order subgroup is hard. 0

Resistance to known-key attacks. A-GDH.2 is resistant
to passive known-key attacks since the the session keys do
not contain any long-term information. Resistance to active
known-key attacks, on the other hand, is somewhat dubious
for reasons stated below.

Let Sy (M;) be the session key computed by each M;. For

—1
. . . I
0 <1< n—1 we can re-write it as a“"*"in . For My,

Sn(Mr) = o™ where ¢; is a quantity possibly known to
the adversary C. C also knows a subset of {o™)] § ¢

{r1,...,7n}}. Using these to find o™i or ok (for 1 <
i <n—1), is intractable if the DDH problem in prime-order
subgroup 1s hard.

Despite the above, some forms of active known-key at-
tacks are possible. Suppose, for example, that C tries to
impersonate M;. It starts by sending o' to M; in the last
protocol round (where ¢; is selected by C). As a result,

My computes: S, (M) = a1 KT Since this key is cor-
rupted (i.e., not shared with any other M;), we can assume
that M; will detect the problem and re-run the protocol.
Suppose further that C' somehow manages to discover this
malformed key.®> In the next protocol run, C' can substitute
the message from M, _1 to M,, with:

cyry I\"l_nl cyry
S,

o
In other words, C substitutes only the first and the last sub-
keys in the flow; the rest of the values are unchanged. This
causes My, to compute S,(M,) = (a*™)™. M, will also
compute (as a sub-key for M):

clrllx"l_l rnK1n Cc1T1Th
(a ") =a

and will broadcast this value in the last protocol round. The
end-result 1s that C' shares a key with M,,.

There are a few issues with this type of attack. First, it
relies on the lack of key confirmation which we discuss later
in the paper. Second, it does not fit the usual definition
of a known-key attack since C is only able to share a key
with M, not with the rest of the group. (We note that
known-key attacks were only defined in the context of 2-
party protocols. Their definition in a group setting remains
to be worked out.) Also, as noted in [5], a simple cure for
known-key attacks is by setting S, = h(S,(M;)) where k() is
an appropriate collision-resistant hash function such as SHA
[14].

6.2 Complete Group Key Authentication

The above protocol (A-GDH.2) achieves implicit key au-
thentication in a relatively weak form since the key is not di-

rectly authenticated between an arbitrary M; and M; (¢ # 7).

Instead, all key authentication is performed through M.
This may suffice in some environments, e.g., when the exact
membership of the group is not divulged to the individual

5 This assumption is what makes active known-key attacks very
unlikely in practice.

M;’s. Another reason may be that M, is an entity trusted
by all other members, e.g., M, is an authentication server.

According to Definition 3.3, A-GDH.2 will result in all
participants agreeing on the same key if we assume M, be-
haves correctly. However, no one — including M, — can be
sure of other members’ participation. In fact, one or more
of the intended group members may be “skipped” without
detection. Also, a dishonest M, could partition the group
into two without detection by group members. On the one
hand, we assume a certain degree of trust in all group mem-
bers (including M), e.g., not to reveal the group key to
outsiders. On the other hand, one might want to limit this
trust when it comes to group membership, i.e., M, might
not be universally trusted to faithfully include all (and only)
group members.

In more concrete terms, our failure model is based on:

A malicious insider (group member) seeking to
alter the group membership by excluding some
members — possibly including itself — from partic-
ipation in key agreement. For example, this may
translate into attempting to physically circum-
vent certain group members or corrupting inter-
mediate values that subsequently contribute to
the excluded members’ keys.

On the other hand, our failure model specifically excludes:

A malicious insider revealing the group key or
any other group (or its own) secrets to outsiders.

An insider (malicious ot otherwise) exhibiting
any other form of anomalous behavior.

In order to clarify the above, we introduce the following
feature:

Definition 6.3 Let R be an n-party key agreement protocol
and M be a set of protocol parties (DPG). We say that R
is a complete group key authentication protocol if, for
every 1,7 (0 <1 # j < n) M; and M; compute the same
key S; ; only if S;; has been contributed to by every M, €
M. (Assuming that M; and M; have the same view of the
group membership.)

An alternative definition for complete group key authentica-
tion is as authenticated group key agreement for all (M;, M)
pairs (0 <1 # 5 < n).

A-GDH.2 can be augmented to provide complete group
key authentication as shown in Figure 4. (To better il-
lustrate SA-GDH.2 and its differences with respect to A-
GDH.2, a 4-party example is shown in Figure 5.)

The biggest change in the present protocol, SA-GDH.2,

is the requirement for a prior: availability of all members’
long-term credentials. In effect, each M; is required to have
two shared keys (one in each direction) with every other M;.
For every distinct ordered pair < 4,5 > (0 <1 # j < n)
let < Ki],[(i;l > denote the unidirectional key shared by
M; and M; and its inverse, respectively. Although it may
appear otherwise, individual key inverses of the form Ki;l
do not need to be computed (see below).
Drawbacks: SA-GDH.2 is clearly more expensive than A-
GDH.2. First, it requires n — 1 exponentiations from every
M; during stage 1 as opposed to ¢ in A-GDH.2. Second, if
pairwise keys (K;) are not pre-computed, as many as (n—1)
additional exponentiations must be performed. Note that
in the last round, only one exponentiation is done since M;
can pre-compute the value: (K3'--- K ')-r; immediately
following the -th round.

..... {2 S e QU « S
(04
wo ~ S rir3
~e X L’ < a
~ . S r2r3
~o \ . ~ a
Seo “ e < r1r2r3
.
~ ~
Ss A e S
~o \ e ~.
S~ \ . S
~ v .7 r2r3r4 Ky, rir3rd Ky, rir2rd Kg, SO
R ” *
ik, rlk;g riKg, 11K, 12Ky rlr2KygKog rir2 KiuKo,
......... gl WA PdlPd TP T . nekuse
~.a (GROUP)
~ CONTROLLERS,
A LS ~ S r2r3 Koy Kay
- X . -
RS \ . Ss T1r3 KioKgp
-~ . ~_a
~o \ Pid RN
SO \ . ~o r1r2r3 Ky 4KouKag
~ 4 ~
~ A . ~
~O \ e ~.
o \ . S
Soy P r2r3ra Ky Kg Ky rir3ra Ky oKgoK, rir2ra KygKo3Kyg o
~ e’ A

Figure 5: An example/compa

Advantages: unlike A-GDH.2, SA-GDH.2 allows each mem-
ber to be explicitly aware of the exact group membership.

This may be desired in some environments. Also, the pro-

tocol is computationally symmetric, i.e., each member per-

forms the same sequence of computational steps and the

same number of exponentiations.

Theorem 6.5 SA-GDH.2 offers complete group key authen-
tication.

Proof (sketch): Suppose M; and M; compute the same
key while following the protocol correctly. Let Ky, = Sy (M;) =
Sn(M;) and, suppose also, that some M, € M, (p # 1,j)
has not contributed to this key. Let V;, V; denote the values
received by M; and M;, respectively, in the last round of
the protocol. Recall that:
~—1 ~—1
Sa () = (Vo T D

and, similarly:

-1
nj)Ty —

Kol K

Sn(d) = (V)0

Since all other group members have contributed to the key,
we can re-write V; as (Vj is similar):

~—1 ~—1
(TI'HTn).(Klz _1 Tl)

‘/i = o e ’Pl
Then,
T1Tny o=l
Sn(Mz) — a(.) I pi
which must equal:
TiIT gl
Sa () = o T

However, this is impossible since [(1;1 and Kp_]l are distinct
and secret values. 0

Remark 6.6 An interesting feature of SA-GDH.2 is its re-
sistance to known-key attacks. Although we do not to treat
this topic in detail, it can be easily observed that an attack
of the sort described in Section 6.1 cannot succeed against

SA-GDH.2.

rison of A-GDH and SA-GDH.2

6.3 Efficiency Summary

We now consider the costs incurred by the protocols de-
scribed above. The following two tables summarize, respec-
tively, the communication and computation overhead of the
following:

e GDH.2 - plain group key agreement [20].

e A-GDH.2 - authenticated group key agreement as spec-
ified in Section 6.1. Long-term keys K, are assumed

to be pre-computed.

A-GDH.2* - same as A-GDH.2 but long-term keys K,
are computed as part of the protocol; this also implies
that public exponents of all group members must be
accumulated in the course of the protocol.

e SA-GDH.2 — complete group key authentication

The first table illustrates the communication, and the second
computation, costs. The latter is broken down into exponen-
tiation, inverse computation and multiplication. Exponenti-
ation is clearly the costliest operation as it requires O(logg’p)
bit operations in Z;. Given @ and p, finding the inverse of
a € Z;, requires only O(log®p) bit operations (using the ex-
tended Euclidean algorithm). Similarly, the multiplication
of @ and b modulo p requires O(log®p) bit operations. (See
[12], [18] for a complete treatment of modular operations.)

The only somewhat surprising element of this analysis is
the relatively low additional cost of SA-GDH.2 as compared
to that of GDH.2 and A-GDH.2. Considering that it offers
complete group key authentication and several other useful
services (when coupled with key confirmation; see below)
the added overhead is well justified.

7 New Services in Group Setting

As mentioned in the introduction, key confirmation (Def. 3.4
and [18]) is an important feature in key agreement protocols.
Its purpose is to convince one or more parties that its peer
(or a group thereof) is in possession of the key. It can be
argued that key confirmation is not absolutely necessary if
communication immediately follows key agreement, i.e., if a
proper key is subsequently used for bi-directional data flows,
key confirmation is achieved as a side-effect. However, in

Protocols:

Communication Costs: GDH.2 A-GDH.2 A.GDH.2¥ | SA-GDH .2
rounds n n n n
broadcasts 1 1 1 1
total msgs n n n n
total bandwidth (n2 +n)/2-1 (n2 +n)/2-1 n? n?
msgs sent per M; 1 1 1 1
msgs received per M; 2 2 2 2
Protocols:

Computation Costs: GDH.2 A-GDH.2 A.GDH.2*¥ SA-GDH.2
exponentiations for M; 1+ 1 1+ 1 1+ 2 n
exponentiations for My, n n 2n —1 n
total exponentiations (n2 +3n)/2 -1 (n2 +3n)/2 -1 (n2 +4n)/2 -2 n?
inverses for M; 1 1
inverses for M, 1
total inverses n—1 n
multiplications for M; 1 1 2n — 2
multiplications for M, n—1 n—1 2n — 2
total multiplications 2n — 2 2n — 2 2n? — 2n

general, it is desirable to bundle key confirmation with key
agreement for the following reasons:

1. it makes key agreement both a more robust and more
autonomous operation

2. doing otherwise can lead to an incorrectly computed
key not being detected later (since there may be a
delay between key agreement and actual data commu-
nication)

On the other hand, it is not clear what key confirmation
means in a peer group setting. Complete key confirmation
(in the spirit of complete key authentication) would make it
necessary for all group members to compute the key and
then confirm to all other members the knowledge of the
key. This would entail, at the very least, one round of n si-
multaneous broadcasts. We take a more practical approach
by concentrating on key confirmation emanating from the
group controller, the first group member to compute the
actual key.

It turns out that the construction of A-GDH.2 (and SA-
GDH.2) makes key confirmation fairly easy to add. The only
change to both protocols is the addition to the last protocol
message (the broadcast from M) of:

QP (52 (012)

where S, (M) denotes the key as computed by M, and F()
is as previously defined.

Upon receipt of the broadcast, each M; computes its key
Sn(M;) as before. Then, M; verifies the computed key:

QF(SnM)) L [F(Sn (M)

In both A-GDH.2 and SA-GDH .2, key confirmation cou-
pled with implicit key authentication, has a nice side-effect
of providing entity authentication of M,, to all other group
members. Informally, this is because the upflow message
in round i can be viewed as a random challenge (r; being
M;’s nonce) submitted to M, (indirectly, through all other
Mj; g > 1). The last broadcast, then, can be viewed as M),’s
reply to M;’s challenge encrypted under a secret key shared

among M; and M,. To support our claim that the above
results in entity authentication of M, we need to show that
My’s reply is fresh. (That M,’s reply is authentic has been
shown in Section 6.1.) Freshness, however, is evident from
the way M; computes the key: by exponentiating the value
received from M, with (r; - K;ll).

Remark 7.1 In SA-GDH.2, for each M;, key confirmation

also results in entity authentication of all My, fori < j <mn.

Including key confirmation in SA-GDH.2 leads us to an
interesting observation:

At the end of the protocol, each M; knows that
the key it holds, Sy (M;), has been contributed to

by every group member.

This follows directly from the complete group key authent:-
cation property coupled with key confirmation. Recall that
the former assures that, if any two distinct parties (M; and
Mj) share a key, that key must be contributed to by ev-
ery group member. Adding key confirmation allows us to
achieve a stronger goal: any group member can unilaterally
establish that it is in possession of a correct key which has
been contributed to by every member. This is both a novel
and important feature of SA-GDH.2 and a new security ser-
vice unique to group key agreement.

Definition 7.2 (informal) A group key agreement protocol
offers group integrity if each protocol party is assured of
every other protocol party’s participation in the protocol.

Group integrity should not be confused with entity authen-
tication. It is a weaker notion since group integrity does not
guarantee freshness/timeliness. It only guarantees all par-
ties’ participation in the protocol and, likewise, all parties’
awareness of the group membership.

Definition 7.3 (informal) A group key agreement protocol
s verifiable contributory if each protocol party is assured
of every other protocol party’s contribution to the group key.

Protocol SA-GDH.2:

Round i (0 < i< n):

1) M; receives a set of n intermediate values: {Vi|1 <
k < n}. (M1 which can be thought of as receiving an
empty set in the first round):

T Tied oy e I . .
Vk _ a/(T) (K1 i k(z—l)) if & S (l _ 1)
ol i) (K Krimny) if & > (l _ 1)

2) M; updates each Vi as follows:

(Vk)f\",kﬂ", — a(%)(k’kl Kyi) if k <l
Vi = (Vk)f\",kﬂ = olri T (K Krd) f ko>
Vi if k=1

Remark 6.4 In the initial round M sets Vi = o,

Round n:
1) M, broadcasts a set of all V}; values to the group.
2) On receipt, each M; selects the appropriate V; where:

HLEE) (K Koni)

‘/z:a(Ty

M; proceeds to compute:
(Vi)(Kl—ll... KoMy e

For the above, instead of computing n — 1 individual key
inverses of the form K]_il, each M; computes only a single
compound inverse Pi_1 = (Kl_il .. K;il) where P; =

(K- Kng)

Figure 4: Group Diffie-Hellman with Complete Key Authen-
tication (SA-GDH.2)

Note that wverifiable contributory implies group integrity
while the reverse is not true. For example, group integrity
can be obtained by requiring every M; to sign and forward
(to all others) a statement certifying to its participation in
the protocol. Also, verifiable contributory property does not
imply that a group key is not contributed to by an outside
party. As discussed in the section 7.1, an adversary can still
inject some input into the group key.

7.1 The Elusive Key Integrity

Key integrity (Def. 3.5) is orthogonal to both key authenti-
cation and key confirmation. A key agreement protocol may
offer one or both of the latter while at the same time not
guaranteeing key integrity. Consider the following (3-party)
SA-GDH.2 example:

This protocol offers complete group key authentication,
key confirmation and, entity authentication of M. At the
end, all parties wind up computing the same key. How-
ever, an adversary can exponentiate by a constant all val-
ues sent in round 1 (and/or round 2) and remain unde-
tected. Suppose the adversary simply squares all values in

round 2. Then, what M; actually receives is: o’ %12 2,

a™ Ky3- ro- Kas- 2’ a’? Kop- 2

As a result, Ms computes S3(3) = o™ "2 73 2 and both
M; and M, compute the same value, i.e., the quadratic
residue of the intended key. The key confirmation check
does not help since the adversary introduces its input be-
fore M,, computes the group key.

Protocol SA-GDH.2 (example):

Round 1: M; selects random r1 €r Z;.

]‘41 . M2 . ar1~ I\"lg’ar1~ K3

Round 2: M- selects random r2 €r Z;.

M2 . M3 . ar1~ I\"lg’ ar1~ Ky3- ro- I\"gg,’ ar2~ Koq

Round 3: M, selects random 73 €gr Z;, computes
group key Ss(3) and broadcasts:
M3 . M1,M2 . ar1~ Kio- Ksg- Ta’ ar2~ Ko1- Kaq- Ta’

aF(8:3)
M> computes Ss(2), My computes S3(1) and, finally, both
M; and M: confirm the correctness of their respective

keys against o (5@,

We observe that, in SA-GDH.2, the adversary is only
able to introduce multiplicative (in the exponent) input,
i.e., it can cause the key to be K for some value C. The
construction of the protocol precludes the adversary from
introducing any other type of input, e.g., additive in the
exponent.

This leads us to pose the following question:

How important is key integrity in a verifiable con-
tributory key agreement protocol?

In practice, we expect that key integrity can be easily as-
sured via an external data integrity mechanism (e.g., SSL)
used hop-by-hopin the upflow stage of the protocol. Conse-
quently, if every protocol message between M; and M;y; in
the i-th (0 < i < n) protocol round is integrity-protected,
the adversary is no longer able to introduce any “noise” into
the group key. Note that the last, broadcast message does
not need to be protected; any modification will be detected
by the key confirmation check.

8 Other Security Services

The primary motivation for obtaining a group key (in any
manner; whether centralized or contributory) is the ability
to communicate securely and efficiently once a key is
established. If all DPG members share a key, they can com-
municate using symmetric encryption. This is more efficient
than schemes not requiring key establishment.

For example, key establishment can be avoided as fol-
lows. A DPG member encrypts a message using a symmetric
encryption function with a secret key K and then sends the
cipher-text to the entire group along with n — 1 versions of
the key K'; each encrypted using a public key of a member.
Although this simple scheme has no (cryptographic) startup
overhead, it is not contributory and becomes too expensive
if the group is large or the volume of message traffic is high.
Furthermore, it requires every member to be aware of the
exact group membership at all times; something that can (if
desired) be avoided with key agreement.

We believe that there are other incentives to consider.
In particular, a shared group key can be used to provide a
number of useful services (in an efficient manner):

e Authentication to outsiders

e Intra-group authentication

e Non-repudiation of group membership
e Private communication within group

e Private communication between outsiders and group

e Group signatures

For example, we can use a secret group key (such as the one
agreed upon in A-GDH.2) to derive a corresponding group
Diffie-Hellman public key which can be subsequently em-
bedded in a group certificate. This would allow any group
member to use DSA [13] (or any El Gamal family) signatures
to authenticate itself (as a group member) to both insiders
and outsiders. The same group public key can be viewed
as long-term group Diffie-Hellman exponent and outsiders
(including other groups) can establish shared keys with the
entire group in a trivial manner. Similarly, a group secret
key can be used to derive an El Gamal public key-pair; the
public component thereof can be embedded in a group cer-
tificate. Outsiders can then use this key with El Gamal
public key encryption to communicate in secret with the
entire group.

9 Group Key Agreement and Byzantine Agreement

Group key agreement (GKA), in general, has similarities to
the well-known byzantine agreement (BA) problem ([16])
but there are a number of distinguishing features. The fault
model in GKA is not byzantine since we certain degree of
trust is assumed among the group members, e.g., not to
reveal the group key.

The standard BA requirements are: agreement, validity
and termination. The validity requirement usually means:
if all honest participants have the same input then they will
agree on that value, otherwise they will agree on an an ar-
bitrary value. Although termination and agreement would
be required by complete authenticated key agreement too,
the validity requirement is quite different, namely that the
agreement is private to the participants® and that it is both
fresh and random. Therefore, we claim that BA alone is not
enough to build a robust GKA protocol.”

On the other hand, GKA has similarities with secure
multiparty computation (SMPC, e.g [9, 10]). In fact, GKA
can be viewed as a special case of SMPC. However, we note
that general SMPC techniques typically yield highly ineffi-
cient protocols.

10 Conclusions: On-going and Future Work

This paper represents the third tier in developing security
protocols and services for DPGs. The first tier was provided
by group Diffie-Hellman key agreement [20] and the second,
by extensions of the latter to support group membership
changes [21]. This paper incorporates other important ser-
vices (key authentication, key confirmation and entity au-
thentication) into group key agreement.

We are currently working on the prototype implementa-
tion of the protocols described above. This includes both
GDH.2-based and GDH.3-based protocols. (GDH.3 is a
key agreement model aimed at minimizing computations by
group members [20]; protocols presented above are easily

SNote that BA protocols in general do not care about
confidentiality.

7Despite the above, BA could be used for key confirmation (Section
7) but that would represent overkill: BA protocols in the best-possible
settings (signatures) require at least (¢ 4+ 1) rounds to tolerate ¢ fail-
ures. If we set ¢t = 0 (since we do not worry about byzantine faults) we
still need a parallel broadcast of n signatures which is rather costly.
Moreover, the benefits of BA over the simple key confirmation method
sketched in Section 7 are unclear.

grafted onto GDH.3.) In addition, we are designing authen-
ticated key agreement protocols based on the Burmester-
Desmedt model [7, 8] which is very efficient in certain en-
vironments, e.g., broadcast LANs. Our long-term goal is
to develop a general-purpose toolkit for key agreement and
related security services in DPGs. Initial clients for the
toolkit may include voice conferencing over 1P, replicated
Web servers and private (closed) mailing lists.

In summary, this work is merely an initial attempt to
analyze the requirements and issues in authenticated, con-
tributory key agreement for DPGs. It is quite likely that
the protocols presented here can be improved. We antici-
pate that practical experience with real DPG applications
will result in a better understanding of group security needs
and services.

11 Acknowledgements

The authors gratefully acknowledge the comments of M.
Waidner, M. Reiter and the anonymous referees.

References

[1] R. Anderson and S. Vaudenay. Minding your p’s and ¢’s. In
Advances in Cryptology — Asiacrypt’96, 1996.

[2] C. Becker and U. Wille. Communication complexity of group
key distribution. In ACM Conference on Computer and
Commaunication Security, November 1998.

[3] M. Bellare, R. Canetti, and H. Krawczyk. A modular ap-
proach to the design and analysis of authentication and key
exchange protocols. In ACM Symposium on Theory of Com-
puting, 1998.

[4] M. Bellare and P. Rogaway. Entity authentication and key
distribution. In Advances in Cryptology — CRYPTO, 1993.

[5] M. Burmester. On the risk of opening distributed keys. In
Advances in Cryptology — CRYPTO, 1994.

[6] M. Burmester and Y. Desmedt. Towards practical proven
secure authenticated key distribution. In ACM Conference
on Computer and Communication Security, 1993.

[7] M. Burmester and Y. Desmedt. A secure and efficient con-
ference key distribution system. In Advances in Cryptology

- EUROCRYPT, 1994.

[8] M. Burmester and Y. Desmedt. Efficient and secure confer-
ence key distribution. In Cambridge Workshop on Security
Protocols, volume 1189 of Lecture Notes in Computer Sci-
ence, pages 119-129. Springer-Verlag, Berlin Germany, April
1996.

[9] R. Canetti. Studies in secure multiparty computation and
applications. PhD Thesis, Dept. of Computer Science and
Applied Mathematics, Weizmann Institute of Science, May
1995.

[10] D. Chaum, C. Crepeau, and I. Damgaard. Multiparty un-
conditional secure protocols. In ACM Symposium on Theory
of Computing, 1988.

[11] W. Diffie and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644—
654, November 1976.

[12] N. Koblitz. A Course in Number Theory and Cryptography.
Springer-Verlag, Berlin Germany, Berlin, 1987.

[13] NIST Computer Systems Laboratory. Digital signature stan-
dard (draft). FIPS PUB 186, May 1994.

14 omputer Systems Laboratory. Secure hash standar
NIST C S Lab S hash dard
(draft). FIPS PUB 180-1, May 1994.

[15] C. Hoon Lim and P. Joong Lee. A key recovery attack on
discrete log-based schemes using a prime order subgroup. In

Advances in Cryptology — CRYPTO, 1997.

(16]

(17]

18]

(19]

(20]

(21]

N. Lynch. Distributed algorithms. Morgan Kaufmann, San
Francisco 1996.

T. Matsumoto, Y. Takashima, and H. Imai. On seeking
smart public-key-distribution systems. Transactions of the

IECE, E69, 1986.

A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of
applied cryptography. CRC Press series on discrete mathe-
matics and its applications. CRC Press, 1996. ISBN 0-8493-
8523-7.

J. Smith and F. Weingarten. Research challenges for the next
generation internet, May 1997. Report from the Workshop
on Research Directions for NGI.

M. Steiner, G. Tsudik, and M. Waidner. Diffie-hellman
key distribution extended to groups. In ACM Conference
on Computer and Communication Security, pages 31-37,
March 1996.

M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new

approach to group key agreement. In IEEFE International
Conference on Distributed Computing Systems, May 1998.

10

