Effect of fibrin on endothelial cell production of prostacyclin and tissue plasminogen activator.

K L Kaplan, T Mather, L DeMarco and S Solomon

doi: 10.1161/01.ATV.9.1.43

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1989 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/9/1/43

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Effect of Fibrin on Endothelial Cell Production of Prostacyclin and Tissue Plasminogen Activator

Karen L. Kaplan, Timothy Mather, Laura DeMarco, and Sarra Solomon

Fibrin formed on endothelial cells has previously been shown to have deleterious effects on the cells. Additionally, substances that cause endothelial cell damage have been reported to induce cultured endothelial cells to synthesize prostacyclin and tissue plasminogen activator (t-PA). The present studies were undertaken to determine whether fibrin formed on cultured human umbilical vein endothelial cells would alter synthesis of prostacyclin and t-PA by the cells. Fibrin was found to increase synthesis of both prostacyclin and t-PA in a dose and time dependent manner. Stimulation of prostacyclin synthesis was completely inhibited by indomethacin; partially inhibited by actinomycin D, cycloheximide, and trifluoperazine; and not affected by cytochalasin D or vinblastine. In contrast, stimulation of t-PA synthesis was completely inhibited by actinomycin D and cycloheximide; partially inhibited by cytochalasin D, vinblastine, and trifluoperazine; and not affected by indomethacin. Fibrin I, formed with Reptilase, caused only slight stimulation of t-PA production, but virtually no stimulation of prostacyclin synthesis. Neither collagen polymerization on the cells nor thrombin added in concentrations that did not induce fibrin polymer formation stimulated production of either substance. Furthermore, soluble fibrin II generated in the presence of the fibrin polymerization inhibitor gly-pro-arg-pro also failed to stimulate either prostacyclin or t-PA production. The presence of platelets in the plasma from which the fibrin was formed did not affect the amount of stimulation of the cells. Fibrin-induced stimulation of endothelial cell production of prostacyclin and t-PA could act to limit vascular occlusion in vivo by inhibiting platelet function and by stimulating fibrinolysis via t-PA.

human umbilical vein endothelial cells is stimulated by thrombin,11,12 dibutyryl cyclic AMP,13 platelet activating factor,14 and also by endotoxin.15

The reports of morphologic alterations and biochemical changes induced in cultured endothelial cells by fibrin, together with the previous studies on stimulation of prostacyclin production by agents that affect cell morphology, led us to hypothesize that fibrin might affect endothelial cell synthesis of prostacyclin. The t-PA production was examined as well, since stimulation of production of this enzyme by fibrin would provide a mechanism for maintaining vascular patency in the face of a stimulus to fibrin formation.

Methods

Reagents

Medium 199 was obtained from Gibco, Grand Island, NY. Collagenase was purchased from Worthington Biochemicals, Freehold, NJ. Gelatin was obtained from BBL, Cockeysville, MD. Heparin, indomethacin, cycloheximide, actinomycin D, cytochalasin D, and vinblastine were purchased from Sigma Chemical Company, St. Louis, MO. Trifluoperazine was obtained from Smith Kline & French, Philadelphia, PA. Equine tendon collagen was purchased from Hormonchemie, Munich, West Germany. Endothelial cell growth supplement was obtained from Collaborative Research, Bedford, MA. Human serum was purchased from the New York Blood Center, New York, NY. Fetal bovine serum was obtained from Hyclone, Logan, UT. Reptilase was obtained from Wellcome Diagnostics, Dartford, England. Human thrombin was obtained from John Fenton (specific activity 2523 units/mg). Reptilase was purchased from Diagnostica Stago, Asnieres, France. Antibody to prostacyclin was a generous gift of J. Bryan Smith, Philadelphia, PA. 1H-6-keto-prostaglandin-F\textsubscript{1a} (6-keto-PGF\textsubscript{1a}) was purchased from New England Nuclear, Boston, MA. A kit for enzyme-linked immunosorbent assay (ELISA) assay of t-PA antigen was purchased from American Diagnostica, Greenwich, CT. The peptide gly-pro-arg-pro was synthesized by George Wilner of the Jewish Hospital, St. Louis, MO.

Endothelial Cell Culture

Human umbilical vein endothelial cells were cultured as described previously,16 by using the methods of Jaffe and colleagues.17 Heparin and endothelial cell growth supplement were added to the culture medium as described by Thornton and colleagues.18 Cells were routinely grown in the presence of 15% serum.

Fibrin Formation on Endothelial Cells

Cells were grown to confluence in 35 mm dishes or 96-well plates. The medium was removed and replaced with fresh citrated plasma (platelet-poor unless noted otherwise), serum, serum-free medium, or some combination of these; fibrin formation was initiated by the addition of CaCl\textsubscript{2} to a final Ca++ concentration of 120 mM. At the end of the incubation period for each experiment (20 hours unless otherwise stated), the supernatant fluid was aspirated from the dishes and was stored frozen until assay. Fibrin I was formed on cells by addition of Repti-

![Image of Figure 1](http://atvb.ahajournals.org/)
endothelial cells. CaCl₂ was added to a final concentration of 120 mM in the plasma-serum mixture, and the dishes were incubated for 18 hours. Figure 2 shows the concentrations of 6-keto-PGF₁α and t-PA in the culture supernatants as a function of mg fibrin per 35 mm dish. The concentration of 6-keto-PGF₁α was maximal from 0.25 to 1.25 mg fibrin per dish in the experiment shown, whereas the t-PA concentration in the supernatant increased with increasing amounts of fibrin to the highest amount tested (5.0 mg per dish). Although the amounts of fibrin that led to maximal stimulation and to the subsequent decrease in stimulation differed in different experiments, the general shape of the curve was consistent. Similarly, the concentration at which t-PA synthesis began to be seen also varied.

The time course of appearance of 6-keto-PGF₁α and t-PA in the culture supernatant was then examined at two different fibrin concentrations (representing different points on the dose response curve), as shown in Figure 3. At both fibrin concentrations shown, there was a slight increase in concentration of both 6-keto-PGF₁α and t-PA in the supernatant over the first hour, with the major increase occurring between 1 and 6 hours or between 6 and 20 hours.

The effects of inhibitors on the appearance of 6-keto-PGF₁α and t-PA in the culture supernatant are shown in Figure 4. Panel A shows the effects of addition of inhibitors on appearance of 6-keto-PGF₁α. Both the RNA synthesis inhibitor, actinomycin D, and the protein synthesis inhibitor, cycloheximide, inhibited prostacyclin production by approximately 50%. When these inhibitors were used at one-half or one-fourth the concentration used in these experiments (not shown), there was still partial inhibition of prostacyclin production and complete inhibition of t-PA production. As expected, the cyclooxygenase inhibitor indomethacin caused nearly complete inhibition of prostacyclin production. Neither cytochalasin D (which interacts with actin) nor vinblastine (which interferes with microtubule function) inhibited production of prostacyclin. Slight inhibition was caused by trifluoperazine (an inhibitor of calcium-dependent reactions involving calmodulin, protein kinase C, and calcium-dependent protease), and of phospholipase A₂. Panel B shows the effects of these same inhibitors on the appearance of t-PA in the culture supernatant. In this case, both actinomycin D and cycloheximide caused complete inhibition, whereas indomethacin caused no inhibition. Inhibition of 60%, 80%, and 40% occurred with the addition of cytochalasin D, vinblastine, and trifluoperazine, respectively.

Fibrin formed by addition of Reptilase to the citrated plasma in the tissue culture dishes caused only slight stimulation of t-PA production during 20 hours incubation (Figure 5). There was an increase in t-PA concentration with both Reptilase and thrombin, but it was substantially greater with the Ca ++ (thrombin)-induced clot than with the Reptilase clot. Reptilase clots had no effect on prostacyclin production by the cells (not shown).

To further demonstrate that the stimulatory effect of fibrin was not simply due to the presence of a polymer on the surface of the cells, equine tendon collagen was layered over the cells at two different concentrations (Figure 6). At the lower concentration (10 μg/ml), there were no collagen fibers were grossly visible, and there was no difference in either the 6-keto-PGF₁α or the t-PA concentration as compared with the control. When the higher collagen concentration was used (100 μg/ml), collagen fibers were visible, but concentrations of both 6-keto-PGF₁α were less than the control.

Two additional sets of experiments were performed to rule out the possibility that the stimulation seen with fibrin was due to the thrombin that was generated in the dishes rather than to the fibrin. In the first, thrombin was added to dishes at different concentrations (0.01 to 1.0 units/ml),
Figure 4. The effects of inhibitors on stimulation of 6-keto-
PGF₁α (A) and tissue plasminogen activator (t-PA) (B) by fibrin.
For all inhibitors, the incubation time was 20 hours. Error bars
represent SEM. The number of experiments with each inhibitor is
shown below each bar. Fibrin per dish was either 0.625 or 2.5 mg,
since there was no difference in the amount of inhibition with the
two different amounts of fibrin.

but no stimulation of either 6-keto-PGF₁α or t-PA was seen
with thrombin alone. Only when Ca²⁺ was added along
with thrombin, so that a fibrin clot formed on the cells was
there significant stimulation of the cells as shown in Figure
7 for 1.0 U/ml thrombin.

Another approach to the question of whether thrombin
might be responsible for the stimulation seen with the
fibrin clots was to recalcify plasma in the presence of the
tetrapeptide gly-pro-arg-pro, an analogue of the aminoter-
minus of the Aα chain of the fibrin monomer, which inhibits
fibrin polymerization by binding to the site complementary
to the Aα chain polymerization site and thus disrupting the
interactions between these complementary binding sites.¹⁴
This peptide does not affect thrombin action on fibrinogen,
so the fibrinopeptides are cleaved but the fibrin cannot
polymerize. As shown in Figure 8, stimulation of both
prostacyclin and t-PA synthesis was prevented by addi-
tion of gly-pro-arg-pro to the plasma before recalcification.

The final set of experiments compared the effects of
stimulation with platelet-rich plasma with those of stimu-
lization with platelet-poor plasma. The presence of platelets
had no effect on the concentration of either 6-keto-PGF₁α
or t-PA in the culture supernatant (data not shown).

Discussion
The studies reported in this paper have shown that fibrin
can have significant effects on endothelial cell
function. Fibrin formed on the surface of cultured human
umbilical vein endothelial cells led to increased concen-
trations of both 6-keto-PGF₁α and t-PA in the culture
supernatant over time. Stimulation of prostacyclin synthe-
Previous studies in the literature have reported that thrombin also stimulates endothelial cell synthesis of t-PA. 1112 The inhibitors studied had different effects on production of prostacyclin and t-PA. At concentrations of actinomycin D and cycloheximide that totally blocked the increased synthesis of t-PA, these inhibitors caused approximately 50% inhibition of stimulation of prostacyclin synthesis. The partial inhibition of stimulation of prostacyclin synthesis suggests that new synthesis of a protein is required for full stimulation of synthesis of this prostaglan- din; possible proteins that might be involved include the phospholipase responsible for liberating arachidonic acid from cellular phospholipids, cyclooxygenase, and prostacyclin synthetase. It is unlikely that the inhibition of pros- tacyclin synthesis was due simply to the nonspecific toxic effects of cycloheximide or actinomycin D, since the relationship between inhibition of prostacyclin production and t-PA production remained constant over a four-fold range of inhibitor concentrations. Since t-PA is a protein, it was anticipated that stimulation of its synthesis would be completely blocked by protein and RNA synthesis inhibitors. It was anticipated that indomethacin, a cyclooxygenase inhibitor, would completely block synthesis of prosta- cyclin and have no effect on synthesis of t-PA. These were the results obtained.

In contrast to the findings of Nawroth et al. 8 using endotoxin and phorbol ester to stimulate prostacyclin synthesis by bovine aortic endothelial cells, cytochalasin D and vinblastine, which interfere with cytoskeletal function, had no inhibitory effects on the stimulation of human umbilical vein endothelial cell prostacyclin synthesis by fibrin. These differences may be related to differences in stimulus, in cell species, or both. These agents did significantly inhibit the increase in t-PA synthesis in human umbilical vein endothelial cells exposed to fibrin, analogous to their effects on tissue factor production described by others. 20,30,31 Trifluoperazine caused only about 20% inhibition of prostacyclin synthesis and 30% inhibition of t-PA synthesis in these studies, which is less than the inhibition of prostacyclin or tissue factor synthesis seen with a similar concentration of trifluoperazine in bovine aortic endothelial cells stimulated with endotoxin or phorbol ester. 6,30 Which of the different effects of trifluoper- azine on Ca++-related cell functions or on phospholipase A2 activity was responsible for the inhibition of prostacyclin and t-PA synthesis is not known.

Another finding of interest was the fact that fibrin formed by addition of Reptilase to citrated plasma had much less effect on cell function than did fibrin formed by generation of thrombin. There was no stimulation of prostacyclin production and minimal stimulation of t-PA production. This difference may be attributable to the fact previous studies were in serum-free medium rather than in plasma. The presence of thrombin inhibitors in plasma, e.g., antithrombin III and heparin cofactor II, is well known, and these inhibitors may have decreased the effective concentration of thrombin.

The amount of stimulation of t-PA synthesis could have been underestimated in these studies since t-PA is known to bind to both fibrin 25,26,27 and to endothelial cells. 27,28 Whether the amounts of t-PA bound to either fibrin or cells in these studies was significant in relation to the amounts measured in the culture supernatants is not known.

In another study, maximal stimulation of thrombin required to induce t-PA synthesis was greater with fibrin in the present study, and the concentration of current study and those cited is that the cells in the
that Reptilase induces formation of fibrin I, with removal only of fibrinopeptide A, whereas thrombin induces formation of fibrin II, with cleavage of both fibrinopeptides A and B. Fibrin II is a better substrate for Factor XIII-induced crosslinking, and Factor XIII would have been present in the citrated plasma used to form the fibrin. It is possible that crosslinking of the fibrin on the cells would increase its potency as a stimulator of the cells.

The data with gly-pro-arg-pro, together with the Reptilase data, demonstrate that fibrin II polymer is required for stimulation, since soluble fibrin II did not affect the cells. This experiment also provides strong evidence that the stimulation seen with fibrin cannot be attributed to thrombin, since there would be no difference in thrombin generation in the presence or absence of gly-pro-arg-pro. Similarly, it is unlikely that any other component of plasma was responsible for the stimulation, since other plasma proteins would not be expected to be affected by this peptide, except insofar as they would not be able to be incorporated into a fibrin clot when fibrin polymerization was inhibited.

The effect of fibrin on the cells did not appear to be a non-specific effect of a polymer since collagen fibrils formed on the cells did not stimulate either prostacyclin or t-PA synthesis.

The finding that platelet-rich plasma was no different from platelet-poor plasma in the degree of stimulation of either prostacyclin or t-PA production suggests that platelet-secretory products do not influence human endothelial cell production of either of these substances, since secretion of granular substances would be expected during the process of fibrin formation. These studies suggest that if fibrin were formed on the surface of endothelial cells in vivo, it would induce an increase in prostacyclin synthesis by the cells, thus inhibiting platelet function in the vicinity of the fibrin and preventing platelets from contributing to further thrombin generation and fibrin formation. Increased synthesis of t-PA, if the t-PA were all active, would lead to dissolution of the fibrin on the endothelium. If, on the other hand, synthesis of the t-PA inhibitor were increased along with synthesis of t-PA, then there might be no increase in t-PA activity or even a decrease in activity, depending on the balance between stimulation of enzyme and inhibitor.

Further studies will be required to resolve this issue, but earlier work4 discussed above suggests that the balance will favor fibrin dissolution.

References

24. Laudano AP, Doolittle RF. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences. Biochemistry 1980;19:1013-1019

Index Terms: fibrin • endothelial cells • prostacyclin • tissue plasminogen activator