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ABSTRACT
In this paper we tackle the problem of designing simple,
localized, low energy consuming, reliable protocols for one-
to-all communication in large scale wireless sensor networks.
Our first proposed technique, called the Irrigator protocol,
relies on the idea to first build a sparse overlay network,
and then flood over it. The overlay network is set up by
means of a simple, distributed, localized probabilistic pro-
tocol and spans all the sensor nodes with high probabil-
ity. Based on the algorithmic ideas of the Irrigator protocol
we then develop a second protocol, dubbed Fireworks, with
similar performance that does not require any overlay net-
work to be set up in advance. Asymptotic analytical results
are provided which assess the reliability of the Irrigator and
Fireworks techniques. The theoretical analysis of the pro-
posed protocols is complemented and validated by a (simu-
lation based) comparative performance evaluation that as-
sesses several advantages of our new protocols with respect
to gossiping and simple flooding. Differently from previ-
ous studies, we analyze and demonstrate the performance
of our protocols for two different node distributions: The
typical uniform distribution and a newly defined “hill” dis-
tribution, here introduced to capture some of the important
and more realistic aspects of node deployment in heteroge-
neous terrain. Simulation results show that the proposed
schemes achieve very good trade-offs between low overhead,
low energy consumption and high reliability. In particular,
the Irrigator and Fireworks protocols are more reliable than
gossiping, and significantly reduce the number of links along
which a message is sent over both flooding and gossiping.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design]: Wireless Communications; C.2.2
[Network Protocols]: Routing Protocols

General Terms: Algorithms, Performance.

Keywords: Broadcasting, Gossiping, Sensor Networks, Ad
Hoc Networks.
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Network broadcasting concerns the dissemination of a mes-
sage from a given source node to all the other nodes in the
network. Because of the very nature of networks, broadcast
protocols should be distributed, localized, reliable and, in
case of networks with limited node resources, they should
also be resource-efficient. In particular, broadcast reliabil-
ity is a central issue, given that it is typical of distributed
environments to be subject to various kinds of faults.

Broadcasting is one of the most fundamental problems
in distributed computing, taking new forms as new types
of networks make their appearance. In this paper we are
concerned with the broadcast problem in wireless sensor
networks (WSNs). Sensor networks can potentially carry
out a variety of useful tasks, such as environmental mon-
itoring (e.g., seismic activity, wildlife monitoring, physical
plants control, etc.), and are destined to become pervasive.
WSNs are usually made of small devices, the sensors, that
are distributed over a given area for performing a wide va-
riety of measurements of the environment surrounding the
nodes. The measurements are collected at special nodes
called sinks, which are more powerful devices where sensed
data are processed. Sinks also act as gateways to the exter-
nal world. This kind of data collection implies a many-to-
one communication, from the nodes to the sink. The “oppo-
site” communication flow, one-to-many or one-to-all is also
very typical of WSNs, since it models the communication
from the sinks to (part of) the sensors through which the
sinks communicate to the nodes the kind of data they are
interested in (called simply sink’s interests). Thus, an effi-
cient and reliable implementation of the broadcast primitive
is a basic building block of WSNs. Given that the sensor
nodes have severe limitations in terms of energy, memory
and computing capabilities, a broadcast protocol should be
energy efficient and simple. The key to achieve this goals
is to have the protocol executed at each node (distributed)
relying only on local information (localized), to be gathered
inexpensively.

In this paper we propose broadcast protocols for WSNs
that are simple, distributed, localized and energy efficient,
and we show via precise mathematical analysis and thor-
ough simulations that the proposed protocols are expected
to perform well in realistic scenarios.

The problem of wireless broadcast has been extensively
studied. Description of problem, solutions and further ref-
erences can be found, for instance, in [14] and [12]. To
appreciate the necessity of efficient broadcast, it is worth
mentioning how major solutions for ad hoc routing rely on



this communication primitive. Broadcast is used for effi-
cient route discovery in protocols such as AODV [32], DSR
[13], LAR [29] and DREAM [20]. All these routing solutions
use flooding: Starting from the source, every node that re-
ceives the message for the first time forwards it to its neigh-
bors. Some heuristic optimizations are added on top of this
basic scheme [14], [12]. If the network is connected this
process delivers the message to every node in the network.
The communication cost of flooding, however, is typically
too high. The so-called “broadcast storm” resulting by the
flooding can even result in harmful bandwidth congestion.
This problem has been observed to be non-negligible for ad
hoc routing, and it is naturally exacerbated by the limited
node resources in WSNs. Therefore, one-to-all data dissem-
ination in WSNs has been investigated as a problem per se
to produce alternative approaches to ad hoc broadcast. One
very popular alternative is the so-called vertex-based gossip-
ing: starting from the source, every node that receives the
message for the first time forwards it to its neighbors with
probability p. A related approach is edge-based gossiping:
starting from the source, every node that receives the mes-
sage for the first time forwards it to each neighbor with
probability p. That is, when a node receives the message, a
coin is flipped for every neighbor. Note that flooding is the
limit case of gossiping when p = 1. Randomized gossiping
is now recognized as a main component of large scale dis-
tributed systems combining efficient communication with a
reasonably good level of robustness (see, among others, [24,
33, 22, 23, 21, 28, 18, 19]). Hass, Halpern and Li [25] argue
that randomized gossip can be used to significantly increase
efficiency by reducing the number of messages sent by up
to 35%. Parchuri et al. [31] give a deterministic broadcast
scheme based on a geometric covering problem that they
claim to be fairly superior to gossip. However, their scheme
requires fixed, specially chosen locations for nodes and hence
is rather inflexible and inappropriate for the dynamic sce-
narios of WSNs.

The contribution of this paper is proposing and analyz-
ing alternative strategies to flooding and gossiping which
are specifically designed for WSNs. Our first proposed tech-
nique, called Irrigating, consists on simple flooding via a
sparse overlay network that covers all nodes and that can
be set up inexpensively, efficiently and reliably. The overlay
network is set up by means of a simple, distributed, local-
ized probabilistic protocol and spans all the sensor nodes
with high probability. Here, “with high probability” means
that the probability tends to 1 as the number of nodes in the
network grows, and, as we prove formally, the convergence is
fast. Based on the algorithmic ideas of the Irrigator proto-
col we then develop a protocol for broadcasting with similar
performance that does not require any overlay network to
be set up in advance. We name this broadcast protocol the
fireworks protocol because of the way the broadcasting tra-
verses the network.

The theoretical analysis of the proposed protocols is com-
plemented and validated by a (simulation based) compara-
tive performance evaluation that assesses several advantages
of our new protocols with respect to gossiping and simple
flooding. Differently from previous studies, we analyze and
demonstrate the performance of our protocols for two differ-
ent node distributions: The typical uniform distribution of
the nodes in the deployment area and also a newly defined
“hill” distribution, here introduced to capture some of the

important and more realistic aspects of node deployment in
heterogeneous terrain.

A more precise description of our contributions follows.
Wireless sensor networks are here modelled by geometric

random graphs. We assume that n identical sensors are dis-
tributed within the area of interest and that they have the
same transmission radius r. For simplicity of description,
we take the geographical region to be the unit square [0, 1]2,
and also make the standard probabilistic model assumption
that the positions of the n nodes are random: independent
and uniformly distributed on [0, 1]2. We call visibility graph,
denoted as Gn

r , the network topology graph obtained by
drawing an edge between any two nodes whose Euclidean
distance is ≤ r. Gn

r contains all communication links that
can potentially be set up or used in the network.

Definition 1. Fix r > 0 and a positive integer c. We
take Gn

r,c = (V n
r,c, E

n
r,c) to denote the geometric random graph

defined as follows.

• The vertex set V n
r,c consists of n points, picked indepen-

dently according to the uniform distribution on [0, 1]2.

• Each node v ∈ V n
r,c connects to c nodes chosen uni-

formly at random among those within distance r. If
the number of such nodes is less than c then v con-
nects to all of them. This is done independently for all
nodes v.

(Each link is bidirectional, and the resulting subgraph is undi-
rected.)

This definition embodies a very simple, distributed and lo-
calized algorithm to compute a sparse overlay (sub)network
of the visibility graph. In a synchronous environment the
running-time is constant, and yet, as we prove in this paper,
Gn

rc is connected with high probability. We remark that the
asymptotic result holds for c ≥ 2 and that our experimental
results confirm that in realistic scenarios connectivity does
obtain for such small values of c (c ≥ 3, 4). Also note that
Gn

r,c can be computed in a completely asynchronous fashion.
This feature is quite relevant for changing environments like
WSNs, where nodes come and go as they “wake up and fall
asleep.”

Our new Irrigator protocol is simply this:

Flood through Gn
rc.

This approach to data dissemination is expected to have a
variety of applications. A first example has been given in the
context of building up networks of Bluetooth devices where
generating sparse overlays was shown to be effective in the
context of scatternet formation [3, 5]. As we argue in this
paper by means of both theoretical and empirical results,
irrigating is very beneficial for WSNs. In particular, we
show that it compares favorably to the popular flooding and
gossiping approaches. We observe that, due to its simplicity,
the protocol is not only easy to implement, but also quite
efficient in terms of energy and communication.

Let us now describe precisely the analytical results that
we prove in this paper.

Definition 2. Fix a positive integer c. We take T n
r,c to

denote the random subgraph of Gn
r defined by the following

process. At the beginning a root u is captured (selected) at
random. From then on, every captured node v captures c



other nodes by selecting them uniformly at random among
those within distance r. If the number of such nodes is less
than c then v connects to all of them. Each captured node
selects the c neighbors only once, the first time that it is
captured.

Although T n
r,c might contain cycles we shall refer to it as

a tree because the process resembles a tree of out-degree c
growing from the root. Note that one can view Gn

r,c as the
union of upto n such trees. Our first result says, roughly,
that T n

r,c for large n is a giant component. We write P for
probability (and will sometimes for clarity write Pn rather
than P to emphasize that the probability model depends on
the number of nodes n).

Definition 3. Let s ∈ (0, 1] be some fixed constant. An
s-giant component of an undirected graph G with n vertices
is a connected subgraph of G containing at least ns vertices.

Proposition 1. Fix r > 0 and c ≥ 2. Then there exists
a constant s > 0 such that,

lim
n→∞

P(T n
r,c is an s-giant component) = 1 . (1)

The emergence of a giant component is interesting and
potentially useful, especially since T n

r,c is an on-line process,
i.e., it can be generated at any moment by any node acting
as a root.

Proposition 1 is also a natural step toward proving the
main theoretical result of this paper.

Theorem 1. Fix r > 0 and c ≥ 2. Then

lim
n→∞

P(Gn
r,c is connected) = 1 . (2)

Note that this result is not trivial: in a related model,
the nearest neighbours model where each node selects the c
nearest neighbours, this assertion is false for constant c. For
connectivity in this model, one needs c = Ω(log n), [27, 34]

Although we stated our results in terms of limits, both
statements hold with high probability. The probability of
the complementary events goes to 0 as Θ(n−ǫ) for some
ǫ ∈ (0, 1). Finally, we will show that no vertex has de-
gree exceeding α log n

log log n
(for some constant α > 0) with high

probability. For networks of realistic size, this value does
not exceed a small constant.

One possible drawback of the Irrigator strategy is the fact
that it needs the overlay infrastructure, namely, Gn

rc, to be
set up in advance. Proposition 1 is also the conceptual basis
to understand the following random process, the fireworks
protocol, denoted as F n

cpr(u). The process starts from the
root (i.e. the source of the broadcast) u that sends the mes-
sage to all neighbors. Then the following is repeated: when
a node sees the message for the first time it either forwards
the message to c random nodes within distance r with prob-
ability p or, with probability 1 − p, it forwards the message
to all nodes within distance r. We will show that for values
of p as small as Θ(log∗ n/n), 1 fireworks reaches all nodes
with probability 1, as n goes to infinity. Note that the fire-
work protocol is an on-line process that can be generated by

1The function log∗ n is the number of times one needs to
apply the logarithm successively to reduce n to at most
1. It is an extremely slow growing function, for instance,
log∗ 232 = 4.

the source, like gossiping, and it does not require an over-
lay network. In this paper we show that fireworks performs
better than gossiping under several relevant metrics.

In this paper we also show that gossiping reaches all nodes
with probability 1, as n goes to infinity. Thus, gossiping, ir-
rigating and the firework protocol are reliable in the limit,
i.e. for large n they reach all nodes with probability ∼ 1.
It becomes then interesting to see if an experimental evalu-
ation can sharpen the analysis. The main conclusion of our
experimental evaluation is that indeed these processes differ
significantly.

• It is more likely that Gn
rc is connected than gossiping

reaches all nodes in the network. Thus the Irrigator is
a more reliable protocol than gossiping, whether ver-
tex or edge based. The same conclusion holds for the
firework protocol.

• The number of links along which a message is sent by
gossiping is much greater than the number of edges of
Gn

rc or F n
cpr. Thus, in all situations where the cost of a

message can be charged to the edge connecting the two
nodes, the proposed protocols are much more efficient.

In other words, since in WSNs the energy cost of sending
a message is roughly equal to that of receiving it, if we im-
plement a broadcast service by means of the reliable unicast
primitive (such as the one provided by IEEE 802.11 DCF),
irrigator and fireworks are not only more reliable, but also
more energy efficient than gossiping. An apparently cheaper
option would be that of implementing a broadcasting ser-
vice by means of the local-broadcast primitive (in the IEEE
802.11 standard a local-broadcast message is received by all
nodes within transmission range from the sender). Besides
the drawback of using this unreliable primitive, one have
to consider that WSNs are dynamic networks. In order to
save energy, nodes periodically go asleep [1, 2]. When they
wake up they have to be informed of relevant events, such as
new messages broadcasted from the sinks. In such dynamic
scenario vertex-based gossiping protocols must retransmit
several times to allow nodes to reach all their neighbors.
For this reason vertex-based gossiping loses the competitive
advantage that local-broadcasting might give in other sce-
narios. In WSNs nodes will typically have to know their im-
mediate neighbors and their wake-up schedules so that they
transmit when the recipients are awake. Relying only on the
needed one-hop neighborhood knowledge, our protocols give
raise to low-overhead solutions. Indeed, our comparative
simulation results show that the on-line fireworks scheme
and the irrigator protocol offer a remarkably good compro-
mise between energy saving and reliability of the broadcast
when compared to flooding and gossiping.

The paper is organized as follows. In Section 2 we dis-
cuss the previous work. In Section 3 we prove the analyti-
cal results. In Section 4 we discuss implementation issues,
showing that our protocols can be implemented easily and
inexpensively. Also a variant of the irrigator protocol which
leads to further improvements in practical scenarios is de-
scribed. In Section 5 we discuss the outcome of our extensive
simulations. Finally we conclude the paper in section 6.

2. RELATED WORKS
In this section we review the major solutions that have

been proposed in the literature for broadcasting in multi-



hop wireless ad hoc networks. In [14] a taxonomy of the
different solutions has been reported. The authors divide
the different schemes in four groups:

• Simple Flooding;

• Probabilistic-based schemes [7] [6], which make use of
some basic understanding of the network topology to
assign to a node a probability p to rebroadcast;

• Area-based methods, which exploit location awareness
to estimate the additional coverage associated with a
node re-broadcasting the message. Only if the cover-
age is significantly enlarged the node retransmits the
message (see for example [7]);

• Neighbor knowledge methods. This category comprises
schemes in which two hop neighborhood knowledge is
exploited to identify whether re-broadcasting allows to
reach new nodes or not [6] [8] [9]. Only in the former
case a node retransmits.

A comparative performance evaluation of the major dif-
ferent solutions for network wide broadcasting has been per-
formed in [16].

A taxonomy similar to the one in [14] is reported in a
recent work by Stojmenovic and Wu [12]. In this case, the
solutions proposed in the literature are grouped based on
whether the protocol is probabilistic or deterministic, on the
amount of information on the network topology needed by
the protocol to operate, the amount of extra information ex-
changed between nodes during the protocol operation, and
the schemes’ reliability (defined as the capability of a broad-
casting protocol to successfully reach all the nodes in the
network). In other words, solutions are classified based on
performance related criteria such as the protocols overhead,
complexity and reliability. Apart from the solutions listed
in [14] the authors introduce cluster-based schemes such as
[15] [11] for sake of broadcasting. In this case a subset of
sensor nodes is first selected to build a connected backbone
made of so called Backbone Nodes (BN) and gateways cho-
sen for sake of BN interconnection. At the end of this phase
each node is either in the backbone, or is an ordinary node
within one hop from a backbone node. Broadcasting can
thus be performed by the source node sending the message
to a one-hop neighbor in the backbone, which floods it over
the (sparser) backbone to the final destination. Rules for
BN selection and for gateways identification guarantee that
all nodes are reached by a broadcast whenever the origi-
nal network topology was connected. The cost to pay is
in the overhead needed for sake of backbone formation and
for backbone maintenance. Backbone reorganization might
be triggered by nodes mobility, by nodes dying because of
energy depletion, or simply be motivated by the need to
load-balance the resource consuming role of backbone node
among all the nodes in the network. Different schemes have
been proposed in the literature for clustering and backbone
formation resulting in denser or sparser backbone topology
and in more or less overhead for sake of backbone formation
and reorganization.

In this paper we are concerned with designing localized
techniques for network wide broadcasting without assuming
any location awareness. Our solutions are localized in the
sense that we keep to a minimum the neighborhood knowl-
edge at each node (no more than the one hop neighbors), as

well as the information that have to be exchanged for per-
forming broadcasting, resulting in very lightweight solutions.
We do not consider protocols that require backbone forma-
tion and maintenance due to their associated overhead.

3. CONNECTIVITY RESULTS
We begin by showing that T n

rc covers a giant component,
and then that the union of these trees is connected, all with
high probability. In the last sub-section we show that fire-
work and gossip also span the whole network with high prob-
ability.

3.1 Giant component
For the purpose of proving Proposition 1, and also later,

Lemma 3.1 below will be useful. Fix an integer k such that

k >

√
5

r
(3)

and partition [0, 1]2 into k2 subsquares of size 1
k
× 1

k
in the

obvious way. One point of this choice of k is that it ensures
that any two points sitting in adjacent subsquares are within
distance r from each other; this will be needed in the proof
of Theorem 1.

Lemma 3.1. Let k > 0 be fixed and let Ekn be the event
“each of the k2 subsquares contains at least n

2k2 points”.
Then

lim
n→∞

Pn (Ekn) = 1 . (4)

Proof: Fix a square S and let X denote the number of
points in S. Then, µ := EX = n

k2 and, by the Chernoff-
Hoeffding bound,

Pn(X <
n

2k2
) ≤ e−n/8k2

.

Thus, the probability that some square has less than the

required number of points is at most k2e−n/8k2

. 2

To investigate connected components of the irrigator graph,
we shall employ the following method, which we will call
the sequential discovery procedure (this is simply a
breadth-first exploration). First, select a node v0 at ran-
dom (among all n nodes). Then consider the c edges chosen
by v0 (in the device discovery procedure of Definition 1),
and denote the endpoints (other than v0) of these edges
by v1, . . . , vc. Then continue with the edges chosen by v1,
and so on, in a breadth first search manner. Each time a
new node is encountered, the node reached by it is included
in our list of nodes, and the choice is deemed a success.
Sometimes, the edge leads to a node already seen in this
procedure, in which case the choice is said to be a failure.
At any point of this search procedure, we may stop, and
those vertices encountered whose outgoing edges have not
been investigated (yet), are called fresh nodes.

At various stages of our arguments, we will invoke a com-
parison between the sequential discovery procedure and a
(Galton–Watson) branching process. Such a branching
process (see, e.g., Harris [26] or Asmussen and Hering [17])
begins with m0 individuals. Each of these begets, indepen-
dently of the others, a number of offspring, which has some
given distribution f on the non-negative integers. Each of
these children then has a number of children for itself, again
independently with distribution f . And so on, again in a



BFS manner. One of two things will happen: either the
branching process dies out after a finite number of gener-
ations, or it survives (forever). Excluding the trivial case
where f puts unit mass on 1, it is well known that the
branching process has positive probability of surviving if
and only if f ’s first moment is strictly greater than 1.

We shall be particularly concerned with a branching pro-
cess whose offspring distribution is the binomial distribution
Bin(2, p). This can be compared to the sequential discovery
procedure for c = 2 in the following way. Suppose that we
can show that up until some given stage S of the sequential
discovery procedure, each choice of a new node to connect
to has probability at least p (conditionally on everything
seen so far) of being a success. Then we can make a joint
construction (a so-called coupling; see [30]) of the sequential
discovery procedure and the Bin(2, p) branching process in
such a way that each individual in the branching process
corresponds to a particular node (not shared by any of the
other individuals of the branching process) of the sequen-
tial procedure, up until the given stage S. We say in this
case that the sequential procedure up until stage S stochas-
tically dominates the branching process (for stochastic
domination see for example [30]). We will show that the
sequential discovery procedure first generates almost surely
a set of log n points and that from then on each point u
begets offsprings with distribution Bin(2, pu), with pu ≥ 3

4
.

It follows from a standard application of stochastic domina-
tion that the survival probability of the sequential discovery
procedure is at least that of log n independent branching
processes with distribution Bin(2, 3

4
).

Proof of Proposition 1: We prove the result for c = 2
only, which is obviously enough since adding edges is not
going to destroy a giant component.

Run the sequential discovery procedure until the outgoing
edges of log(n) nodes are investigated (or until there are no
more fresh nodes, in which case we are stuck).

By Lemma 3.1, we may assume that the event in (4) hap-
pens, and condition on that event. By the choice (3) of
k, this means that each time a node selects another node
to connect to, there are at least n

2k2 nodes to choose from.
And each time, there are at most 2 log(n) nodes that have
already been seen, so each edge has probability at most

4k2 log(n)

n
(5)

of hitting a node that has already been seen. Hence, the
probability that at least one of the 2 log(n) choices is a fail-
ure, is at most

2 log(n)
4k2 log(n)

n
=

8k2(log(n))2

n
, (6)

which tends to 0 as n → ∞. Hence, the probability that
all choices, up until the outgoing edges of log(n) nodes are
investigated, are successful, tends to 1 as n → ∞.

Hence, we have shown that with probability approaching
1 as n → ∞, we get a connected component with at least
2 log(n) nodes. But this is not enough to prove Proposition
1, which asserts a component whose size is linear in n.

We can, however, continue the sequential discovery pro-
cedure from the log(n) fresh nodes that we have (assuming
that all choices so far have been successful). Let us continue
the sequential procedure until the stage S when either a to-
tal of n

8k2 nodes have been found (or no fresh nodes remain).

Before stage S, each new discovery has, by an analogous ar-
gument as that used to establish (5), probability at most

n/8k2

n/2k2
=

1

4

of not being successful. It follows that the sequential discov-
ery procedure starting from the log(n) nodes until stage S
stochastically dominates a Bin(2, 3

4
) branching process with

the same initial number of individuals. Consider the follow-
ing events:

A: “The sequential procedure fails to survive until n/8k2

nodes are found”;

B: “A Bin(2, 3
4
) branching process starting with log(n) in-

dividuals dies out”;

C: “A Bin(2, 3
4
) branching process starting with 1 individ-

ual dies out”

We therefore get, conditionally on no failures associated with
the first 2 log(n) nodes,

P(A) ≤ P(B)

= P(C)log(n)

= (1 − α)log n (7)

where α > 0 is the survival probability of a Bin(2, 3
4
) branch-

ing process starting from a single individual (an easy calcu-
lation shows that α = 8

9
, but we only need the fact that

α > 0, which follows from the fact that the offspring dis-
tribution has expectation 3

2
> 1). The sum of (6) and (7)

tends to 0 as n → ∞, whence (1) follows with s = 1
8k2 , and

we are done. 2

Note that by Lemma 3.1, (6) and (7) the probability of not
having a giant component is Θ(n−ǫ) for ǫ > 0.

3.2 Connectivity
In this section we go on to prove the connectedness of Gn

r,c

asserted in Theorem 1. We begin by proving the following
strengthening of Proposition 1.

Proposition 2. Fix r > 0 and c ≥ 2. Then there exists
a constant s > 0 such that

lim
n→∞

P(every node of Gn
r,c is in some s-giant component) = 1 .

Proof: Again, it suffices to consider c = 2. As in the
previous section, let α denote the survival probability of
a Bin(2, 3

4
) branching process starting from a single individ-

ual.
We proceed using the sequential discovery procedure as in

the proof of Proposition 1, with the following modification.
Instead of initially running it until the outgoing edges of
log(n) nodes have been checked, run it until the outgoing
edges of a log(n) nodes have been checked, where a is a fixed
number chosen so that

a > log

(

1

1 − α

)

.

The estimate in (6) then becomes replaced by 8k2a2(log(n))2

n
.

However, since the result we are trying to prove concerns all
n points simultaneously, we need to improve on this estimate
(which, when multiplied by n, fails to approach 0). To do



this, note we can afford to have one failed edge during the
discovery of the outgoing edges of the first a log(n) nodes
without very much damage (there will still be a log(n) fresh
edges at the end of this search). To estimate the probability
that at least two choices fail, note that there are less than
(a log(n))2

2
pairs of times during the procedure at which the

choices can fail, and for each such pair the probability of

failure in both is at most
(

2a log(n)

n/2k2

)2

(assuming as before

the event in Lemma 3.1). The probability that at least two
of the 2a log(n) choices are failures is therefore at most

(a log(n))2

2

(

2a log(n)

n/2k2

)2

=
8k4a4(log(n))4

n2
, (8)

which tends to 0 at a rate which (as we shall see) is fast
enough for our purposes.

Again imitating the proof of Proposition 1, we go on to
run the sequential discovery procedure until a total of n

8k2

nodes have been found. Let A denote the event “the sequen-
tial procedure fails to survive until n

8k2 nodes are found”.
Since we begin with a log(n) fresh nodes, the analogue of
(7) becomes

P(A) ≤ (1 − α)a log(n)

= n−b (9)

where b = −a log(1 − α), and b > 1 by the choice of a.
On the event in Lemma 3.1 (whose probability tends to

1), we can bound the probability that some node fails to
sit in an s-giant component (with s = 1

8k2 ) by adding the
estimates in (8) and (9) and multiplying by the number of
nodes n. This yields

8k4a4(log(n))4

n
+ n1−b (10)

which still tends to 0 as n → ∞, so the proof is complete.
2

Proof of Theorem 1: As usual, we need only consider the
c = 2 case. Let A denote the event “Gn

r,c contains at least
two distinct 1

8k2 -giant components”. Note that in view of
Proposition 2 with the estimate

s =
1

8k2
(11)

that comes out of its proof, the only thing that can cause
(2) to go wrong is if there exists an ε > 0 such that

lim sup
n→∞

P(A) ≥ ε . (12)

Now consider the experiment of generating Gn
r,c and then

picking two of its nodes at random; let A denote the event
that these two nodes end up in the same connected com-
ponent. By conditioning on the first of these nodes, we see
that (12) implies that

lim sup
n→∞

P(¬A) ≥ ε

8k2
.

In order to prove the theorem, it therefore suffices to show
that

lim
n→∞

P(¬A) = 0 . (13)

Let us denote the two nodes chosen at random by v0 and v1.
By Proposition 2 and the estimate (11), we may assume that

v0 is in a connected component of at size least n
8k2 . Then, by

the pigeonhole principle, at least one of the k2 subsquares of
[0, 1]2 introduced in Section 3.1 contains at least n

8k4 nodes
of that connected component. Let us pick such a subsquare
and denote it by B.

Next, fix an integer m, and run the sequential discovery
procedure starting from the other node v1, with the follow-
ing restriction. As soon as an edge fails to lead to a new
node, we give up. Assuming this does not happen, we run
the procedure until the outgoing edges of exactly m − 1
nodes have been investigated; this leaves us with exactly m
fresh nodes. ¿From this stage on, check only one of the two
edges leading out of each node (this edge is chosen at ran-
dom among the two), and we continue this for k2 steps from
each the m fresh nodes, and then stop. This means that we
check a total of m − 1 + mk2 edges. The probability that
any of these is a failure tends to 0 as n → ∞ (this follows
from (6)) and can therefore be ignored.

Let w1, . . . wm denote the fresh nodes after having checked
the outgoing edges of m − 1 nodes in the sequential proce-
dure. Pick one of these vertices, wi, and denote the sub-
square it sits in by Bi,0. We can then find a sequence of
subsquares Bi,1, Bi,2, . . . , Bi,ℓ, ℓ ≤ 2k, such that

(i) for each j ∈ {0, 1, . . . , ℓ − 1}, the subsquares Bi,j and
Bi,j+1 are adjacent, and

(ii) Bi,ℓ = B.

Fix such a sequence, and consider the “naked-branch” se-
quential discovery procedure starting from wi, and denote
the nodes found along this branch by wi,1, wi,2, . . . , wi,ℓ.
Given the event in Lemma 3.1 (which we may assume hap-
pens), the probability that wi,1 ends up in Bi,1 is at least
n/2k2

n
= 1

2k2 (due to our choice (3) of k). Given that, the
conditional probability that wi,2 ends up in Bi,2 is at least

1
2k2 . And so on. Finally, given that wi,ℓ−1 is in Bi,ℓ−1, the
conditional probability that wi,ℓ is in the connected com-

ponent of v1, is at least n/8k4

n
= 1

8k4 . Multiplying these
conditional probabilities yields that wi,ℓ has probability at
least

(

1

2k2

)ℓ−1
1

8k4
≥

(

1

2k2

)2k−1
1

8k4
(14)

of being in the connected component of v0.
On the event that no checked edges result in failures (which

we assume), the m different “naked branches” move inde-
pendently, so (14) implies that the probability that none of
them hit the connected component of v0 is at most

(

1 −
(

1

2k − 1

)k−1
1

8k4

)m

.

We have thus shown that

lim sup
n→∞

P(¬A) ≤
(

1 −
(

1

2k2

)2k−1
1

8k4

)m

. (15)

Now, m was arbitrary, and the right hand side of (15) can
be made as small as we wish by picking m large. Hence (13)
is established and the proof is complete. 2

A careful examination of the estimates of failure probabil-
ities in the proof above show that the probability of not
having connectivity is at most Θ(n−ǫ), for ǫ > 0.



Finally, we will now show that no vertex in the graph Gn
r,c

has very high degree.

Proposition 3. For any integer t ≥ 1, there is a con-
stant α > 0 such that no vertex in Gn

r,c has degree exceeding

α log n
log log n

with probability 1 − O(n−t).

Proof. Consider any vertex v. The vertices that could
possibly connect to it lie in a circle of radius r centered at
v and by Lemma 3.1, there are at most 2πr2n such ver-
tices. Each such vertex has probability 1 −

(

1 − 1
n

)c ≤ c
n

of connecting to v. Hence, the expected (in)degree of v is
at most 2πr2c, and the result now follows by applying the
Chernoff-Hoeffding bounds.

3.3 Reliability of Firework and Gossip
In this section we prove some fundamental results on con-

nectivity of the gossip and fireworks protocol. The main
result is the following.

Theorem 2. If p = log∗ n
n

:

lim
n→∞

Pr(gossip reaches all nodes) = 1 (16)

Proof. We assume that the event of Lemma 3.1 holds
and condition on this event for the remaining of the proof.

Denote by B0 the subsquare containing the source and let
B be any subsquare in the partition.

We can find a subsquare sequence B0, B1, · · · , Bt, with
t ≤ 2k, such that

1. for each i ∈ {1, 2, · · · , t} Bi and Bi−1 are adjacent,
and

2. Bt = B.

For i ∈ {0, · · · , t}, let Ai be the event that the gossip pro-
cedure reaches all nodes in Bi and let Xi be the number of
nodes in Bi which flood. Notice then that the probability
of Ai is at least the probability that the procedure reaches
some node in Bi−1 and such node floods, as Bi−1 and Bi

are adjacent. Moreover such probability is at least the prob-
ability that the procedure reaches all nodes in Bi−1 and at
least one of these floods. That is, for i 6= 0:

Pr(Ai) ≥ Pr(Xi−1 ≥ 1|Ai−1)Pr(Ai−1)

It follows immediately that:

Pr(At) ≥
(

t−1
∏

i=0

Pr(Xi ≥ 1|Ai)

)

Pr(A0)

Consider the term Pr(Xi ≥ 1|Ai). As each flooding event
takes place with probability p:

E[Xi|Ai] ≥ p
n

2k2
=

log∗(n)

n

n

2k2
=

log∗(n)

2k2

Since all flooding events are independent, we can apply a
Chernoff bound to obtain the following:

Pr(Xi ≤
log∗(n)

4k2
|Ai) ≤ Pr(Xi ≤ E[Xi|Ai]

2
) ≤ e

−
log∗(n)

16k2

Hence, for large enough n (such that log∗(n)

4k2 ≥ 1):

Pr(Xi ≥ 1|Ai) ≥ Pr(Xi ≥
log∗(n)

4k2
|Ai) ≥ 1 − e

−
log∗(n)

16k2

Moreover

Pr(A0) = 1

because the source always floods.
Finally, we have:

Pr(At) ≥
(

t−1
∏

i=0

Pr(Xi ≥ 1|Ai)

)

Pr(A0)

≥
(

1 − e
−

log∗(n)

16k2

)t

≥
(

1 − e
−

log∗(n)

16k2

)2k

which tends to 1 as n goes to infinity, showing gossip
reaches all nodes in B. Then, by union bound on all sub-
squares, the probability that the procedure does not reach
all nodes in the graph is at most

k2(1 − Pr(At))

which tends to 0 as n goes to infinity.

Corollary 1. If p = log∗ n
n

:

lim
n→∞

Pr(Fireworks reaches all nodes) = 1 (17)

Proof. Given the same flooding probability p for both
procedure it holds that

Pr(Fireworks reaches all nodes) ≥
Pr(gossip reaches all nodes)

as any execution of Fireworks can be modelled as an exe-
cution of gossip, followed by the addition of other edges ac-
cording to the Fireworks protocol. Such addition obviously
preserves or improves connectivity, yielding the inequality.
By the theorem, it follows:

lim
n→∞

Pr(Fireworks reaches all nodes) ≥

Pr(gossip reaches all nodes) = 1

3.3.1 Estimating overall number of links
Fireworks can be modelled as a procedure constructing a

directed graph G. If a node u propagates a message to a
node v, according to Fireworks, an arc is inserted from u to
v. Assuming Fireworks reaches all nodes and denoting by
degout the out degree of a node in G:

E[degout] ≤ c(1 − p) + np ∈ Θ(log∗(n))

Hence, the average overall number of arcs is:

E[e(G)] = nE[degout] ∈ Θ(log∗(n)n)

which is almost sparse.

3.3.2 Note on the choice of p

The proof above works for all choices of p such that

p = Θ

(

f(n)

n

)

and lim
n→+∞

f(n) = +∞

To make this result tight, we prove the following:

Theorem 3. If lim supn→∞
f(n) 6= +∞, as n goes to

infinity some node is not reached by the procedure with con-
stant positive probability.



Proof. We may assume the result of Lemma 4.1. Con-
sider then a node v and its neighborhood. This set contains
at least n

2k2 nodes. Let u be one of these nodes. Suppose u is
reached by the procedure. The probability that u does not
propagate to v is the product of the probability that u does
not flood and that u chooses c neighbors distinct from v.
The latter is at least 1− c

n/2k2 by the bound in the lemma.

Hence, the probability that u does not propagate to v is at
least

(1 − p)

(

1 − 2ck2

n

)

as the events are independent. Moreover, as the procedure
executes independently on all nodes in the neighborhood of
v and there are at most n such nodes, the probability that
no node propagates to v, i.e. v is not reached, is at least

[

(1 − p)

(

1 − 2ck2

n

)]n

Now, by assumption, there exists a constant b ≥ 0 such that
f(n) ≤ b for all n. Then the probability that v is not reached
is at least

[

(1 − Θ
b

n
)

(

1 − 2ck2

n

)]n

which tends to at least e−Θ(b)−2ck2

as n tends to infinity.
This is a constant, proving the theorem.

This implies that, in this case, on average, at least a con-
stant fraction of nodes is not reached by Fireworks. A sim-
ilar proof applies to gossip.

In the next section we will show that despite similar asymp-
totic behaviors, the firework, irrigator and gossip schemes
show significantly different performance in practice.

4. IMPLEMENTATION ISSUES
In this section we discuss possible implementations of the

Irrigator and Fireworks protocols proposed for network-wide
broadcasting. Also a variant of the basic Irrigator protocol
which leads to further energy saving will be presented.

In describing the protocols we will distinguish between
virtual topology-based solutions, in which a sparse overlay
is first identified and broadcasting is then implemented via
Flooding over such overlay, and on-line broadcasting solu-
tions. The implementation of the gossip protocol, selected
for sake of benchmarking, will also be reviewed.

4.1 Virtual topology-based solutions

4.1.1 The Irrigator protocol
In the Irrigator protocol a sparse overlay Gn

rc is first built
by each node randomly selecting c among its neighbors in
the visibility graph 2, and then broadcasting is performed
via flooding over Gn

rc.
Applying the flooding procedure over a much sparser over-

lay has the advantage that the number of traversed links is
significantly reduced. This in turns decreases the number
of transmitted unicast packets and the energy consumption

2We denote as visibility graph Gr the graph in which there
is a vertex for each sensor node, and an edge between any
two neighboring nodes (i.e., between the nodes within each
other transmission radius).

per node (as the latter metric is directly associated to the
number of messages transmitted by and addressed to each
node 3 ).

The Irrigator scheme can be easily implemented as follows.

• Overlay computation. At the protocol start up each
node becomes aware of its neighbors via basic hello
messages exchange. Based on such one hop neighbor-
hood knowledge, each node selects c among its neigh-
bors, and communicates its choice to its neighbors in
the next periodic hello message. When receiving the
second hello messages each node is thus able to com-
pute the links in Gn

rc incident to itself (a link (u, v)
is included in the overlay iff at least one of the two
extremes u, v selected the other).

• Broadcast message propagation. Upon reception
of a broadcast message a node will retransmit the mes-
sage to all its neighbors in Gn

rc but the one from which
it has received the message, in a flooding-like fash-
ion. Flooding is however limited to the sparse overlay.
Message transmission to the neighbors in Gn

rc can be
implemented either via multiple unicast transmissions
or via a local broadcast. In the latter case a node
transmits the message and all its neighbors which are
NOT connected to it in the overlay discard the mes-
sage upon receiving it.

We note that the overhead associated with the Irrigator
protocol operation can be quantified in a few extra bytes
(needed to identity up to c neighbors) added in the second
hello messages. Extensive simulations reported in this paper
show that Gn

rc will be connected, for c ≥ 4, whenever the
visibility graph Gr was connected. Given the small value of
c this results in almost negligible overhead.

The name of the above described protocol, ‘Irrigator’, cap-
tures the fact that rather than flooding the network with
messages, the Irrigator scheme disseminates such messages
along a much more reduced set of routes while being able to
successfully reach all the nodes with high probability.

Not only is the proposed solution simple, with minimal
overhead, and energy saving but it is also robust in practi-
cal scenarios. In the performance evaluation section we will
show that the assumption of having the nodes uniformly de-
ployed in the area, which may appear a limit of the scheme,
can be relaxed to account for more realistic nodes’ deploy-
ment distributions without affecting the connectivity prop-
erties of such scheme.

4.1.2 The Irrigator protocol, v2.0
The experimental results on the Irrigator protocol pro-

vided us with the intuition that, by inserting links in the
virtual topology randomly and uniformly so that each node
has c∗ links incident to it (provided its degree is ≥ c∗), the

3In the following we will make the approximation that en-
ergy is consumed only when receiving a packet addressed
to the node. This reflects the usual practice to switch off
the radio transceiver as soon as a node realizes not to be
an intended destination for a given packet. The node will
then go to sleep over the rest of the message transmission,
thus consuming negligible power. As the node can iden-
tify whether it is an intended destination by reading only
the first few bytes of the packet header, we have considered
negligible the overall energy consumption associated to this
operation.



global connectivity properties are likely to be maintained.
This motivated some further reasoning on ways to reduce
the number of links included in Gn

rc by the Irrigator proto-
col. In such protocol when c = 4 the nodal degree in Gn

rc is
likely to exceed such value since all the c neighbors selected
by a node u, plus all the neighbors that selected u are u’s
neighbors in Gn

rc. The variance of the nodal degree in the
virtual topology may force the adoption of a c value higher
than what would be needed in case some form of control
that all nodes achieve a minimum nodal degree in Gn

rc is
enforced.

The following simple variant of the Irrigator protocol, de-
noted as Irrigator v2.0 in the following, has thus been de-
signed.

Each node, based on its one hop neighborhood knowledge
first randomly and uniformly selects c neighbors (c < c∗, say
c could be 2 and c∗ could be set to 3, 4) and communicates
this to its neighbors in the following hello message. So far
the protocol operates exactly as the Irrigator protocol but
with a c value much lower than what would be needed by the
Irrigator protocol to result in high reliability. After gather-
ing the second hello messages from all its neighbors, node u
computes the total number of links Numlinks incident to it
in Gn

rc, either selected by itself or by one of its neighbors. If
Numlinks ≥ c∗ no further link is selected. Otherwise, node
u randomly and uniformly selects c∗−Numlinks among the
unselected links to its one hop neighbors, and communicates
the identity of the nodes selected in this second phase of the
protocol in the next exchanged hello message. The idea
here is to try to prevent nodes from having a highly variable
nodal degree, with the rationale that a nodal degree around
c∗, when links are randomly selected, is enough to enforce
the maintenance of global connectivity properties.

4.2 On-line solutions

4.2.1 The gossip protocol
For sake of protocols benchmarking we implemented the

gossip protocol introduced in [4]. In the following we will
discuss the implementation of the two versions of gossiping
presented in [4]: vertex gossip and edge gossip.

Vertex gossip is a simple probabilistic flooding-based scheme
which works as follows. Whenever a source wants to broad-
cast a message it sends it to all its neighbors. Whenever a
node receives a message it has not generated, it tosses a coin
and, with probability p it retransmits the broadcast message
to its neighbors (except the one from which it received the
message). With probability (1-p) it stays silent. The im-
plementation of this protocol is straightforward, either via
local broadcast, or, in case the adopted awake/asleep sched-
ule makes impossible to reach all neighbors via a few local
broadcasts, via unicast packets transmitted to each of the
node’s neighbors. Whenever, as in typical WSN scenarios,
the knowledge of a node’s neighbors and of their wake up
schedules is needed for each node to know when to trans-
mit and how many times to reach all the intended recipients,
such knowledge can be achieved via hello message exchanges.

The implementation of edge gossip is similar. The only
difference with vertex gossip is that whenever a node receives
a broadcast message it tosses a coin for each of the edges
incident to it (but the one from which it has received the
message), transmitting to each of the neighbors with prob-
ability p. This de facto implies that either unicast packets

are used for sake of edge gossip implementation, or a possi-
bly long list of intended recipients has to be included in the
message in case local broadcast is adopted.

These solutions trade off the number of nodes re-broadcasting
the message and the energy consumption (the lower the p
value the lower the number of nodes involved in re-broadcasting
the message in case of vertex gossip, the lower the number
of traversed links in both the two gossip protocols) with re-
liability (the lower the p value, the less reliable the protocol
is).

4.2.2 The Fireworks protocols
The Fireworks protocol is an on-line scheme which com-

bines features of the gossip protocol and of an Irrigator-like
approach. The protocol works as follows. The broadcast
source transmits to all its neighbors. Whenever a node re-
ceives a new broadcast message it tosses a coin. With prob-
ability p it re-broadcasts the message to all its neighbors.
With probability (1 − p) it sends it only to c randomly se-
lected neighbors. The way the latter is implemented is by
either transmitting the message via local broadcast, includ-
ing the list of intended destinations in the message, or by
sending the message to the selected neighbors via unicast
packets.

With respect to the gossip protocol, our intuition, con-
firmed by the results summarized in the performance evalu-
ation section, is that the Fireworks protocol results in higher
reliability given the same number of links over which the
broadcast packet is transmitted.

5. PERFORMANCE EVALUATION
This section summarizes the results of extensive simula-

tions that have been conducted to prove the effectiveness
of the proposed solutions and to quantify the improvements
that can be achieved over previous schemes. Our exper-
iments have been conducted by means of a simulator we
have developed in Java. Simulations have proceeded in two
phases: first we have evaluated whether, and for which pa-
rameters values, the Irrigator schemes allow to maintain the
global connectivity properties of the network. The size of
the giant component (normalized to the number of nodes in
the network), the number of connected components and the
number of links in the generated virtual topologies have been
evaluated under different nodes densities, and compared to
the same metrics in the visibility graphs. We have then
conducted simulations to compare, under different nodes de-
ployments, and for varying nodes density, the performance
of the different schemes proposed and of the gossip proto-
col (both vertex and edge gossip) in terms of energy con-
sumption, channel capacity demand and reliability of the
broadcast process.

In the simulated scenarios n ≤ 300 sensor nodes, with
maximum transmission radius of 30 meters, are scattered
in a geographic area which is a square of side L = 200m.
We make the assumption that two nodes are in each other
transmission range if and only if their Euclidean distance is
≤ 30m (i.e., the visibility graph is a unit disc graph).

Nodes are deployed in the area either randomly and uni-
formly, or according to the distribution reported in Fig. 2,
named in the following the Hill distribution. In the Hill
distribution, the random variables x and y defining the po-
sition of a sensor node are defined as follows: x = L

√
u

and y = L
√

v with u, v uniformly distributed in [0..1]. The
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Figure 2: Hill distribu-
tion.
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Figure 4: Hill.

introduction of the Hill distribution allows to capture more
realistic uneven deployments. Consider for example the case
in which sensor nodes are spread over an area by an airplane
flying over it. Even if the intended distribution is uniform,
wind conditions and terrain features are likely to perturbate
such distribution, concentrating the nodes more in certain
areas over others. For example sensor nodes might roll down
from a steep hill (this motivated the name of the distribu-
tion). The introduction of the Hill distribution thus allows
us to evaluate which is the effect of perturbating the uni-
form deployment on the different schemes performance and
reliability.

Once nodes have been distributed in the square area, to
simulate the broadcasting process, a source node is ran-
domly selected among the ones belonging to the visibility
graph giant component, and the broadcast dissemination
process is performed. The metrics we consider are the fol-
lowing averages: the number of nodes involved in message
transmission, the number of links over which the message is
transmitted to reach all the intended destinations, and the
percentage of nodes successfully reached by the broadcast
process. The first metric well evaluates the network load per
broadcast dissemination in the ideal case in which messages
can always be successfully transmitted via local broadcasts.
The second refers to the network load in case unicast packets
are used for message transmission. These two metrics are
also used for estimating the energy consumption. Indeed,
in sensor nodes prototypes, the energy consumption when
transmitting or receiving is basically the same (see for exam-
ple the data reported in [10] ) due to the short transmission
radius which makes the cost of the circuitry prevalent over
the emission power. The cost when in idle mode is also
as high as the cost when receiving a packet. In our eval-
uation we make the assumption that nodes adopt an ideal
awake-asleep schedule allowing nodes to go to sleep when-
ever they are not involved in packet transmission or recep-
tion. Under this assumption, the energy consumption per
broadcast message can thus be approximated by summing

up, for each transmitting node, the energy consumption for
receiving the packet (a constant times the number of in-
tended destinations to which the message is re-broadcasted)
plus a constant accounting for the cost of re-broadcasting
the message. The number of (unicast) transmissions ac-
counts for the former, the number of transmissions in case
of adoption of local broadcasts for the latter, so that the two
curves can also approximate the energy consumption trend.
4 Finally, the number of sensor nodes reached by a broad-
cast message allows to assess the reliability of the proposed
schemes.

All the results have been obtained by averaging over 100
runs on different topologies.

5.1 Irrigator Schemes: Topological properties
In this section we report the number of connected com-

ponents, the relative size of the giant component and the
number of links in Gn

rc when applying one of the two Irri-
gator methods vs. the same metrics in the visibility graph.
Results for the number of connected components, when n
varies from 100 to 300, are reported in Fig. 7 and 8 for
the uniformly and hill distributed nodes deployment scenar-
ios. Changing n from 100 up to 300 allowed us to test our
protocol on increasingly dense networks, from (moderately)
sparse networks to highly dense ones.

As expected, as n increases the graph tends to become
globally connected. The striking feature of the figures how-
ever is that for the visibility graph Gr and for Gn

rc, c ≥ 4 in
the Irrigator protocol, and c = 2, c∗ = 4 in the Irrigator v2.0
protocol, the plots are basically identical, independently of
the nodes density. When c = 3 in the Irrigator protocol
and c∗ = 3 in the Irrigator v2.0 the plot for Gn

rc is slightly
worse, meaning that more nodes are needed to have global
connectivity, but the trend is the same. The case c = 2
in the Irrigator protocol instead shows significantly worst
performance. This outcome is confirmed by a wide range of
experiments, for varying values of r and n, ranging from very
sparse scenarios (r = 30), to very dense scenarios (r = 333,
number of nodes in the hundreds). Figure 5 and 6 also
show the experimental probability density function of the
number of connected components at n = 150 (the critical
nodes density), for both uniform and hill nodes deployment.
This metric captures, for one of the proposed algorithms, the
percentage of visibility graphs (runs) in which the algorithm
generates an overlay made of x connected components. As
expected, the Hill deployment shows a higher percentage of
visibility graphs which result in disconnected overlays, and
in overlays with a higher number of connected components.
The striking feature however is that again the behaviour of
the proposed algorithms matches that of the visibility graph.

Experiments have also been performed to compare the
relative size of the largest connected component of Gn

rc as
the number of nodes grows (see Figures 7 and 8). The size is

4The decision of adopting an ideal awake-asleep schedule is
motivated by the need to derive general results, independent
of the specific protocol adopted. The price to pay is that the
energy-saving results upper bound what would occur in re-
ality. In case non-ideal awake-asleep schedules are adopted
nodes spend a fraction of time in idle mode, consuming en-
ergy while neither transmitting nor receiving packets. In
such practical scenarios the overall decrease in energy con-
sumption is thus lower than what one would expect by con-
sidering the energy saving associated to the reduced number
of transmitted/received packets.



relative to the total number of nodes. The Irrigator protocol
c = 2, 3, 4, the Irrigator v2.0 protocol, with c = 2 and c∗ =
3, 4, and Gr for r = 30, have been compared with respect
to this metric. (The protocols parameters values have been
tuned by means of extensive simulations.) Once again the
striking feature we observed is that the plots for Gn

rc, c = 4
in case of the Irrigator protocol (c = 2, c∗ = 4 in case of the
Irrigator v2.0 protocol) and for Gr coincide. These empirical
facts have important practical implications. In essence they
show that, as far as global connectivity is concerned, it does
not pay off to set up all possible links (as in a bare Flooding
protocol). Rather, it suffices to limit the number of links to
a very small constant, as the connectivity properties will be
maintained.

We also notice that, for a given n, a WSN made of nodes
uniformly deployed tends to have a larger giant component
and a more reduced number of connected components over
the case in which WSNs nodes are Hill distributed. This
accounts for the uneven density of the nodes in the latter
scenario. If nodes are Hill distributed, even if n is small there
are areas in the WSN in which nodes are concentrated, thus
likely belonging to the same connected components. On the
other hand, even for high n values there are areas in the
WSN in which node deployment is very sparse, resulting
in multiple connected components. This also motivates the
results plotted in Fig. 7 and 8 which surprisingly show a
better capability of the different schemes to generate vir-
tual topologies whose connectivity closely follows that of Gr

when nodes are Hill distributed. When WSN nodes are uni-
formly distributed there is a range of nodal densities, falling
in the 100 ≤ n ≤ 200 interval, which are particularly critical
for our solutions. Indeed, when the WSN is very sparse, our
schemes will tend to select basically all the links; when the
WSN is very dense then some links can be removed from
the network maintaining the global connectivity. There is
however an intermediate interval of nodal densities (of high
practical interest, as networks are likely to be deployed with
such densities) for which the links to remove have to be
carefully selected not to impact the global connectivity of
the resulting virtual topology. It is indeed in this range that
the effectiveness of our simple and local schemes can be fully
appreciated. The Irrigator schemes do not appear to be af-
fected by the Hill uneven deployment and actually benefit
from the fact such distribution results in less critical nodal
densities (mixing sparsified and dense areas) when varying
the number of nodes. This motivates the better results ob-
tained in case of Hill deployments. In Fig. 7 and 8 results
on the number of links in the virtual topologies generated by
the Irrigator schemes are displayed. The curves reported in
the figures show that the proposed solutions are effective in
significantly decreasing the number of links in Gn

rc, even for
moderately sparse network topologies. As the c and c∗ val-
ues increase the saving slightly decreases but remains always
extremely significant for c values of practical interest (i.e.,
small c values, high enough to be able to guarantee that the
global connectivity properties are maintained). In case of
the Irrigator protocol, c = 4, uniform distribution (Hill dis-
tribution), for example, the number of links in Gn

rc is reduced
of one third (more than halved) at n = 150 and is equal to
40% (one fourth) of the links in Gr at n = 300. Adopting a
Hill deployment results in more remarkable reductions. This
is due to the uneven nodes deployments typical of this dis-
tribution. As the reduction in the number of links grows

fast with n, the reduction obtained in the dense areas of
the Hill deployment leads to a considerable reduction in the
overall number of links wrt the uniform case. The decrease
in the number of links of the virtual topology Gn

rc over Gr

is even more evident when the virtual topology is obtained
with Irrigator v2.0. This scheme leads to a reduction in the
number of links up to 12% over the basic Irrigator protocol.

As the traversed link metric can provide an idea of the
energy consumption associated to flooding over these topolo-
gies, this immediately shows that the adoption of these schemes
will result in considerable energy saving over plain Flood-
ing. For the same reason a longer network lifetime can be
obtained by adopting the Irrigator v2.0 variant.

5.2 Comparative Performance Evaluation
In this section we summarize the results of a comparative

performance evaluation to assess the advantages and lim-
its of the proposed approaches, and to compare them with
the gossip schemes previously introduced. In the figures we
will denote Gossip or VGossip the vertex gossip protocol
and EGossip the edge gossip protocol. We will first com-
pare all the proposed protocols with vertex gossip (Fig.9 to
Fig.11) and then verify whether the same trends hold also
with edge gossip (Fig.12 to Fig.14). In Fig. 10 the number
of links over which a broadcast message is transmitted when
varying n between 150 and 300 is evaluated. This provides
insights on the network load in case the message transmis-
sion is implemented via unicast, and gives an idea of the
energy consumption associated to the different schemes.5

As the number of nodes (and thus the links in the visibility
graph, and the nodes density) increases, the improvements
of the proposed Irrigator and Fireworks solutions over the
vertex gossip protocol also increase. This is motivated by
the fact that, when n increases, the number of links over
which a message is transmitted by each node increases (be-
ing directly related to the node degree), and the saving in
the number of links becomes more and more evident in case
of solutions which selectively transmit to a restricted subset
of the one-hop neighbors. When nodes are Hill distributed
this also leads to more evident improvements due to the fact
that the uneven deployment leads to remarkable savings in
the highly dense areas.

As the c parameter of the Irrigator protocol, the p and c
parameters of the Fireworks scheme, and the c and c∗ pa-
rameters of the Irrigator v2.0 protocol increase, the selection
of bigger subsets of the one-hop neighborhood to which to re-
broadcast leads to more energy consumption and higher net-
work load. In all the cases, Irrigator v2.0 allows to achieve
considerable improvements over the basic Irrigator proto-
col. Fireworks tends to experience a faster increase in the
number of links over which the broadcast message is trans-
mitted over the Irrigator and Irrigator v2.0 protocols. This
is easily explained due to the fact that Fireworks transmits

5As was previously explained, under an ideal awake-asleep
schedule, the energy consumption is given by the sum of
the number of transmissions of the same message and the
number of times the message is received. Only the latter
is accounted for by this metric but it can be seen by com-
bining these figures with the figures on the number of times
each message is transmitted that the trends of the different
protocols in terms of energy consumption are basically the
same as those displayed for the number of links over which
a broadcast message is transmitted. Due to space limits we
haven’t displayed the energy consumption figures.



to all neighbors with probability p, and the one hop neigh-
borhood average size fast increases with n. This explains
the fact that Fireworks experiences similar or slightly better
performance than the other protocols at n = 150 and then
degrades, achieving up to a 30% increase over the Irrigator
protocol at n = 300 when nodes are Hill distributed. When
the densities are lower (e.g., being the nodes uniformly dis-
tributed) the Fireworks protocol, for p = .2 and c = 4 always
outperforms the Irrigator protocol with c = 4.

Fig. 9 shows the number of times a broadcast message is
(re-)transmitted in the process of being disseminated to the
nodes. With respect to this metric clearly the vertex gossip
protocol, in which all nodes transmits only with probability
p, has better performance. The Fireworks protocol leads to
an increased number of retransmissions, similarly to what
obtained by running the Irrigator schemes, as in the Fire-
works protocol nodes re-transmit the message, though to
a subset of the one hop neighborhood. The price to pay
for adopting the vertex gossip protocol is increased energy
consumption (from two to three times as much as required
by the other protocols) and lower reliability. The latter is
clearly shown in Fig.11. While the Irrigator and Irrigator
v2.0 offer a reliability compared to the basic Flooding, and
Fireworks achieve a smaller but in any case excellent re-
liability (with a decrease in terms of percentage of nodes
successfully reached never higher than 2%), the vertex gos-
sip protocol experiences worse performance. A very high
number of links have to be traversed to be able to reach a
high percentage of nodes. Whenever p is decreased from 0.7
down to 0.5 only 65% (85%) can be reached in a uniformly
(Hill) distributed WSN at n = 150.

Results on the Irrigator and Firework protocols suggested
that in a WSN scenario the edge gossip might be a better
solution over vertex gossip, as it trades-off a higher number
of nodes involved in re-broadcasting the message with lower
energy-consumption and higher reliability. We have there-
fore investigated whether the proposed approaches result in
significative advantages also wrt the edge gossip protocol.

Fig. 12 to 14 compare the performance of the edge gossip,
vertex gossip and Irrigator v 2.0 protocols, under uniform
deployment. We have chosen to plot these results in separate
figures for sakes of readability. The Hill deployment case
shows similar trends.

Edge gossip appears much better performing than vertex
gossip. The number of unicast packets transmitted decreases
up to 33% with respect to the number of unicast packets
sent by vertex gossip. At the same time the reliability of
the edge gossip is considerably improved. At n = 150, for
p = 0.5 (p = 0.7), ”only” 5.5% (2.2% ) of the nodes are not
successfully reached by the broadcast primitive over the 32%
(6%) which do not receive the broadcast message in case of
vertex gossip. The price to pay is in the increased number of
nodes involved in broadcast message re-transmission. With
respect to this metric edge gossip performs similarly to the
Irrigator and Fireworks protocols.

Despite these improvements the proposed Irrigator and
Fireworks protocols still lead to significantly improved per-
formance with respect to edge gossip. The number of tra-
versed links when edge gossip is adopted is up to 51% (110%)
higher (at n = 300) when p = 0.5 (p = 0.7) than the number
of links traversed by the broadcast process when the Irriga-
tor v 2.0 protocol, c = 2,c∗ = 4, is used. Also basically
all the nodes of the networks are reached in case the latter

protocol is adopted. The Irrigator and Fireworks protocols
thus represent the best trade-off between low overhead, low
energy consumption, and high reliability.

6. CONCLUSIONS
In this paper we have introduced localized techniques for

broadcasting in multi-hop ad hoc sensor networks. Our
aim has been to design solutions which only require local
(one-hop neighborhood) knowledge, have low complexity,
low overhead, and result in low energy consumption, low
network load and high reliability.

Three different schemes have been presented: the Irrigator
protocol, the Irrigator v2.0 scheme and the Fireworks proto-
col. The first two schemes are based on the idea to flood over
a sparse virtual topology computed by means of inexpensive
and fully decentralized protocols. The Fireworks protocol
instead belongs to the class of on-line probabilistic flood-
ing. The three approaches have been evaluated by means of
thorough simulations, and compared to the gossip protocol
previously presented. Simulation results have shown that
the presented approaches allow to significantly decrease the
energy consumption and network load (the latter in case of
unicast transmissions) and to increase the reliability of the
broadcasting primitive over the gossip protocol, resulting in
promising solutions for the energy-constrained WSNs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  1.5  2  2.5  3  3.5  4  4.5  5

E
xp

er
im

en
ta

l p
df

Number of connected components

Visibility graph
Irrigator(3)
Irrigator(4)

Irrigatorv2.0(2,4)
Irrigatorv2.0(2,3)

Figure 5: The figure shows the experimental pdf of
the number of connected components. Nodes are
n = 150, deployed uniformly.

7. REFERENCES
[1] Y. Xu, J. Heidemann, and D. Estrin.

Geography-informed energy conservation for Ad Hoc
routing. In Proc. of the 7th Annual International
Conference on Mobile Computing and Networking
(Mobicom’01) (Rome, Italy, July 16–21 2001),
pp. 70–84.

[2] S. Basagni, A. Carosi, and C. Petrioli.

Sensor-DMAC: Dynamic Topology Control for
Wireless Sensor Network. In Proc. of IEEE VTC 2004
Fall (Los Angles, California, September 26–29 2004).



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  2  3  4  5  6  7  8

E
xp

er
im

en
ta

l p
df

Number of connected components

Visibility graph
Irrigator(3)
Irrigator(4)

Irrigatorv2.0(2,4)
Irrigatorv2.0(2,3)

Figure 6: The figure shows the experimental pdf of
the number of connected components. Nodes are
n = 150, deployed according to the Hill distribution.

[3] F. Ferraguto, G. Mambrini, A. Panconesi, and

C. Petrioli. A new approach to device discovery and
scatternet formation in bluetooth networks. In Proc.
of the 18th International Parallel and Distributed
Processing Symposium (IPDPS’04) (Santa Fe, New
Mexico, April 26–30 2004), pp. 221.

[4] Z. Haas, J. Halpern, and L. Li. Gossip based ad
hoc routing. In Proc. of IEEE INFOCOM 2002 (New
York, June 23–27 2002).

[5] X. Li, and I. Stojmenovic. Partial delaunay
triangulation and degree limited localized bluetooth
scatternet formation. In Proc. of AD-HOC Networks
and Wireless (ADHOC-NOW), Fields Institute
(Fields Institute, Toronto, CA, September 20–21
2002), pp. 17–32.

[6] H. Lim, and C. Kim. Multicast tree construction and
flooding in wireless ad hoc networks. In Proc. of the
ACM International Workshop on Modeling, Analysis
and Simulation of Wireless and Mobile Systems
(MSWIM) (Boston, Massachusetts, August 11, 2000),
pp. 61–68.

[7] S. Y. Ni, Y. C. Tseng, Y. S Chen, and J. P. Sheu.

The broadcast storm problem in a mobile ad hoc
network. In Proc. of the 5th annual ACM/IEEE
international conference on Mobile computing and
networking (MobiCOM ’99) (Seattle, Washington,
August 15–20 1999), pp. 151–162.

[8] W. Peng, and X. Lu. On the reduction of broadcast
redundancy in mobile ad hoc networks. In Proc. of the
ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc 2000) (Boston,
Massachusetts, August 11, 2000), pp. 129–130.

[9] A. Qayyum, L. Viennot, and A. Laouiti.

Multipoint relaying: An efficient technique for
flooding in mobile wireless networks. Technical report
3898, INRIA - Rapport de recherche. (2000).

[10] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and

M. B. Srivastava. Topology management for sensor
networks: Exploiting latency and density. In Proc. of

the ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc’02) (Lausanne,
Switzerland, June 9–11, 2002), pp. 135–145.

[11] I. Stojmenovic, M. Seddigh, and J. Zunic.

Dominating sets and neighbor elimination-based
broadcasting algorithms in wireless networks. In IEEE
Transactions on Parallel and Distributed Systems.
(Vol. 13 (1), January 2002, pp. 14–25).

[12] I. Stojmenovic, and J. Wu. Broadcasting and
activity scheduling in ad hoc networks. In Ad Hoc
Networking (S. Basagni, M. Conti, S. Giordano and I.
Stojmenovic, eds.), IEEE Press. (2004).

[13] D. Johnson, D. Maltz, and J. Broch. DSR: The
Dynamic Source Routing Protocol for Multi-Hop
Wireless Ad Hoc Networks. In Ad Hoc Networking (C.
Perkins, ed.), Addison Wesley. (2001).

[14] B. Williams, and T. Camp. Comparison of
broadcasting techniques for mobile ad hoc networks.
In Proc. of the ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc
2002) (Lausanne, Switzerland, June 9–11, 2002),
pp. 194–205.

[15] J. Wu, and H. Li. On calculating connected
dominating set for efficient routing in ad hoc wireless
networks. In Proc. of the 3rd ACM International
Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications (DIALM
1999) (Seattle, Washington, August 20, 1999),
pp. 7–14.

[16] Y. Yi, M. Gerla, and T. J. Kwon. Efficient
flooding in ad hoc networks: a comparative
performance study. In Proc. of the IEEE International
Conference on Communications (ICC 2003)
(Anchorage, Alaska, May 11–15 2003).

[17] S. Asmussen and H. Hering, Branching Processes,
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Probabilistic Reliable Dissemination in large-Scale
Systems, IEEE Transactions on Parallel and
Distributed Systems, 14:3, March 2003.

[29] Y.B. Ko and N.H. Vaidya, Location-aided Routing
(LAR) in mobile ad-hoc networks, ACM/IEEE Intl.
Conference on Mobile Computing and Networking
(MobiCom), 1998.

[30] T. Lindvall, Lectures on the Coupling Method, Wiley,
New York, 1992.

[31] V. Paruchuri, A. Durresi and R. Jain, Optimal
Flooding Protocol for Routing in Ad-hoc Networks,
submissted to Computer Networks.

[32] C.E. Perkins, and E.M. Roper, Ad hoc on demand
distance vector routing in IEEE Workshop on Mobile
Systems and Applications, Feb. 1999.

[33] W. Vogels, R. van Renesse and K. Birman, The power
of epidemics: robust communication for large-scale
distributed systems ACM SIGCOMM Computer
Communication Review archive Volume 33 , Issue 1
(January 2003)

[34] F. Xue and P. R. Kumar, The number of neighbors
needed for connectivity of wireless networks. Wireless
Networks, pp. 169–181, vol.10, no. 2, March 2004.



 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 100  150  200  250  300

R
el

at
iv

e 
si

ze
 o

f t
he

 g
ia

nt
 c

om
po

ne
nt

 -
 U

N
I

Number of nodes

Visibility graph
Irrigator(2)
Irrigator(3)
Irrigator(4)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 100  150  200  250  300

N
um

be
r 

of
 c

on
ne

ct
ed

 c
om

po
ne

nt
s 

- 
U

N
I

Number of nodes

Visibility graph
Irrigator(2)
Irrigator(3)
Irrigator(4)

 0

 500

 1000

 1500

 2000

 2500

 3000

 100  150  200  250  300

N
um

be
r 

of
 li

nk
s 

- 
U

N
I

Number of nodes

Visibility graph
Irrigator(2)
Irrigator(3)
Irrigator(4)

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 100  150  200  250  300

R
el

at
iv

e 
si

ze
 o

f t
he

 g
ia

nt
 c

om
po

ne
nt

 -
 U

N
I

Number of nodes

Visibility graph
Irrigatorv2.0(2,3)
Irrigatorv2.0(2,4)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 100  150  200  250  300

N
um

be
r 

of
 c

on
ne

ct
ed

 c
om

po
ne

nt
s 

- 
U

N
I

Number of nodes

Visibility graph
Irrigatorv2.0(2,3)
Irrigatorv2.0(2,4)

 0

 500

 1000

 1500

 2000

 2500

 3000

 100  150  200  250  300

N
um

be
r 

of
 li

nk
s 

- 
U

N
I

Number of nodes

Visibility graph
Irrigatorv2.0(2,3)
Irrigatorv2.0(2,4)

Figure 7: Uniform distribution. In the picture we report the relative size of the giant component (left side),
the number of connected components (center) and the number of links (right side) in Gn

rc when applying one
of the two Irrigator methods vs. the same metrics in the visibility graph. The number of nodes n varies
between 100 and 300 nodes.
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Figure 8: Hill distribution. In the picture we report the relative size of the giant component (left side), the
number of connected components (center) and the number of links (right side) in Gn

rc when applying one of
the two Irrigator methods vs. the same metrics in the visibility graph. The number of nodes n varies between
100 and 300 nodes.
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Figure 9: Number of broadcast messages. The figure shows the average number of times a broadcast message
is (re-)transmitted during the broadcast process. The number of nodes n varies between 150 and 300 nodes.
Nodes are either uniformly deployed (UNI) or Hill distributed (HILL).
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Figure 10: Number of unicast messages. The figure shows the average number of links over which a broadcast
message is transmitted. The number of nodes n varies between 150 and 300 nodes. Nodes are either uniformly
deployed (UNI) or Hill distributed (HILL).
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Figure 11: Coverage. The figure shows the fraction of nodes reached by the broadcasting process. The
number of nodes n varies between 150 and 300 nodes. Nodes are either uniformly deployed (UNI) or Hill
distributed (HILL).
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Figure 12: Number of broadcast messages: Irrigator v 2.0 vs. edge and vertex gossip, uniform deployment.
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Figure 13: Number of unicast messages: Irrigator v 2.0 vs. edge and vertex gossip, uniform deployment.
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Figure 14: Coverage: Irrigator v2.0 vs. edge and vertex gossip, uniform deployment.


