
Massively Replicating Services inWide-Area InternetworksPeter B. Danzig, Dante DeLucia, Katia ObraczkaComputer Science DepartmentUniversity of Southern CaliforniaLos Angeles, CA 90089-0781fdanzig,dante,kobraczkg@usc.edu213-740-4780 (O�ce) 213-740-7285 (Fax)AbstractCurrent and future Internet services will provide a large,rapidly evolving, highly accessed, yet autonomouslyman-aged information space. Internet news, perhaps, is theclosest existing precursor to such services. It permitsautonomous updates, is replicated at thousands of au-tonomouslymanaged sites, and manages a large database.It gets its performance through massive replication.This paper proposes a scalable mechanism for repli-cating wide-area, autonomously managed services. Wetarget replication degrees of tens of thousands of weakly-consistent replicas. For e�ciency, our mechanismprobesthe network and computes a good logical topology overwhich to send updates. For scalability, we organize repli-cas into hierarchical replication groups, analogous to theInternet's autonomous routing domains. We argue thate�cient, massive replication does not have to rely oninternet multicast.1 IntroductionFuture Internet services will manipulate large, rapidlyevolving, highly accessed, yet autonomously managedinformation spaces. To achieve adequate performanceservices will have to replicate their data in thousands ofautonomous networks. For a current example of sucha service, take Internet news. Although it manages ahighly dynamic, at, gigabyte database replicated atthousands of autonomous administrative domains, it re-sponds to queries in seconds. In contrast, archie [5], adirectory service for Internet FTP archives, can take �f-teen minutes to answer queries against a much smaller150 megabyte database. The di�erence between archie'sand network news' performance is massive replication;there are only about 30 replicas of archie. We believethat archie and other upcoming network services [3]need support to replicate their data e�ciently. To ap-

preciate this, we examine existing solutions to replicatedata. We will see that, although they are correct andkeep replicas consistent, they do not address the scaleand autonomy of today's internetworks.This paper extends an existing replication algorithmto use hierarchical replication groups. It describes a toolthat we have built that delivers an update to all of a ser-vice's replicas in all of the replication groups. This tool,which we call ood-d, oods updates along a logical,update topology. For each replication group, ood-ddetermines a logical update topology that attempts tominimize the network cost and propagation time neededto transmit updates.Below, we examine existing replication algorithms.We start by briey overviewing directory consistency.1.1 Directory ConsistencyGroup communication mechanisms for wide-area, mas-sively replicated information services should not tradeavailability and response time for globally ordered de-livery [6]. On one hand, these services still need to guar-antee that replicas eventually converge to a consistent,updated state during both normal operation and whenrecovering from network partition and server or link fail-ures. On the other hand, they need not compromisetheir availability and response time and incur the ex-tra overhead of strong consistency protocols. In fact,Grapevine [17], the Global Name Service [11], and Net-work News [9] use weak consistency replication mecha-nisms. For these reasons we built our replication toolto support asynchronous, weak-consistency replicationprotocols.1

1.2 What Current Algorithms LackExisting replication solutions do not scale because theymanage single, at groups of replicas. Distributed sys-tems that scale are organized hierarchically to exploitlocality of reference. Grapevine, the Clearinghouse, andthe Global Name Service do not scale because they man-age a single, at, group of replicas. While this is appro-priate for applications with 20 to 30 replicas that oper-ate within single administrative boundaries, it is unreal-istic for wide-area, massively replicated services whosereplicas spread throughout the Internet's thousands ofadministrative domains.We also argue that e�cient replication algorithmsood data between replicas. Note that the oodingscheme that we propose di�ers from network-level ood-ing as used by routing algorithms: ooding at the net-work level simply follows the network's physical topol-ogy and ood updates throughout all physical links ofthe network. Instead, the replicas ood data to theirlogical neighbor or peer replicas. Although the word\ooding" sounds ine�cient, we claim that the application-level ooding scheme that we propose does use networkbandwidth e�ciently.Because layered network protocols hide the networktopology from application programs, replicas themselvescannot select their ooding peers to optimize use of thenetwork. Both Grapevine and its commercial succes-sor, the Clearinghouse [13] ignore network and updatetopology. The Global Name Service assumes the exis-tence of a single administrator who hand-con�gures thetopology over which updates travel. The Global NameService administrator places replicas in a Hamiltoniancycle, and recon�gures the ring when replicas are addedor removed. As the number of replicas grows and repli-cas spread beyond single administrative boundaries, fre-quently recon�guring the ring gets prohibitively expen-sive.Internet news employs ooding to distribute updatesamong its thousands of replicas. Like the Global NameService, NNTP site administrators hand-con�gure theirlogical ooding topology. Since obtaining current phys-ical topology information is di�cult in today's Internet,system administrators frequently confer with one an-other to plan changes in the logical ooding topology.They try to keep up with the dynamics of the under-lying physical topology, specially as the Internet's scaleand complexity increase.1.3 Internet MulticastMost people think of internet multicast and reliable mul-ticast transport protocols as good foundations on which

to build a massive data replication protocol.IP multicasting [4] delivers best-e�ort datagrams toa group of hosts sharing a single IP multicast address.Because the network itself supports IP multicast, it hasaccess to the network routing database. IP multicas-ting builds a minimum delay topology to transmit adatagram packet to the group of recipients. It opti-mizes delivery delay rather than link bandwidth utiliza-tion. Currently, IP multicasting is limited to operatewithin a single routing domain. It uses virtual point-to-point links, or tunnels, to transmit multicast packetsbetween multicast routers in di�erent routing domains.Before transmitting multicast packets through a tun-nel, the source multicast router encapsulates them, sothat they look like ordinary datagrams to intermediaterouters and subnets. Take for example the MBONE [2],a semi-permanent, hand-con�gured virtual network thatwas originally engineered to carry audio and video trans-missions from IETF meetings to destinations around theworld. The MBONE consists of islands, such as multi-cast LANs, that can directly support multicast routinglinked by tunnels.Like all lower-level protocols, IP multicast relies ontransport-level protocols for reliability and sequencing.For instance, real-time applications like voice and videoteleconferencing, which are delay-sensitive but can livewith data losses, are layered on top of UDP and Internetmulticast. A new transport protocol for multipartici-pant real-time applications (RTP) [18] provides end-to-end delivery for one or more real-time data ows. It as-sumes an unreliable datagram service and does not pro-vide reliable, ordered delivery. RTP can transfer data tomultiple destinations if the underlying network providesa multicast service.In contrast to sending real-time audio and video, up-dating the database of an information service requiresreliable message delivery, crash recovery, and eventualdatabase consistency. A multipoint transport protocolbased on IP multicasting can not meet these stringentrequirements. In particular, it can not solve the consis-tency problem raised when replicas temporarily crashor when IP routers crash and lose state crucial to reli-able, multipoint delivery. In such cases, the applicationitself must re-establish consistency. Recall the end-to-end argument in layered design [16]; functions that canonly be completely and correctly implemented by theapplication should be moved into the application. Inour case, since each replica must keep its database con-sistent, we let the replica manage reliable multipointdelivery. For these reasons, our hierarchical replicationgroup consistency algorithm does not rely on a reliable,multicast transport protocol, although it can exploit itwhere available.Recently, a new multicast transport protocol, Muse2

[12], has been developed to multicast news articles onthe MBONE. Muse sends news articles as UDP packetsto the multicast group consisting of participating newsservers. Because Muse is not a reliable news propaga-tion protocol, it must be used in conjunction with an-other mechanism that performs reliability checks, suchas NNTP. According to its authors, making Muse a reli-able news transport protocol would result in greatly lim-iting its scalability because of retransmissions requestsfrom clients that lost or received corrupted articles.1.4 Timestamped, Anti-Entropy Repli-cationGolding modi�ed Grapevine's consistency maintenanceprotocol to eliminate its garbage collection problemsand use it as a replication algorithm. He named themodi�ed algorithmTimestamped Anti-Entropy (TSAE)Protocol and used it to build a replicated, distributedbibliographic database system [6]. Like other good repli-cation algorithms, TSAE oods updates.Periodically, a replica starts an anti-entropy session,in which it selects a peer to exchange updates. Throughthese anti-entropy sessions, the TSAE protocol ensuresthat replicas eventually converge to a consistent stateduring normal operation or when recovering from linkfailures, replica failure, and network partitions. How-ever, like the other replication mechanisms, TSAE wasnot designed to scale to thousands of autonomous repli-cas.1.5 OutlineWe propose a multi-point, hierarchical replication grouptool that extends the TSAE protocol to address scalabil-ity and autonomy. The next section describes our repli-cation tool, ood-d 1, and reviews the state it keeps.It also describes how ood-d probes the physical net-work during normal data exchange for later use. Sec-tion 3 describes how ood-d computes logical updatetopologies and shows some preliminary results. Section4 presents simulation results that show how ood-d'sstate and time to propagate items grows with replica-tion group size, replica failure rate, and parameters ofthe TSAE algorithm.1We copied the way UNIX daemons are named and called ourreplication tool ood-d because it is implemented as an updateooding daemon

2 Flood-dFlood-d is designed with autonomy and scalability inmind. It clusters replicas of a service into multiple, au-tonomously administered replication groups imitatingthe Internet's administrative domain hierarchy. Orga-nizing replicas into groups limits the size of the consis-tency state that each replica keeps and minimizes thetime to reach a consistent state.Flood-d's multi-point communication layer guaran-tees reliable delivery, although we recommend that in-formation systems built on top of it should check forinconsistency themselves. Grapevine did this �nal, end-to-end check for a simple reason. It's easier to recoverfrom inconsistency than it is to guarantee that every au-tonomous system administrator properly con�gures hisreplicas. Flood-d's lower layer propagates updates frompeer to peer along end-to-end paths that it perceives aregood. We call the graph of these paths a logical updatetopology.Unlike Lampson's Global Name Service, ood-d'slogical topology is not restricted to a Hamiltonian cycle.Flood-d builds k-connected topologies for resiliency. Re-call that in a k-connected network [1], that at least k�1nodes must break before the network is partitioned. Thering topology connecting Global Name Service replicascorresponds to a 2-connected topology where all edgeshave equal cost. Flood-d measures available peer-to-peer bandwidth and ood-d's logical topology calcula-tor tries to build a high bandwidth, update topology. Italso tries to limit the topology's diameter, the maximumnumber of hops that updates need to travel. This meansthat ood-d's 2-connected topologies are not cycles, butmore star-like. Hence, ood-d o�oads logical topologydecisions from system administrators.2.1 ImplementationWhen a replica receives data to propagate, it oods anupdate message to replicas that are its logical neigh-bors, according to the current logical topology. Occa-sionally, a replica exchanges updates with one or morenon-neighbor replicas within its replication group.Flood-d estimates available peer-to-peer bandwidthwhen a replica sends (via TCP) an update to anotherreplica. Hence ood-d estimates the e�ective, ow-controlled bandwidth between two replicas. If updatesare small, then propagation delay and TCP slow startdominate link speed in this estimation, yielding higherbandwidths to closer peers.Any ood-d replica can initiate topology calculation.It spawns a process that collects cost estimates from3

Figure 1: Flood-d's group monotoring tool.the replicas in its group and then computes the all-pairsshortest-paths between group members. Using this costmatrix and the group's desired connectivity (typically 2or 3), it computes a new logical update topology and,if the new topology is signi�cantly better than the old,distributes it to all the group members.Topology update messages carry a sequence numbercorresponding to the topology identi�er, which replicasuse to order topology updates and detect duplicates.Topology update messages also contain the new groupmembership set. When a replica receives a topologyupdate, it oods the update according to the currenttopology before committing the new topology.Replica update messages also carry a topology se-quence number. If a replica learns of an update fromone of its peers, but the update now carries a highertopology sequence number, it knows it must re-oodthe update as if it hadn't received it before.To join a replication group, a new replica copies aneighbor's database, and oods its existence to the restof the group. When a new member joins the group, atopology calculation is spawned.Figure 1 illustrates ood-d's group monitoring tool.Using this graphical interface to ood-d, group man-agers can view the current membership list, as well asinformation about individual sites. This tool also dis-plays the current logical topology of a group from a spe-ci�c site's perspective.

2.2 Groups and Network TopologyFigure 2 illustrates the relationship between logical topolo-gies and the underlying physical topologies. The left-hand side of Figure 2 shows three replication groups andtheir logical update topologies. The right-hand side ofFigure 2 shows the physical network topology and thelogical update topology built on top of it for the threereplication groups in the left-hand �gure. The logicaltopology, hopefully, does not send the same data toomany times over the same physical links. We shouldpoint out that using a logical update topology does notcircumvent Internet routing. On the contrary, networkrouting can work around occasional bad choices madeby the update topology.The left-hand side of Figure 3 illustrates a samplecon�guration for a ood-d replica. In particular, this isthe con�guration for Figure 2's replica w. In the right-hand side of Figure 3, we show the con�guration for thereplication group of which replica w is a member.2.3 Consistency Between GroupsThe TSAE protocol maintains consistency between repli-cation groups as easily as it does between members of agroup. Between replication groups, it simply communi-cates with representative individual replicas, or cornerreplicas. Since replicas ood updates to their neighborsin the logical topology, updates in one group make theirway to all groups.Although network node and link failures may resultin network partitions, and permanent node failures andgroup membership changes may introduce temporary4

Physical Topology

Logical Topology

 Group 2 member Group 3 member Non−group memberGroup 1 member

w

x

y

z

a

b

c

d

p

q

r

s

x

y

c

r

a

b

c

d

b

a

d

z

w

q

s

pFigure 2: Replication groups showing logical versus physical topologies.inconsistencies, TSAE eventually resolves them.2.4 Consistency State SizeA hierarchical organization limits the amount of con-sistency state each replica needs to keep. Each replicarunning the TSAE Protocol must store all object up-dates from other participating replicas in its group. Thisrequires O(rn) space, where r is the group size and nis the number of unpurged update log entries. Duringanti-entropy sessions, a replica exchanges its consistencystate with other replicas. When it realizes that all groupmembers have received an update, the replica purges thecorresponding update log entry.By splitting a group into g smaller groups, the size ofa replica's consistency state decreases to O((r=g)n). Inother words, replicas only keep state for replicas withintheir own group. Corner replicas also need to keep anaggregate state for each group to which they belong andhence maintain O((r=g + g)n) state.Multiple replication groups preserve autonomy byinsulating groups against administrative decisions fromneighboring, autonomously administered groups. Theyalso limit network tra�c associated with group mem-bership.

3 Computing Logical TopologiesBelow, we state ood-d's logical topology computationas a graph theory problem, summarize solutions to sim-ilar problems, and describe our algorithm for solving it.3.1 De�nitionsWe provide several useful de�nitions [1] below:� k-Connected: A graph G is said to be k-connectedif no removal of any k � 1 vertices together withall their incident edges disconnects G.� k-Connected Regular Graph: A graph G issaid to be a k-connected regular graph if all itsvertices are k-connected.� Diameter: The diameter of a graph G is de�nedas the maximum shortest path between any twoof G's vertices.� Degree: The degree of a vertex v in G is thenumber of edges of G incident with v.3.2 Statement of the ProblemWe represent the underlying physical topology by a graphG(V;E), where V is a set of vertices of G that repre-5

;
; Configuration for site w.
;

; Define site ‘w’
(:site−define		 ; What we are defining.
 (:site−name w) ; A convenient name for the sites.
 (:hostname w) ; The hostname where this site is located.
 (:client−port 2000)	 ; Where a client can talk to me.
 (:data−port 2001) ; Where other flood daemons talk to me
 (:longitude −118.0) ; The physical coordinates of
 (:lattitude 34.0)	 ; a site.
 (:topology−period 86400)) ; Generate a new topology every day.

;
; Configuration for the group of which site w is a member.
;
;
(:group−define
 (:group−name gray)	 ; Identify the group by name.
 (:site w)		 ; This site is in the group.
 (:site x) ; and so on...
 (:site y) ; *GATEWAY* to black group.
 (:site z)
 (:site p)		 ; *GATEWAY* to slash group.
 (:bandwidth−period 3600.0) ; Estimate bandwidth to another site every hour.
 (:estimates−period 900.0) ; Send estimates out every 15 minutes.
 (:master−site w)) ; Who is responsible for generating topology.Figure 3: Example ood-d site and group con�guration.sent network nodes and E is a set of edges of G thatrepresent network links.Our problem can be stated as follows. Given a graphG(V;E) and a cost matrix with cost values for all theedges, construct a graph G0(V;E0) with the followingproperties.� G0 has node connectivity k.� Let Di be the degree of node i of G0. Then,Di � �where � is an upper bound on the node degree ofG0.� The weighted sum of G0s diameter and edge costfunction is minimal.This optimization problem is NP-complete, but theliterature records approximations for similar problems.Plesnik [14] proves that any algorithm that gener-ates a minimum spanning subgraph of G, say G0(V;E0),by selecting E0 as subset of E with a given budget con-straint and minimum diameter is NP-hard.Johnson [8] states that constructing a subgraph whichconnects all vertices, and minimizes shortest path costbetween all vertex pairs subject to a budget constrainton the sum of its edge costs is also NP-hard.Schumacher [19] provides an algorithm for generat-ing topologies which have minimum number of edges,

are k-connected and have minimum diameter. How-ever, his method assumes that all the edges have equalweights. We cannot make that assumption since ourproblem is to build logical topologies on top of real net-works.Steiglitz [20] proposes a heuristic solution to a prob-lem similar to ours. The problem consists of �nding anundirected graph with the following properties.� Feasibility : The redundancy between any twonodes i and j is at least Ri;j.� Optimality: No network which satis�es the �rstproperty has lower cost.When we map the above onto our problem, the re-dundancy matrix Ri;j, the number of disjoint paths be-tween i and j, represents our connectivity requirement.Therefore, Steiglitz's algorithm [20] not only ful�lls ourconnectivity requirements but provides the option ofhaving di�erent connectivity for each pair of nodes. Asstated above, trying to satisfy the redundancy and theminimum cost requirements results in NP-hard prob-lems.We extended Steiglitz's algorithm to ful�ll all ourtopology requirements. The original algorithm and ourmodi�cations to it are described in detail below.3.3 Steiglitz's AlgorithmSteiglitz's algorithm has two parts: the starting and theoptimizing routines. The starting routine generates a6

random feasible solution.The optimizing routine iteratively applies heuristicsto generate lower cost topologies. It uses local transfor-mations called X-change, which randomly selects fournodes connected pairwise and swaps the edges connect-ing them (see Figure 4). It then records the lowest costfeasible topology generated by these local transforma-tions.The algorithm uses hill climbing heuristics to gener-ate local optimal solutions from di�erent starting con-�gurations. It terminates with a set of feasible solu-tions, from which it chooses the one with the lowestcost. Steiglitz justi�ed his algorithm as follows: asthe size of the optimization problem increases, local op-tima get closer to the global optimum, and worst-casetime and sub-optimality becomes less important thanaverage-case performance.3.4 Our Modi�cationsSteiglitz's redundancy matrix, Ri;j, can represent ourtopology's connectivity requirements. Furthermore, spec-ifying the node connectivity imposes a lower bound onthe degree of each node. To distribute work fairly amongnodes and to limit the amount of update duplicates, weextended Steiglitz's algorithm to include upper boundson node degrees.Instead of optimizingwith hill climbing, we employedsimulated annealing which has been successfully used toapproximate solutions to the traveling-salesman prob-lem. Simulated annealing is an analogy with thermody-namics annealing, in which metals arrive at a low energystate by slowly decreasing the temperature [10].In [15], Rose uses simulated annealing to �nd net-work topologies with smallmean distances between nodes,and shows that annealing helps in equalizing the initiallyuneven distribution of mean distances.When applying simulated annealing to our problem,we need to specify an objective function. To generatelogical topologies with low edge costs and small diame-ters, we usetotal cost = A � edge cost +B � diameterwhere A and B are weighting constants assigned toedge cost and diameter, respectively.We feed our logical topology calculator with partic-ipating nodes' redundancy requirements and the esti-mated communication cost matrix. An initial feasiblecon�guration is generated randomly.

Number of 2-connected 3-connectedNodes Initial Final Initial Final100 15000 11900 23200 1990050 8900 6900 13000 1050030 7400 5600 11800 980025 6200 4700 9800 7500Table 1: Logical topology costs before and after anneal-ing.The next step is to apply transformations to the ini-tial con�guration. One type of transformation is theSteiglitz's X-change operation. We also use Delete, Split,and Move transformations. Delete randomly choses apair of connected nodes with degree greater than therequired connectivity and deletes the edge connectingthem. Create randomly selects a pair of connected nodes,breaks the edge connecting them and connects each ofthem to another node. Move randomly selects a nodeand one of its edges, disconnects it and connects thenode with another one. Figure 4 illustrates these fourtransformations.The annealing schedule decides whether the con�g-uration resulting from a transformation should be ac-cepted or not. First it tests feasibility. If the new con-�guration is not feasible, annealing restores the previouscon�guration, and goes back to the transformation step.Otherwise, it checks whether the new con�guration im-proves cost. In this case, it accepts the new con�gura-tion, and goes back to the transformation step. If costincreases, the new con�guration is accepted accordingto the Boltzman probability distribution.Table 1 records results of running the annealing al-gorithm to create various 2-connected and 3-connectedgroups. The initial cost column lists our initial feasibletopology's cost. The �nal costs column lists the �nallogical topology's cost. While cost reductions are notdramatic, this is true because our initial feasible solu-tions are pretty good. In our simulations, we generatedphysical topologies by placing nodes in a square planeand randomly onnecting pairs of vertices. We plan totune the topology computation algorithm once we con-duct larger, live experiments.4 Replication Groups and Logi-cal TopologiesWe investigated via simulation how replication groupsize, the percentage of time replicas are down, and theparameters of the TSAE protocol a�ect the size of ood-d's consistency state, the time to propagate updates toall members of a group, and the time to learn that all7

Figure 4: Possible Transformations.group members have received an update. This studyis worse case; it modeled pure end-to-end TSAE algo-rithm, not update propagation via ood-d's logical up-date topology.The simulations in the second part of this sectionincorporate the notion of a logical topology for propa-gating updates. Recall that a TSAE replica periodicallychooses another replica to compare consistency state,and exchange the missing updates. We assign commu-nication costs to the logical links between each pair ofreplicas, and contrast random and cost-based partnerselection policies. The results show how these partnerselection policies impact the cost and the time to prop-agate updates for di�erent replication group sizes.4.1 Consistency State Size and Propa-gation TimeFigure 5 demonstrates the bene�ts of aggregating repli-cas into multiple replication groups. The top graphshows how the average consistency state size for dif-ferent sized replication groups varied during a simula-tion run. The anti-entropy rate is the frequency thatreplicas poll each other, looking for inconsistency. Let'sassume that an information service's database is repli-cated in 200 sites. If replicas are con�gured in a single,

at replication group, they need to keep state for eachindividual replica. Decomposing the original at groupinto two groups of 100 replicas each results in smallerconsistency state sizes. And, as groups get smaller, sodoes the replica consistency state size. Clearly, as repli-cation degrees reach thousands or tens of thousands ofreplicas, having a single, at replication group becomesprohibitively expensive. We should point out that theconsistency state grows as replicas generate new up-dates, and as these updates propagate to the group. Theconsistency state shrinks as replicas purge updates thathave been received by all other replicas in the group.This explains the oscillation in the average consistencystate size over time.The middle and bottom graphs in Figure 5 show thecumulative distribution of the time required to propa-gate an update consistently to all replicas and the timerequired for all replicas to purge their consistency state.As expected, as the group gets bigger, it takes longer foran update to get to all replicas in the group. This ex-plains the large di�erence in the consistency state size.When replicas are organized in multiple, smaller groups,once the update reaches a group, it propagates faster tothe rest of the group members, and the nodes in thisgroup can purge their consistency state. Of course, thisdoes not change the total time to propagate the mes-sage to every node in every group. Furthermore, forbigger groups, the slopes of these distributions also get8

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

Time (in multiples of mean update time)

A
v
g

.
C

o
n

.
S

ta
te

 S
iz

e

0 1 2 3 4 5 6 7
0

0.5

1

Time (im multiples of mean update time)

C
u

m
.

P
ro

b
.

D
is

t.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

Time (in multiples of mean update time)

C
u

m
.

P
ro

b
.

D
is

t.
.. 25 replicas __ 50 replicas -- 100 replicas -. 200 replicas

.. 25 replicas __ 50 replicas -- 100 replicas -. 200 replicas

.. 25 replicas __ 50 replicas -- 100 replicas -. 200 replicasFigure 5: Average consistency state size (in number ofupdate messages), time to propagate updates and ac-knowledgments for di�erent group sizes. In all 3 graphs,the x-axis is the simulation time scale in multiples ofwhen updates are generated. The global update, anti-entropy, and failure rates were kept constant.smoother. This means that smaller groups achieve aconsistent state sooner.4.2 Anti-Entropy RateThe next set of results show how the consistency statesize and the time to propagate updates and acknowledg-ments scale with the anti-entropy rate. In this �rst set ofgraphs, we made the group update generation and fail-ure rates constant, and varied the group anti-entropyrate. Notice that the anti-entropy rate was kept con-stant for di�erent group sizes 2.In Figures 6, 7, and 8, anti-entropy rates are twiceand equal to the update rate in the top and bottomgraphs, respectively. In all graphs, the simulation pa-rameter corresponding to the percentage of time replicasstay up is set to 99.9%. We use such high availabilitybecause at the same time that we want to minimize theinuence of failures in this set of simulations, we alsowant to introduce some degree of unavailability. Westudy the e�ects of lower availability in Section 4.3 be-low. Figure 6 shows the average consistency state sizefor di�erent anti-entropy rates and group sizes. We no-2For instance, to generate the same group anti-entropy rate,the replica anti-entropy rate needs to be 2 times higher in a groupof 100 replicas than in a group of 200 replicas.

tice that as state exchanges get less frequent, savingnetwork resources, consistency state sizes get bigger.The anti-entropy rate also impacts the time it takesfor updates and acknowledgments to propagate to allreplicas. Figures 7 and 8 show that less frequent stateexchanges cause updates and acknowledgments to prop-agate slower. Because we did not model ood-d's nor-malmessage exchange, these are worst case assessments.Note how it takes 2 to 3 times more time to purge statethan it does to reach consistency.Should each replica's anti-entropy rate decrease asthe group size increases so that the global anti-entropyrate remains a constant? If not, for approximately thesame number of updates, bigger groups will generatemore anti-entropy sessions. Figures 9, 10, 11 plot con-sistency state size, time to reach global consistency, andtime to purge all logs for three global anti-entropy rates.The higher the anti-entropy rate, the smaller the consis-tency state size, the faster consistency is obtained andstate purged.4.3 Replica AvailabilityLower replica availability increases the consistency statesize and the time to propagate updates and acknowledg-ments. In Figures 12, 13, and 14, replicas stay up 99%and 90% of the time in the top and bottom graphs, re-spectively. The lower the replica availability, the largerthe consistency state gets. Consequently, the argumentfor having smaller replication groups becomes even strongerin an environment like the Internet, where site and linkfailures are reasonably frequent.Figures 13 and 14 show the times to propagate up-dates and purge state for lower availability. As expected,lower availability causes longer delays in propagatingitems to all members of a group. However, a di�erenceof less than 10% in availability has a huge impact on thetime to propagate an update to all replicas in a groupand the group convergence time. This is specially truefor bigger groups, and it means that not only will repli-cas take longer to converge to a consistent state, but alsothat they will take longer to purge their message logs.Clustering replicas into smaller groups reduces the e�ectof lower site or link availability.5 CostBesides organizing replicas intomultiple replication groups,ood-d also suggests good logical topologies that repli-cas can use to propagate updates. These logical updatetopologies attempt to use the underlying network e�-ciently and at the same time, reduce update propagation9

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000
Av

g.
 C

on
. S

ta
te

 S
ize

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

Time (in multiples of mean update time)

Av
g.

 C
on

. S
ta

te
 S

ize

.... 25 replicas ___ 50 replicas -- 100 replicas -.- 200 replicas

ae rate/update rate=2

ae rate/update rate=1Figure 6: Average consistency state size sample paths(in number of update messages) for di�erent group sizes.In both graphs, the x-axis is the simulation time scalein multiples of when updates are generated. The uppergraph employs a faster anti-entropy rate (ae rate).
0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Cu
m.

 P
rob

. D
ist

rib
uti

on

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Time (in multiples of mean update time)

Cu
m.

 P
rob

. D
ist

rib
uti

on

.... 25 replicas ___ 50 replicas -- 100 replicas -.- 200 replicas

ae rate/update rate=2

ae rate/update rate=1Figure 7: Cumulative probability distribution for prop-agating updates to all replicas consistently. In bothgraphs, the x-axis is the simulation time scale in multi-ples of when updates are generated. The upper graphemploys a faster anti-entropy rate (ae rate).
0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

Cu
m.

 P
rob

. D
ist

rib
uti

on

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Time (in multiples of mean update time)

Cu
m.

 P
rob

. D
ist

rib
uti

on

.... 25 replicas ___ 50 replicas -- 100 replicas -.- 200 replicas

ae rate/update rate=2

ae rate/update rate=1Figure 8: Cumulative probability distribution for re-ceiving acknowledgments from all replicas and purgingconsistency state. In both graphs, the x-axis is the sim-ulation time scale in multiples of when updates are gen-erated. The upper graph employs a faster anti-entropyrate (ae rate).

100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

Av
g.

 C
on

. S
ta

te
 S

ize

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

Av
g.

 C
on

. S
ta

te
 S

ize

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

Time (in multiples of mean update time)

Av
g.

 C
on

. S
ta

te
 S

ize

.. 25 replicas __ 50 replicas -- 100 replicas -. 200 replicas

ae rate/update rate=1

ae rate/update rate=2

ae rate/update rate=4Figure 9: Average consistency state size (in number ofupdate messages). In all three graphs, the x-axis is thesimulation time scale in multiples of when updates aregenerated. In the middle and bottom plots, the globalanti-entropy rate (ae rate) is 2 and 4 times the rate ofthe top plot.
0 5 10 15 20 25 30

0

0.5

1

Cu
m

. P
ro

b.
 D

ist
.

0 5 10 15 20 25 30
0

0.5

1

Cu
m

. P
ro

b.
 D

ist
.

0 5 10 15 20 25 30
0

0.5

1

Time (in multiples of mean update time)

Cu
m

. P
ro

b.
 D

ist
.

.... 25 replicas ___ 50 replicas -- 100 replicas -.- 200 replicas

ae rate/update rate=1

ae rate/update rate=2

ae rate/update rate=4Figure 10: Cumulative probability distribution for prop-agating updates to all replicas. In all three graphs, thex-axis is the simulation time scale in multiples of whenupdates are generated. In the middle and bottom plots,the global anti-entropy rate (ae rate) is 2 and 4 timesthe rate of the top plot.10

10 15 20 25 30 35 40 45
0

0.5

1
Cu

m
. P

ro
b.

 D
ist

.

5 10 15 20 25 30 35 40 45
0

0.5

1

Cu
m

. P
ro

b.
 D

ist
.

0 5 10 15 20 25 30 35 40 45
0

0.5

1

Time (in multiples of mean update time)

Cu
m

. P
ro

b.
 D

ist
.

.... 25 replicas ___ 50 replicas -- 100 replicas -.- 200 replicas

ae rate/update rate=1

ae rate/update rate=2

ae rate/update rate=4Figure 11: Cumulative probability distribution for re-ceiving acknowledgments from all replicas. In all thex-axis is the simulation time scale in multiples of whenupdates are generated. In the middle and bottom plots,the global anti-entropy rate (ae rate) is 2 and 4 timesthe rate of the top plot.
100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

Av
g.

Co
n.

St
ate

 S
ize

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

4

Time (in multiples of mean update time)

Av
g.

Co
n.

St
ate

 S
ize

.. 25 replicas __ 50 replicas -- 100 replicas -. 200 replicas

up time=99%

up time=90%Figure 12: Average consistency state size (in number ofupdate messages). In both graphs, the x-axis is the sim-ulation time scale in multiples of when updates are gen-erated. In the bottom graph, replicas stay down longerthan in the upper graph.
0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Cu
mu

lat
ive

 Pr
ob

. D
ist

rib
uti

on

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (in multiples of mean update time)

Cu
mu

lat
ive

 Pr
ob

. D
ist

rib
uti

on

.... 25 replicas ___ 50 replicas -- 100 replicas -.- 200 replicas

up time=99%

up time=90%Figure 13: Cumulative probability distribution for prop-agating updates to all replicas. In both graphs, the x-axis is the simulation time scale in multiples of whenupdates are generated. In the bottom graph, replicasstay down longer than in the upper graph.

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Cu
mu

lat
ive

 Pr
ob

. D
ist

rib
uti

on

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Time (in multiples of mean update time)

Cu
mu

lat
ive

 Pr
ob

. D
ist

rib
uti

on

.... 25 replicas ___ 50 replicas -- 100 replicas -.- 200 replicas

up time=99%

up time=90%Figure 14: Cumulative probability distribution for re-ceiving acknowledgments from all replicas. In bothgraphs, the x-axis is the simulation time scale in mul-tiples of when updates are generated. In the bottomgraph, replicas stay down longer than in the uppergraph.time. In this section, we show the e�ects of using topo-logical information on the overall cost of propagatingupdates in replication groups of di�erent sizes. We com-pare two di�erent partner selection policies: random, inwhich a replica randomly chooses another replica to ex-change consistency state, and cost-based, in which thepeer with the minimum cost link is selected.To assign communication costs to links, we use NTG[7], a random topology generator, to generate logicaltopologies for replication groups of di�erent sizes. Wefeed the topology generator with the group size, aver-age node degree, and link bandwidths. The topologygenerator randomly places nodes on a plane, and con-nects them with links whose costs are a combinationof link bandwidth and physical distance between nodes.The resulting logical topology is represented by a fully-connected, symmetric cost matrix 3.The top graph in Figure 15 plots the cumulativeprobability distribution for the total communication costfor propagating updates to all members in a group of 50replicas using random and cost-based partner selectionpolicies. These distributions show that it costs at least3 times less to propagate updates when replicas choosetheir peers based on the communication cost to get tothem instead of randomly selecting them. For these sim-ulations, each replica chooses its 3 lowest-cost peers, andeach time the replica performs an anti-entropy session, itrandomly chooses among its 3 previously selected peers.In other words, we generate a logical update topologyin which replicas have connectivity degree of 3.As replication groups get bigger, the discrepancybetween cost-based and random peer selection policies3We should point out that in the real world the cost matrix willnot be symmetric since logical links can use asymmetric paths.11

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

Cu
m

ula
tiv

e
Pr

ob
ab

ilit
y D

ist
rib

ut
ion

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

Cost

__ cost-based ... random 50 replicas

100 replicas

200 replicasFigure 15: Cumulative probability distributions for thetotal cost of propagating updates to all replicas usingcost-based and random partner selection policies for dif-ferent group sizes. In all graphs, the x-axis is the simu-lation time scale in multiples of when updates are gen-erated.increases. The middle and bottom graphs of Figure15 show the cost distributions for 100- and 200-replicagroups. Notice that for a group with 200 replicas, thecost-based approach is approximately 7 times cheaperthan choosing peers at random.To evaluate how partner selection policies a�ect thetime to propagate items to all replicas, Figure 16 presentsthe cumulative probability distributions for propagat-ing updates to all replicas for di�erent group sizes. Wenotice that items take longer to propagate to all repli-cas when the cost-based partner selection policy is used.This can be explained by the following arguments. First,since link costs remain constant during the whole sim-ulation, the set of partners that a replica chooses usingcost-based selection is always the same. In the randomselection approach, however, each replica can select anyother replica in its group with whom to exchange consis-tency state. Thus, each replica has connectivity degreeof n� 1, where n is the group size. The other argumentis that the logical topology generated in the cost-basedapproach does not take diameter into account.In the next set of simulations, we increase the replica'slogical connectivity and observe what happens to thetotal cost and the time to propagate updates. The con-nectivity is set to 10% of the group size, which meansthat every time a replica performs an anti-entropy ses-sion, it randomly chooses one among its 0:1n lowest-costpeers, where n is the replication group size. Figures 17and 18 show the total cost and the time to propagateupdates to all replicas in groups of di�erent sizes. Thereis a slight increase in cost for groups of 50 replicas whencompared to the 3-connected case (Figure 15). For big-ger groups, the di�erence in cost between the 0:1n- andthe 3-connected cases increases, since more expensive

0 50 100 150 200 250 300
0

0.5

1

0 50 100 150 200 250 300
0

0.5

1

Cu
m

ula
tiv

e
Pr

ob
ab

ilit
y D

ist
rib

ut
ion

0 50 100 150 200 250 300
0

0.5

1

Time (in multiples of mean update time

__ cost-based ... random50 replicas

100 replicas

200 replicasFigure 16: Cumulative probability distributions for thetime to propagate updates to all replicas using cost-based and random partner selection policies for di�erentgroup sizes. In all graphs, the x-axis is the simulationtime scale in multiples of when updates are generated.logical links are being used. On the other hand, be-cause of the higher connectivity, the di�erence in timeto propagate updates to all replicas using cost-based andrandom selection policies decreases when compared tothe 3-connected case (Figure 16).5.1 SummaryOur simulation results demonstrated the bene�ts of split-ting a single, at replication group into multiple smallergroups. We observed that the smaller the replicationgroup, the smaller the size of the consistency state eachreplica in the group needs to keep. This di�erence inconsistency state size is ampli�ed because in smallergroups, replicas can purge their consistency state sooner.We also showed how anti-entropy and availabilityrates impact the size of the replica consistency state,and that smaller replication groups attenuate the e�ectof less frequent state exchanges and higher failure rates.Finally, we assigned communication costs to logicallinks, and compared 2 di�erent anti-entropy partner se-lection policies: random and cost-based. We observedthat while for a 50-replica group, propagating updateswith a cost-based partner selection policy is about 3times less expensive than using a random selection pol-icy, this cost ratio jumps to 7 for 200-replica groups.We also noticed that due to the lower logical connec-tivity and the fact that the logical topology generatedin the cost-based approach does not take diameter intoaccount, items take longer to propagate to all replicaswhen the cost-based partner selection policy is used. Asproof of concept, we increased the replica's logical con-nectivity and observed that the di�erence in time to12

0 500 1000 1500 2000 2500 3000
0

0.5

1

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

0.5

1

Cu
m

ula
tiv

e
Pr

ob
ab

ilit
y D

ist
rib

ut
ion

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

Cost

__ cost-based ... random50 replicas

100 replicas

200 replicasFigure 17: Cumulative probability distributions for thetotal cost of propagating updates to all replicas usingcost-based and random partner selection policies for dif-ferent group sizes. In all graphs, the x-axis is the simu-lation time scale in multiples of when updates are gen-erated.
20 40 60 80 100 120 140 160
0

0.5

1

20 40 60 80 100 120 140 160
0

0.5

1

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

 D
ist

rib
ut

io
n

20 40 60 80 100 120 140 160 180
0

0.5

1

Time (in multiples of mean update time

__ cost-based ... random50 replicas

100 replicas

200 replicasFigure 18: Cumulative probability distributions for thetime to propagate updates to all replicas using cost-based and random partner selection policies for di�erentgroup sizes.

propagate items to all replicas using cost-based and ran-dom selection policies decreases when compared to theless connected case. As expected, the higher connectedtopology resulted in slightly higher propagation costs.6 ConclusionsTo achieve adequate performance, many future Internetservices will need to replicate their data in thousandsof autonomous domains. This paper described ood-d,our tool to support high degrees of replication throughapplication-layer ooding of data.Flood-d automatically builds logical update topolo-gies that attempt to use the network e�ciently and at-tempt to propagate updates quickly and robustly. Itorganizes replicas into replication groups, analogous tothe Internet's autonomous routing domains.Organizing replicas into multiple, smaller groups isvital for wide-area services with replication degrees inthe thousands. Hierarchical organization limits the sizeof the consistency state that replicas needs to keep andpermit autonomousmanagement of group topology, groupmembership, and group membership tra�c.References[1] J.A. Bondy and U.S.R. Murty. Graph Theory withApplications. North Holland, 1976.[2] Steve Casner. Frequently asked questions(FAQ) on the multicast backbone (MBONE).On-line documentation; available from ven-era.isi.edu:mbone/faq.txt, January 1993.[3] Peter Danzig, Katia Obraczka, and Shih-Hao Li.Internet resource discovery services. IEEE Com-puter, pages 8{22, September 1993.[4] Stephen E. Deering and David R. Cheriton. Mul-ticast routing in datagram internetworks and ex-tended lans. ACM Transactions on Computer Sys-tems, 8(2):85{111, May 1990.[5] Alan Emtage and Peter Deutsch. archie: An elec-tronic directory service for the Internet. Proceed-ings of the Winter 1992 Usenix Conference, Jan-uary 1992.[6] R. A. Golding. Weak-Consistency Group Commu-nication and Membership. PhD thesis, Universityof California, Santa Cruz, December 1992. Com-puter and Information Sciences Technical ReportUCSC-CRL-92-52.13

[7] Steve Hotz and Romklau Nagamati. Networktopology generator (ntg): A tool for generating net-work topology and policy for protocol simulationpurposes. Spring 1992.[8] D.S. Johnson. The complexity of network designproblem. Networks, 8:279{285, 1978.[9] B. Kantor and P. Lapsley. Network News Trans-fer Protocol - a proposed standard for the stream-based transmission of news. Internet Request forComments RFC 977, February 1986.[10] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi.Optimization by simulated annealing. SCIENCE,220(4598):671{680, May 1983.[11] Butler Lampson. Designing a global name service.Proceedings of the 5th. ACM Symposium on thePrinciples of Distributed Computing, pages 1{10,August 1986.[12] K. Lidl, J. Osborne, and J. Malcolm. Drinking fromthe �rehose: Multicast USENET news. Proceedingsof the 1994 Winter USENIX Conference, 1994.[13] D. Oppen and Y. Dalal. The Clearinghouse: Adecentralized agent for locating named objects ina distributed environment. ACM Transactionson O�ce Information Systems, 1(3):230{253, July1983.[14] J. Plesnik. The complexity of designing a networkwith minimumdiameter. Networks, 11:77{85, 1981.[15] Christopher Rose. Low mean internodal distancenetwork topologies and simulated annealing. IEEETrans. Commun., pages 1319{1326, 1992.[16] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-To-End arguments in system design. Proceedings of the2nd International Conference on Distributed Sys-tems, pages 509{512, April 1981.[17] M. Schroeder, A. Birrell, and R. Needham. Ex-perience with Grapevine: The growth of a dis-tributed system. ACM Trans. on Computer Sys-tems, 2(1):3{23, February 1984.[18] H. Schulzrinne. A transport protocol for real-timeapplications. Internet Draft, Internet EngineeringTask Force, Audio-Video Transport WG, March1993.[19] Ulrich Schumacher. An algorithm for construc-tion of a k-connected graph with minimum num-ber of edges and quasiminimal diameter. Networks,14:63{74, 1984.[20] Kenneth Steiglitz, Peter Weiner, and D. J. Kleit-man. The design of minimum-cost servivable net-works. IEEE Trans. Circuit Theory, CT-16(4):455{460, November 1969. 14

