
1A TAXONOMY OF PARALLEL GAME-TREE SEARCH ALGORITHMSMark G. Brockington 1Edmonton, Alberta1 INTRODUCTIONIn the last twenty years, a number of articles and theses have been written that contain innovative parallelgame-tree search algorithms. The authors of the parallel algorithms have shown how their work is uniqueand interesting. In some cases, this has been shown by classifying other algorithms by listing implementationdetails (Bal and van Renesse, 1986; Ciancarini, 1994). To the author's knowledge, no attempt has been madeto classify the algorithms based solely on their algorithmic properties. A taxonomy would make it easy toascertain what has and has not been accomplished in parallel game-tree search. The presentation of thistype of taxonomy is the main contribution of this paper.The taxonomy will be broken into two major categories: ��-based algorithms, and algorithms based onother search paradigms (SSS�, ER, and theoretical methods). For the former category, a table is given toisolate the fundamental di�erences between the algorithms. The table is divided into two parts: the �rstpart contains characteristics of the ��-based algorithms, while the second part contains details about animplementation of each algorithm. Section 2 describes the various columns given in the table, and then givessome brief details on the algorithms contained therein.The algorithms based on other search paradigms are given in Section 3. Due to the varied nature of themethods, a brief description is given for each of the algorithms and no attempt has been made to categorizethem to the same extent as the ��-based algorithms. The implementation details have not been organizedinto a table, since some of the algorithms given are of a theoretical nature and have not been implementedor simulated.The �nal section deals with some conclusions that can be drawn from the taxonomy.2 ��-BASED PARALLEL GAME-TREE SEARCHThis section discusses algorithms based on �� and will be split into four subsections. Sections 2.1 and 2.2will be used to describe the columns in Tables 1 and 2, respectively. The description of the algorithms hasbeen divided into two eras. Section 2.3 covers work �rst submitted up to June, 1987. Most of the work fromthis era describes algorithms to be used on a limited number of processors. Section 2.4 covers work thatwas �rst submitted on or after July, 1987. The majority of the algorithms from this era are designed forimplementation on massively-parallel hardware systems, which were unavailable to most researchers before1987.2.1 Comparison of the �� AlgorithmsTable 1 summarizes and classi�es the various ��-based algorithms, and is divided into �ve columns.The �rst column gives the name of the algorithm, and the reference that contains the most details aboutthe algorithm. For example, the Young Brothers Wait concept has been described in many papers, but allof the algorithm's details are located in Feldmann's thesis (1993).1Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2H1.Email: brock@cs.ualberta.ca



2 ICCA Journal Submission June 12, 1996Algorithm Date First Processor Parallelism Synchronization(Reference) Described Hierarchy/ Possible At Done At TheseControl These Nodes NodesDistributionParallel Aspiration Search 1978 Static/ Root (�� window) Root(Baudet, 1978) CentralizedMandatory Work First 1979 Static/ Type 1+3+Left- Bad Type 2(Akl, Barnard and Doran, 1982) Centralized most child of 3Tree Splitting 1980 Static/ Top k-ply Root(Finkel and Fishburn, 1982) CentralizedPV-Split 1981 Static/ Type 1 Type 1(Marsland and Campbell, 1982) CentralizedKey Node 1983 Static/ Type 1+3+Left- Bad Type 2(Lindstrom, 1983) Centralized most child of 3UIDPABS 1986 Static/ Root None(Newborn, 1988) CentralizedDPVS 01/1987 Dynamic/ Type 1+3+2 Type 1+3+Bad 2(Schae�er, 1989) CentralizedEPVS 06/1987 Dynamic/ Type 1+3 Type 1+3(Hyatt, Suter and Nelson, 1989) CentralizedWaycool 1987 Dynamic/ All, except Type 2 Nodes with TT(Felten and Otto, 1988) Distributed with no TT entry & no cuto�Young Brothers Wait 10/1987 Dynamic/ Type 1+3+Bad 2 Type 1+Bad 2(Feldmann, 1993) DistributedDynamic Tree Splitting 1988 Dynamic/ Type 1+3+Bad 2 Type 1+Bad 2(Hyatt, 1988) DistributedBound-and-Branch 08/1988 Dynamic/ Type 1+3+Bad 2 Type 1+Bad 2(Ferguson and Korf, 1988) DistributedDelayed Branch Tree Expansion 1990 Static/ Type 1+3 Bad Type 2(Hsu, 1990) CentralizedFrontier Splitting 1993 Dynamic/ All Root(Lu, 1993) Distributed��* 1993 Dynamic/ Type 1+3 Type 1+3+Bad 2(David, 1993) DistributedCABP 1994 Static/ Type 1+3 Bad Type 2(Cung, 1994) CentralizedJamboree 1994 Dynamic/ Type 1+3+Bad 2 Type 1+Bad 2(Kuszmaul, 1994) DistributedABDADA 1995 Dynamic/ Type 1+3+Bad 2 Type 1+Bad 2(Weill, 1995) DistributedDynamic Multiple PV-Split 1995 Dynamic/ Nodes within Nodes within(Marsland and Gao, 1995) Distributed PV set PV setAPHID 1996 Static/ Top k-ply None(Brockington and Schae�er, 1996) CentralizedTable 1: Comparison of Parallel ��-based Game-Tree Search Algorithms



A Taxonomy of Parallel Game-Tree Search Algorithms 3The second column gives the date that the algorithm was �rst published or received by a journal. Thisinformation has been used to order the algorithms into chronological order.The third column contains information on both the processor hierarchy and the distribution of controlwithin the algorithm. Processor Hierarchy categorizes algorithms based on the rigidity of the processor tree.If the processor tree is static, one or more processors are designated as masters, and control the other slaveprocessors. This hierarchy is �xed throughout a search of the game-tree. A dynamic processor tree changesbased on the distribution of busy and idle processors. Control Distribution describes whether the control ofthe algorithm is centralized on a small number of masters (e.g. PV-Split), or could be distributed amongstall processors (e.g. Young Brothers Wait).The fourth column describes the typical nodes of the game-tree where parallelism could occur. The descrip-tion is based on the classi�cation of the minimal game-tree by Knuth and Moore (1975). Note that the type2 (cut nodes) have been di�erentiated into two sub-classes. When a type 2 node has not been pruned aftersearching the �rst move, this node is called a bad type 2 node due to its incorrect move ordering. Similarly,good type 2 nodes are considered to be type 2 nodes that cause a cuto� after examining the �rst move (i.e.the move ordering is correct).For example, PV-Split only implements parallelism at type 1 (principal variation) nodes, while the YoungBrothers Wait algorithms allow for parallelism at type 1, type 3 (all nodes) and bad type 2 nodes. At goodtype 2 nodes, the Young Brothers Wait algorithm will search the �rst move, achieve a cuto�, and none ofthe other children will be evaluated.The �fth column indicates which nodes of the game-tree might have parallelism constrained by waiting forthe �rst k children to be evaluated. For example, bad type 2 nodes are synchronization points for Akl et. al'sMandatory Work First algorithm, while type 1 and bad type 2 nodes are synchronization points for Fergusonand Korf's Bound-and-Branch algorithm.2.2 Comparison of the �� ImplementationsTable 2 summarizes an implementation of each algorithm given in Table 1.The �rst column gives the name of the algorithm, and the reference to the paper that contains the detailsabout the implementation. In some cases, this paper may be di�erent than the paper which best describesthe algorithm.The second column describes the underlying hardware used to host the selected implementation. A softwaresimulation of hardware is denoted in this column.The third column describes the type of game-trees explored by the algorithm. If the game-trees are notgenerated by game-playing programs, they are considered to be arti�cial trees. In terms of average branchingfactor, chess trees are wider than Othello trees, and both are wider than checkers trees.The fourth column denotes which of the sequential game-tree searching algorithms was parallelized: ��(Brudno, 1963; Knuth and Moore, 1975), PVS (Marsland, 1983) or NegaScout (Reinfeld, 1983). Someprograms are more e�cient when using a di�erent sequential algorithm, depending on the nature of theevaluation function and the strength of the move ordering techniques in the sequential program. Thus,the choice of sequential algorithm to compare the parallel algorithm against is a factor to consider whenevaluating a parallel algorithm's results.The �fth column describes what type of transposition table has been implemented for the algorithm. E�-cient sharing of transposition table information is crucial to the performance of a parallel game-tree searchalgorithm. The two mainmethods are a distributedmessage-passing transposition table and a shared-memorytransposition table. Special hardware is required to implement a shared-memory transposition table, but is



4 ICCA Journal Submission June 12, 1996Algorithm Hardware Test Sequential Trans- Speedup(Reference) Used Domain Algorithm Position ObtainedTableParallel Aspiration Search Simulation Arti�cial �� none � 6 for large n(Baudet, 1978) Trees (simulated)Mandatory Work First Simulation Arti�cial �� \score � 6 for large n(Akl, Barnard and Doran, 1982) Trees table" (simulated)Tree Splitting LSI-11 & Checkers �� none 2.34 (n=3)(Finkel and Fishburn, 1982) Simulation 5.12 (n=27,sim)PV-Split Sun 3 Chess PVS local 3.75 (n=5)(Marsland, Olafsson and Schae�er, 1985) NetworkKey Node Simulation Arti�cial �� none 12.57 (n=20)(Lindstrom, 1983) TreesUIDPABS Data General Chess �� local 3.94 (n=8)(Newborn, 1988) (mixed procs.)DPVS Sun 3 Chess NegaScout TT. Mgr - 7.64 (n=19)(Schae�er, 1989) Network messagesEPVS Sequent Chess �� shared 5.93 (n=16)(Hyatt, Suter and Nelson, 1989) Balance memoryWaycool Hypercube Chess �� distributed 101 (n=256)(Felten and Otto, 1988) messagesYoung Brothers Wait Transputers Chess NegaScout distributed 142 (n=256)(Feldmann, 1993) messages 344 (n=1024)Dynamic Tree Splitting Sequent Chess �� shared 8.81 (n=16)(Hyatt, 1988) Balance memoryBound-and-Branch Hypercube Othello �� distributed 12 (n=32)(Ferguson and Korf, 1988) messagesDelayed Branch Tree Expansion Simulation Chess �� none 350 (n=1000,(Hsu, 1990) simulated)Frontier Splitting BBN Checkers NegaScout shared 3.32 (n=16)(Lu, 1993) TC2000 memory��* Transputers Chess NegaScout distributed 6.5 (n=8+8TT)(David, 1993) messagesCABP Sequent Arti�cial �� shared 4.6 (n=9)(Cung, 1994) Balance Trees memoryJamboree CM-5 Chess NegaScout distributed �50 (n=512)(Kuszmaul, 1994) messagesABDADA CM-5 Chess NegaScout distributed 15.85 (n=32)(Weill, 1996) (& Othello) messagesDynamic Multiple PV-Split AP-1000 Arti�cial PVS none �32 (n=64)(Marsland and Gao, 1995) TreesAPHID Sparc 2 Chess NegaScout local 6.04 (n=16)(Brockington and Schae�er, 1995) NetworkTable 2: Comparison of Parallel ��-based Game-Tree Search Implementations



A Taxonomy of Parallel Game-Tree Search Algorithms 5generally faster than distributed transposition tables based on message passing. Local transposition tablesare maintained separately on each processor, but no transposition table information is shared between theprocessors.The �nal column gives the speedup of the implementation on a large number of processors. There will bea tendency to read down this column and use the absolute speedup or relative e�ciencies to determinesomething about a pair of algorithms. It is very hard and misleading to compare two algorithms in thismanner. There are �ve major concerns when comparing speedup numbers.The �rst concern deals with simulation results. It is often di�cult to determine how a parallel algorithmwill behave on a large number of machines, due to over-simpli�cation of the simulation model being used.The second major concern deals with the test domain. Arti�cial trees rarely reect the unique propertiesof searching a real chess/checkers/Othello tree, and might be geared towards illustrating the strength of theparallel algorithm (Plaat et. al, 1996).The third major concern is that we cannot take the real trees at face value either, since the sequentialalgorithm used to generate the tree may not be an e�cient searcher (with respect to the minimal tree size).This could be caused by leaving out key move ordering techniques, such as a su�ciently large transpositiontable, iterative deepening or killer moves. A poor searcher will yield more opportunities for parallelism, andmay increase the speedup achieved by the algorithm.The fourth concern deals with the varied branching factor of the game-trees in di�erent test domains. Theaverage branching factor in chess (38) is higher than the average branching factor in checkers (8 for non-capture positions). Taking capture positions into account, the average branching factor of checkers is lessthan 3 (Lu, 1993). The breadth of checkers trees yield speedups that are much smaller in magnitude thanthe same algorithm implemented on a chess program.The �nal concern deals with the speed of the processor versus the speed of the network. If the algorithmwas tested on slow processors with a fast network linking them, the algorithm may not yield the sameperformance when using faster processors and/or a slower network.In short, it is nearly impossible to objectively compare speedups or e�ciencies for the di�erent implementa-tions given in Table 2.2.3 Descriptions of Earlier Algorithms (1979-June 1987)Baudet's work (1978) described a method of doing parallel aspiration search. Aspiration search can bedescribed as the shrinking of the initial �� window to a small range. If the minimax value lies within thesmaller range, the correct minimax value could be returned while visiting less leaf nodes than would havebeen visited by using the larger range.In Baudet's work, the initial �� window is subdivided into p disjoint windows, where p is the number ofprocessors used. Each processor searches the game-tree with those smaller windows. When a processor is�nished, it can use the result of the search (if it is a fail low or fail high) to further reduce the size of thewindows examined. Once a processor determines the minimax value, all processors are stopped immediately.Akl, Barnard and Doran (1982) were the �rst to propose and simulate a mandatory work �rst algorithm. Theidea of the algorithm is to explore in parallel those leaves that would be examined if the tree was perfectlyordered. There are two categories of nodes that correspond to the cut and all nodes from the minimal tree.Left-hand nodes are similar to all nodes, and all of their successors are evaluated at di�erent processors inparallel. Right-hand nodes are similar to cut nodes, and only one successor process can be spawned fromthem at a time.



6 ICCA Journal Submission June 12, 1996The �rst branch to be evaluated from a right-hand node might establish a score that signi�es a cuto�. Theprocess controlling a right-hand node is forced to stall and �nd out the value of the sibling left-hand node.Once this sibling left-hand node has a value, the two values are compared and the program determineswhether or not the right-hand node can be pruned based on the �rst branch that was searched. If thereis no cuto� yet for the right-hand node, the subsequent branches in the right-hand node are examined oneafter the other sequentially. This will stop when the right-hand node gets pruned, or the right-hand nodeestablishes a value higher than the sibling left-hand node after exploring all branches. This allows the schemeto determine most of the direct shallow cuto�s that would occur in the sequential �� algorithm, but neglectssome of the deep cuto�s possible.Finkel and Fishburn (1982) introduced the concept of tree splitting. In their algorithm, a static tree ofprocessors is overlaid on top of a game-tree. The root of the game-tree is given to the root of the processortree. The processor root generates all the moves at ply 1 of the game-tree, and hands them over to the �rstply of the processor tree. This process continues until we reach the leaves of the processor tree, where theprocessors execute the sequential �� algorithm to the required search depth. The nodes in the �rst k levelsof the tree, where k is the depth of the processor tree, can be evaluated in parallel. The only synchronizationpoint occurs at the root of the tree between searches at di�erent depths.The PV-Split algorithm (Campbell, 1981; Marsland and Campbell, 1982) is a natural extension of treesplitting, based on the regular structure of the minimal game-tree as we travel along the principal variation(PV). The �rst stage of the algorithm involves a recursive call to itself as it travels down the principalvariation. Once the left subtree of a PV node has been examined, all of the other subtrees below that PVnode are searched in parallel using tree splitting. After all of the subtrees have been explored, that PV nodecan return a score to the PV node above it. At any one time, only one node's subtrees are being examinedin parallel by the PV-Split algorithm.In the original implementation (Marsland and Campbell, 1982), the PV-Split algorithm did not use minimalwindows or other search enhancement techniques common in game-playing programs. To simulate these or-dering techniques, strongly-ordered game-trees were arti�cially created. The PV-Split algorithm was shownto have a better speedup than tree splitting for the simulated strongly-ordered trees. There are numerouspublished experiments with the PV-Split algorithm (Marsland and Popowich, 1985; Newborn, 1985; Mars-land, Olafsson and Schae�er, 1985). The best reported e�ciency in these implementations was a speedupof 3.75 on 5 processors for Marsland, Olafsson and Schae�er (1985). The major problem in the implemen-tation of PV-Split is a large synchronization overhead, since many processors are often forced to wait forlong periods of time while the last unevaluated branch of a PV node is evaluated. Newborn suggested thatidle processors should assist those processors that are still busy by creating a new split node that the idleprocessors can work on (Newborn, 1985).The Key Node method (Lindstrom, 1983) attempts a di�erent method for attacking the tree. The mandatorywork �rst tree is dynamically evolved and stored within a centralized message queue. Each processor takes amessage from the queue, creates new messages based on the type of message, and adds the information intothe tree, as required. For example, if a message is sent to a leaf node within the tree, the node is evaluated,and the value is sent to the parent. At type 1 and type 3 nodes, messages for each of the children can besent out at the same time (yielding nearly ideal parallelism). Synchronization occurs at bad type 2 nodes,where each move is tried in turn in an attempt to �nd the cuto�.The Key Node method was simulated using arti�cial trees, where the score of the parent was similar tothe score of the children. The method was compared against the classical �� algorithm. In the simulation,each message was assumed to be processed in unit time, and some e�orts were made to simulate contentionfor the nodes within the tree. Over 10 test runs, the Key Node method achieved a speedup of 12.57 on 20processors, using a tree depth of 5 and a breadth of 4.Newborn's (1988) algorithm,Unsynchronized Iteratively Deepening Parallel Alpha-Beta Search, was the �rst



A Taxonomy of Parallel Game-Tree Search Algorithms 7attempt to asynchronously start the next level of an iteratively deepened search instead of synchronizing atthe root of the game-tree. The moves from the root position are partitioned among the processors, and theprocessors search their own subset of the moves with iterative deepening. Each processor is given the sameinitial window, but some of the processors may have changed their windows, based on the search results oftheir moves. The UIDPABS algorithm then combines the results once a predetermined time limit has beenreached. Some of the moves may have been evaluated to larger depths than those on other processors, whichmay yield a better quality move choice.Schae�er's Dynamic PV-Split algorithm (1989) is an enhancement that allows for dynamic processor trees inthe PV-Split framework. Instead of the �xed processor tree mechanism that was used in PV-Split, processorsin Dynamic PV-Split (DPVS) are allowed to dynamically attach themselves to other busy processors, whicheach run the PV-Split algorithm. This allows for parallelism along the pseudo-principal variation (theleftmost branch) being searched by any processor, and allows for multiple split nodes. The process ofchoosing the new split node started by allocating branches at type 1 or type 3 nodes, and allowed parallelismat type 2 nodes once the branches from all type 1 and 3 nodes were allocated. All requests for work wentthrough a Controller process, which was used to balance the dynamic processor tree amongst the processorsthat had the most work to do, as well as assign work from the current node on the principal variation.Unfortunately, the increase in search overhead compensated for the decrease in synchronization overhead.The search overhead arose from additional processors, once they had been reassigned, attempting to searchsome subtrees without the bene�t of the ordering information from the searched sibling subtrees. By allowinga shared Table Manager to handle all transposition table requests, along with a mechanism for rebroadcastinghistory table information, the speedup for ParaPhoenix was improved to 7.64 on 19 processors. Themechanism described in the paper tapered o� once more than 10 processors were involved; the overhead ofgoing through a single Table Manager increased linearly as more processors were added.The Enhanced PV-Split algorithm (Hyatt, 1988; Hyatt, Suter and Nelson, 1989) is a di�erent type of dynamicallocation to the PV-Split algorithm. In the Enhanced PV-Split (EPVS) algorithm, when a processor becameidle, all of the other processors were stopped and a new split node would be created two ply further downthe tree of one of the busy processors. All processors would then start to work on the smaller subtree. Thetransposition table ensured that the smaller subtree had not been explored yet.Using a Sequent Balance 21000 computer, the speedup of EPVS was 5.93 on 16 processors. On the samemachine and test set, PV-Split achieved a speedup of 4.57 on 16 processors. The authors point out at theend of their paper that the average branching factor of a chess tree is 38; their algorithm could not use 64 ormore processors e�ectively since all processors co-ordinate at one split node at any given time. Thus, to usemassively parallel architectures (with hundreds or thousands of processors), a greater number of split nodesmust be available for parallel work.2.4 The Advent Of Massive Parallelism (July 1987-present)Felten and Otto (1988) implemented the �rst parallel �� algorithm that played chess on more than 32processors. Their WayCool program decided on the type of parallelism to be applied at a node based onwhether there was a transposition table entry in the system. If a transposition table entry was available, themove stored would likely be the best move, and it was worth waiting for a bound to be returned from thattransposition table move. Once that bound had been returned (assuming that the node is not immediatelypruned), all of the other successors could be explored in parallel. If there is no transposition table information,all subtrees could be computed in parallel.The processors are hierarchically organized into a tree structure at the start of the search, but this processortree would be restructured as necessary. The scheme relied on a globally shared transposition table anda load balancing scheme that is similar to the one used in EPVS. The load balancing scheme reorganized



8 ICCA Journal Submission June 12, 1996searchers into new teams that search a \hot spot" in parallel.Feldmann et. al implemented a parallel �� algorithmon a large network of Transputers for the chess programZugzwang (Vornberger and Monien, 1987; Feldmann et. al, 1989; Feldmann, 1993). The algorithm involvesthe use of the Young Brothers Wait Concept (YBWC) to determine when nodes can be given out in a parallelmanner.In a game-tree that has near perfect ordering, there is a high probability that a node is an all node ifwe evaluate the leftmost branch and we have not pruned the search below that node. The basic YoungBrothers Wait Concept states that the leftmost branch (the eldest brother) must be evaluated before anyother branches (the young brothers) can be distributed to other processors. This is not necessarily limited tothe principal variation (i.e. PV-Split) or a pseudo-principal variation (i.e. DPVS or EPVS); it can happenat any node within the game-tree. The algorithm given in Tables 1 and 2 is YBWC*. This variation doesnot wait for young brothers at type 3 nodes and forces sequential evaluation of all \reasonable" moves attype 2 nodes, as described in Feldmann's Ph.D. thesis (1993).Hyatt introduced Dynamic Tree Splitting (DTS) in his Ph.D. thesis (1988). One processor is given the rootposition and the others must try to �nd a processor that has work to steal. If a processor has work, DTShands out a branch from the lowest type 3 node. Type 1 nodes that have bound information (i.e. theleftmost child has been evaluated) are considered as type 3 nodes. Failing this, the processor will hand outany node from a type 1 node that does not have any bound information. Finally, the processor would handout branches from type 2 nodes that have not been pruned after the �rst child has been completely evaluated.This makes the algorithm similar (in parallelization and synchronization characteristics) to YBWC*, butallocates the work in a di�erent order than YBWC* would.In the implementation, split points were placed in shared memory so that other processors had an opportunityto take branches without a processor continually looking for work to do. Using a Sequent Balance 21000,DTS generated an average speed-up of 8.81 over 16 processors.Bound-and-Branch (Ferguson and Korf, 1988) is a processor allocation scheme in the Distributed Tree Searchframework { a general framework for distributed search { to search �� trees generated by an Othello program.If no cuto� bound exists at a node, all processors are assigned to the �rst child to generate a cuto� boundas quickly as possible. If a cuto� bound exists, or has been established by completing the search of the�rst child, the processors are allocated in a breadth-�rst manner to all remaining children. E�ectively, thisscheme gives the same parallelism and synchronization pattern described in the YBWC* algorithm. For theBound-and-Branch processor allocation scheme, Ferguson and Korf get speedups of 12 while studying Othellotrees using a 32-processor hypercube. The search is facilitated by a distributed \game-tree representation"which is similar to a transposition table, and iterative deepening.Hsu described a queued processor array model for implementing a parallel �� algorithm within the secondversion of Deep Thought (1990). The host workstation traverses the tree according to the algorithm untilthe parallelization horizon is reached. The subproblems are then placed on to a queue that can be accessedby a large number of specialized VLSI processors. All of the processors are connected by the same bus tothis queue. The processors take away the subproblems placed on the queue, run the silicon-encoded ��routine on the chip, and return the results to another queue on the bus that goes in to the host processor.The results are then added to the tree representation in the host computer.Hsu also introduced the delayed branch tree expansion (DBTE) algorithms in his thesis. These algorithmsgenerate two queues of nodes. The �rst queue is a set of nodes that correspond to the �� minimal tree, ina left-to-right order. The second queue contains nodes that are not in the �� minimal tree, because of poormove ordering at type 2 nodes. The minimal tree queue is used only when the queue of additional work atfailed type 2 nodes is empty. This setup allows for parallelism at type 1 and 3 nodes.There is a family of DBTE algorithms based on the choice of CUT nodes to re-expand. One of the algorithms,



A Taxonomy of Parallel Game-Tree Search Algorithms 9the Leftmost First algorithm, is shown to be asymptotically optimal on best-�rst trees as well as dominatingweak �� (a version of the �� algorithm which only has shallow cuto�s). The Leftmost First algorithm causessynchronization to occur at bad type 2 nodes. Simulations report that a speedup of 350 with 1000 processorsis possible, once the machine is completely constructed.Lu (1993) implemented a pair of improvements to the basic PV-Split algorithm for use in the checkersprogram Chinook. To prevent starvation when exploring checkers trees, which have an average branchingfactor of 3 instead of the 38 found in chess trees, frontier splitting was proposed and tested. Frontier splittingcreates multiple split nodes further up the variation being explored by the Controller process as they arerequired. This is di�erent than algorithms like YBWC*, which concentrate on creating new split nodesunderneath the current split node. Split nodes are created �rst at all nodes and only at cut nodes whenthere is no parallelism left at any all nodes. The drawback is that the search might be started without anybound information. Essentially, this removes the synchronization for a given depth search, and allows forparallelism at any node within the tree.An implementation of dynamic load balancing, similar to the EPVS method, was also presented. Stragglerpreemption gathers a group of idle processors and assigns them to a subtree that has been worked on by oneprocessor for a long period of time. Both of the improvements were tested and the speedup on the test setimproved from 1.92 on 16 processors for the basic PV-Split algorithm to 3.31 on 16 processors. The averagebranching factor of the trees being explored was 2.78; although the magnitude of the increase was small, thefact that the speedup is larger than the branching factor is signi�cant.David's ��* (1993) is a new type of architecture for dealing which requires a shared transposition table. Allprocessors start at the root of the tree and start travelling down the tree. However, the processors exploredi�erent parts of the tree based on results from the shared transposition table. Each entry contains a counterof how many processors are exploring the subtree rooted at that node. Thus, the processor can discoverwhich nodes have been evaluated.A depth-limited search is executed at non-PV nodes to determine whether the node is a type 2 or a type3 node. Type 2 nodes are searched sequentially, as in other algorithms. At type 3 nodes, the number ofprocessors allowed to explore a subtree is limited by a constant factor of the number of processors that arecurrently at the type 3 node. For the purposes of ��*, once the leftmost child of a type 1 node has beenevaluated, the type 1 node e�ectively becomes a type 3 node. Once a processor has visited a node, it maynot go back above that node until the node is evaluated (i.e. the correct �� information is known aboutthe value at that node). This means that as soon as one processor has \evaluated" the root, the search iscompleted. One advantage of the ��* algorithm is the parallel code involves only a small number of changesto the sequential code (Weill, 1995). In his thesis, David achieved a speedup of 6.5 on 16 Transputers. 8of the Transputers were used to control the shared transposition table, while the other 8 were used as treesearchers.CABP is an algorithm by Cung (1994), based on the Deep Thought design presented by Hsu (1990). Thealgorithmwas designed for a shared memory system, and maintains a shared \score tree" for the entire game-tree and the two lists of work: critical nodes one ply above the leaves, and non-critical children of failedcut-nodes. At failed cut-nodes, the non-critical children are added to the list k at a time. (In the simulationresults given in the thesis, k = 1.) In his Ph.D. thesis, Cung shows the CABP algorithmgenerating a speedupof 4.6 on strongly-ordered trees with a branching factor of 40 using 9 processors on a Sequent Balance 8000.Kuszmaul (1994) presents Jamboree search in his Ph.D. thesis as an algorithm for testing MIMD schedulingalgorithms on the CM-5. Jamboree search is a parallelization of NegaScout search which behaves with onlya few minor di�erences to the work done by Feldmann et. al on the Young Brothers Wait algorithm. In theYoung Brothers Wait algorithm, when a subtree is given to a processor and the search fails high, the slaveprocessor immediately proceeds to work out the value with the full search window without informing themaster processor. In Jamboree search, a fail high value is returned to the master processor. This prevents



10 ICCA Journal Submission June 12, 1996any younger subtrees from executing a full window search until the new bound � can be established by afull window search.Weill introduced an improvement to the ��* algorithm in his Ph.D. thesis (1995). Weill suggested and testeda decision method based on the Young Brothers Wait, instead of the depth-limited search and constant factorat type 3 nodes tested by David. At any node in the ��* algorithm, if the leftmost child isn't evaluated, allprocessors must evaluate the leftmost child. Once the leftmost child is evaluated, processors are allocatedto non-evaluated idle children �rst, and then allocated in a balanced manner to the other non-evaluatedchildren in the tree. Although both ��* and YBWC* use the same decision method for allowing or denyingparallelism, ��* uses a shared transposition table to keep the processors working on di�erent parts of thetree, while YBWC* uses master-slave relationships.In a later paper (Weill, 1996), the combined method was called Alpha-Bêta Distribut�e avec Droit d'Aînesse,or ABDADA. He showed that ABDADA yields greater speedups than YBWC on a CM-5 when studyingchess trees. ABDADA also yields similar speedups to YBWC when studying �� trees generated by anOthello program.Dynamic Multiple Principal Variation Splitting (DM-PVSplit) is a variation of the PV-Split algorithm thatallows for greater parallelism near the start of a search (Marsland and Gao, 1995). To understand thealgorithm, it is necessary to de�ne the PV set. The root is a member of the PV set. At subsequent levels,nodes are part of the PV set if the parent is a member of the PV set, and they are generated by the �rst kcandidate moves in the move list of the parent. The determination of k is given by a function, not a �xednumber. Thus, the PV set is a right-pruned version of the game-tree. An appropriate choice of the heuristicguess allows for greater parallelism without adversely increasing the search overhead, since the correct moveat a PV set node is highly likely to appear in its PV set children. By always selecting only one candidatemove, DM-PVSplit generalizes into PV-Split. Since the PV set does not respect the structure of the minimaltree, the last two columns in Table 2 reect this by referring to the PV set, and not Knuth and Moore'sclassi�cation of minimal tree nodes.The algorithm is designed for use on strongly ordered trees. In the paper, Marsland and Gao show the resultsof an experiment where DM-PVSplit generates a speedup of approximately 32 over 64 processors, using anarti�cially generated tree of width 32 and depth 8.Asynchronous Parallel Hierarchical Iterative Deepening is an attempt to extend the ideas of Newborn'sUIDPABS algorithm for use on a network of workstations, where the cost of communication is prohibitive(Brockington and Schae�er, 1996). Instead of using a single ply of the game-tree to generate work lists,APHID uses a truncated game-tree of user-de�ned depth, and all leaves of the truncated game-tree areallocated to slave processors. The master processors within the hierarchy continually search the truncatedgame-tree to add, delete and update the priority of work for the slaves. The slave processors search theirwork lists with minimal synchronization from the master. The slaves determine their own work schedule andinform the master processors of the search results. Slave processors can continue searching the next level ofthe iterative deepening search speculatively if they have no work left to do at the current level.The APHID algorithm has been implemented as a game-independent library that can be easily inserted intoa sequential game-playing program. The library has been tested on both Keyano (an Othello program) andTheTurk (a chess program). At time of writing, the APHID algorithm achieves speedups of 8.41 and 6.02for Keyano and TheTurk (respectively) on a network of 16 Sparc-2 workstations.3 OTHER SEARCH PARADIGMS FOR PARALLEL GAME-TREE SEARCHAlthough the emphasis has been on ��-based methods, there are other search strategies that can be usedto generate the minimax value. They have been subdivided into three subsections. The �rst will deal with



A Taxonomy of Parallel Game-Tree Search Algorithms 11parallel algorithms based on the original formulation of SSS�. The second subsection will deal with the ERmethod, while the �nal subsection will deal very briey with purely theoretical models for game-tree search.3.1 Parallel Search based on SSS�Stockman (1979) introduced the SSS� algorithm. Initially, it was believed that the algorithm dominated�� in the sense that SSS� will not search a node if �� did not search it. A perceived problem with thealgorithm is that a list structure (the OPEN list) must be maintained, which could grow to bd=2 elements,where b is the branching factor and d is the depth of the tree to be searched. This space requirement was,at the time, considered to be too large for a practical chess-playing program. Furthermore, even if the spacerequirement was not a problem, the maintenance of the OPEN list slowed down the algorithm to make itslower than �� in practice.A theoretical parallel SSS� algorithm was proposed (Campbell, 1981; Campbell and Marsland, 1983), basedon breaking the tree into stages to reduce the cost of maintaining the OPEN list. At the end of a stage in thesearch, the node would be handed to a slave processor in the tree hierarchy. This limited the depth d, thuspreventing the OPEN list from becoming too large. The staged SSS� algorithm is shown to be marginallyfaster than either tree splitting or PV-Split on randomly ordered trees in Campbell's work.Leifker and Kanal (1985) propose the HYBRID algorithm that is based on the problem heap from SSS�,but contains no details pertaining to an implementation. Vornberger and Monien presented the resultsof a parallel SSS� algorithm (1987), but the results were disappointing when compared to the parallel ��algorithm (later to be called \Young Brothers Wait"). Their implementation of parallel SSS� on a local areanetwork of PCs had a search overhead of over 300 percent when using 16 processors. Diderich described animplementation of Synchronized Distributed State Space Search (SDSSS�) (1992) and achieved a speedupof 11.40 using 32 processors, searching a 5 ply tree with a branching factor of 16.There are some other SSS� algorithms by Hiromoto et al. (1987), Kraas (1990), and Shinghal and Shved(1991), and all of the work deals with how to parallelize work based on the OPEN list. Although the workhas shown some promise in eliminating the di�culties of dealing with an ordered problem heap, all of thework on handling the OPEN list has been made obsolete. This is due to the revelation that SSS� can beimplemented as a series of null-window �� calls, using a transposition table in the place of the OPEN list(Plaat, 1995).3.2 Parallel Search based on ERSteinberg and Solomon (1990) presented the ER method of searching game-trees. ER stands for Evaluate-Refute, and it attempts to evaluate some mandatory work before attempting to refute the other moveswithin the tree. At a node to be evaluated (an e-node) within the tree, the ER algorithm evaluates theelder grandchildren (concurrently, if possible), and then chooses the child with largest elder grandchild tobe the e-child. This e-child is evaluated, and then the other children of the e-node are refuted. The methodis less e�cient at searching trees than the �� algorithm since it misses some deep cuto�s. Furthermore, thealgorithm was not tested with iterative deepening or minimal windows when refuting e-nodes.The ER method and PV-Split were implemented as problem-heap algorithms on a Sequent Symmetrymultiprocessor. Steinberg and Solomon found that they achieved a better e�ciency with the parallel ERalgorithm than with PV-Split. The ER method achieved a speedup of 10 with 16 processors, and a speedupof 14.7 with 27 processors.



12 ICCA Journal Submission June 12, 19963.3 Theoretical Parallel Search MethodsThere are a number of theoretical algorithms that, to the author's knowledge, haven't been programmed.Karp and Zhang (1989) and Alth�ofer (1993) have proposed algorithms that will yield linear speedups in thenumber of processors, given trees of O(N logN ) or O(N ) depth, respectively. Broder et al. (1990) haveshown that for any parallel tree searching algorithm, there exists a tree instance that does not run in polylogparallel run-time. Broder et al. also show and prove an upper bound on the run-time of the ParHopealgorithm.4 CONCLUSIONSThe taxonomy given in section 2 shows that there are a number of algorithms which are similar to oneanother. There are only subtle di�erences between a large number of the ��-based algorithms. Most ofthese di�erences are due to the di�erent architectures and game trees studied. This comparison is easilymade through the separation of the implementation and algorithmic details.As the number of processors available to the programmers has increased, dynamic algorithms have takenthe place of the earlier algorithms which o�ered limited parallelism on a large number of processors. Itis the author's belief that speculative parallelism is necessary to yield near-linear performance on parallelarchitectures, and is the subject of on-going research at the University of Alberta.5 ACKNOWLEDGEMENTSThe author would like to thank Yngvi Bjornsson, Rainer Feldmann, Yaoqing Gao, Andreas Junghanns,Tony Marsland, Aske Plaat, Jonathan Schae�er, Jean-Christophe Weill and the editorial sta� of the ICCAJournal for their helpful comments on the revisions of this paper. The author is being funded by an NSERCPostgraduate Scholarship, for which the author is extremely grateful.The author would appreciate any corrections, suggestions and improvements that you may have.ReferencesAkl, S. G., Barnard, D. T., and Doran, R. J. (1982). Design, Analysis and Implementation of a ParallelTree Search Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-4,No. 2, pp. 192{203.Alth�ofer, I. (1993). A Parallel Game Tree Search Algorithm with a Linear Speedup. Journal of Algorithm,Vol. 15, pp. 175{198.Bal, H. E. and van Renesse, R. (1986). A Summary of Parallel Alpha-Beta Search Results. ICCA Journal,Vol. 9, No. 3, pp. 146{149.Baudet, G. M. (1978). The Design and Analysis of Algorithms for Asynchronous Multiprocessors. Ph.D.thesis, Carnegie Mellon University, Pittsburgh, PA. Available as Tech. Rept. CMU-CS-78-116.Brockington, M. G. and Schae�er, J. (1996). APHID Game-Tree Search. Presented at Advances in Com-puter Chess 8, Maastricht.Broder, A., Karlin, A., Raghavan, P., and Upfal, E. (1990). On the Parallel Complexity of EvaluatingGame-Trees. Technical Report RR RJ 7729, IBM T. J. Watson Research Center, Yorktown Heights, NewYork.



A Taxonomy of Parallel Game-Tree Search Algorithms 13Brudno, A. L. (1963). Bounds and Valuations for Abridging the Search for Estimates. Problems of Cy-bernetics, Vol. 10, pp. 225{241. Translation of Russian original in Problemy Kibernetiki, 10:141{150, May1963.Campbell, M. S. (1981). Algorithms for the Parallel Search of Game Trees. M.Sc. thesis, Department ofComputing Science, University of Alberta, Edmonton, Alta. Available as Tech. Rep. TR 81-8, Dept. ofComputing Science.Campbell, M. S. and Marsland, T. A. (1983). A Comparison of Minimax Tree Search Algorithms. Arti�cialIntelligence, Vol. 20, pp. 347{367.Ciancarini, P. (1994). Distributed Searches: A Basis for Comparison. ICCA Journal, Vol. 17, No. 4, pp.194{206.Cung, V.-D. (1994). Contribution �a l'Algorithmique Non Num�erique Parall�ele: Exploration d'Espaces deRecherche. Ph.D. thesis, Universit�e Paris VI.David, V. (1993). Algorithmique parall�ele sur les arbres de d�ecision et raisonnement en temps contraint -Etude et application au minimax. Ph.D. thesis, ENSAE, Toulouse, France.Diderich, C. G. (1992). Evaluation des Performances de l'Algorithme SSS* avec Phases de Synchronisationsur une Machine Parall�ele �a M�emoires Distribu�ees. Technical Report LITH-99, Swiss Federal Institute ofTechnology, Lausanne, Switzerland.Feldmann, R. (1993). Spielbaumsuche mit massiv parallelen Systemen. Ph.D. thesis, Universit�at-Gesamthochschule Paderborn, Paderborn, Germany.Feldmann, R., Monien, B., Mysliwietz, P., and Vornberger, O. (1989). Distributed Game Tree Search.ICCA Journal, Vol. 12, No. 2, pp. 65{73.Felten, E. W. and Otto, S. W. (1988). Chess on a Hypercube. In G. Fox, editor, Proceedings of The ThirdConference on Hypercube Concurrent Computers and Applications, volume II-Applications, pp. 1329{1341,Passadena, CA.Ferguson, C. and Korf, R. E. (1988). Distributed Tree Search and its Application to Alpha-Beta Pruning.In Proceedings of AAAI-88, pp. 128{132, Saint Paul, MN.Finkel, R. A. and Fishburn, J. P. (1982). Parallelism in Alpha-Beta Search. Arti�cial Intelligence, Vol. 19,No. 1, pp. 89{106.Hiromoto, U., Masafumi, Y., Masaharu, I., and Toshihide, I. (1987). Parallel Searches of Game Trees.Systems and Computers in Japan, Vol. 18, No. 8, pp. 97{109.Hsu, F.-h. (1990). Large Scale Parallelization of Alpha-Beta Search: An Algorithmic and ArchitecturalStudy. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, U.S.A. Also Tech. Rept. CMU-CS-90-108,Carnegie Mellon University, Feb. 1990.Hyatt, R. M. (1988). A High-Performance Parallel Algorithm To Search Depth-Frist Game Trees. Ph.D.thesis, University of Alabama, Birmingham, U.S.A.Hyatt, R. M., Suter, B. W., and Nelson, H. L. (1989). A Parallel Alpha/Beta Tree Searching Algorithm.Parallel Computing, Vol. 10, No. 3, pp. 299{308.Karp, R. M. and Zhang, Y. (1989). On Parallel Evaluation of Game Trees. In Proceedings of SPAA '89,pp. 409{420, New York, NY. ACM Press.Knuth, D. E. and Moore, R. W. (1975). An Analysis of Alpha-Beta Pruning. Arti�cial Intelligence, Vol. 6,No. 3, pp. 293{326.Kraas, H.-J. (1990). Zur Parallelisierung des SSS*-Algorithmus. Ph.D. thesis, TU of Braunschweig, Braun-schweig, Germany.Kuszmaul, B. C. (1994). Synchronized MIMD Computing. Ph.D. thesis, Massachusetts Institute of Tech-nology, Cambridge, MA.



14 ICCA Journal Submission June 12, 1996Leifker, D. B. and Kanal, L. N. (1985). A Hybrid SSS*/Alpha-Beta Algorithm for Parallel Search of GameTrees. In Proceedings of IJCAI-85, pp. 1044{1046.Lindstrom, G. (1983). The Key Node Method: A Highly-Parallel Alpha-Beta Algorithm. Technical ReportUUCS 83-101, University of Utah, Department of Computer Science, Salt Lake City, UT.Lu, C.-P. P. (1993). Parallel Search of Narrow Game Trees. M.Sc. thesis, Department of ComputingScience, University of Alberta, Edmonton, Canada.Marsland, T. A. (1983). Relative E�ciency of Alpha-Beta Implementations. In Proceedings of IJCAI-83,pp. 763{766, Karlsruhe, Germany.Marsland, T. A. and Campbell, M. S. (1982). Parallel Search of Strongly Ordered Game Trees. ACMComputing Surveys, Vol. 14, No. 4, pp. 533{551.Marsland, T. A. and Gao, Y. (1995). Speculative Parallelism Improves Search? Technical Report 95{05,Department of Computing Science, University of Alberta, Edmonton, Alta.Marsland, T. A., Olafsson, M., and Schae�er, J. (1985). Multiprocessor Tree-Search Experiments. InD. Beal, editor, Advances in Computer Chess 4, pp. 37{51. Permagon Press, Oxford.Marsland, T. A. and Popowich, F. (1985). Parallel Game-Tree Search. IEEE Transactions on PatternAnalysis and Machine Intelligence, Vol. PAMI-7, No. 4, pp. 442{452.Newborn, M. M. (1985). A Parallel Search Chess Program. In Proceedings of the ACM Annual Conference,pp. 272{277.Newborn, M. M. (1988). Unsynchronized Iterative Deepening Parallel Alpha-Beta Search. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, Vol. PAMI-10, No. 5, pp. 687{694.Plaat, A., Schae�er, J., Pijls, W., and de Bruin, A. (1995). Best-First Fixed-Depth Game-Tree Search inPractice. In Proceedings of IJCAI-95, volume 1, pp. 273{279, Montreal, Quebec.Plaat, A., Schae�er, J., Pijls, W., and de Bruin, A. (1996). Best-First Fixed-Depth Minimax Algorithms.To appear in Arti�cial Intelligence.Reinefeld, A. (1983). An Improvement to the Scout Tree-Search Algorithm. ICCA Journal, Vol. 6, No. 4,pp. 4{14.Schae�er, J. (1989). Distributed Game-Tree Searching. Journal of Parallel and Distributed Computing,Vol. 6, No. 2, pp. 90{114.Shinghal, R. and Shved, S. (1991). Proposed Modi�cations to Parallel State Space Search of Game Trees.International Journal of Pattern Recognition and Arti�cial Intelligence, Vol. 5, No. 5, pp. 809{833.Steinberg, I. R. and Solomon,M. (1990). Searching GameTrees in Parallel. In Proccedings of the 1990 Inter-national Conference on Parallel Processing (vol. 3), pp. 9{17, University Park, PA. Penn. State UniversityPress.Stockman, G. C. (1979). A Minimax Algorithm Better than Alpha-Beta? Arti�cial Intelligence, Vol. 12,pp. 179{196.Vornberger, O. and Monien, B. (1987). Parallel Alpha-Beta versus Parallel SSS*. In Proceedings of theIFIP Conference on Distributed Processing, pp. 613{625. North Holland.Weill, J.-C. (1995). Programmes d'�echecs de championnat: architecture logicielle synth�ese de fonctionsd'�evaluations, parall�elisme de recherche. Ph.D. thesis, Universit�e Paris 8.Weill, J.-C. (1996). The ABDADA Distributed Minimax-Search Algorithm. ICCA Journal, Vol. 19, No. 1,pp. 3{16.


