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Abstract

A new public key cryptosystem is presented that is provably secure
against adaptive chosen ciphertext attack. The scheme is quite prac-
tical, and the proof of security relies only on standard intractability
assumptions.

1 Introduction

In this paper, we present and analyze a new public key cryptosystem that
is provably secure against adaptive chosen ciphertext attack (as defined by
Rackoff and Simon [13]). The scheme is quite practical, requiring just a few
exponentiations over a group, and the application of a hash function. More-
over, the proof of security relies only on standard intractability assumptions,
namely, the hardness of the Diffie-Hellman decision problem in the underly-
ing group, and the collision intractability of the hash function.



The hardness of the Diffie-Hellman decision problem is essentially equiv-
alent to the semantic security of the basic El Gamal encryption scheme [6].
Thus, with the additional assumption of a collision-resistant hash function,
and just a bit more computation, we get security against adaptive chosen
ciphertext attack, whereas the basic El Gamal scheme is completely insecure
against adaptive chosen ciphertext attack.

While there are several provably secure encryption schemes in the litera-
ture, they are all quite impractical. Also, there have been several practical
cryptosystems that have been proposed, but none of them have been proven
secure under standard intractability assumptions. The significance of our
contribution is that it provides a scheme that is provably secure and prac-
tical at the same time. There appears to be no other encryption scheme in
the literature that enjoys both of these properties simultaneously.

Chosen Ciphertext Security

The notion of semantic security (defined by Goldwasser and Micali [8]) cap-
tures the notion of security of a public key cryptosystem against chosen
plaintext attack. It is now generally accepted that this is a basic require-
ment of a good cryptosystem. However, it also known that other, stronger
attacks are possible, and moreover, security against these types of attacks
are necessary to ensure the security of many higher-level protocols built on
top of the cryptosystem.

A chosen ciphertext attack is one in which the adversary has access to
a “decryption oracle,” allowing the adversary to decrypt ciphertexts of his
choice. Typically, one distinguishes between a weak form of this attack,
known as a lunch-time attack (defined by Naor and Yung [12]), and the
strongest possible form, known as an adaptive chosen ciphertext attack (de-
fined by Rackoff and Simon [13]). In a lunch-time attack, the adversary
queries the decryption oracle some number of times, after which, he obtains
the target ciphertext that he wishes to cryptanalyze, and is not allowed to
query the decryption oracle further. In an adaptive attack, the adversary
may continue to query the decryption oracle after obtaining the target ci-
phertext, subject only to the (obviously necessary) restriction that queries
to the oracle may not be identical to the target ciphertext.

Security against adaptive chosen ciphertext attack also implies non-
malleability (defined by Dolev, Dwork and Naor [5]), meaning that an adver-



sary cannot take an encryption of some plaintext and “massage” it into an
encryption of a different plaintext that is related in some interesting way to
the original plaintext.

Provably Secure Schemes. For many years, no public key system was shown to
be secure under a chosen ciphertext attack. Naor and Yung [12] presented the
first scheme provably secure against lunch-time attacks. Subsequently, Dolev,
Dwork, and Naor [5] presented a scheme that is provably secure against
adaptive chosen ciphertext attack.

Unfortunately, all of the known schemes provably secure under stan-
dard intractability assumptions are completely impractical (albeit polyno-
mial time), as they rely on general and expensive constructions for non-
interactive zero-knowledge proofs.

Practical Schemes. Damgard [4] proposed a practical scheme that he conjec-
tured to be secure against lunch-time attacks; however, this scheme is not
known to be provably secure, and is in fact demonstrably insecure against
adaptive chosen ciphertext attack. Zheng and Seberry [16] propose practical
schemes that are conjectured to be secure against chosen ciphertext attack,
but again, no proof based on standard intractability assumptions is known.
Lim and Lee [10] also proposed practical schemes that were later broken by
Frankel and Yung [7].

In a different direction, Bellare and Rogaway [1, 2| have presented prac-
tical schemes that are provably secure against adaptive chosen ciphertext
attack in an idealized model of computation where a hash function is repre-
sented by a random oracle.

While a proof of security in the random oracle model is certainly prefer-
able to no proof at all, a proof in the “real world” would be even better.

Indeed, recent work by Canetti, Goldreich, and Halevi [3] show that there
are cryptographic schemes that are secure in the random oracle model, but
insecure in the real world no matter what hash function is chosen. It is not
yet clear what the implications of these results are. While it still seems that
security in the random oracle model does give good heuristic evidence that
a natural scheme is secure in the real world, these results certainly cast a bit
of a cloud on the random oracle model, providing extra motivation to seek
out practical schemes that are provably secure under standard intractability
assumptions.



2 The Basic Scheme

We assume that we have a group G of prime order ¢, where ¢ is large. We
also assume that cleartext messages are (or can be encoded as) elements of
G (although this condition can be relaxed, as will be discussed later). We
also need a hash function H that hashes long strings to elements of Z,.

Key Generation. The key generation algorithm runs as follows. Random
elements ¢;, go € GG are chosen, and random elements

T, T, Y1, Y2, 21, 22 € Ly

are also chosen. Next, the group elements

T1 T2 d Y1 Y2 21 422

c=g7'9y", d=9i'95", h =995
are computed. The public key is (g1, ¢2,¢,d, h), and the private key is
(T1, T2, Y1, Ya, 21, 22).
Encryption. Given a message m € (G, the encryption algorithm runs as
follows. First, it chooses r € Z, at random. Then it computes
u; = 911"7 Uy = 957 € —= h'rma a = H(u17u27€)7 v=cd"
The ciphertext is
(w1, ug, €,0).

Decryption. Given a ciphertext (ug,us,e,v), the decryption algorithm runs
as follows. Tt first computes o = H(uy, us, e), and tests if

T1,,T2(, Y1, Y2\ __
uitug? (uf uy?)® = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs
m = e/(ui'ui?).

We should verify that the decryption of an encryption of a message yields
the message. Since u; = g7 and uy = g5, we have

xr1 xro __ rry, ,rro __ ‘s
Uy U™ =Gy Gg = = C .

Likewise, u{'u3* = d" and ui'u3* = h" Therefore, the test performed by the
decryption algorithm will pass, and the output will be e/h" = m.
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3 Proof of Security
In this section, we prove the following theorem.

Theorem 1 The above cryptosystem is secure against adaptive chosen ci-
phertext attack assuming that (1) the hash function H is collision resistant,
and (2) the Diffie-Hellman decision problem is hard in the group G.

Before going into the proof, we recall the meaning of the technical terms
in the above theorem.

Security against adaptive chosen ciphertert attack. Security is defined via
the following game played by the adversary.

First, the key generation algorithm is run, with a security parameter as
input. Next, the adversary makes arbitrary queries to a “decryption oracle,”
decrypting ciphertexts of his choice.

Next the adversary chooses two messages, mg, m;, and sends these to
an “encryption oracle.” The encryption oracle chooses a bit b € {0,1} at
random, and encrypts m;. The corresponding ciphertext is given to the
adversary (the internal coin tosses of the encryption oracle, in particular b,
are not in the adversary’s view).

After receiving the ciphertext from the encryption oracle, the adversary
continues to query the decryption oracle, subject only to the restriction that
the query must be different than the output of the encryption oracle.

At the end of the game, the adversary outputs & € {0,1}, which is
supposed to be the adversary’s guess of the value b. If the probability that
b =bis 1/2 + ¢, then the adversary’s advantage is defined to be e.

The cryptosystem is said to be secure against adaptive chosen ciphertext
attack if the advantage of any polynomial-time adversary is negligible.

Collision resistant hash functions. A family of hash functions is collision
resistant if given a random hash function H in the family, it is infeasible to
find a collision, i.e., two strings x # y such that H(z) = H(y).

The Diffie-Hellman Decision Problem. Let G be a group of prime order g,
and consider the following two distributions:

e the distribution R of quadruples (g1, go, u1, us), where gy, gs, uy, us are
chosen at random.



e the distribution D of quadruples (g1, g2, g7, ¢5), where g1,go € G are
chosen at random, and r € Z, is chosen at random.

An algorithm that solves the Diffie-Hellman decision problem is a statisti-
cal test that can distinguish the two distributions. That is, given a quadruple
coming from one of the two distributions, it should output 0 or 1, and there
should be a non-negligible difference between (a) the probability that it out-
puts a 1 given an input from R, and (b) the probability that it outputs a 1
given an input from D. The Diffie-Hellman decision problem is hard if there
is no such polynomial-time statistical test.

Related to the Diffie-Hellman decision problem is the Diffie-Hellman prob-
lem (given g, ¢” and ¢¥, compute ¢”¥), and the discrete logarithm problem
(given g and ¢”, compute ).

There are obvious polynomial-time reductions from the Diffie-Hellman de-
cision problem to the Diffie-Hellman problem, and from the Diffie-Hellman
problem to the discrete logarithm problem, but reductions in the reverse di-
rection are not known. Moreover, these reductions are essentially the only
known methods of solving the Diffie-Hellman or Diffie-Hellman decision prob-
lems. All three problems are widely conjectured to be hard, and have been
used as assumptions in proving the security of a variety of cryptographic
protocols. Some heuristic evidence for the hardness of all of these problems
is provided in [14], where it is shown that they are hard in a certain natural,
structured model of computation. See [15, 11| for further applications and
discussion of the Diffie-Hellman decision problem.

It is perhaps worth pointing out that the hardness of the Diffie-Hellman
decision problem is equivalent to the security of the basic El Gamal encryp-
tion scheme against chosen message attack. Recall that in the basic El Gamal
scheme, we encrypt a message m € G as (¢g", h"m), where h is the public key
of the recipient whose secret key is s with A = ¢°. A chosen message attack is
equivalent to a chosen ciphertext attack without access to a decryption oracle
(i.e., it is a passive attack). On the one hand, if the Diffie-Hellman decision
problem is hard, then the group element h" could be replaced by a random
group element without changing significantly the behavior of the attacker;
however, if we perform this substitution, the message m is perfectly hidden,
which implies security. On the other hand, if the Diffie-Hellman decision
problem can be efficiently solved, we can feed the pair (1,m), with m € G
random, to the encryption oracle; then, if (u,v) is the ciphertext, we feed



(g, h,u,v) to a statistical test for the Diffie-Hellman decision problem. This
can be used to tell if 1 or m was encrypted, since in the first case, (g, h, u,v)
comes from D, and in the second case, it comes from R.

It is also worth pointing out here that the basic El Gamal scheme is
completely insecure against adaptive chosen ciphertext attack. Indeed, given
an encryption (u, v) of a message m, we can feed the (u, v-g) to the decryption
oracle, which gives us m - g.

Proof of Theorem

To prove the theorem, we will assume that there is an adversary that can
break the cryptosystem, and show how to use this adversary to construct a
statistical test for the Diffie-Hellman decision problem.

For the statistical test, we are given (g1, g2, u1, us) coming from either
the distribution R or D. At a high level, our construction works as follows.
We build a simulator that simulates the joint distribution consisting of ad-
versary’s view in its attack on the cryptosystem, and the bit b generated
by the decryption oracle (which is not a part of the adversary’s view). It
will be clear from the construction that if the input happens to come from
D, the simulation of this joint distribution is perfect, and so the adversary
has a non-negligible advantage. We then show that if the input happens to
come from R, then the adversary’s view is essentially independent of b, and
therefore the adversary’s advantage is negligible. This immediately implies
a statistical test distinguishing R from D.

We now give the details of the simulator. The input to the simulator is
(g1, g2, u1, uz). The simulator runs the key generation algorithm, using the
given g, go. More specifically, the simulator chooses

T1, T2, Y1, Y2, 21, 22 € Ly

at random, and computes

c=97"95>, d=g{'93", h=g'93.

The public key that the adversary sees is (g1, go, ¢, d, h). The simulator knows
the corresponding private key (1, %9, Y1, Yo, 21, 22)-

The simulator answers decryption queries as in the actual attack, which
it can do since it knows the private key.



We now describe the simulation of the encryption oracle. Given mg, mq,
the simulator chooses b € {0, 1} at random, and computes

— 9”1, R — _ %1, Y1, Y2\«
e = uftud?my, o = H(uj,ug,e), v=uitus?(ui'us’)?,
and outputs
(ulau%e;v)'

That completes the description of the simulator. As we will see, when the
input to the simulator comes from D, the output of the encryption oracle is
a perfectly legitimate ciphertext; however, when the input to the simulator
comes from R, the output of the decryption oracle will not be legitimate, in
the sense that log, u; # log,, us. This is not a problem, and indeed, it is
crucial to the proof of security.

First, consider the joint distribution of the adversary’s view and the bit
b when the input comes from the distribution D. Say u; = g] and uy = ¢5.
Then it is clear that u{*u3? = ¢", u¥'uy* = d", and u$'u3* = h". From this is
is clear that the joint distribution of the adversary’s view and b is identical
to that in the actual attack.

Second, consider the more interesting case of the distribution of the ad-
versary’s view and the bit b when the input comes from R. We want to
show that the adversary’s view and b are essentially independent. This ar-
gument will be purely information theoretic, except that it will rely on the
assumption that the adversary cannot find a collision in the hash function
H.

First, some notation and terminology. Let log(:) denote the logarithm to
the base g1, and let w = log go. Let u; = ¢7* and uy = ¢;""*. We may assume
that r; # ry, since this occurs with overwhelming probability. Also, let us
define a tuple (u},u, e, v') € G* to be a “valid ciphertext” if there exists
r' € Z, such that v} = g} and v, = g5 . Otherwise, we will say it is an
“invalid ciphertext.”

Claim 1. If the decryption oracle rejects all invalid ciphertexts during the
attack, then b is independently distributed from the adversary’s view.

To see this, consider the pair (z1,2;) € Z;. At the beginning of the
attack, this is a random point on the line z; + wzy = logh (this is the
information about (2, z2) leaked by the public key). Moreover, if the de-
cryption oracle only decrypts valid ciphertexts (u}, uj, €’,v'), then the adver-
sary obtains only linearly dependent relations r'z; + r'wze = r'logh (since
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(W)™ (uh)? = g7 *g5* = h"). Thus, no further information about (zy, z,)
is leaked.
Consider now the output of the simulated encryption oracle. We have

(tomo ) = (o ) (2)

Since the matrix in the above equation is nonsingular, for each choice of
b € {0,1}, there exists exactly one solution (21, z2). This implies that the
distribution of b is independent of the adversary’s view.

Claim 2. Assuming the adversary does not find a collision in H, then
with overwhelming probability, the decryption oracle will reject all invalid
ciphertexts during the attack.

To prove this claim, we study the distribution of (xy, za, y1,y2) € Zg as
seen by the adversary. From the adversary’s view, this is essentially a random
point on the line formed by intersecting the hyperplanes:

T + wre = loge,
y1 + wys = logd,

rx1 + wrary + (ar)y; + (qwry)zy = logw,

where o = H(uy,us,€e). The first two equations come from the public key,
and the third comes from the output of the encryption oracle.

Actually, the adversary obtains a bit more information about the point
(1,9, Y1, y2) when the decryption oracle rejects an invalid ciphertext, punc-
turing the above line at the point where it intersects a hyperplane. This only
makes a negligible difference in the distribution (xy, 22, y1, y2), which we can
safely ignore.

Also note that decrypting a valid ciphertext leaks no information about
the point (21, T2, Y1, Ya).

The above considerations imply that it suffices to consider what hap-
pens when the adversary presents a single invalid ciphertext (u},u), €', v") #
(u1,us, e, v) to the decryption oracle.

First, assume that (u),u),€e') = (uq,us,e). In this case, the hash values
are the same, but v’ # v implies that the decryption oracle will certainly
reject.

Second, assume that (u},usy,e') # (u1,u9,e). Let o = H(u),ul,e') and
a = H(uy,us,e). We are assuming, by collision intractability, that o/ # «.
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Let v} = g;" and u), = g, *, where r! # r} (since the ciphertext is invalid).
The decryption oracle will not reject if and only if ' = v”, where

" = (uh)™ (uh) ™ ((u))¥ (uh)?2) ™
Consider the 4 x 4 matrix

I w 0 0
0 0 1 w
r wre «Arg awTy
ry owry o'ry d'wr)

M=

It will suffice to show that M is nonsingular, because then even when the
adversary sees the first three entries of the vector

log e T
logd Y
log v |
log v" Yo

the last entry of this vector will be independent of the adversary’s view. But
then the probability that logv' = logv” is negligible, and when equality does
not hold, the decryption oracle will reject.

To finish the proof, we only need to show that M is nonsingular. But for
this, one can easily verify that

det(M) = w?(ry — 1) (rh — 7)) (e — ) # 0.
That completes the proof of security.

4 Implementation Details and Variations

In this section, we briefly discuss some implementation details and possible
variations of the basic encryption scheme.

(1) To define the group, we could choose a large prime p (say, 1024 bits
long), such that p—1 = 2¢, where ¢ is also prime. Then the group G would be
chosen to be the subgroup of index 2 in the group of units of integers modulo
p. If we restrict a message to be an element of the set {1,...,(p—1)/2}, then
we can “encode” a message by squaring it modulo p, giving us an element
in G. We can recover a message from its encoding by computing the unique
square root of its encoding modulo p that is in the set {1,...,(p —1)/2}.
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(2) This yields an implementation that is reasonably efficient. However, it
would be more practical to work in a smaller subgroup, and it would be nice
to have a more flexible and efficient encoding scheme.

To do this, one could do the following. Choose a 1024-bit prime p such
that p — 1 = gm, where ¢ is a prime with, say, 240-bits. The group G would
then be the subgroup of order ¢ in the multiplicative group of units modulo
p. Then, instead of encoding a message as a group element, one could just
view it as a bit string. The encryption algorithm would have to be modified,
replacing e = h"m with e = F(h") @ m, where F' is a function that maps
a random element of G (as encoded as an integer modulo p) to a bit string
of the same length as m that is computationally indistinguishable from a
random bit string of the same length.

One way to implement F'is as follows. First, hash the 1024-bit encoding
of A" down to, say, 56 bits using a random but publicly known 2-universal
hash function. The left-over hash lemma [9] would imply that these 56 bits
are fairly close to random. We can then use these 56 bits as a DES key,
and generate as many pseudo-random bits as we need using DES in “counter
mode.” The security proof would then require the assumption that DES is
a good pseudo-random permutation, which is quite reasonable. A more ex-
pensive pseudo-random bit generator could be used if a weaker intractability
assumption were desired.

(3) Another, somewhat more efficient variant of the scheme runs as follows.
The public key and encryption algorithm are the same, but the key generation
and decryption algorithms are slightly different. In this variation, the private

key consists of (w,x,y, 2) € Z;‘, and the public key is computed as

The test made by the decryption algorithm on input (uq, us, e, v) is:

wy = u¥ and v = uj v,
where o = H(uy,uq,€). If this test passes, the output of the encryption
algorithm is m = e/u?.
In the proof of security of this modified encryption scheme, one uses
the same simulator as in the original proof. When one does this, the key
generation and decryption algorithms of the simulator are no longer identical
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to those in the actual scheme, as they were in the original proof. Nevertheless,
using arguments similar to those in the original proof, one can show that when
the input to the simulator comes from the distribution D, the simulation is
nearly perfect. Thus, in this case, the adversary still has a nonnegligible
advantage. However, when the input to the simulator comes from R, the
adversary has advantage zero, just as in the original proof.
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