Biceps Load Test II: A Clinical Test for SLAP Lesions of the Shoulder

Seung-Ho Kim, M.D., Ph.D., Kwon-Ick Ha, M.D., Ph.D., Jin-Hwan Ahn, M.D., Ph.D., Sang-Hyun Kim, M.D., and Hee-Joon Choi, M.D.

Purpose: The purpose of this report is to describe the biceps load test II for evaluating the superior labral anterior and posterior (SLAP) lesions. Type of Study: This is a double-blind study in consecutive data, which includes diagnostic accuracy of a test using sensitivity, specificity, and interexaminer reliability. Methods: In the supine position, the arm is elevated to 120° and externally rotated to its maximal point, with the elbow in the 90° flexion and the forearm in the supinated position. The patient is asked to flex the elbow while resisting the elbow flexion by the examiner. The test is considered positive if the patient complains of pain during the resisted elbow flexion. The test is negative if pain is not elicited or if the pre-existing pain during the elevation and external rotation of the arm is unchanged or diminished by the resisted elbow flexion. A prospective study was performed in 127 patients to evaluate the diagnostic accuracy for the biceps load test II. Two independent examiners were assigned to perform the new diagnostic test. The results of the tests were confirmed during the arthroscopic examination. Results: A positive test result in 38 subjects correlated with a SLAP lesion in 35 patients and an intact biceps-superior labrum in 3 patients. A negative test result in 89 patients correlated with an intact superior labrum complex in 85 patients, whereas 4 patients with a negative test result had a type II SLAP lesion. The biceps load test II had a sensitivity of 89.7%, a specificity of 96.9%, a positive-predictive value of 92.1%, a negative-predictive value of 95.5%, and a kappa coefficient of 0.815. The abduction and external rotation of the shoulder during the test changes the relative direction of the biceps fiber in a position of oblique angle to the posterosuperior labrum. The resisted contraction of the biceps increases the pain generated on the superior labrum that is already peeled off the glenoid margin in the abducted and externally rotated position. Conclusions: The biceps load test II is an effective diagnostic test for SLAP lesions. Key Words: SLAP lesion—Biceps load test II—Shoulder.

Since the description of the superior labral lesions in throwing athletes by Andrew et al. and the introduction of the acronym SLAP (superior labrum anterior and posterior) lesion by Snyder et al., the role of this biceps–superior labral complex in the shoulder mechanism has become better understood. An increasing number of publications have focused on the anatomy, function, diagnosis, and results of treatment. However, the symptoms and signs of the SLAP lesions are often ill defined. Although several physical examinations for SLAP lesions have been described, differential diagnosis between the SLAP lesion and rotator cuff impingement or acromioclavicular joint abnormalities are not easy with the clinical presentation of the patients.

Our department had reported a new diagnostic test (biceps load test of Kim) for SLAP lesions in shoulders with recurrent anterior dislocation. As a continuum to this test, we have developed a new physical examination for isolated SLAP lesions of the shoulder. The purpose of the present study is to describe
this new diagnostic test for isolated SLAP lesions of the shoulder. The test was named biceps load test II as a counterpart of the original biceps load test for SLAP lesions in shoulders with recurrent anterior dislocation.

METHODS

A prospective study was performed in 127 patients to evaluate the diagnostic accuracy for the biceps load test II. Of the 127 patients, 89 were men and 38 women, with the average age being 30.6 years (range, 15 to 52 years). Ninety-one patients (71.7%) had a dominant shoulder involved and 36 (28.3%) were involved in athletic activities such as baseball, tennis, basketball, soccer, volleyball, and swimming. The patients were experiencing shoulder pain and underwent arthroscopic examination during the surgery. Patients with a history of either a shoulder dislocation or a stiff shoulder were excluded from the study. Two independent examiners with no knowledge of the results of the other clinical, radiographic, and magnetic resonance imaging data were assigned to perform the new diagnostic test. The results of the tests were confirmed during the arthroscopic examination.

Biceps Load Test II

The test is conducted with the patient in the supine position. The examiner sits adjacent to the patient on the same side as the shoulder and grasps the patient’s wrist and elbow gently. The arm to be examined is elevated to 120° and externally rotated to its maximal point, with the elbow in the 90° flexion and the forearm in the supinated position. The patient is asked to flex the elbow while resisting the elbow flexion by the examiner (Fig 1). The test is considered positive if the patient complains of pain during the resisted elbow flexion and also considered positive if the patient complains of more pain from the resisted elbow flexion regardless of the degree of pain before the elbow flexion maneuver. The test is negative if pain is not elicited by the resisted elbow flexion or if the pre-existing pain during the elevation and external rotation of the arm is unchanged or diminished by the resisted elbow flexion.

Statistics

The reliability of the biceps load test II was evaluated by determining its accuracy and reproducibility. The test’s accuracy was assessed by using the predictive value, sensitivity, and specificity. The reproducibility of the test was assessed by comparing the test results of 2 independent examiners. The kappa coefficient was used to determine the interobserver variation of the 2 examiners. The SPSS program (SPSS, Chicago, IL) was used for all analysis, with the statistical significance level set at $P = .05$.

RESULTS

Of the 127 shoulders, the biceps load test II was positive in 38 and negative in 89. The arthroscopic examination revealed type II SLAP lesions in 39 shoulders. Of the 38 shoulders with a positive test result, 35 had a type II SLAP lesion while the other 3 had an intact superior labrum. Of the 89 shoulders with a negative test result, 4 had type II SLAP lesions, whereas the other 85 shoulders had other abnormalities such as subacromial impingement or a rotator cuff tear. The accuracy of the biceps load test II regarding the detection of the type II SLAP lesion was revealed
with a sensitivity of 89.7%, a specificity of 96.6%, a positive-predictive value of 92.1%, and a negative-predictive value of 95.5%. The kappa coefficient for the interexaminer reliability was 0.815 (Table 1).

DISCUSSION

The biceps–superior labral complex is recognized as a central part of the shoulder mechanism. Because this complex has an important role in the stabilizing function of the glenohumeral joint, proper diagnosis of the lesion is considered critical for appropriate treatment. However, an accurate clinical diagnosis of the SLAP lesion can be difficult. Although several testing procedures have been developed to evaluate the SLAP lesion, none can be considered completely predictive, nor have any of these tests ever been documented in regard to the biomechanical basis of the tests.

A clinical test for SLAP lesions in shoulders with recurrent anterior dislocation, the biceps load test of Kim, has been reported as a dynamic test that is a function of the intact biceps–superior labral complex and explained by the 3 mechanisms. Contraction of the biceps muscle against resistance in the abducted and externally rotated position eliminates the standard apprehension of patients with unstable shoulders with the intact biceps–superior complex, because of partial head reduction by the concavity compression mechanism, internal rotation force, and load-sharing function of the biceps–superior labral complex.

A clinical test for SLAP lesions in shoulders with recurrent anterior dislocation, the biceps load test of Kim, has been reported as a dynamic test that is a function of the intact biceps–superior labral complex and explained by the 3 mechanisms. Contraction of the biceps muscle against resistance in the abducted and externally rotated position eliminates the standard apprehension of patients with unstable shoulders with the intact biceps–superior complex, because of partial head reduction by the concavity compression mechanism, internal rotation force, and load-sharing function of the biceps–superior labral complex.

A clinical test for SLAP lesions in shoulders with recurrent anterior dislocation, the biceps load test of Kim, has been reported as a dynamic test that is a function of the intact biceps–superior labral complex and explained by the 3 mechanisms. Contraction of the biceps muscle against resistance in the abducted and externally rotated position eliminates the standard apprehension of patients with unstable shoulders with the intact biceps–superior complex, because of partial head reduction by the concavity compression mechanism, internal rotation force, and load-sharing function of the biceps–superior labral complex.

The biceps load test II is slightly different from the original biceps load test of Kim (biceps load test I) in terms of the position of the arm and definition of a positive test. Rodosky et al. reported that abduction and external rotation of the shoulder during the cocking phase of the throwing stresses the origin of the long head of the biceps tendon and its attachment to the posterior labrum. Glousman et al. also demonstrated in their dynamic electromyographic studies that the biceps is extremely active in throwing athletes when the shoulder is placed in an abducted and externally rotated position. During the biceps load test II, an active contraction of the biceps against resistance further stresses the attachment of the biceps superior labral complex, by which the pain is elicited in the shoulder with the type II SLAP lesion. Furthermore, the biceps load test II can be explained by the recent biomechanical experiment by Kuhn et al. In the cadaveric study, the biceps–superior labral complex failed under significantly less force for the maximal cocking position with the arm in 125° of external rotation, 60° of glenohumeral abduction, and in the scapular plane, than in the early deceleration position with the arm in 10° of internal rotation, 60° of glenohumeral abduction, and in 16° of horizontal adduction. They also observed that type II SLAP lesions occurred more frequently in the maximal cocking position. This study suggests that the position of the biceps tendon during load application is a critical component to the pathogenesis of type II SLAP lesions.

The biceps load test II is slightly different from the original biceps load test of Kim (biceps load test I) in terms of the position of the arm and definition of a positive test. Rodosky et al. reported that abduction and external rotation of the shoulder during the cocking phase of the throwing stresses the origin of the long head of the biceps tendon and its attachment to the posterior labrum. Glousman et al. also demonstrated in their dynamic electromyographic studies that the biceps is extremely active in throwing athletes when the shoulder is placed in an abducted and externally rotated position. During the biceps load test II, an active contraction of the biceps against resistance further stresses the attachment of the biceps superior labral complex, by which the pain is elicited in the shoulder with the type II SLAP lesion. Furthermore, the biceps load test II can be explained by the recent biomechanical experiment by Kuhn et al. In the cadaveric study, the biceps–superior labral complex failed under significantly less force for the maximal cocking position with the arm in 125° of external rotation, 60° of glenohumeral abduction, and in the scapular plane, than in the early deceleration position with the arm in 10° of internal rotation, 60° of glenohumeral abduction, and in 16° of horizontal adduction. They also observed that type II SLAP lesions occurred more frequently in the maximal cocking position. This study suggests that the position of the biceps tendon during load application is a critical component to the pathogenesis of type II SLAP lesions. The biceps load test II can also be reproduced during the arthroscopic examination. As was reported by Burkhart as a peel-back mechanism, abduction and external rotation of the humeral head displaces the unstable biceps–superior labral complex away from the glenoid margin during the arthroscopic examination. We believe that because the elbow is fixed in the flexed position, the pain in the shoulder with a positive biceps load test II is elicited by the forceful traction of this displaced biceps–superior labral complex during the active contraction of the biceps muscle against resistance (Fig 2).

The fibers of the biceps tendon blend with the large portion of the posterosuperior labrum. The direction of the biceps tendon fibers is parallel to that of the posterosuperior labrum. It would seem that glenohumeral positions that place the biceps in a position different than the orientation of the fibers that comprise the biceps–superior labral complex may increase the likelihood of failure. The abduction and external rotation of the shoulder during the biceps load test II changes the relative direction of the biceps fiber in a position that is of an oblique angle to the posterosuperior labrum. This change in the vector of the biceps force increases the pain generated on the superior labrum that is peeled off the glenoid margin during the

<table>
<thead>
<tr>
<th>Examinee I*</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>34</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>Negative</td>
<td>6</td>
<td>83</td>
<td>89</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>87</td>
<td>127</td>
</tr>
</tbody>
</table>

* Kappa value of crosstab between examiner I and II was 0.815.
resisted contraction of the biceps in the abducted and externally rotated position.

The biceps load test II is very sensitive and specific for SLAP lesions and has high positive- and negative-predictive values. Like the original biceps load test of Kim (biceps load test I), the biceps load test II also has high reproducibility between examiners, which is represented by the high kappa coefficient. In conclusion, the biceps load test II is an effective diagnostic test for shoulders with SLAP lesions that is supported by the proven biomechanical mechanism and is demonstrable during the arthroscopic surgery.

Acknowledgment: The authors gratefully appreciate Dr. Kay-Hyun Park for his work in the area of graphics in this study.

REFERENCES

