
Neural Networks and Statistical Models
Proceedings of the Nineteenth Annual SAS Users Group International Conference, April, 1994

Warren S. Sarle, SAS Institute Inc., Cary, NC, USA

Abstract

There has been much publicity about the ability of artificial neural
networks to learn and generalize. In fact, the most commonly
used artificial neural networks, called multilayer perceptrons, are
nothing more than nonlinear regression and discriminant models
that can be implemented with standard statistical software. This
paperexplains what neural networks are, translates neural network
jargon into statistical jargon, and shows the relationships between
neural networks and statistical models such as generalized linear
models, maximum redundancy analysis, projection pursuit, and
cluster analysis.

Introduction

Neural networks are a wide class of flexible nonlinear regression
and discriminant models, data reduction models, and nonlinear
dynamical systems. They consist of an often large number of
“neurons,” i.e. simple linear or nonlinear computing elements,
interconnected in often complex ways and often organized into
layers.

Artificial neural networks are used in three main ways:� as models of biological nervous systems and “intelligence”� as real-time adaptive signal processors or controllers imple-
mented in hardware for applications such as robots� as data analytic methods

This paper is concerned with artificial neural networks for data
analysis.

The development of artificial neural networks arose from the
attempt to simulate biological nervous systems by combining
many simple computing elements (neurons) into a highly inter-
connected system and hoping that complex phenomena such as
“intelligence” would emerge as the result of self-organization or
learning. The alleged potential intelligence of neural networks
led to much research in implementing artificial neural networks
in hardware such as VLSI chips. The literature remains con-
fused as to whether artificial neural networks are supposed to
be realistic biological models or practical machines. For data
analysis, biological plausibility and hardware implementability
are irrelevant.

The alleged intelligence of artificial neural networks is a matter
of dispute. Artificial neural networks rarely have more than a
few hundred or a few thousand neurons, while the human brain
has about one hundred billion neurons. Networks comparable to
a human brain in complexity are still far beyond the capacity of
the fastest, most highly parallel computers in existence. Artificial
neural networks, like many statistical methods, are capable of
processing vast amounts of data and making predictions that
are sometimes surprisingly accurate; this does not make them

“intelligent” in the usual sense of the word. Artificial neural
networks “learn” in much the same way that many statistical
algorithms do estimation, but usually much more slowly than
statistical algorithms. If artificial neural networks are intelligent,
then many statistical methods must also be considered intelligent.

Few published works provide much insight into the relationship
between statistics and neural networks—Ripley (1993) is probably
the best account to date. Weiss and Kulikowski (1991) provide a
good elementary discussion of a variety of classification methods
including statistical and neural methods. For those interested in
more than the statistical aspects of neural networks, Hinton (1992)
offers a readable introduction without the inflated claims common
in popular accounts. The best book on neural networks is Hertz,
Krogh, and Palmer (1991), which can be consulted regarding
most neural net issues for which explicit citations are not given in
this paper. Hertz et al. also cover nonstatistical networks such as
Hopfield networks and Boltzmann machines. Masters (1993) is a
good source of practical advice on neural networks. White (1992)
contains reprints of many useful articles on neural networks and
statistics at an advanced level.

Models and Algorithms

When neural networks (henceforth NNs, with the adjective “ar-
tificial” implied) are used for data analysis, it is important to
distinguish between NN models and NN algorithms.

Many NN models are similar or identical to popular statis-
tical techniques such as generalized linear models, polynomial
regression, nonparametric regression and discriminant analysis,
projection pursuit regression, principal components, and cluster
analysis, especially where the emphasis is on prediction of com-
plicated phenomenarather than on explanation. These NN models
can be very useful. There are also a few NN models, such as coun-
terpropagation, learning vector quantization, and self-organizing
maps, that have no precise statistical equivalent but may be useful
for data analysis.

Many NN researchers are engineers, physicists, neurophysi-
ologists, psychologists, or computer scientists who know little
about statistics and nonlinear optimization. NN researchers rou-
tinely reinvent methods that have been known in the statistical or
mathematical literature for decades or centuries, but they often
fail to understand how these methods work (e.g., Specht 1991).
The common implementations of NNs are based on biological
or engineering criteria, such as how easy it is to fit the net on a
chip, rather than on well-established statistical and optimization
criteria.

Standard NN learning algorithms are inefficient because they
are designed to be implemented on massively parallel computers
but are, in fact, usually implemented on common serial computers
such as ordinary PCs. On a serial computer, NNs can be trained
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more efficiently by standard numerical optimization algorithms
such as those used for nonlinear regression. Nonlinear regression
algorithms can fit most NN models orders of magnitude faster
than the standard NN algorithms.

Another reason for the inefficiency of NN algorithms is that
they are often designed for situations where the data are not
stored, but each observation is available transiently in a real-time
environment. Transient data are inappropriate for most types of
statistical analysis. In statistical applications, the data are usually
stored and are repeatedly accessible, so statistical algorithms can
be faster and more stable than NN algorithms.

Hence, for most practical data analysis applications, the usual
NN algorithms are not useful. You do not need to know anything
about NN training methods such as backpropagation to use NNs.

Jargon

Although many NN models are similar or identical to well-known
statistical models, the terminology in the NN literature is quite
different from that in statistics. For example, in the NN literature:� variables are called features� independent variables are called inputs� predicted values are called outputs� dependent variables are called targets or training values� residuals are called errors� estimation is called training, learning, adaptation, or self-

organization.� an estimation criterion is called an error function, cost
function, or Lyapunov function� observations are called patterns or training pairs� parameter estimates are called (synaptic) weights� interactions are called higher-order neurons� transformations are called functional links� regression and discriminant analysis are called supervised
learning or heteroassociation� data reduction is called unsupervised learning, encoding, or
autoassociation� cluster analysis is called competitive learning or adaptive
vector quantization� interpolation and extrapolation are called generalization

The statistical terms sample and population do not seem to
have NN equivalents. However, the data are often divided into a
training set and test set for cross-validation.

Network Diagrams

Various models will be displayed as network diagrams such as
the one shown in Figure 1, which illustrates NN and statistical
terminology for a simple linear regression model. Neurons are
represented by circles and boxes, while the connections between
neurons are shown as arrows:� Circles represent observed variables, with the name shown

inside the circle.

� Boxes represent values computed as a function of one or
more arguments. The symbol inside the box indicates the
type of function. Most boxes also have a corresponding
parameter called a bias.� Arrows indicate that the source of the arrow is an argument
of the function computed at the destination of the arrow.
Each arrow usually has a corresponding weight or parameter
to be estimated.� Two long parallel lines indicate that the values at each end
are to be fitted by least squares, maximum likelihood, or
some other estimation criterion.

InputX
Independent

Variable

Output

Predicted
Value

TargetY
Dependent
Variable

Figure 1: Simple Linear Regression

Perceptrons

A (simple) perceptroncomputes a linear combination of the inputs
(possibly with an intercept or bias term) called the net input. Then
a possibly nonlinear activation function is applied to the net input
to produce the output. An activation function maps any real input
into a usually bounded range, often 0 to 1 or -1 to 1. Bounded
activation functions are often called squashing functions. Some
common activation functions are:� linear or identity: act(x) = x� hyperbolic tangent: act(x) = tanh(x)� logistic: act(x) = (1 + e�x)�1 = (tanh(x=2) + 1)=2� threshold: act(x) = 0 if x < 0; 1 otherwise� Gaussian: act(x) = e�x2=2

Symbols used in the network diagrams for various types of neurons
and activation functions are shown in Figure 2.

A perceptron can have one or more outputs. Each output has
a separate bias and set of weights. Usually the same activation
function is used for each output, although it is possible to use
different activation functions.

Notation and formulas for a perceptron are as follows:nx = number of independent variables (inputs)xi = independent variable (input)aj = bias for output layerbij = weight from input to output layerqj = net input to output layer = ai + nxXj=1

bijxipj = predicted value (output values) = act(qj)yj = dependent variable (training values)rj = residual (error) = yj � pj
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Xi Observed Variable

Sum of Inputsx2 Power of Input

Linear Combination of Inputs

Logistic Function of
Linear Combination of Inputs

Threshold Function of
Linear Combination of Inputs

Radial Basis
Function of Inputs

? Arbitrary Value

Figure 2: Symbols for Neurons

Perceptrons are most often trained by least squares, i.e., by
attempting to minimize

PP r2j , where the summation is over
all outputs and over the training set.

A perceptron with a linear activation function is thus a linear
regression model (Weisberg 1985; Myers 1986), possibly multiple
or multivariate, as shown in Figure 3.

InputX1X2X3

Independent
Variables

Output

Predicted
Values

TargetY1Y2

Dependent
Variables

Figure 3: Simple Linear Perceptron = Multivariate Multiple
Linear Regression

A perceptron with a logistic activation function is a logistic
regression model (Hosmer and Lemeshow 1989) as shown in
Figure 4.

InputX1X2X3

Independent
Variables

Output

Predicted
Value

TargetY
Dependent
Variable

Figure 4: Simple Nonlinear Perceptron = Logistic Regres-
sion

A perceptron with a threshold activation function is a linear
discriminant function (Hand 1981; McLachlan 1992; Weiss and
Kulikowski 1991). If there is only one output, it is also called
an adaline, as shown in Figure 5. With multiple outputs, the
threshold perceptron is a multiple discriminant function. Instead
of a threshold activation function, it is often more useful to use a
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multiple logistic function to estimate the conditional probabilities
of each class. A multiple logistic function is called a softmax
activation function in the NN literature.

InputX1X2X3

Independent
Variables

Output

Predicted
Value

TargetY
Binary Class

Variable

Figure 5: Adaline = Linear Discriminant Function

The activation function in a perceptron is analogous to the
inverse of the link function in a generalized linear model (GLIM)
(McCullagh and Nelder 1989). Activation functions are usually
bounded, whereas inverse link functions, such as the identity,
reciprocal, and exponential functions, often are not. Inverse link
functions are required to be monotone in most implementations
of GLIMs, although this restriction is only for computational
convenience. Activation functions are sometimes nonmonotone,
such as Gaussian or trigonometric functions.

GLIMs are fitted by maximum likelihood for a variety of
distributions in the exponential class. Perceptrons are usually
trained by least squares. Maximum likelihood for binomial
proportions is also used for perceptrons when the target values
are between 0 and 1, usually with the number of binomial trials
assumed to be constant, in which case the criterion is called
relative entropy or cross entropy. Occasionally other criteria are
used to train perceptrons. Thus, in theory, GLIMs and perceptrons
are almost the same thing, but in practice the overlap is not as
great as it could be in theory.

Polynomial regression can be represented by a diagram of the
form shown in Figure 6, in which the arrows from the inputs to
the polynomial terms would usually be given a constant weight
of 1. In NN terminology, this is a type of functional link network
(Pao 1989). In general, functional links can be transformations of
any type that do not require extra parameters, and the activation
function for the output is the identity, so the model is linear in
the parameters. Elaborate functional link networks are used in
applications such as image processing to perform a variety of
impressive tasks (Sou�cek and The IRIS Group 1992).

Multilayer Perceptrons

A functional link network introduces an extra hidden layer of neu-
rons, but there is still only one layer of weights to be estimated. If
the model includes estimated weights between the inputs and the

InputX
Independent

Variable

Functional
(Hidden)

Layerxx2x3

Polynomial
Terms

Output

Predicted
Value

TargetY
Dependent
Variable

Figure 6: Functional Link Network = Polynomial Regres-
sion

hidden layer, and the hidden layer uses nonlinear activation func-
tions such as the logistic function, the model becomes genuinely
nonlinear, i.e., nonlinear in the parameters. The resulting model
is called a multilayer perceptron or MLP. An MLP for simple
nonlinear regression is shown in Figure 7. An MLP can also have
multiple inputs and outputs, as shown in Figure 8. The number of
hidden neurons can be less than the number of inputs or outputs,
as shown in Figure 9. Another useful variation is to allow direct
connections from the input layer to the output layer, which could
be called main effects in statistical terminology.

InputX
Independent

Variable

Hidden
Layer

?

Output

Predicted
Value

TargetY
Dependent
Variable

Figure 7: Multilayer Perceptron = Simple Nonlinear Re-
gression

4



InputX1X2X3

Independent
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Hidden
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Output
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TargetY1Y2
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Figure 8: Multilayer Perceptron = Multivariate Multiple
Nonlinear Regression

InputX1X2X3

Independent
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?

Output

Predicted
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TargetY1Y2Y3Y4
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Figure 9: Multilayer Perceptron = Nonlinear Regression
Again

Notation and formulas for the MLP in Figure 8 are as follows:nx = number of independent variables (inputs)nh = number of hidden neuronsxi = independent variable (input)aj = bias for hidden layerbij = weight from input to hidden layergj = net input to hidden layer = aj + nxXi=1

bijxihj = hidden layer values = acth(gj)ck = bias for output (intercept)djk = weight from hidden layer to outputqk = net input to output layer = ck + nhXj=1

djkhkpk = predicted value (output values) = acto(qk)yk = dependent variable (training values)rk = residual (error) = yk � pk
where acth and acto are the activation functions for the hidden
and output layers, respectively.

MLPs are general-purpose, flexible, nonlinear models that,
given enough hidden neurons and enough data, can approximate
virtually any function to any desired degree of accuracy. In other
words, MLPs are universal approximators (White 1992). MLPs
can be used when you have little knowledge about the form of the
relationship between the independent and dependent variables.

You can vary the complexity of the MLP model by varying
the number of hidden layers and the number of hidden neurons
in each hidden layer. With a small number of hidden neurons,
an MLP is a parametric model that provides a useful alternative
to polynomial regression. With a moderate number of hidden
neurons, an MLP can be considered a quasi-parametric model
similar to projection pursuit regression (Friedman and Stuetzle
1981). An MLP with one hidden layer is essentially the same as
the projection pursuit regression model except that an MLP uses
a predetermined functional form for the activation function in the
hidden layer, whereas projection pursuit uses a flexible nonlinear
smoother. If the number of hidden neurons is allowed to increase
with the sample size, an MLP becomes a nonparametric sieve
(White 1992) that provides a useful alternative to methods such as
kernel regression (H�a rdle 1990) and smoothing splines (Eubank
1988; Wahba 1990). MLPs are especially valuable because you
can vary the complexity of the model from a simple parametric
model to a highly flexible, nonparametric model.

Consider an MLP for fitting a simple nonlinear regression
curve, using one input, one linear output, and one hidden layer
with a logistic activation function. The curve can have as many
wiggles in it as there are hidden neurons (actually, there can
be even more wiggles than the number of hidden neurons, but
estimation tends to become more difficult in that case). This
simple MLP acts very much like a polynomial regression or least-
squares smoothing spline (Eubank 1988). Since polynomials
are linear in the parameters, they are fast to fit, but there are
numerical accuracy problems if you try to fit too many wiggles.
Smoothing splines are also linear in the parameters and don’t
have the numerical problems of high-order polynomials, but
splines present the problem of deciding where to locate the knots.
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MLPs with a nonlinear activation function are genuinely nonlinear
in the parameters and therefore take much more computer time to
fit than polynomials or splines. MLPs may be more numerically
stable than high-order polynomials. MLPs do not require you to
specify knot locations, but they may suffer from local minima
in the optimization process. MLPs have different extrapolation
properties than polynomials—polynomials go off to infinity, but
MLPs flatten out—but both can do very weird things when
extrapolated. All three methods raise similar questions about how
many wiggles to fit.

Unlike splines and polynomials, MLPs are easy to extend
to multiple inputs and multiple outputs without an exponential
increase in the number of parameters.

MLPs are usually trained by an algorithm called the generalized
delta rule, which computes derivatives by a simple application of
the chain rule called backpropagation. Often the term backprop-
agation is applied to the training method itself or to a network
trained in this manner. This confusion is symptomatic of the
general failure in the NN literature to distinguish between models
and estimation methods.

Use of the generalized delta rule is slow and tedious, requiring
the user to set various algorithmic parameters by trial and error.
Fortunately, MLPs can be easily trained with general purpose
nonlinear modeling or optimization programs such as the proce-
dures NLIN in SAS/STAT R
 software, MODEL in SAS/ETS R

software, NLP in SAS/OR R
 software, and the various NLP rou-
tines in SAS/IML R
 software. There is extensive statistical theory
regarding nonlinear models (Bates and Watts 1988; Borowiak
1989; Cramer 1986; Edwards 1972; Gallant 1987; Gifi 1990; H�a
rdle 1990; Ross 1990; Seber and Wild 1989). Statistical software
can be used to produce confidence intervals, prediction intervals,
diagnostics, and various graphical displays, all of which rarely
appear in the NN literature.

Unsupervised Learning

The NN literature distinguishes between supervised and unsu-
pervised learning. In supervised learning, the goal is to predict
one or more target variables from one or more input variables .
Supervision consists of the use of target values in training. Super-
vised learning is usually some form of regression or discriminant
analysis. MLPs are the most common variety of supervised
network.

In unsupervised learning, the NN literature claims that there
is no target variable, and the network is supposed to train itself
to extract “features” from the independent variables, as shown
in Figure 10. This conceptualization is wrong. In fact, the goal
in most forms of unsupervised learning is to construct feature
variables from which the observed variables, which are really
both input and target variables, can be predicted.

Unsupervised Hebbian learning constructs quantitative fea-
tures. In most cases, the dependent variables are predicted by
linear regression from the feature variables. Hence, as is well-
known from statistical theory, the optimal feature variables are
the principal components of the dependent variables (Hotelling
1933; Jackson 1991; Jolliffe 1986; Rao 1964). There are many
variations, such as Oja’s rule and Sanger’s rule, that are just
inefficient algorithms for approximating principal components.

The statistical model of principal component analysis is shown
in Figure 11. In this model there are no inputs. The boxes

InputY1Y2Y3Y4

Output

Figure 10: Unsupervised Hebbian Learning

containing ?s indicate that the values for these neurons can be
computed in any way whatsoever, provided the least-squares fit
of the model is optimized. Of course, it can be proven that the
optimal values for the ? boxes are the principal component scores,
which can be computed as linear combinations of the observed
variable. Hence the model can also be expressed as in Figure 12,
in which the observed variables are shown as both inputs and
target values. The input layer and hidden layer in this model are
the same as the unsupervised learning model in Figure 10. The
rest of Figure 12 is implied by unsupervised Hebbian learning,
but this fact is rarely acknowledged in the NN literature.

?

?

Principal
Components

Predicted
Values

Y1Y2Y3Y4

Dependent
Variables

Figure 11: Principal Component Analysis

Unsupervised competitive learning constructs binary features.
Each binary feature represents a subset or cluster of the observa-
tions. The network is the same as in Figure 10 except that only
one output neuron is activated with an output of 1 while all the
other output neurons are forced to 0. Neurons of this type are
often called winner-take-all neurons or Kohonen neurons.
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Figure 12: Principal Component Analysis---Alternative
Model

The winner is usually determined to be the neuron with the
largest net input, in other words, the neuron whose weights are
most similar to the input values as measured by an inner-product
similarity measure. For an inner-product similarity measure to be
useful, it is usually necessary to normalize both the weights of
each neuron and the input values for each observation. In this
case, inner-product similarity is equivalent to Euclidean distance.
However, the normalization requirement greatly limits the appli-
cability of the network. It is generally more useful to define the
net input as the Euclidean distance between the synaptic weights
and the input values, in which case the competitive learning
network is very similar to k-means clustering (Hartigan 1975)
except that the usual training algorithms are slow and nonconver-
gent. Many superior clustering algorithms have been developed
in statistics, numerical taxonomy, and many other fields, as de-
scribed in countless articles and numerous books such as Everitt
(1980), Massart and Kaufman (1983), Anderberg (1973), Sneath
and Sokal (1973), Hartigan (1975), Titterington, Smith, and
Makov (1985), McLachlan and Basford (1988), Kaufmann and
Rousseeuw (1990), and Spath (1980).

In adaptive vector quantization (AVQ), the inputs are acknowl-
edged to be target values that are predicted by the means of the
cluster to which a given observation belongs. This network is
therefore essentially the same as that in Figure 12 except for the
winner-take-all activation functions. In other words, AVQ is least-
squares cluster analysis. However, the usual AVQ algorithms do
not simply compute the mean of each cluster but approximate the
mean using an iterative, nonconvergent algorithm. It is far more
efficient to use any of a variety of algorithms for cluster analysis
such as those in the FASTCLUS procedure.

Feature mapping is a form of nonlinear dimensionality reduc-
tion that has no statistical analog. There are several varieties of
feature mapping, of which Kohonen’s (1989) self-organizing map
(SOM) is the best known. Methods such as principal components
and multidimensional scaling can be used to map from a con-
tinuous high-dimensional space to a continuous low-dimensional
space. SOM maps from a continuous space to a discrete space.

The continuous space can be of higher dimensionality, but this is
not necessary. The discrete space is represented by an array of
competitive output neurons. For example, a continuous space of
five inputs might be mapped to 100 output neurons in a 10 � 10
array; i.e., any given set of input values would turn on one of the
100 outputs. Any two neurons that are neighbors in the output
array would correspond to two sets of points in the input space
that are close to each other.

Hybrid Networks

Hybrid networks combine supervised and unsupervised learning.
Principal component regression (Myers 1986) is an example of
a well-known statistical method that can be viewed as a hybrid
network with three layers. The independentvariables are the input
layer, and the principal components of the independent variables
are the hidden, unsupervised layer. The predicted values from
regressing the dependent variables on the principal components
are the supervised output layer.

Counterpropagation networks are widely touted as hybrid net-
works that learn much more rapidly than backpropagation net-
works. In counterpropagation networks, the variables are divided
into two sets, say x1; : : : ; xm and y1; : : : ; yn. The goal is to
be able to predict both the x variables from the y variables and
the y variables from the x variables. The counterpropagation
network effectively performs a cluster analysis using both the x
and y variables. To predict x given y in a particular observation,
compute the distance from the observation to each cluster mean
using only the y variables, find the nearest cluster, and predict x
as the mean of the x variables in the nearest cluster. The method
for predicting y given x obviously reverses the roles of x and y.

The usual counterpropagation algorithm is, as usual, inefficient
and nonconvergent. It is far more efficient to use the FASTCLUS
procedure to do the clustering and to use the IMPUTE option to
make the predictions. FASTCLUS offers the advantage that you
can predict any subset of variables from any other disjoint subset
of variables.

In practice, bidirectional prediction such as that done by coun-
terpropagation is rarely needed. Hence, counterpropagation is
usually used for prediction in only one direction. As such, coun-
terpropagation is a form of nonparametric regression in which the
smoothing parameter is the number of clusters. If training is uni-
directional, then counterpropagation is a regressogram estimator
(Tukey 1961) with the bins determined clustering the input cases.
With bidirectional training, both the input and target variables
are used in forming the clusters; this makes the clusters more
adaptive to the local slope of the regression surface but can create
problems with heteroscedastic data, since the smoothness of the
estimate depends on the local variance of the target variables.
Bidirectional training also adds the complication of choosing the
relative weight of the input and target variables in the cluster
analysis. Counterpropagation would clearly have advantages for
discontinuous regression functions but is ineffective at discount-
ing independent variables with little or no predictive value. For
continuous regression functions, counterpropagation could be im-
proved by some additional smoothing. The NN literature usually
uses interpolation, but kernel smoothing would be superior in
most cases. Kernel-smoothed counterpropagation would be a
variety of binned kernel regression estimation using clusters for
the bins, similar to the clustered form of GRNN (Specht 1991).
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Learning vector quantization (LVQ) (Kohonen 1989) has both
supervised and unsupervised aspects, although it is not a hybrid
network in the strict sense of having separate supervised and
unsupervised layers. LVQ is a variation of nearest-neighbor
discriminant analysis. Rather than finding the nearest neighbor
in the entire training set to classify an input vector, LVQ finds
the nearest point in a set of prototype vectors, with several
protypes for each class. LVQ differs from edited and condensedk-nearest-neighbor methods (Hand 1981) in that the prototypes
are not members of the training set but are computed using
algorithms similar to AVQ. A somewhat similar method proceeds
by clustering each class separately and then using the cluster
centers as prototypes. The clustering approach is better if you
want to estimate posterior membership probabilities, but LVQ
may be more effective if the goal is simply classification.

Radial Basis Functions

In an MLP, the net input to the hidden layer is a linear combination
of the inputs as specified by the weights. In a radial basis function
(RBF) network (Wasserman 1993), as shown in Figure 13, the
hidden neurons compute radial basis functions of the inputs, which
are similar to kernel functions in kernel regression (H�ardle 1990).
The net input to the hidden layer is the distance from the input
vector to the weight vector. The weight vectors are also called
centers. The distance is usually computed in the Euclidean metric,
although it is sometimes a weighted Euclidean distance or an inner
product metric. There is usually a bandwidth sj associated with
each hidden node, often called sigma. The activation function can
be any of a variety of functions on the nonnegative real numbers
with a maximum at zero, approaching zero at infinity, such ase�x2=2. The outputs are computed as linear combinations of the
hidden values with an identity activation function.

InputX1X2X3

Independent
Variables

Radial Basis
Functions

Kernel Functions

Output

Predicted
Values

TargetY1Y2

Dependent
Variables

Figure 13: Radial Basis Function Network

For comparison, typical formulas for an MLP hidden neuron
and an RBF neuron are as follows:

MLP: gj = aj + nxXi=1

bijxihj = (1 + e�gj )�1

RBF: gj = " nxXi=1

(bij � xi)
2sj 2

#1=2hj = e�g2j=2

The region near each RBF center is called the receptive field of
the hidden neuron. RBF neurons are also called localized receptive
fields, locally tuned processing units, or potential functions. RBF
networks are closely related to regularization networks. The
modified Kanerva model (Prager and Fallside 1989) is an RBF
network with a threshhold activation function. The Restricted
Coulomb EnergyTM System (Cooper, Elbaum and Reilly 1982) is
another threshold RBF network used for classification. There is
a discrete variant of RBF networks called the cerebellum model
articulation controller (CMAC) (Miller, Glanz and Kraft 1990).

Sometimes the hidden layer values are normalized to sum to 1
(Moody and Darken 1988) as is commonly done in kernel regres-
sion (Nadaraya 1964; Watson 1964). Then if each observation
is taken as an RBF center, and if the weights are taken to be
the target values, the outputs are simply weighted averages of
the target values, and the network is identical to the well-known
Nadaraya-Watson kernel regression estimator. This method has
been reinvented twice in the NN literature (Specht 1991; Schiøler
and Hartmann 1992).

Specht has popularized both kernel regression, which he calls
a general regression neural network (GRNN) and kernel dis-
criminant analysis, which he calls a probabilistic neural network
(PNN). Specht’s (1991) claim that a GRNN is effective with
“only a few samples” and even with “sparse data in a multidi-
mensional ... space” is directly contradicted by statistical theory.
For parametric models, the error in prediction typically decreases
in proportion to n�1=2, where n is the sample size. For kernel
regression estimators, the error in prediction typically decreases
in proportion to n�p=(2p+d) , where p is the number of derivatives
of the regression function and d is the number of inputs (H�a rdle
1990, 93). Hence, kernel methods tend to require larger sample
sizes than paramteric methods, especially in multidimensional
spaces.

Since an RBF network can be viewed as a nonlinear regression
model, the weights can be estimated by any of the usual methods
for nonlinear least squares or maximum likelihood, although this
would yield a vastly overparameterized model if every observation
were used as an RBF center. Usually, however, RBF networks are
treated as hybrid networks. The inputs are clustered, and the RBF
centers are set equal to the cluster means. The bandwidths are often
set to the nearest-neighbor distance from the center (Moody and
Darken 1988), although this is not a good idea because nearest-
neighbor distances are excessively variable; it works better to
determine the bandwidths from the cluster variances. Once the
centers and bandwidths are determined, estimating the weights
from the hidden layer to the outputs reduces to linear least squares.

Another method for training RBF networks is to consider
each case as a potential center and then select a subset of cases
using any of the usual methods for subset selection in linear

8



regression. If forward stepwise selection is used, the method is
called orthogonal least squares (OLS) (Chen et al. 1991).

Adaptive Resonance Theory

Some NNs are based explicitly on neurophysiology. Adaptive
resonance theory (ART) is one of the best known classes of
such networks. ART networks are defined algorithmically in
terms of detailed differential equations, not in terms of anything
recognizable as a statistical model. In practice, ART networks
are implemented using analytical solutions or approximations to
these differential equations. ART does not estimate parameters
in any useful statistical sense and may produce degenerate results
when trained on “noisy” data typical of statistical applications.
ART is therefore of doubtful benefit for data analysis.

ART comes in several varieties, most of which are unsuper-
vised, and the simplest of which is called ART 1. As Moore
(1988) pointed out, ART 1 is basically similar to many iterative
clustering algorithms in which each case is processed by:

1. finding the “nearest” cluster seed/prototype/template to
that case

2. updating that cluster seed to be “closer” to the case

where “nearest” and “closer” can be defined in hundreds
of different ways. However, ART 1 differs from most other
clustering methods in that it uses a two-stage (lexicographic)
measure of nearness. Both inputs and seeds are binary. Most
binary similarity measures can be defined in terms of a 2�2 table
giving the numbers of matches and mismatches:

seed/prototype/template
1 0

1 A B
Input

0 C D

For example, Hamming distance is the number of mismatches,B + C , and the Jaccard coefficient is the number of positive
matches normalized by the number of features present, A=(A+B + C).

To oversimplify matters slightly, ART 1 defines the “nearest”
seed as the seed with the minimum value of A=(A + C) that
also satisfies the requirement that A=(A+B) exceeds a specified
vigilance threshold. An input and seed that satisfy the vigilance
threshold are said to resonate. If the input fails to resonate with
any existing seed, a new seed identical to the input is created, as
in Hartigan’s (1975) leader algorithm.

If the input resonates with an existing seed, the seed is updated
by the logical and operator, i.e., a feature is present in the updated
seed if and only if it was present both in the input and in the seed
before updating. Thus, a seed represents the features common to
all of the cases assigned to it. If the input contains noise in the
form of 0s where there should be 1s, then the seeds will tend to
degenerate toward the zero vector and the clusters will proliferate.

The ART 2 network is for quantitative data. It differs from
ART 1 mainly in having an elaborate iterative scheme for nor-
malizing the inputs. The normalization is supposed to reduce the
cluster proliferation that plagues ART 1 and to allow for varying
background levels in visual pattern recognition. Fuzzy ART (Car-
penter, Grossberg, and Rosen 1991) is for bounded quantitative

data. It is similar to ART 1 but uses the fuzzy operators min
and max in place of the logical and and or operators. ARTMAP
(Carpenter, Grossberg, and Reynolds 1991) is an ARTistic variant
of counterpropagation for supervised learning.

ART has its own jargon. For example, data are called an
arbitrary sequence of input patterns. The current observation
is stored in short term memory and cluster seeds are long term
memory. A cluster is a maximally compressed pattern recognition
code. The two stages of finding the nearest seed to the input
are performed by an Attentional Subsystem and an Orienting
Subsystem, which performs hypothesis testing, which simply
refers to the comparison with the vigilance threshhold, not to
hypothesis testing in the statistical sense.

Multiple Hidden Layers

Although an MLP with one hidden layer is a universal approx-
imator, there exist various applications in which more than one
hidden layer can be useful. Sometimes a highly nonlinear function
can be approximated with fewer weights when multiple hidden
layers are used than when only one hidden layer is used.

Maximum redundancy analysis (Rao 1964; Fortier 1966; van
den Wollenberg 1977) is a linear MLP with one hidden layer used
for dimensionality reduction, as shown in Figure 14. A nonlinear
generalization can be implemented as an MLP by adding another
hidden layer to introduce the nonlinearity as shown in Figure 15.
The linear hidden layer is a bottleneck that accomplishes the
dimensionality reduction.X1X2X3

Independent
Variables

Redundancy
Components

Predicted
Values

Y1Y2Y3Y4

Dependent
Variables

Figure 14: Linear Multilayer Perceptron = Maximum Re-
dundancy Analysis

Principal componentanalysis, as shown in Figure 12, is another
linear model for dimensionality reduction in which the inputs and
targets are the same variables. In the NN literature, models with
the same inputs and targets are called encoding or autoassociation
networks, often with only one hidden layer. However, one hidden
layer is not sufficient to improve upon principal components,
as can be seen from Figure 11. A nonlinear generalization of
principal components can be implemented as an MLP with three
hidden layers, as shown in Figure 16. The first and third hidden
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Y1Y2Y3Y4

Dependent
Variables

Nonlinear

Components

Nonlinear

Predicted
Values

Y1Y2Y3Y4

Dependent
Variables

Figure 16: Nonlinear Analog of Principal Components

X1X2X3

Independent
Variables

Nonlinear
Transformation

Redundancy
Components

Predicted
Values

Y1Y2Y3Y4

Dependent
Variables

Figure 15: Nonlinear Maximum Redundancy Analysis

layers provide the nonlinearity, while the second hidden layer is
the bottleneck.

Nonlinear additive models provide a compromise in complexity
between multiple linear regression and a fully flexible nonlinear
model such as an MLP, a high-order polynomial, or a tensor
spline model. In a generalized additive model (GAM) (Hastie
and Tibshirani 1990), a nonlinear transformation estimated by a
nonparametric smoother is applied to each input, and these values
are added together. The TRANSREG procedure fits nonlinear
additive models using B splines. Topologically distributed en-
coding (TDE) (Geiger 1990) uses Gaussian basis functions. A
nonlinear additive model can also be implemented as a NN as
shown in Figure 17. Each input is connected to a small subnet-
work to provide the nonlinear transformations. The outputs of
the subnetworks are summed to give the output of the complete
network. This network could be reduced to a single hidden layer,
but the additional hidden layers aid interpretation of the results.

By adding another linear hidden layer to the GAM network,
a projection pursuit network can be constructed as shown in
Figure 18. This network is similar to projection pursuit regression
(Friedman and Stuetzle 1981) except that subnetworks provide
the nonlinearities instead of nonlinear smoothers.

Conclusion

The goal of creating artificial intelligence has lead to some fun-
damental differences in philosophy between neural engineers and
statisticians. Ripley (1993) provides an illuminating discussion
of the philosophical and practical differences between neural and
statistical methodology. Neural engineers want their networks to
be black boxes requiring no human intervention—data in, pre-
dictions out. The marketing hype claims that neural networks
can be used with no experience and automatically learn whatever
is required; this, of course, is nonsense. Doing a simple linear
regression requires a nontrivial amount of statistical expertise.
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X1X2X3

Independent
Variables

Projection

Nonlinear

Transformation

Predicted
Value

Y
Dependent
Variable

Figure 18: Projection Pursuit Network

X1X2

Independent
Variables

Nonlinear

Transformation

Predicted
Value

Y
Dependent
Variable

Figure 17: Generalized Additive Network

Using a multiple nonlinear regression model such as an MLP
requires even more knowledge and experience.

Statisticians depend on human intelligence to understand the
process under study, generate hypotheses and models, test as-
sumptions, diagnose problems in the model and data, and display
results in a comprehensible way, with the goal of explaining the
phenomena being investigated. A vast array of statistical meth-
ods are used even in the analysis of simple experimental data,
and experience and judgment are required to choose appropriate
methods. Even so, an applied statistician may spend more time
on defining the problem and determining what are the appropriate
questions to ask than on statistical computation. It is therefore
unlikely that applied statistics will be reduced to an automatic
process or “expert system” in the foreseeable future. It is even
more unlikely that artificial neural networks will ever supersede
statistical methodology.

Neural networks and statistics are not competing methodologies
for data analysis. There is considerable overlap between the
two fields. Neural networks include several models, such as
MLPs, that are useful for statistical applications. Statistical
methodology is directly applicable to neural networks in a variety
of ways, including estimation criteria, optimization algorithms,
confidence intervals, diagnostics, and graphical methods. Better
communication between the fields of statistics and neural networks
would benefit both.
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