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Abstract Hadamard conjugation has proved to be
a useful tool in examining some of the properties of
the patterns of nucleotide sequences arising from the
evolution of the taxa they represent. It has a
considerable advantage in that the formulae are
independent of the phylogenetic structure under
consideration, and can be given for any number of
taxa. Hadamard conjugation is outlined and four
applications are introduced. The applications are the
theoretical examination of tree building methods, the
generation of sample sequences under various
models for simulation studies, the identification of
some phylogenetic invariants, and the closest tree
method for inferring phylogenetic trees and their
edge lengths.
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INTRODUCTION

The set of aligned homologous sequences represent-
ingasetS={t,1,...,t,} of ntaxais a consequence
of the evolution of those taxa and should reflect, to
some degree, their evolutionary history. Each site
of the sequences individually labels the taxa by their
character states. In this paper we will assume that
the character states are either four nucleotides {A,
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C, G, T/U} or one of two states, purines and pyri-
midines, for example.

The character states at a site split (partition) the
taxon set into subsets of taxa with common character
state. We refer to such a partition as a site partition.
(A partition of S is a collection of subsets such that
each taxon belongs to precisely one subset.) If all
character states at a site are the same, then the
corresponding partition is trivial, just S itself. If only
two character states occur at a site, the site partition
will comprise two subsets. We refer to partitions with
only one or two subsets as bipartitions, and those
with at most four subsets as quadripartitions. There
are 2"! possible bipartitions and 4”~! possible
quadripartitions. The site partitions for two state
characters are bipartitions, and those for four state
characters are quadripartitions.

A phylogenetic tree linking the n taxa is a tree
with n endpoints, these being labelled by the » taxa.
When we do not specify the placement of the
common ancestor, the tree is unrooted, with every
internal point linked by edges to at least three other
points, and the tree has at most 2n—3 edges. An edge
e of T defines a bipartition of the set S of taxa
comprising the subset of taxa to the left of ¢ and the
subset of taxa to the right of e. We will refer to this
as an edge bipartition. A collection of bipartitions
is compatible if it is a set of edge bipartitions of a
common tree 7. Hadamard conjugation provides a
link between the probabilities of character state
changes on the edges of T and the expected
frequencies of each of the site bipartitions in the
consequent character sequences, for several models
of character state changes.

A simple model of sequence evolution on a
phylogenetic tree 7, Cavender’s model (Cavender
1978), assumes that there are only two character
states (R and Y, say), that the state changes occur
independently at different sites and on different
edges of 7, and that all changes across an edge e of
T at different sites are governed by a common
probability p, that the states at the endpoints differ.
(This is a symmetric model in that it assumes that
the changes R to Y and Y to R are equally likely.
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Under this assumption, we do not need to know the
distribution of the character states at the root.) The
model is described by (7, p), where T is the
phylogenetic tree and p is a vector of the
probabilities p, for the edges ¢ of 7. We linearise
(T, p) to form a vector q of 2"~ components called
the edge length spectrum (Hendy et al. 1992). For
i >0, the g;’s that do not correspond to an edge of T
are equal to 0, while those that do are greater than
0. The g;’s that correspond to the edges in T are
calculated by

gi = '71(1 ~In(2py)),

and are additive on the edges of the tree. Under the
Cavender model, the expected number of character
state changes occurring on edge ¢; is g;.

The Hadamard conjugation (Hendy et al. 1992),

s = H!exp(Hq), e))

produces a vector of probabilities s. H (= H,_;; see
Table 1) is a symmetric Hadamard matrix of 2!
rows and columns, H-! = (1/2%!) H, and the
exponential function (exp) is applied individually
to each of the 2"~! components of Hq. Each
component s; of s is the expected relative frequency
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of the i-th bipartition as a site bipartition, where the
bipartitions are numbered according to the scheme
described by Hendy & Penny (1993). s is referred
to as the sequence spectrum. The relationship (1)
is easily inverted using the natural logarithm function
(In) applied individually to each of the 27!
components of Hs, so

q = H! In(Hs), )

which is also a Hadamard conjugation. Thus, q, and
hence (7, p), can be recovered from s.

Kimura’s three parameter model (Kimura 1981)
allows three independent parameters, p,!, p,%, and
p.2, of nucleotide change on each edge e of T. (p,! is
the probability of a transition, p,2 and p,? are
probabilities of transversions, A <> Gor C & T, and
A & T or C & G, respectively.) These can be
encoded by (7, p', p?, p) and linearised to give an
edge length spectrum q of 4*~! components (Steel
et al. 1992). The Hadamard conjugations in
equations (1) and (2) also apply to this spectrum,
with H=H,,_,, and H-! = (1/4*1) H. The cor-
responding sequence spectrum s contains the
expected frequencies of each of the 47! possible site
quadripartitions. Again, these results are independent
of the frequencies of the states at the root.

Table 1 The Hadamard matrix H is a square matrix whose entries are all 1 or
-1, and with every row (and column) orthogonal to every other row and column.
The Hadamard matrices we use can be easily described using Kronecker

products:
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Fig. 1 With the edge length 1
probabilities on the tree of Fig. 1A
for a sequence length of 1000 we
use equation 1 to calculate the
expected numbers of sites with
various partitions. (These are the
components, rounded to the nearest
whole number, of 1000 X s.) For
each edge e, the figures are the
probabilities of a transition and of
a transversion between the end-
points of e.

We calculate that the expected
number of sites with the partition 2
{{1, 2}, {3, 4}} is 25 (19 of these
are transitions and 6 trans-
versions)}, with the partition {{1,
3},{2,4}}is 13 (11 transitions and
2 transversions), and with the 1
partition {{1,4}, {2,3}}is39(35
transitions and 4 transversions). For
parsimony on four taxa these are
the only “informative” sites, hence
parsimony will incorrectly favour
the tree of Fig. 1C over the
generating tree of Fig. 1A. 3
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APPLICATIONS

Consistency of tree building

For the models above, the tree T and the initial
probabilities p can be precisely calculated from
knowing the site bipartition probabilities s accu-
rately. Tree reconstruction methods such as
Neighbour-joining (Saitou & Nei 1987), Closest
Tree (Hendy & Penny 1993), and Maximum
Likelihood (Felsenstein 1981), which will guarantee
to produce T accurately from the site probabilities,
are called consistent methods. It is known that
Maximum Parsimony is not consistent (Felsenstein
1978; Hendy & Penny 1989). Figure 1 gives an
example using Kimura’s three parameter model on
four character states, illustrating this inconsistency.
(In this case, setting the two transversion prob-
abilities as the same for each edge, we reduce it to
his two parameter model.) However, if parsimony
was applied to the components of the conjugate
spectrum, where the partition frequencies had been
adjusted to remove the effects of parallel and reverse
changes, the method would be consistent (Steel et
al. in press).

Using equations (1) and (2) we can analyse tree
building methods for consistency, either to prove
analytically that a method is consistent under a
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particular model of character change, or to produce
some counter-example to show that it is inconsistent.
Such a counter example will comprise the vector
probabilities s obtained from a (7, p), so that the
tree building method under scrutiny does not
produce the generating tree 7.

Simulation

In actual studies of data derived from nucleotide
sequences we can obtain only a finite sample, and
hence estimate s only from the observed frequencies
f of the site partitions. There are a number of
potential difficulties to be considered. The model
imposes some idealised conditions from which the
observed data may deviate to a lesser or greater
extent, or there may be errors in the data as read or
transcribed. Also, the limitation of sequence lengths
to not more than about 103 characters means
sampling error cannot be ignored. Theoretical and
simulation studies are possible to measure the effects
of violations of the hypothesised model, and
sampling and data errors.

We can calculate the expected bipartition
frequencies s for a given set of edge lengths q and
then sample from this distribution to effectively
generate a set of aligned character sequences of any
desired length. This is often much faster than
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Fig.2 This graph (A) shows the mean number of edges
within the tree produced by three phylogenetic methods
that differ from the edges in the generating tree (B), when
edge lengths were randomly chosen from uniform
distributions with certain bounds. The number of edges
that differis equivalent to half the symmetric tree difference
of the two trees (Steel 1988). The methods included are
UPGMA (Sokal & Michener 1955), Closest Tree (Hendy
& Penny 1989), and Neighbour-joining (NJ) (Saitou & Nei
1987). Note that UPGMA does not converge to the correct
tree as more data are added. In this example, CT does not
perform as well as NJ when the sequence length is less than
about 3000, but we find that it is superior when longer
sequences are used.

mimicking the evolutionary process by “growing”
sequences along a tree. The large computational
overhead of calculating s is offset by the relative
speed of sampling from it. We can therefore carry
out repeated trials with the same set or different sets
of edge lengths, and study the ability of tree
reconstruction methods to deliver the generating tree.

This sampling approach has been used to compare

B

the performance of a number of different tree
reconstruction methods with varying sequence
length, over all the 11 possible shapes of unlabelled
binary trees with 10 taxa. Some results from this
work are shown in Fig. 2. The graph in Fig. 2A
shows the relatively poor performance of the

inconsistent method UPGMA, relative to the
consistent methods, and illustrates the effect on tree
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Fig.3 A, Theconjugatespectrum A
derived from four DNA sequences
encoding subunits of atp synthetase
(a chloroplast encoded protein)
obtained from Lockhart et al.
(1992). The vector has been drawn
asan 8§ x 8 array, with the O-thentry
omitted. The entries, which can
relate to edges of a tree, form the
leading row, column, and diagonal.
The expected values of the off-
diagonal elements are 0 as they are
tree invariants. B, The closest tree,
together with the best fit (least
squares) numbers of nucleotide
changes, transitions followed by
the twotypes of transversions, A <>
GorCoT,andATorCeo G,
for each edge of the tree. The root
would probably be placed on the
long internal edge. The rates for
the edges to spinach and tobacco
are very similar.
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22,3,3 37,9,4
70, 17,21
12, 1,5
Rice 34, 14,5

Spinach

reconstruction of sampling error arising from short
character sequences.

The Closest Tree algorithm

A further application of the Hadamard conjugation
is the Closest Tree algorithm for estimating 7. If
the relative bipartition frequencies f closely estimate
s, then as multiplying by matrices is linear, and the
natural logarithm function is almost linear in its
range of application, the resultant conjugate
spectrum

v=H-'In(Hs) 3)

should closely estimate q. For any particular tree 7,
we can find q(7) so that the distance between 7y and
q(T) is minimal. The closest tree procedure (Hendy
1991) selects the tree T for which this distance is
minimal. This procedure returns the least squares
best fit q vector for the closest tree T, from which

the edge change probabilities p can be derived.
However the ¢ values, which are additive, may be
more useful. If the changes are modelled by a
Poisson process, then these are the expected numbers
of changes (per site) on each edge. In Fig. 3 we
illustrate the closest tree for a set of four chloroplast
encoded genes together with the estimates of the
numbers of changes of the transitions and the two
types of transversions.

Invariants

The components of ¥ other than 7y, which do not
correspond to edges of the tree T, have expected
value zero, and hence are invariants of the data for
T. Invariants are functions of the data whose
expected values can be used to discriminate between,
and estimate reliabilities of, competing phylogenetic
hypotheses. A more detailed description of the
invariants derived from the Hadamard conjugation
is given in Steel et al. (1993, this issue).
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COMPUTATIONAL COMPLEXITY

Hadamard Conjugation

The direct multiplication of Hv, where H = H,,_;
has 2! rows and columns and v is a vector of 27!
components, requires O(22") operations. However,
we can exploit the iterative structure of H to perform
this multiplication in O(n2") operations (the Fast
Hadamard Transform, Hendy & Penny 1993). This
is still of exponential order, but it effectively doubles
the number of taxa that can be analysed with the
same computing resources. As H™! = (1/2*1)H, the
Hadamard conjugation

y = H o(Hx)

can also be computed in O(n2") operations, as ¢
(e.g., exp or In) is computed separately on each of
the 2! components of Hx. For practical purposes,
this allows us to calculate the conjugation for up to
n = 20 taxa for two colours, and up to n = 10 for
four colours, on a PC.

Simulation

A common method of generating artificial data for
the study of tree reconstruction methods is to
produce a common ancestral sequence, and for each
of its nearest descendents and each site of the
sequence, calculate using pseudo-random numbers
whether the character state at that site is the same as
that at the corresponding site in the ancestral

Table 2 Estimated number of operations required to
generate bipartition spectra for small numbers of taxa, on
the “caterpillar” tree (Fig. 4), with internal edge lengths
shown and pendant edge lengths equal to twice the internal
edge lengths. The number of characters in the sequences
is 1000. The number of operations is calculated by
assigning one operation to each mathematical operation,
whether it be a floating-point multiplication or a
comparison of two floating-point numbers. Hence, these
figures are indicative of the general trend, but are not
precise. In the last column the equivalent number of
operations is shown for artificially “growing” data from
an ancestral sequence.

Sampling data
Internal edge lengths
Growing
n 0.001 0.003 0.01 003 0.1 data
6 2639 2789 3323 4898 9970 11000
7 3449 3664 4471 7101 16918 13000
8 5510 5807 6992 11347 30382 15000

Fig. 4 The shape of the tree used in the generation of the
data in Table 2. This is known as the *“‘caterpillar” tree.

sequence, and if not, to which state it changes. This
process, which continues until a sequence of
characters is generated for each vertex in the tree,
requires O(nc) operations, where c¢ is the sequence
length and n the number of taxa.

However, by calculating the vector s of partition
probabilities (bipartition or quadripartition) and then
sampling from this vector, we can generate a
spectrum of “observed” partition frequencies. For
small numbers of taxa, say not more than about 10,
substantial savings in computation time can be made.
The calculation of s requires O(n2") operations for
the case of two colours and O(n4”) operations for
four colours. The resulting set of 2#~! numbers (4!
for four colours) can be sorted in descending order
in O(2" In(2")) = O(n2") operations, forming a vector
v, say, and then a new vector, say w, is constructed
from the partial sums of the components of v, that
is, wg = vg, w; = wi_; + v;. This can then be sampled
by generating pseudo-random numbers r and
repeatedly testing for increasing values of i to find i
such that w;_| < r <w;. The number of partitions
corresponding to the i-th entry in v is then
incremented. This process is carried out for each site,
and gives the observed partition frequencies f.

For edge lengths that are not too large, the most
common partitions are the trivial partition, in which
all character states at the endpoints of T are the same,
and those partitions that correspond to single changes
of character state on single edges of the tree. Hence,
in the vector w of cumulative probabilities, these
(2n-2) partitions will be most often chosen, requir-
ing at most 2n—2 comparisons of r with w;. Some
estimated numbers of operations required for this
procedure are listed in Table 2.

The Closest Tree algorithm

The Hadamard conjugation requires O(n2")
operations. Methods of reconstructing phylogenetic
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trees that search all possible trees have to evaluate
an optimality function on up to (2n-3)!! =
(2n—3)(2n-5)...(3)(1) trees, which grows faster than
n2". For example, with n = 10, 9 x 29 = 4608
operations are required for each of the multi-
plications by H in the Hadamard conjugation, and
27 = 512 operations for the natural logarithm
function. Thus, to infer y from f would require 9728
operations. However, for this number of taxa, there
are 34 459 425 possible trees!

The closest tree and parsimony methods evaluate
functions which are O(n) for each tree, with the
possibility of eliminating some trees by branch and
bound methods. The optimality functions used in
maximum likelihood methods are at least of this
order. We contend that the dominating factor in
phylogenetic reconstruction methods that search for
an optimal tree is the number of possible trees to
check, even with the potential savings of branch and
bound methods, and hence the Hadamard con-
jugation method is not prohibitively complex.

CONCLUSION

We have found Hadamard conjugation to be a very
useful tool with which edge probabilities p and/or
edge lengths g can be related to partition pro-
babilities s. This has allowed us to perform both
theoretical and empirical analyses, with both
hypothetical and real data. These have already given
us a deeper understanding of the relationships
between evolutionary trees and the homologous
character sequences from the taxa they relate. It is
likely that further questions may be answered using
these relationships.
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