Massively Replicating Services in

Wide-Area Internetworks

Peter B. Danzig, Dante Del.ucia, Katia Obraczka

Computer Science Department

University of Southern California
Los Angeles;, CA 90089-0781
{danzig,dante kobraczk}@usc.edu
213-740-4780 (Office) 213-740-7285 (Fax)

Abstract

Current and future Internet services will provide a large,
rapidly evolving, highly accessed, yet autonomously man-
aged information space. Internet news, perhaps, is the
closest existing precursor to such services. It permits
autonomous updates, is replicated at thousands of au-
tonomously managed sites, and manages a large database.
It gets its performance through massive replication.

This paper proposes a scalable mechanism for repli-
cating wide-area, autonomously managed services. We
target replication degrees of tens of thousands of weakly-
consistent replicas. For efficiency, our mechanism probes
the network and computes a good logical topology over
which to send updates. For scalability, we organize repli-
cas into hierarchical replication groups, analogous to the
Internet’s autonomous routing domains. We argue that
efficient, massive replication does not have to rely on
internet multicast.

1 Introduction

Future Internet services will manipulate large, rapidly
evolving, highly accessed, yet autonomously managed
information spaces. To achieve adequate performance
services will have to replicate their data in thousands of
autonomous networks. For a current example of such
a service, take Internet news. Although it manages a
highly dynamic, flat, gigabyte database replicated at
thousands of autonomous administrative domains, it re-
sponds to queries in seconds. In contrast, archie [5], a
directory service for Internet FTP archives, can take fif-
teen minutes to answer queries against a much smaller
150 megabyte database. The difference between archie’s
and network news’ performance is massive replication;
there are only about 30 replicas of archie. We believe
that archie and other upcoming network services [3]
need support to replicate their data efficiently. To ap-

preciate this, we examine existing solutions to replicate
data. We will see that, although they are correct and
keep replicas consistent, they do not address the scale
and autonomy of today’s internetworks.

This paper extends an existing replication algorithm
to use hierarchical replication groups. It describes a tool
that we have built that delivers an update to all of a ser-
vice’s replicas in all of the replication groups. This tool,
which we call flood-d, floods updates along a logical,
update topology. For each replication group, flood-d
determines a logical update topology that attempts to
minimize the network cost and propagation time needed
to transmit updates.

Below, we examine existing replication algorithms.
We start by briefly overviewing directory consistency.

1.1 Directory Consistency

Group communication mechanisms for wide-area, mas-
sively replicated information services should not trade
availability and response time for globally ordered de-
livery [6]. On one hand, these services still need to guar-
antee that replicas eventually converge to a consistent,
updated state during both normal operation and when
recovering from network partition and server or link fail-
On the other hand, they need not compromise
their availability and response time and incur the ex-

ures.

tra overhead of strong consistency protocols. In fact,
Grapevine [17], the Global Name Service [11], and Net-
work News [9] use weak consistency replication mecha-
nisms. For these reasons we built our replication tool
to support asynchronous, weak-consistency replication
protocols.

1.2 What Current Algorithms Lack

Existing replication solutions do not scale because they
manage single, flat groups of replicas. Distributed sys-
tems that scale are organized hierarchically to exploit
locality of reference. Grapevine, the Clearinghouse, and
the Global Name Service do not scale because they man-
age a single, flat, group of replicas. While this is appro-
priate for applications with 20 to 30 replicas that oper-
ate within single administrative boundaries, it is unreal-
istic for wide-area, massively replicated services whose
replicas spread throughout the Internet’s thousands of
administrative domains.

We also argue that efficient replication algorithms
flood data between replicas. Note that the flooding
scheme that we propose differs from network-level flood-
ing as used by routing algorithms: flooding at the net-
work level simply follows the network’s physical topol-
ogy and flood updates throughout all physical links of
the network. Instead, the replicas flood data to their
logical neighbor or peer replicas. Although the word

“flooding” sounds inefficient, we claim that the application-

level flooding scheme that we propose does use network
bandwidth efficiently.

Because layered network protocols hide the network
topology from application programs, replicas themselves
cannot select their flooding peers to optimize use of the
network. Both Grapevine and its commercial succes-
sor, the Clearinghouse [13] ignore network and update
topology. The Global Name Service assumes the exis-
tence of a single administrator who hand-configures the
topology over which updates travel. The Global Name
Service administrator places replicas in a Hamiltonian
cycle, and reconfigures the ring when replicas are added
or removed. As the number of replicas grows and repli-
cas spread beyond single administrative boundaries, fre-
quently reconfiguring the ring gets prohibitively expen-
sive.

Internet news employs flooding to distribute updates
among its thousands of replicas. Like the Global Name
Service, NNTP site administrators hand-configure their
logical flooding topology. Since obtaining current phys-
ical topology information is difficult in today’s Internet,
system administrators frequently confer with one an-
other to plan changes in the logical flooding topology.
They try to keep up with the dynamics of the under-
lying physical topology, specially as the Internet’s scale
and complexity increase.

1.3 Internet Multicast

Most people think of internet multicast and reliable mul-
ticast transport protocols as good foundations on which

to build a massive data replication protocol.

IP multicasting [4] delivers best-effort datagrams to
a group of hosts sharing a single TP multicast address.
Because the network itself supports IP multicast, it has
access to the network routing database. IP multicas-
ting builds a minimum delay topology to transmit a
datagram packet to the group of recipients. It opti-
mizes delivery delay rather than link bandwidth utiliza-
tion. Currently, IP multicasting is limited to operate
within a single routing domain. It uses virtual point-
to-point links, or tunnels, to transmit multicast packets
between multicast routers in different routing domains.
Before transmitting multicast packets through a tun-
nel, the source multicast router encapsulates them, so
that they look like ordinary datagrams to intermediate
routers and subnets. Take for example the MBONE [2],
a semi-permanent, hand-configured virtual network that
was originally engineered to carry audio and video trans-
missions from IETF meetings to destinations around the
world. The MBONE consists of islands, such as multi-
cast LANs, that can directly support multicast routing
linked by tunnels.

Like all lower-level protocols, IP multicast relies on
transport-level protocols for reliability and sequencing.
For instance, real-time applications like voice and video
teleconferencing, which are delay-sensitive but can live
with data losses, are layered on top of UDP and Internet
multicast. A new transport protocol for multipartici-
pant real-time applications (RTP) [18] provides end-to-
end delivery for one or more real-time data flows. It as-
sumes an unreliable datagram service and does not pro-
vide reliable, ordered delivery. RTP can transfer data to
multiple destinations if the underlying network provides
a multicast service.

In contrast to sending real-time audio and video, up-
dating the database of an information service requires
reliable message delivery, crash recovery, and eventual
database consistency. A multipoint transport protocol
based on IP multicasting can not meet these stringent
requirements. In particular, it can not solve the consis-
tency problem raised when replicas temporarily crash
or when IP routers crash and lose state crucial to reli-
able, multipoint delivery. In such cases, the application
itself must re-establish consistency. Recall the end-to-
end argument in layered design [16]; functions that can
only be completely and correctly implemented by the
application should be moved into the application. In
our case, since each replica must keep its database con-
sistent, we let the replica manage reliable multipoint
delivery. For these reasons, our hierarchical replication
group consistency algorithm does not rely on a reliable,
multicast transport protocol, although it can exploit it
where available.

Recently, a new multicast transport protocol, Muse

[12], has been developed to multicast news articles on
the MBONE. Muse sends news articles as UDP packets
to the multicast group consisting of participating news
servers. Because Muse is not a reliable news propaga-
tion protocol, it must be used in conjunction with an-
other mechanism that performs reliability checks, such
as NNTP. According to its authors, making Muse a reli-
able news transport protocol would result in greatly lim-
iting its scalability because of retransmissions requests
from clients that lost or received corrupted articles.

1.4 Timestamped, Anti-Entropy Repli-
cation

Golding modified Grapevine’s consistency maintenance
protocol to eliminate its garbage collection problems
and use it as a replication algorithm. He named the
modified algorithm Timestamped Anti-Entropy (TSAE)
Protocol and used it to build a replicated, distributed
bibliographic database system [6]. Like other good repli-
cation algorithms, TSAE floods updates.

Periodically, a replica starts an anti-entropy sesston,
in which it selects a peer to exchange updates. Through
these anti-entropy sessions, the TSAE protocol ensures
that replicas eventually converge to a consistent state
during normal operation or when recovering from link
failures, replica failure, and network partitions. How-
ever, like the other replication mechanisms, TSAE was
not designed to scale to thousands of autonomous repli-
cas.

1.5 Outline

We propose a multi-point, hierarchical replication group
tool that extends the TSAE protocol to address scalabil-
ity and autonomy. The next section describes our repli-
cation tool, flood-d 1, and reviews the state it keeps.
It also describes how flood-d probes the physical net-
work during normal data exchange for later use. Sec-
tion 3 describes how flood-d computes logical update
topologies and shows some preliminary results. Section
4 presents simulation results that show how flood-d’s
state and time to propagate items grows with replica-
tion group size, replica failure rate, and parameters of

the TSAE algorithm.

1We copied the way UNIX daemons are named and called our
replication tool flood-d because it is implemented as an update
flooding daemon

2 Flood-d

Flood-d is designed with autonomy and scalability in
mind. It clusters replicas of a service into multiple, au-
tonomously administered replication groups imitating
the Internet’s administrative domain hierarchy. Orga-
nizing replicas into groups limits the size of the consis-
tency state that each replica keeps and minimizes the
time to reach a consistent state.

Flood-d’s multi-point communication layer guaran-
tees reliable delivery, although we recommend that in-
formation systems built on top of it should check for
inconsistency themselves. Grapevine did this final, end-
to-end check for a simple reason. It’s easier to recover
from inconsistency than it is to guarantee that every au-
tonomous system administrator properly configures his
replicas. Flood-d’s lower layer propagates updates from
peer to peer along end-to-end paths that it perceives are
good. We call the graph of these paths a logical update
topology.

Unlike Lampson’s Global Name Service, flood-d’s
logical topology is not restricted to a Hamiltonian cycle.
Flood-d builds k-connected topologies for resiliency. Re-
call that in a k-connected network [1], that at least k—1
nodes must break before the network is partitioned. The
ring topology connecting Global Name Service replicas
corresponds to a 2-connected topology where all edges
have equal cost. Flood-d measures available peer-to-
peer bandwidth and flood-d’s logical topology calcula-
tor tries to build a high bandwidth, update topology. It
also tries to limit the topology’s diameter, the maximum
number of hops that updates need to travel. This means
that flood-d’s 2-connected topologies are not cycles, but
more star-like. Hence, flood-d offloads logical topology
decisions from system administrators.

2.1 Implementation

When a replica receives data to propagate, it floods an
update message to replicas that are its logical neigh-
bors, according to the current logical topology. Occa-
sionally, a replica exchanges updates with one or more
non-neighbor replicas within its replication group.

Flood-d estimates available peer-to-peer bandwidth
when a replica sends (via TCP) an update to another
replica. Hence flood-d estimates the effective, flow-
controlled bandwidth between two replicas. If updates
are small, then propagation delay and TCP slow start
dominate link speed in this estimation, yielding higher
bandwidths to closer peers.

Any flood-d replica can initiate topology calculation.
It spawns a process that collects cost estimates from

Sites Groups

n Manag

Topology :nntpl -Wersion

Sl 1 i
nntpz

~ a0

Site: condesa |
sitename condesa
siteid 125.125.52.41:2001

hostname condesa
—port z0o01
t-port zooo

cn

ey

group-name nntpi
ping-period 100]

bandwidth-—period 100
update —period 150
estimates —period 100

Group: nntpl|

coordinates —115.0 34.0

rt—queue—length O

holding —queue 0

send_queue—length 0O

status down

senders

status | send—queus—length O

| siteia 125 125 52 532021

| sitename aiameds, |

Figure 1: Flood-d’s group monotoring tool.

the replicas in its group and then computes the all-pairs
shortest-paths between group members. Using this cost
matrix and the group’s desired connectivity (typically 2
or 3), it computes a new logical update topology and,
if the new topology is significantly better than the old,
distributes it to all the group members.

Topology update messages carry a sequence number
corresponding to the topology identifier, which replicas
use to order topology updates and detect duplicates.
Topology update messages also contain the new group
membership set. When a replica receives a topology
update, 1t floods the update according to the current
topology before committing the new topology.

Replica update messages also carry a topology se-
quence number. If a replica learns of an update from
one of its peers, but the update now carries a higher
topology sequence number,; it knows it must re-flood
the update as if it hadn’t received it before.

To join a replication group, a new replica copies a
neighbor’s database, and floods its existence to the rest
of the group. When a new member joins the group, a
topology calculation is spawned.

Figure 1 illustrates flood-d’s group monitoring tool.
Using this graphical interface to flood-d, group man-
agers can view the current membership list, as well as
information about individual sites. This tool also dis-
plays the current logical topology of a group from a spe-
cific site’s perspective.

2.2 Groups and Network Topology

Figure 2 illustrates the relationship between logical topolo-
gies and the underlying physical topologies. The left-
hand side of Figure 2 shows three replication groups and
their logical update topologies. The right-hand side of
Figure 2 shows the physical network topology and the
logical update topology built on top of it for the three
replication groups in the left-hand figure. The logical
topology, hopefully, does not send the same data too
many times over the same physical links. We should
point out that using a logical update topology does not
circumvent Internet routing. On the contrary, network
routing can work around occasional bad choices made
by the update topology.

The left-hand side of Figure 3 illustrates a sample
configuration for a flood-d replica. In particular, this is
the configuration for Figure 2’s replica w. In the right-
hand side of Figure 3, we show the configuration for the
replication group of which replica w is a member.

2.3 Consistency Between Groups

The TSAE protocol maintains consistency between repli-
cation groups as easily as it does between members of a
group. Between replication groups, it simply communi-
cates with representative individual replicas, or corner
replicas. Since replicas flood updates to their neighbors
in the logical topology, updates in one group make their
way to all groups.

Although network node and link failures may result
in network partitions, and permanent node failures and
group membership changes may introduce temporary

Logical Topology
Physical Topology

@ Group 1 member @ Group 2 member

® Group 3 member

QO Non-group member

Figure 2: Replication groups showing logical versus physical topologies.

inconsistencies, TSAE eventually resolves them.

2.4 Consistency State Size

A hierarchical organization limits the amount of con-
sistency state each replica needs to keep. Each replica
running the TSAE Protocol must store all object up-
dates from other participating replicas in its group. This
requires O(rn) space, where r is the group size and n
is the number of unpurged update log entries. During
anti-entropy sessions, a replica exchanges its consistency
state with other replicas. When it realizes that all group
members have received an update, the replica purges the
corresponding update log entry.

By splitting a group into ¢ smaller groups, the size of
a replica’s consistency state decreases to O((r/g)n). In
other words, replicas only keep state for replicas within
their own group. Corner replicas also need to keep an
aggregate state for each group to which they belong and
hence maintain O((r/g + g)n) state.

Multiple replication groups preserve autonomy by
insulating groups against administrative decisions from
neighboring, autonomously administered groups. They
also limit network traffic associated with group mem-
bership.

3 Computing Logical Topologies

Below, we state flood-d’s logical topology computation
as a graph theory problem, summarize solutions to sim-
ilar problems, and describe our algorithm for solving it.

3.1 Definitions

We provide several useful definitions [1] below:

e k-Connected: A graph G issaid to be k-connected
if no removal of any k — 1 vertices together with
all their incident edges disconnects G.

e k-Connected Regular Graph: A graph G is
said to be a k-connected regular graph if all its
vertices are k-connected.

e Diameter: The diameter of a graph G is defined
as the maximum shortest path between any two
of G’s vertices.

o Degree: The degree of a vertex v in G is the
number of edges of G incident with v.

3.2 Statement of the Problem

We represent the underlying physical topology by a graph
G(V, E), where V is a set of vertices of GG that repre-

Configuration for st .

:Define s w

(ste-define ; Whatwe are defining,

(ste-name w) ;A convenient name for he Sies.
(hostname W) ; The hostname where tis siteis ocated.
(cient-port 2000) ; Where a clint can talk to me.

(data-port 2001) ; Where other fiood daemons talk to me
(longiude ~118.0) ; The physical coordnates of

(lttude 340) asie

(1opology-period 86400)) ; Generate anew toology every da.

Configuration forthe group of which site ws a memby.

k:group-define
(group-name gray) ; Identiy the group by name.
(stew) —;Thissite isin the group.

(steX) andsoon..
(stey) + GATEWAY* to lack group.
(steZ)

(step) "GATEWAY to Slash group.

(anaiwiath-period 3600.0) ; Estimate bandwiath o another ite every hour,
(estimates-period 900.0) ; Send estimates out every 15 minutes.
(master-sitew)) —; Who s responsile for generating topology.

Figure 3: Example flood-d site and group configuration.

sent network nodes and F is a set of edges of G that
represent network links.

Our problem can be stated as follows. Given a graph
G(V, F) and a cost matrix with cost values for all the
edges, construct a graph G'(V, E’) with the following
properties.

e (' has node connectivity k.

e Let D; be the degree of node i of G'. Then,
D; <6

where é is an upper bound on the node degree of

G

e The weighted sum of G's diameter and edge cost
function is minimal.

This optimization problem is NP-complete, but the
literature records approximations for similar problems.

Plesnik [14] proves that any algorithm that gener-
ates a minimum spanning subgraph of G, say G'(V, E'),
by selecting E’ as subset of F with a given budget con-
straint and minimum diameter is NP-hard.

Johnson [8] states that constructing a subgraph which
connects all vertices, and minimizes shortest path cost
between all vertex pairs subject to a budget constraint
on the sum of its edge costs is also NP-hard.

Schumacher [19] provides an algorithm for generat-
ing topologies which have minimum number of edges,

are k-connected and have minimum diameter. How-
ever, his method assumes that all the edges have equal
weights. We cannot make that assumption since our
problem is to build logical topologies on top of real net-
works.

Steiglitz [20] proposes a heuristic solution to a prob-
lem similar to ours. The problem consists of finding an
undirected graph with the following properties.

e Feasibility : The redundancy between any two
nodes ¢ and j is at least R; ;.

e Optimality: No network which satisfies the first
property has lower cost.

When we map the above onto our problem, the re-
dundancy matrix R; ;, the number of disjoint paths be-
tween ¢ and j, represents our connectivity requirement.
Therefore, Steiglitz’s algorithm [20] not only fulfills our
connectivity requirements but provides the option of
having different connectivity for each pair of nodes. As
stated above, trying to satisfy the redundancy and the
minimum cost requirements results in NP-hard prob-
lems.

We extended Steiglitz’s algorithm to fulfill all our
topology requirements. The original algorithm and our
modifications to it are described in detail below.

3.3 Steiglitz’s Algorithm

Steiglitz’s algorithm has two parts: the starting and the
optimizing routines. The starting routine generates a

random feasible solution.

The optimizing routine iteratively applies heuristics
to generate lower cost topologies. It uses local transfor-
mations called X-change, which randomly selects four
nodes connected pairwise and swaps the edges connect-
ing them (see Figure 4). Tt then records the lowest cost
feasible topology generated by these local transforma-
tions.

The algorithm uses hill climbing heuristics to gener-
ate local optimal solutions from different starting con-
figurations. It terminates with a set of feasible solu-
tions, from which i1t chooses the one with the lowest
cost. Steiglitz justified his algorithm as follows: as
the size of the optimization problem increases, local op-
tima get closer to the global optimum, and worst-case
time and sub-optimality becomes less important than
average-case performance.

3.4 Owur Modifications

Steiglitz’s redundancy matrix, R;;, can represent our
topology’s connectivity requirements. Furthermore, spec-
ifying the node connectivity imposes a lower bound on
the degree of each node. To distribute work fairly among
nodes and to limit the amount of update duplicates, we
extended Steiglitz’s algorithm to include upper bounds
on node degrees.

Instead of optimizing with hill climbing, we employed
simulated annealing which has been successfully used to
approximate solutions to the traveling-salesman prob-
lem. Simulated annealing is an analogy with thermody-
namics annealing, in which metals arrive at a low energy
state by slowly decreasing the temperature [10].

In [15], Rose uses simulated annealing to find net-
work topologies with small mean distances between nodes,
and shows that annealing helps in equalizing the initially
uneven distribution of mean distances.

When applying simulated annealing to our problem,
we need to specify an objective function. To generate
logical topologies with low edge costs and small diame-
ters, we use

total_cost = A x edge_cost + B * diameter

where A and B are weighting constants assigned to
edge_cost and diameter, respectively.

We feed our logical topology calculator with partic-
ipating nodes’ redundancy requirements and the esti-
mated communication cost matrix. An initial feasible
configuration is generated randomly.

Number of | 2-connected 3-connected
Nodes Initial | Final | Initial | Final
100 15000 | 11900 | 23200 | 19900

50 8900 6900 13000 | 10500

30 7400 5600 11800 9800

25 6200 4700 9800 7500

Table 1: Logical topology costs before and after anneal-
ing.

The next step 1s to apply transformations to the ini-
tial configuration. One type of transformation is the
Steiglitz’s X-change operation. We also use Delete, Split,
and Move transformations. Delete randomly choses a
pair of connected nodes with degree greater than the
required connectivity and deletes the edge connecting
them. Createrandomly selects a pair of connected nodes,
breaks the edge connecting them and connects each of
them to another node. Mowve randomly selects a node
and one of its edges, disconnects it and connects the
node with another one. Figure 4 illustrates these four
transformations.

The annealing schedule decides whether the config-
uration resulting from a transformation should be ac-
cepted or not. First it tests feasibility. If the new con-
figuration is not feasible, annealing restores the previous
configuration, and goes back to the transformation step.
Otherwise, it checks whether the new configuration im-
proves cost. In this case, it accepts the new configura-
tion, and goes back to the transformation step. If cost
increases, the new configuration is accepted according
to the Boltzman probability distribution.

Table 1 records results of running the annealing al-
gorithm to create various 2-connected and 3-connected
groups. The initial cost column lists our initial feasible
topology’s cost. The final costs column lists the final
logical topology’s cost. While cost reductions are not
dramatic, this is true because our initial feasible solu-
tions are pretty good. In our simulations, we generated
physical topologies by placing nodes in a square plane
and randomly onnecting pairs of vertices. We plan to
tune the topology computation algorithm once we con-
duct larger, live experiments.

4 Replication Groups and Logi-
cal Topologies

We investigated via simulation how replication group
size, the percentage of time replicas are down, and the
parameters of the TSAE protocol affect the size of flood-
d’s consistency state, the time to propagate updates to
all members of a group, and the time to learn that all

0 .. 25 replicas __50replicas --100 replicas -. 200 replicas
N

'(7)2000 PR T T T RS T

4 B e T - -
g

9 1000k oA
c e ————— - _ - - - -
5 _

0

g’ 0 I 1 1 L Il L L I

< 100 200 300 400 500 600 700 800 900 1000

Time (in multiples of mean update time)

g 25 replicas __50replicas -- 100 replicas -. 200 replicas
9 T s T T — =T T T
a , g
g / /
o L / 4
505 , , /
- /
g / 7 ’
(6] 0 Z | | = I I I I
0 1 2 3 4 5 6 7
Time (im multiples of mean update time)
- 25 replicas __50replicas -- 100 replicas -. 200 replicas
b T J= T T T — = T
& 0.5r / , B
X / 7
1S / ,
3 /
(@] 0 ! o ! ! 1 ! ! !
0 2 4 6 8 10 12 14 16 18

Time (in multiples of mean update time)

Figure 5: Average consistency state size (in number of
update messages), time to propagate updates and ac-
knowledgments for different group sizes. In all 3 graphs,
the x-axis 1s the simulation time scale in multiples of
when updates are generated. The global update, anti-
entropy, and failure rates were kept constant.

smoother. This means that smaller groups achieve a

conslstent state sooner.

4.2 Anti-Entropy Rate

The next set of results show how the consistency state
size and the time to propagate updates and acknowledg-
ments scale with the anti-entropy rate. In this first set of
graphs, we made the group update generation and fail-
ure rates constant, and varied the group anti-entropy
rate. Notice that the anti-entropy rate was kept con-
stant for different group sizes 2.

In Figures 6, 7, and 8, anti-entropy rates are twice
and equal to the update rate in the top and bottom
graphs, respectively. In all graphs, the simulation pa-
rameter corresponding to the percentage of time replicas
stay up is set to 99.9%. We use such high availability
because at the same time that we want to minimize the
influence of failures in this set of simulations, we also
want to introduce some degree of unavailability. We
study the effects of lower availability in Section 4.3 be-
low. Figure 6 shows the average consistency state size
for different anti-entropy rates and group sizes. We no-

?For instance, to generate the same group anti-entropy rate,
the replica anti-entropy rate needs to be 2 times higher in a group
of 100 replicas than in a group of 200 replicas.

tice that as state exchanges get less frequent, saving
network resources, consistency state sizes get bigger.

The anti-entropy rate also impacts the time it takes
for updates and acknowledgments to propagate to all
replicas. Figures 7 and 8 show that less frequent state
exchanges cause updates and acknowledgments to prop-
agate slower. Because we did not model flood-d’s nor-
mal message exchange, these are worst case assessments.
Note how it takes 2 to 3 times more time to purge state
than it does to reach consistency.

Should each replica’s anti-entropy rate decrease as
the group size increases so that the global anti-entropy
rate remains a constant? If not, for approximately the
same number of updates, bigger groups will generate
more anti-entropy sessions. Figures 9, 10, 11 plot con-
sistency state size, time to reach global consistency, and
time to purge all logs for three global anti-entropy rates.
The higher the anti-entropy rate, the smaller the consis-
tency state size, the faster consistency is obtained and
state purged.

4.3 Replica Availability

Lower replica availability increases the consistency state
size and the time to propagate updates and acknowledg-
ments. In Figures 12, 13, and 14, replicas stay up 99%
and 90% of the time in the top and bottom graphs, re-
spectively. The lower the replica availability, the larger
the consistency state gets. Consequently, the argument

for having smaller replication groups becomes even stronger

in an environment like the Internet, where site and link
failures are reasonably frequent.

Figures 13 and 14 show the times to propagate up-
dates and purge state for lower availability. As expected,
lower availability causes longer delays in propagating
items to all members of a group. However, a difference
of less than 10% in availability has a huge impact on the
time to propagate an update to all replicas in a group
and the group convergence time. This is specially true
for bigger groups, and it means that not only will repli-
cas take longer to converge to a consistent state, but also
that they will take longer to purge their message logs.
Clustering replicas into smaller groups reduces the effect
of lower site or link availability.

5 Cost

Besides organizing replicas into multiple replication groups,

flood-d also suggests good logical topologies that repli-
cas can use to propagate updates. These logical update
topologies attempt to use the underlying network effi-
ciently and at the same time, reduce update propagation

ae rate/update rate=2
T T

3000 T T T T = T

@ _ = ~ =<

2 ——— .- - mmm— - -~

> - - _ - -~

o L i

:‘EZOOO

17}

=

S - e m———

© 1000 - - - ~ - - - - -

=

3

< B
o . 1 h . 1 ; 1 i
100 200 300 400 500 600 700 800 900 1000
. 25 replicas ____ 50 replicas -- 100 replicas -.- 200 replicas

5000 ae r‘atelupdat‘e rate=1

g Cmmmm i T T T T e

& 4000— — = — R B |

-]

& 3000 h

17}

§2000- _ ______ e e e e == T T Tmea_ Ll B

£ 1000 E
o . I 1
100 200 300 400 500 600 700 800 900 1000

Time (in multiples of mean update time)

Figure 6: Average consistency state size sample paths
(in number of update messages) for different group sizes.
In both graphs, the x-axis is the simulation time scale
in multiples of when updates are generated. The upper
graph employs a faster anti-entropy rate (ae rate).

1 T = T T T
& / s ae rate/update rate=2
S o.8F , / 4
= 1 /
06 / / b
= 1 /
S 0.4t , i
o /
£ 0.2 /' / B
o , 7
o ‘ ‘ ‘ ‘
(e] 5 10 15 20 25
. 25 replicas 50 replicas -- 100 replicas -.- 200 replicas
1 T — T == T
S o8l g 7 |
2 ’ ’
, ,]
/ ,
) , i
- / 7/
€ 0.2 / 4 B
o 7 - - ae rate/update rate=1
OO 5 10 15 20 25
Time (in multiples of mean update time)
Figure 7: Cumulative probability distribution for prop-
agating updates to all replicas consistently. In both

graphs, the x-axis is the simulation time scale in multi-
ples of when updates are generated. The upper graph
employs a faster anti-entropy rate (ae rate).

ae rate/update rate=2

Cum. Prob. Distribution
© o o o

25 30 35 40
-- 100 replicas -.- 200 replicas

20
. 25 replicas

1 ae rate/update rate=1

35 40 as

Time Gn multiples of mean update time)
Figure 8: Cumulative probability distribution for re-
ceiving acknowledgments from all replicas and purging
consistency state. In both graphs, the x-axis i1s the sim-
ulation time scale in multiples of when updates are gen-
erated. The upper graph employs a faster anti-entropy
rate (ae rate).

10

2 ae rate/update rate=1
& 6000 T : .
L
<
& 4000
& 2000
o
= o
< 100 200 300 400 500 600 700 800 900 1000
I ae rate/update rate=2
& 3000 : e
] S T T T T s s — T—e L
] L - P 4
&2000r __ ___ e - - _ "
& 1000F B
o
E s A A A A A A A
< 100 200 300 400 500 600 700 800 900 1000
[—.
% 2000 S ae/r‘ate/updat‘e rate—4‘
© - e m— S e -
s
©1000F —----- "7 T T T m oo e R
= - - — e 7
S
o
® o A A A A A A s A
< 100 200 300 400 500 600 700 800 900 1000
Time (in multiples of mean update time)
.. 25 replicas __ 50 replicas -- 100 replicas -. 200 replicas

Figure 9: Average consistency state size (in number of
update messages). In all three graphs, the x-axis is the
simulation time scale in multiples of when updates are
generated. In the middle and bottom plots, the global
anti-entropy rate (ae rate) is 2 and 4 times the rate of
the top plot.

ae rate/update rate=1

z 1 ‘ b
a P
5 T
S L P i
& 05 s
£ e
S _ -
S o L =7 =7 1 . .
o 5 10 15 20 25 30
. ae rate/update rate=2
% 1 e — T : :
a -
g)
S 0.5 i
Q- s
£ !
S o - 1 1 . .
o 5 10 15 20 25 30
3 1 ae rate/update rate=4
k] T T T T T
a !
= "
S i
& 05 /y
: /
g 7
3S o
o 5 20 25 30

10 15
Time (in multiples of mean update time)

. 25 replicas 50 replicas -- 100 replicas -.- 200 replicas

Figure 10: Cumulative probability distribution for prop-
agating updates to all replicas. In all three graphs, the
x-axis 1s the simulation time scale in multiples of when
updates are generated. In the middle and bottom plots,
the global anti-entropy rate (ae rate) is 2 and 4 times
the rate of the top plot.

Con.

Avg

State Size

ae rate/update rate=1

b =
a -7 -7
=) - -
8 ,
Sosp e , B
- s -
15 e -
S - -
S o . . I — . . .
10 15 20 25 30 35 40 45
ae rate/update rate=2
% 1 T — = T T - T
a , -
g / !
& 0.51 // , / —
£ , ,
(ST A L
5 10 15 20 25 30 35 40 45
. ae rate/update rate=4
B 1 PRl T T T T T
2 ’
S L / i
& 0.5 ,
£
=]
© o

15 20 25 30 35 40 45
Time (in multiples of mean update time)

50 replicas -- 100 replicas -.- 200 replicas

.. 25 replicas

Figure 11: Cumulative probability distribution for re-
ceiving acknowledgments from all replicas. In all the
x-axis 1s the simulation time scale in multiples of when
updates are generated. In the middle and bottom plots,
the global anti-entropy rate (ae rate) is 2 and 4 times
the rate of the top plot.

up time=99%

4000

3000

> 2000

1000

1000

N
N @

Avg. Con. State Size
B

o '
o koo

"
OO
o

400 600 700 800 9200 1000

Time (in multiples of mean update time)
__ 50 replicas -- 100 replicas

200 300

.. 25 replicas -. 200 replicas

Figure 12: Average consistency state size (in number of
update messages). In both graphs, the x-axis is the sim-
ulation time scale in multiples of when updates are gen-
erated. In the bottom graph, replicas stay down longer
than in the upper graph.

up time=99%

b

Cumulative Prob. Distribution

10 20 40 50 60 70 80 20

up time=90%

Cumulative Prob. Distribution

30 o) 5 60 70 80 90 100
Time (in multiples of mean update time)

50 replicas -- 100 replicas -.- 200 replicas

.. 25 replicas

Figure 13: Cumulative probability distribution for prop-
agating updates to all replicas. In both graphs, the x-
axis is the simulation time scale in multiples of when
updates are generated. In the bottom graph, replicas
stay down longer than in the upper graph.

11

up time=99%

b

0.8

0.6

0.4

0.2

Cumulative Prob. Distribution

o

o 40 60 80

1

0.8

0.6

0.4

0.2

Cumulative Prob. Distribution

o

o 20 60 80 100 12 140
Time (in multiples of mean update time)

.. 25 replicas 50 replicas -- 100 replicas -.- 200 replicas

Figure 14: Cumulative probability distribution for re-
ceiving acknowledgments from all replicas. In both
graphs, the x-axis is the simulation time scale in mul-
tiples of when updates are generated. In the bottom
graph, replicas stay down longer than in the upper
graph.

time. In this section, we show the effects of using topo-
logical information on the overall cost of propagating
updates in replication groups of different sizes. We com-
pare two different partner selection policies: random, in
which a replica randomly chooses another replica to ex-
change consistency state, and cost-based, in which the
peer with the minimum cost link is selected.

To assign communication costs to links, we use NTG
[7], a random topology generator, to generate logical
topologies for replication groups of different sizes. We
feed the topology generator with the group size, aver-
age node degree, and link bandwidths. The topology
generator randomly places nodes on a plane, and con-
nects them with links whose costs are a combination
of link bandwidth and physical distance between nodes.
The resulting logical topology is represented by a fully-
connected, symmetric cost matrix 3.

The top graph in Figure 15 plots the cumulative
probability distribution for the total communication cost
for propagating updates to all members in a group of 50
replicas using random and cost-based partner selection
policies. These distributions show that it costs at least
3 times less to propagate updates when replicas choose
their peers based on the communication cost to get to
them instead of randomly selecting them. For these sim-
ulations, each replica chooses its 3 lowest-cost peers, and
each time the replica performs an anti-entropy session, it
randomly chooses among its 3 previously selected peers.
In other words, we generate a logical update topology
in which replicas have connectivity degree of 3.

As replication groups get bigger, the discrepancy
between cost-based and random peer selection policies

3We should point out that in the real world the cost matrix will
not be symmetric since logical links can use asymmetric paths.

___ cost-based ... random 50 replicas

0.5 B
o
§ o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
=
=2 100 replicas
2 1
a
=
=
S o.5- R
<3
[
L o A . .]
g o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
S
% 200 replicas
S
1 T
0.5 B
o
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Cost

Figure 15: Cumulative probability distributions for the
total cost of propagating updates to all replicas using
cost-based and random partner selection policies for dif-
ferent group sizes. In all graphs, the x-axis is the simu-
lation time scale in multiples of when updates are gen-
erated.

increases. The middle and bottom graphs of Figure
15 show the cost distributions for 100- and 200-replica
groups. Notice that for a group with 200 replicas, the
cost-based approach is approximately 7 times cheaper
than choosing peers at random.

To evaluate how partner selection policies affect the
time to propagate items to all replicas, Figure 16 presents
the cumulative probability distributions for propagat-
ing updates to all replicas for different group sizes. We
notice that items take longer to propagate to all repli-
cas when the cost-based partner selection policy is used.
This can be explained by the following arguments. First,
since link costs remain constant during the whole sim-
ulation, the set of partners that a replica chooses using
cost-based selection 1s always the same. In the random
selection approach, however, each replica can select any
other replica in its group with whom to exchange consis-
tency state. Thus, each replica has connectivity degree
of n — 1, where n is the group size. The other argument
is that the logical topology generated in the cost-based
approach does not take diameter into account.

In the next set of simulations, we increase the replica’s
logical connectivity and observe what happens to the
total cost and the time to propagate updates. The con-
nectivity is set to 10% of the group size, which means
that every time a replica performs an anti-entropy ses-
sion, it randomly chooses one among its 0.1n lowest-cost
peers, where n is the replication group size. Figures 17
and 18 show the total cost and the time to propagate
updates to all replicas in groups of different sizes. There
is a slight increase in cost for groups of 50 replicas when
compared to the 3-connected case (Figure 15). For big-
ger groups, the difference in cost between the 0.1n- and
the 3-connected cases increases, since more expensive

12

50 replicas ___cost-based ... random

Cumulative Probability Distribution
o
o

200 replicas

.
100 150 250 300
Time (in multiples of mean update time

Figure 16: Cumulative probability distributions for the
time to propagate updates to all replicas using cost-
based and random partner selection policies for different
group sizes. In all graphs, the x-axis is the simulation
time scale in multiples of when updates are generated.

logical links are being used. On the other hand, be-
cause of the higher connectivity, the difference in time
to propagate updates to all replicas using cost-based and
random selection policies decreases when compared to
the 3-connected case (Figure 16).

5.1 Summary

Our simulation results demonstrated the benefits of split-
ting a single, flat replication group into multiple smaller
groups. We observed that the smaller the replication
group, the smaller the size of the consistency state each
replica in the group needs to keep. This difference in
consistency state size is amplified because in smaller
groups, replicas can purge their consistency state sooner.

We also showed how anti-entropy and availability
rates 1mpact the size of the replica consistency state,
and that smaller replication groups attenuate the effect
of less frequent state exchanges and higher failure rates.

Finally, we assigned communication costs to logical
links, and compared 2 different anti-entropy partner se-
lection policies: random and cost-based. We observed
that while for a 50-replica group, propagating updates
with a cost-based partner selection policy is about 3
times less expensive than using a random selection pol-
icy, this cost ratio jumps to 7 for 200-replica groups.

We also noticed that due to the lower logical connec-
tivity and the fact that the logical topology generated
in the cost-based approach does not take diameter into
account, items take longer to propagate to all replicas
when the cost-based partner selection policy is used. As
proof of concept, we increased the replica’s logical con-
nectivity and observed that the difference in time to

50 replicas ___ cost-based ... random

1 T T T T T
0.5 / i
o

L L L L
o 500 1000 1500 2000 2500

100 replicas

0 L L L L L L L L
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Cumulative Probability Distribution
o
[

200 replicas
T T

0.5 —

L L L L L L L
1%00 2000 3000 4000 5000 6000 7000 8000 9000 10000
Cost

Figure 17: Cumulative probability distributions for the
total cost of propagating updates to all replicas using
cost-based and random partner selection policies for dif-
ferent group sizes. In all graphs, the x-axis is the simu-
lation time scale in multiples of when updates are gen-
erated.

50 replicas ... random

___cost-based
T T

(o] 40

100 replicas

(o] 40 100

0.5

Cumulative Probability Distribution

200 replicas

. I .
40 60 80 100 120 140 160
Time (in multiples of mean update time

180

Figure 18: Cumulative probability distributions for the
time to propagate updates to all replicas using cost-
based and random partner selection policies for different
group sizes.

13

propagate items to all replicas using cost-based and ran-
dom selection policies decreases when compared to the
less connected case. As expected, the higher connected
topology resulted in slightly higher propagation costs.

6 Conclusions

To achieve adequate performance, many future Internet
services will need to replicate their data in thousands
of autonomous domains. This paper described flood-d,
our tool to support high degrees of replication through
application-layer flooding of data.

Flood-d automatically builds logical update topolo-
gies that attempt to use the network efficiently and at-
tempt to propagate updates quickly and robustly. It
organizes replicas into replication groups, analogous to
the Internet’s autonomous routing domains.

Organizing replicas into multiple, smaller groups is
vital for wide-area services with replication degrees in
the thousands. Hierarchical organization limits the size
of the consistency state that replicas needs to keep and
permit autonomous management of group topology, group
membership, and group membership traffic.

References

[1] J.A. Bondy and U.S.R. Murty. Graph Theory with
Applications. North Holland, 1976.

teve asner. requently asked questions
2] S C F 1 ked i
(FAQ) on the multicast backbone (MBONE).

On-line documentation; available from ven-
era.isi.edu:mbone/faq.txt, January 1993.

Peter Danzig, Katia Obraczka, and Shih-Hao Li.
Internet resource discovery services. [EEE Com-
puter, pages 8-22, September 1993.

Stephen E. Deering and David R. Cheriton. Mul-
ticast routing in datagram internetworks and ex-
tended lans. ACM Transactions on Computer Sys-
tems, 8(2):85-111, May 1990.

Alan Emtage and Peter Deutsch. archie: An elec-
tronic directory service for the Internet. Proceed-
wngs of the Winter 1992 Useniz Conference, Jan-
uary 1992.

R. A. Golding. Weak-Consistency Group Commu-
nication and Membership. PhD thesis, University
of California, Santa Cruz, December 1992. Com-
puter and Information Sciences Technical Report

UCSC-CRL-92-52.

[7]

[18]

Steve Hotz and Romklau Nagamati. Network
topology generator (ntg): A tool for generating net-
work topology and policy for protocol simulation
purposes. Spring 1992.

D.S. Johnson. The complexity of network design
problem. Networks, 8:279-285, 1978.

B. Kantor and P. Lapsley. Network News Trans-
fer Protocol - a proposed standard for the stream-
based transmission of news. Internet Request for

Comments RFC 977, February 1986.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi.
Optimization by simulated annealing. SCIENCE,
220(4598):671-680, May 1983.

Butler Lampson. Designing a global name service.
Proceedings of the 5th. ACM Symposium on the
Principles of Distributed Computing, pages 1-10,
August 1986.

K. Ladl, J. Osborne, and J. Malcolm. Drinking from
the firehose: Multicast USENET news. Proceedings
of the 1994 Winter USENIX Conference, 1994.

D. Oppen and Y. Dalal. The Clearinghouse: A
decentralized agent for locating named objects in
a distributed environment. ACM Transactions
on Office Information Systems, 1(3):230-253, July
1983.

J. Plesnik. The complexity of designing a network
with minimum diameter. Networks, 11:77-85, 1981.

Christopher Rose. Low mean internodal distance
network topologies and simulated annealing. /FEE
Trans. Commaun., pages 1319-1326, 1992.

J.H. Saltzer, D.P. Reed, and D.D. Clark. End-To-
End arguments in system design. Proceedings of the
2nd International Conference on Distributed Sys-

tems, pages 509-512, April 1981.
M. Schroeder, A. Birrell, and R. Needham. Ex-

perience with Grapevine: The growth of a dis-
tributed system. ACM Trans. on Computer Sys-
tems, 2(1):3-23, February 1984.

H. Schulzrinne. A transport protocol for real-time
applications. Internet Draft, Internet Engineering
Task Force, Audio-Video Transport WG, March
1993.

Ulrich Schumacher. An algorithm for construc-
tion of a k-connected graph with minimum num-
ber of edges and quasiminimal diameter. Networks,

14:63-74, 1984.

Kenneth Steiglitz, Peter Weiner, and D. J. Kleit-
man. The design of minimum-cost servivable net-
works. IEEE Trans. Circuit Theory, CT-16(4):455—
460, November 1969.

14

