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Abstract

Using thens-2simulator to experiment with different aspects of
user- or session-behaviors and network configurations aoaist
ing on the qualitative aspects of a wavelet-based scaliatysis,
we present a systematic investigation into how and why kditia
and feedback-control contribute to the intriguing scalprgper-
ties observed in actual Internet traces (as our benchmaak de
use measured Internet traffic from an ISP). We illustrate kavi+
ability of both user aspects and network environments ())sea
self-similar scaling behavior over large time scales,d@ermines

a variety of scaling phenomena observed in measured ISi traf
In particular, our empirical studies clarify what is meagtdtate-
ments of the form “Self-similar scaling behavior over latiae
scales is mainly caused by user/session characteristithamlit-
tle to do with network-specific aspects” (e.g., see [8]; felated
earlier work, see also [19]). In support of yet another conje
ture that can be found in [8], we also present empirical ewige
demonstrating that time scales on the order of a “typicalina-
trip time within the network are directly related to a rattadarupt
transition from self-similar scaling to a more complex &oglbe-
havior; i.e., multifractal scaling. Finally, through expeents with

a more or less pronounced change in scaling behavior around athe different components of a full-blown TCP implementatioe

specific time scale, and (jii) sets the stage for the emerehsur-
prisingly rich scaling dynamics over small time scales; ingulti-
fractal scaling. Moreover, our scaling analyses indicatetier or
not open-loop controls such as UDP or closed-loop contradh s
as TCP impact the local or small-scale behavior of the traffid
how they contribute to the observed multifractal nature eésured
Internet traffic. In fact, our findings suggest an initial gloal ex-
planation for why measured Internet traffic over small tinales
is highly complex and suggest novel ways for detecting aadtie
fying, for example, performance bottlenecks.

This paper focuses on the qualitative aspects of a wavaktd
scaling analysis rather than on the quantitative use forckvlit
was originally designed. We demonstrate how the preseatdd t
nigues can be used for analyzing a wide range of differerd<in
of network-related measurements in ways that were not pusly
feasible. We show that scaling analysis has the ability toaek
relevant information about the time-scale dynamics ofrimgetraf-
fic, thereby, we hope, making these techniques availablésiqear
segment of the networking research community.

1 Introduction

This paper provides new insights into the question “Whatatp
of user and network behaviors contribute to what charasttesi

of the dynamics in measured IP traffic?” by reproducing with a

number of well-designed and fully-controlled network slations
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partly demystify the occurrence of this highly complex sogbe-
havior of measured Internet traffic over small time scalegeésy
ducing it to and pointing out a plausible explanation in terof
previously observed phenomenain the dynamics of TCP-tgpe ¢
gestion control, among them ACK-compression; see for examp
[12, 27, 26, 32, 17], or the more recent study [20]. This erogir
observation begs for a simple mathematical constructiatitizor-
porates the essence of flow control phenomena and leads tie mul
fractal scaling behavior. Unfortunately, we have not yetcaeded
in this endeavor and at this stage, referring to the obsefined
time scaling behavior of IP traffic as “highly complex” or “iiti
fractal” makes little difference. However, we believe tladning
for an intuitive and rigorous physical explanation in thevwark-
ing context of the mathematical concept of multifractald shed
new light on features of realistic IP networks that havedargione
unnoticed in the past. Succeeding in this endeavor woudt tfie
attractive alternative of being able to avoid the notion eftifrac-
tals all together because the concept could be explaineerinige
networking terms.

As a by-product of our empirical investigations into the dym
ics of IP traffic, we present and advertise in this paper asctds
wavelet-based scaling techniques and illustrate how #islity to
localize a set of network measurements in time and scaldenab
one to uncover relevant information about the time-scaleadyics
of network traffic. By doing so, we hope to make these tectesqu
more readily available to a larger segment of the networkag
search community, thus drawing attention to the poteritiithese
techniques have for analyzing network measurements in tays
are novel and that had not been feasible previously. Inquaati,
we illustrate throughoutthis paperthat these waveletieples are
highly effective in identifying and extracting regular gehs in a
way that cannot be easily accomplished with Fourier-basel-t
niques. In combination with the ubiquitous nature of theestsd
scaling properties in network measurements, the wavetetsiral
abilities to detect scaling behavior have made wavele¢thanal-
ysis the method-of-choice for studying various types ofuoek
measurements and for understanding some of their mostlusefu



and relevant characteristics. We show in this paper howtgr-in
pret the results from such a time- and scale-localizatiqrr@gch
and demonstrate how to relate the findings to underlying ordw
ing configurations and/or predominant user charactesisfio this
end, we emphasize and exploit primarily the networking ernt
in which these techniques are applied and focus less on ttie ma
ematical and statistical aspects and features of a time-scel-
ysis (e.g., multifractal formalism, estimation of mulsfital spec-
tra). Consequently, our findings are qualitative rathenthaan-
titative in nature; that is, as far as, for example, selfisimscal-
ing is concerned, we are mainly interested in using the pego
scaling techniques for the purpose of detecting self-ainsitaling
behavior over large time scales, which turns out to be a ptppe
that is highly robust under a variety of changes in the uryitegl
network configuration. Our work relies on a set of measurafi tr
fic traces from an ISP environment and on various tracesatelte
from a simulation environment that uses tiee2simulator [3] and
exploits its ability to implement different network configtions.
The ISP traces serve as benchmarks and are used for reaitksh
while thens-2generated traces allow us to identify the effects that
different aspects of user/session characteristics orar&taonfig-
urations can have on the dynamics of network traffic. Ourysisi
techniques, the measured IP traffic traces, and the siroalativi-
ronments are described in detail in Section 2.

Over the last few years, network-related measurementstieave
come a rich source for observing interesting and at timesrisimg
scaling behaviors; e.g., self-similar scaling [15, 21, 8 anulti-
fractal scaling [24, 8]. Intuitively, the ubiquity with wtlh some
of these scaling phenomena occur in measurements from’soday
IP networks is related to the absence of an intrinsic scakrever
one looks: link speeds span an ever increasing range ofsg@alm
Kbps modem accessto Gbps optical fiber connections), asado la
cies (on the order of microseconds for fiber optic links tocsets
for satellite links), and packetround-trip times. At thegztime, in
today’s Web-dominated Internet, the sizes or durationgsé®ns,
number of HTTP requests/responses, TCP connections oowR-fl
typically span up to six orders of magnitude (e.g., see [5,929
Mathematically, the absence of an intrinsic scale is edgitao
high variability and can be captured in a parsimonious manse
ing heavy-tailed (also known as scale-invariant) distidns with
infinite variance. Thus, one of the main objectives of thipgra
is to present a coherent picture of how this kind of varigpitif
user/session- and network-related behaviors impactétigedcale
dynamics of network traffic. In particular, we identify in 8®n 3
those aspects of packet traffic that are affected by the absd#ran
intrinsic scale for certain user- and network configuratielated
features; these aspects cover the self-similar scalinggoty of IP
traffic over large time scales and the location of the (loveerpff
scale(s) beyond which self-similarity ceases to exist anesgvay
to a richer and more complex scaling structure. In this seose
studies suggest a clean separation between user- or seskited
aspects and network-related features, at least as far ahysécal
explanations of self-similar and multifractal scaling amcerned.

Another major focus of our studies is to highlight the rolatth
closed-loop flow control plays in providing a better undansting
of the observed highly complex scaling behavior of IP tradfier
small time scales [8]. To this end, we provide in Section 4 igmp
cal evidence that TCP-like flow control in a heterogeneotisork
environment gives rise to actual packet flow patterns thhibéxa
surprisingly rich mathematical structure consistent wathltifrac-
tals. In contrast, open-loop controls such as UDP give dsmaffic
patterns that are essentially smooth (i.e., regular) ackl $&gnif-
icant local scaling behavior. By experimenting with theioas
components of a full-blown TCP-implementation, we cantfert
clarify the contributions of congestion control and rel@atvansfer
to the multifractal nature of Internet traffic. In this sepser find-

ings offer an initial physical explanation for the obsermedtifrac-

tal scaling property of measured IP traffic. In addition, findings
relate the observed multifractal scaling to a pronouncedtet-
ing effect of the packets belonging to individual TCP cortiters,
which in turn is caused by the highly bursty dynamics of ACK
packets (a well-known phenomenon call@K compressionOur
findings thus confirm an earlier conjecture made in [8], ngmel
that a likely physical explanation for why measured Inte naf-

fic over small time scales is highly complex will require a mor
detailed understanding of the TCP mechanism in a non-rig&
working environment. Moreover, by relating multifractakding to
the physics of TCP (e.g., slow start, congestion contransmis-
sion, ACK compression), we have gained access to a sutmtanti
body of knowledge about various aspects of the dynamicsmof co
gestion control mechanisms; for example, see [13, 12, 25326
and the empirical studies of Internet traffic dynamics [10], 2As

a result, we believe to have set the stage for a physical eapla
tion and understanding of the multifractal scaling phenoomeof
measured IP traffic over small time scales that may be asiplaus
intuitive, appealing and relevant as the one that has rigckeeéen
found for the self-similar scaling (e.g., see [30, 29, 9JhisTand
other open problems, together with some practical apjdinatof
our scaling analysis and some limitations of our study anthef
underlying network configurations are discussed in Sedion

2 Towards a scaling analysis for network measurements

The special appeal for using wavelet methods for analyzidig.en-
derstanding network-related measurements is that (i) lets/are
a natural mathematical tool for detecting, identifying angbloit-
ing scaling phenomena, and (ii) scaling phenomena appédea &
dominant feature in variety of measurements from modernmom
nication networks. In this section, we introduce and désca set
of wavelet-based scaling analysis techniques and showanfith
toy examples and measured traffic traces from an ISP enveahm
some of their most basic abilities for interpreting scalmetated
characteristics and deviations. The last subsection oentade-
scription of the simulation engine that we use throughoatrést
of the paper for our empirical studies.

2.1 Description of scaling analysis techniques

Consider a time serieX,, x, ¥ = 0,1,2,..., at the finest level
of resolution2™" (or the finest scale). This might represent the
number of packets per 1 msec, for example. We coa’égrby
averaging (with a slightly unusual normalization factovgonon-
overlapping blocks of size two

1
Xno1,k = —= (Xnp2k + Xno2kt1 1
and obtain the time seri€s,,_1, a coarser resolution picture of the
original seriesX,,. The difference between these two pictures is

V2

We can write the original time seriek,, as the sum of the “blur-
rier” seriesX,,_; and the differencé,,_1, X,, = 27/%( X1 +
D,_1). We can repeat this process (i.e., writg,_; as the sum
of yet another averag&,,_, and the difference),,_», and iter-
ate) for as many scales as are present in the original tiniesser
X, = 272X, + 272Dy 4+ .- 4 272D, . We refer to
the collection of difference®); ;. as thediscrete (Haar) wavelet
coefficientsl; i, they make up what is commonly referred to as the

Dn—l,k = (Xn,2k - Xn,2k+1) . (2)



discrete wavelet transfornand they may be calculated iteratively
using Eqns. (1-2)

We use the wavelet transform of a time series to study both its
global and local scaling properties. We begin with the glqlap-
erties, by which we mean the statistics of the time seriesetkat
each resolution level or scale, taken as a function of sdalpar-
ticular, we examine the average energy contained in eadé sta
the trace and examine how that quantity changes as we mave fro
coarser to finer scales. The average energy at gdalthe average
of the sum of the squared wavelet coefficigtsy|?; i.e.,

1 2
E:—E d
J N] k|J,k|7

whereN; is the number of coefficients at scgleTo determine the
global scaling property of the data, we pleg ( £;) as a function of
scalej, from coarsest to finest scales, and determine qualitgtivel
over what range of scales there exists a linear relatiortsétiween
log(E;) and scale; that is, over what range of time scales there
exists self-similar scaling (see [1] for more details). Ihad the
figures in this paper, the scalés on the bottom axis and the corre-
sponding time (in seconds) is plotted on the top axis forresfee.
The local scaling analysis is slightly more complicatedttiee
global analysis in that we wish to gather information abaagl
features (e.g., bursts of packets) rather than statidticatahe time
series viewed as a whole at each scale. In particular, we twant
know how the number of packets in an interval of sizbout time
to is related to the size of the interval. The “stronger” and more
concentrated the burst around time the less the number of pack-
ets depends on the size of the interval. The strength of the sp
around timet, or the degree of “local burstiness” can be captured
mathematically by a (possibly) time-dependent scalingoaept,
and the goal of a local scaling analysis is to collect charastic
information about the strengths and locations of the variscal-
ing exponents (for a more detailed presentation see, 4.gr [8]).
To gather the statistics of the local scaling exponents,yegrause
the discrete wavelet transform of the underlying data affitiel¢he
partition functionS(q, 5) as the sum over the local maxima of the
(normalized) wavelet coefficients raised to ite power at each

scaley:
S(q,5) =Y _ 1272

max

(see [8, 11] and the references therginjlthough we need sev-
eral additional transformations of the patrtition functitmquan-
tify rigorously the distribution of scaling exponents, faor intuitive
picture and the sort of qualitative interpretation of losehling be-
havior considered in this paper, we rely upon the grapheaifres
of the partition function to detect and assess the localragdle-
havior of the data. To that end, our local scaling analysissis
of plotting, for each value of, log S(g, 7) as a function of scale
7 (from coarsest to finest) on one graph (throughout the paper,
local scaling plots will typically show the curves corregsping to
qg=0, 2, 4,..., 18, 20, with S(0, 5) being the straight reference
line). This way we obtain a family of curves, and determinipuel-
itatively, for a range of the smallgrvalues, if there exists a more or
less linear relationship betwekrg S(q, 5) and scalg over arange
of the finest scales provides information about the natudeal
scaling. In particular, “interesting” local scaling (i.ecaling con-
sistent with multifractal behavior) manifests itself, farange of
small-to-mediumy’s, in a linear relationship betwedng S(q, 5)
and scalej that extends over a range of fine time scales, where

We use the Haar wavelets primarily for exposition and we useengeneral
wavelets (e.g., compactly supported Daubechies wavéptiof the scaling analysis.

2In practice, we slide a window of length five (this parametan be varied) over
the coefficients at each scale, extracting the local maxima.
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Figure 1: Global (top) and local (bottom) scaling analysisthe
toy examples “pinch” (top) and “fold” (bottom).

the slope of the linear regime depends in a non-linear fasbio

q. The essence of multifractal analysis is to determine foivarg
data set how to infer these slopes and whether or not theyndepe
in a non-linear manner o). A linear dependence o suggests

a less interesting or “monofractal” local scaling whereessmlly
one exponent characterizes the entire scaling behavigy, &elf-
similar processes with self-similarity parametes: H < 1).

2.2 Detecting and identifying scaling behavior

Rather than focusing on the quantitative aspects of swiilagity
estimation using wavelet-based techniques (as, for exaneph-
phasizedin [1]), we suggest a more qualitative usage oflibee
mentioned scaling techniques. To this end, we show with lsimp
toy examples how, by manipulating certain aspects of a tiee s
ries, the global scaling behavior can be changed in quitstidra
ways. Starting with an exactly self-similar trace, we mydifie
wavelet coefficients at a fixed scale, e.g., sgate 12, by adding

to each coefficient at that scale a fixed multiplenoix: {|d; »|}.
The global scaling plot for the resulting toy example timeiese
“pinch” is given in Figure 1 (top) and shows a pronouncedKspi

at scale 12. “Dips” can be introduced in a similar way, and by
explicitly manipulating the wavelet coefficients over agarof dif-
ferent scales, the “spikes” and “dips” can be made wider or na
rower. Clearly, data that exhibit such features will gierto intri-
cate global scaling plots, and blindly applying quantiatnethods
(e.g., wavelet-based estimation of the self-similarityapaeter) in
these situations can easily lead to wrong conclusions.

To demonstrate how certain features in the data can have an
impact on the local scaling analysis, we begin with a timéeser
derived from a conservative cascade with fixed generdtfofwe
takeW to be a truncated normal ¢, 1] with mean1 /2 and vari-
ance 0.01; for details, see [8, 11, 23]). From this sequenee,
construct the toy example time series “fold” by targetingkested
range of scales and replacing the wavelet coefficients aethoales
by appropriately chosen fixed (possibly scale-dependerahti
ties. From the corresponding local scaling plot shown iruFégl
(bottom) we see that adding in this way periodic componetrttsa
specified scales causes a pronounced dip, while removieg-sel



tively variability by inserting smaller coefficients giveise to the
apparent “folding over;” that is, the structure functionfsibecome
negative for some scales, indicating that the correspanadavelet
coefficients have become very small. As in the case of theaglob
scaling analysis, even a qualitative assessment of naditétity of

a data set with such distinguished features becomes a nai-tr
task and requires extreme care.

While these examples are simplifications of real-life ditrzs,
they do highlight the effects that adding certain types calge-
riodicities can have on the scaling behavior of data. Moeeov
note that such disturbances often cannot be easily idehti§eng
Fourier-type transforms of actual data, but they can bectedeby
extracting the wavelet coefficients at the desired scalki@yever,
with these toy examples, such periodicities are readilyasgt in
the Fourier spectrum.

2.3 Measured Internet traffic dynamics

Next we illustrate the global and local scaling analysihegues
described earlier with two data sets of measured IP traffimfan
ISP environment (see Appendix for a detailed descriptiothef
data). The results serve mainly as benchmarks and realktgksh
for our simulation work described in the rest of the paperwHo
ever, they also show that even though the measurementsakene t
about one year apart, their statistical characteristicaags the
global and local scaling are concerned are quite similais dh-
servation supports earlier conjectures about self-sirtalge time
scaling and multifractal scaling over small time scalesespnting
two invariants for Internet traffic; that is, charactexstiof the dy-
namic nature of IP packet traffic that are robust under a vadge
of possible networking- and application-related changes.

On the one hand, the right plot in Figure 6 which depicts the
global scaling behaviors fariaL 1 andb1AL 2 shows that both data
sets exhibit very similar global scaling behavior (i.e.lf-sémilar
scaling over time scales larger than a few hundreds of mibsds
— look for approximately linear behavior on the left half bétplot,
for scales 1-10; emergence of a different regime for scale48).
On the other hand, looking at the right plot in Figure 7 whibbws
the local scaling analysis fariAL 2 measured at the 1 msec scale,
we observe non-trivial local scaling behavior over smaldiscales
(i.e., over time scales on the order of a few hundred miltisets
and below) which, upon further investigations, can be shtmve
consistent with multifractal scaling (look for approxiretlinear
behavior of the partition function plots for scales 15-1%gr cut-
ting across the spike” at scale 14, for scales 12—-19). Simakults
(not shown here) apply for the data senL 1.

Finally, to hint at things to come, we show in Figure 2 the re-
sults of a local scaling analysis for three subsets of treemaal 2.
The subsets represent traffic that is transmitted betweee tif-
ferent networks and the ISP clients and can be obtained UBing
header-information. (Two IP addresses are consideredom@éo
the same network if they have the same high-order 16 bit IP ad-
dresses.NET1 turns out to consist mostly of traffic between the
ISP clients and the ISP web servergT2 is traffic between the
ISP and major news servers, angT13 consists mainly of realau-
dio UDP traffic. The observed differences in the correspogdi
local scaling plots are telling. There is a folding-over lire tocal
scaling behavior, similar in nature to the toy example “faldown

periodicity on the order of about 40 msec (i.e., all panitioinc-
tions coincide roughly at scale= 15, they are all roughly linear,
and their slopes are approximately lineag)n These observations
give an indication that local scaling analysis is capablessform-
ing “detective” work in identifying and explaining whichects of
network behavior contribute to what features observedémtiea-
sured traces.

2.4 Using ns-2to replicate realistic IP traffic dynamics

The simulation engine used throughout this studysi?(Network
Simulator version 2) [3]. This discrete event simulatoryides a
rich library of modules such as different flavors of TCP, siilang
algorithms, routing mechanism, and trace collection suppo

Using the measured ISP traces as benchmarks and road map
for the experimental studies described below, our choi¢ewt
work topologies and types of clients are basically deteediny at-
tempting to replicate a reasonably realistic ISP enviromm@ince
roughly 60-80% of all packets and bytes measured in our ISR en
ronment are Web-traffic, our primary user is a consumer aiogs
the network through an ISP via a modem bank to browse the Web.
To accurately simulate HTTP transfers, we extend the exqgsis-2
HTTP modules to accommodate for the variability that is nené
in the Web.

In a typical HTTP 1.0 transaction, a web client sends a retques
to the Web server for a web object after establishing a TCReon
tion. The server responds with a reply header (sometimastitig
data) and then continues to send data. However, the origsial
TCP connection module failed to send the connection setadp a
tear-down packets. In fact, the TCP connection modulesvate
transfer of data in only one direction. To circumvent thislpr
lem, we emulated the exchange of the HTTP header information
with two ns-2 TCP connections that have the same “port” num-
bers which facilitates object identificatibnDuring a Web session
a user usually requests several Web pages and each page may co
tain several web objects (e.ppg images omau files). To capture
this hierarchical structure and its inherent variabilitse allow for
different probability distributions for the following ugeession at-
tributes: inter-session time, pages per session, intge-fime, ob-
jects per page, inter-object time, and object size (in KBY. &ach
of these distributions, we can choose from the many buitlig:
tributions (such as constant, uniform, exponential, Paretc.) or
we may define our own. Details about the parameters required f
these distributions and used in our studies can be founceidfh
pendix. We base our choice of distributions (including thedfic
parameters) on the work surrounding SURGE [4], a Web workloa
generator designed to generate realistic Web traffic petteand
upon [7, 18]. Note that we simulate HTTP without pipelinintida
without persistent connections.

The protocol stack, network topology (including delays and
bandwidths), and the sequence of Web requests define a simula
tion. Since TCP Reno and HTTP 1.0 [28] are assumed to be the
predominant protocols in the ISP environment at hand, welau
them in our simulations. We vary the number of sessions froth 1
(low load scenarios) to 300 or 400 for high load scenarioschEa
session consists of a fixed number (300) of Web pages. This en-
sures that for almost all simulations all sessions are adtiv the
duration of the simulation (4200 seconds). We discard araini

at the bottom of Figure 1, and it becomes more pronounced as wesegment of each simulation run during which we randomlyatgi

move fromNET1 to NET2: There is more RTT variability ineT2

than inNET1 because packets have to travel across ISP boundaries,

and the traffic patterns show higher regularities (i.e., lbmavelet
coefficients, and hence small valued®f S(g, 5)) over a substan-
tially wider range of the medium time scales. In contrast,lttal
scaling plot forNET3 shows trivial structure: Much in the spirit of
realaudio UDP, packets are essentially sent at constantwih a

all sessions.

As far as choosing a network topology is concerned, we are
again motivated by the ISP environment where we obtained our
measurements. To find out how various attributes of netwaplt

ogy and web request sequence affect the traffic charaatsriste

3The latest releases ab-2support two-way TCP with detailed connection estab-
lishment and teardown.
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Figure 2: Local scaling analysis plots for three subsetsamfeDIAL 2: NET1 (left, ISP Web server trafficNeT2 (middle, traffic to news

server ),NET3 (right, realaudio UDP traffic).

experiment with a set of network topologies. We concentoate
simulation environments that consist of a set of clientsneated
to an access network which in turn provides connectivity setof
servers, in effect creating a “dumbbell.” We map each usssisa
to a single client node (either home computer connectedloia s
speed modems or office workstation connected via switchleerEt
net), referred to a®ilODEM NODESOr HIGH-SPEED NODESespec-
tively. This means that the simplest architecture is oneresheset
of client nodes is connectedto an access node that is cathtec
single Web server Figure 3 (top). To understand the impacoof
gestion on the middle link, we split it into two separate $rtkat
can have different delays and bandwidths. If no bottleneahktio-
duced we refer to the topology aaPBELL (unlimited capacity). If
the link labeledA in the top plot in Figure 3 has lower capacity tha
the link labeled, we refer to the topology asINGLEBELL. To in-
crease the variability of the delays and/or bandwidths fiemint
servers, we expand the single servers into a set of serveroas
in the bottom plot in Figure 3 and refer to the topologyrasx-
BELL. To experiment with cross traffic, a set of clients and sexrve
can be added to either the link label&dh Figure 3 (bottom) or the
links labeledB andC. This topology is calledROSSBELL To en-
sure that the modem clients are not the bottleneck linkshtiffers
in the queues on those links are configured to have sufficpeames

3 On the role of variability

In this section we explore the role variability in its manyrfes
plays in determining the scaling properties of networkfictafWe
divide the types of variability into two main categories:eusor
session-centered variability (e.g., sizes of Web sessioaires of
HTTP data transfers, number of requests per session) anrket
related variability (including delays, bandwidths, anpldtogy). To
understand the scaling behavior observed in the measutedwda
hold all but one of the above forms of variability fixed and kexp
the effects of the remaining element of variability. In dwpigo,
we sometimes simulate artificially simple networks; ndveless,
we are able to find clear “fingerprints” in the measuremengas tf
are caused by the different aspects of variability. We sttt
user/session variability and its effects on the scalingerties of
the time series of packet counts. Then we examine how netw
variability impacts the scaling behavior of traffic.

3.1 User- and session-related variability

One of the least complex forms of variability is that of theerss
and their sessions. It is expressed in terms of the distoibsitof
the number of objects per page, the number of packets pectobje
the interarrival times of pages, etc. By high user variabilve

mean that at least one of the “workload-specific” distribos (i.e.,
number of objects per page or number of packets per object} mu
be chosen from the class of heavy-tailed distributions witimite
variance (e.g., Pareto-type tail behavior), while low usgtability
reflects the fact that all these distributions are eitheoagmtial or
trivial (i.e., constant).
We use thecAPBELL configuration with its essentially unlim-

ited bandwidth constraints and with 1 msec link delays testiiate
the difference between how low user variability and highrwsei-

Delays:
20 ms
or
1 ms
Sms Sms
L' Web 100 Mb
server B=—@=-A 420 Web
Z ms .
100 Mb v Mb clients
x Mb
Modems: x=40-100 Kb; y=1.5 Mb; z =640ms
High speed: x=22- 32Mb:v=25Mb:z=1msorz=0640 ms

10 Web

Delays:
servers uniform
cach [20-80]

Sms 100 Mb
A=@-D 420 Web
Delays: 100 Mb  Sms clients
uniform
[1-1000] x Mb
Modems: x =40 - 100 Kb; y=0.9 Mb; z=0.6 Mb
High speed: x=22- 32Mb;y=12Mb;z=08Mb

Figure 3: Network topologies:CAPBELL/SINGLEBELL (top),
FLEXBELL (bottom); Mb=Mbps, Kb=Kbps, ms=millisecond.
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Figure 4: Impact of user variability on global scaling arsady low
user variability CAPBELL, 400HIGH-SPEED NODES EXPONEN-
TIAL 1); high user variability ¢APBELL, HIGH-SPEED NODES
PARETO1).

ability contribute to the dynamics of the measured traffie &n-
sider the environment with high-speed access nodes anorpeaf
global scaling analysis of the time series representingitimber
of packets per 1 msec recorded at liAk The results are shown
in Figure 4. While the low user variability simulation yields a
trivial global scaling plot (i.e., horizontal line, contsit with the
absence of long-range dependence), the high user vatjeggtting
gives rise to a pronounced global scaling behavior oveeléirge
scales; that is, the packetcounts exhibit long-range dégere and
the traffic is asymptotically self-similar. Of course, thesmpirical
results are in full agreement with the rigorous physicallarp-
tion of the self-similar scaling of network traffic over l&gdime
scales in terms of the infinite variance or high-variabifitypperty
of user session sizes (for details, e.g. see [21, 9]). Inghise,
global scaling plots such as the ones shown in Figure 4 (see al
below for global scaling plots where we explicitly changeaaiv
ety of network-related features, without any significarieetf on
the large time scaling behavior) illustrate what is meansaying
that “self-similar scaling over large time scales is priityacaused
by user/session characteristics and has little to do witivok-
specific aspects” [8] (for earlier related findings, see)19]

3.2 Network-related variability: Delays

In the above discussion of the results of our global scalimgya
sis, we focused solely on the large time scale features asckel
whether or not there exists a more or less linear relatignishiFig-
ure 4, and if so, whether or not the slope is zero or strictlg-ne
ative. In particular, we ignored two other prominent featiin
those global scaling plots: an apparent departure fronatiteat
some more or less pronounced medium-to-small time scaté, an
the emergence of some structure other than self-similéetpw
that scale. In this subsection, we identify a variabilitpest that is
not user- or session-related but network-specific and shattimar-
ily responsible for the observed departure from self-simécal-
ing at some specific time scale. The question about whattstric
emerges when considering time scales below (i.e., to the df
that specific time scale will be discussed later in this secti

Using the same high-accessPBELL configuration as before,
the only network-related aspect that we change is link delaich
of course impacts the round-trip time (RTT) behavior of tlaelp
ets sent over the network. More specifically, we consierBELL
with a low link delay ofz = 1 msec (resulting in a packet RTT of
24 msec) and compare it with a high link delay o= 640 msec

“The convention used throughout the paper is to indicateithelation environ-
ment associated with each plot by given the trigg®(FIGURATION, LOAD, WORK-
LOAD SCENARIO); for WORKLOAD SCENARIOrefer to Appendix A.2.
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Figure 5: Impact of delay variability on global scaling: shde-
lays CAPBELL, 400 HIGH-SPEED NODES PARETO 1); long de-
lays (CAPBELL, HIGH-SPEED NODESPARETO 1).

(i.e., RTT= 1.3 sec). In both situations, we collect the time series
of number of packets per 1 msec at link labekedaind compute
the global scaling plots shown in Figure 5. Notice that timeeti
scale where self-similar scaling breaks down is the smadlesle
(scale 10 = 2.0 seconds) that is larger than the data packetrRT
the respective networksMoreover, the type of breakdown of self-
similar scaling (i.e., a pronounced “dip” at time scale 1@tcmes
that of the toy example presented in Section 2.2, for the leimga-
son thatthe RTT behavior in this network configuration idfeeg a
distinct and significant periodic componentin the traffiés@note
that the additional dips at finer time scales can be attribtaghe
presence of periodic components caused by, for exampldintiee

it takes for an ACK packet to travel to a client and the TCP pack
released by the server to get to the monitored link, or for & t@ta
packet to travel to a client and the corresponding ACK torreta
the monitored link.

3.3 Network-related variability: Congestion |

We have seen that theaPBELL environment imposes a rigid RTT
behavior that has essentially the same effect on the glatz! s
ing plot as manipulating the wavelet coefficients at the tgoale
corresponding to the packet RTT in the network to introduce a
pronounced periodic component in the resulting packeet(aee
Section 2.2). To illustrate the effect of adding variakilib the
RTT behavior, we use the high-accessGLEBELL configuration
which is identical to the aboveAPBELL environment except that
the capacity on the middle link A has been decreasedo 2.5
Mbps. Keeping the same number of user sessions, we intraduce
this way a single bottleneck and create congestion (resuiti a
loss rate of 3.85%). The resulting global scaling plot (Hodven
here) differs in three ways from the global scaling plot toe tor-
respondingCAPBELL scenario. First the self-similar scaling breaks
down earlier (i.e., coarser scale) than in the non-bottikrece-
nario; second, the transition from self-similar scalingisoother
(i.e., pronounced dips essentially disappear, or are “shasbout”
over arange of time scales) than in the non-congested emagat;
and third, the energy in the trace is substantially smallezaach
scale than in theAPBELL configuration (i.e., smaller wavelet co-
efficients throughout, resulting in a scaling plot that ledow its
counterpart, except for the finest scale). The first two olzgems
are a result of the higher variability in RTT due to the presen
of congestion, while the third feature simply reflects a éase of
variability in the overall trace (i.e., filling up the link &es little

5Note thatif2=7~! < RTT < 277, the break down will occur at scajebecause
there every wavelet coefficient includes at least one pdcket the added periodic
component (and hence, these coefficients are less varfabiehose at scalg — 1,
some of which do not include packets from the added periazticgpnent).
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Figure 7: Local scaling analysis: leff(EXBELL, 400HIGH-SPEED NODESPARETO 2); middle fLEXBELL, 400MODEM NODES PARETO
2); right (local scaling plot for measured IP traffic trase\L 2, for comparison).

room for even modest traffic fluctuations).

Another way to drive a network into congestion thus introduc
ing more variability to the RTT behavior is by adding load.th@
end, we consider th6INGLEBELL configuration with low-speed
modem clients and run the simulation with 100 user sesslons (
load) and 400 user sessions (high load), respectively. I8iimp
comparing the observed loss rates (i.e., 0.002% in the law $ce-
nario, 8.72% in the high load scenario), we see that the 180 us
case is essentially congestion-free while the 400 useregseri-
ences significant congestion. The resulting global scaliats are
essentially the same as before, with one noticeable exxepthe
energy in the congested trace over the fine time scales igeippr
bly larger than in the non-congested case. This is a firstatatin
that the more congested the link is (i.e., the more packet®at)
the larger the wavelet coefficients at time scales belowtycal”
RTT will be. We will return to this issue shortly.

Finally, to add yet another component to RTT variability, we
run theFLEXBELL configuration to identify the effect that the pres-
ence of different bottleneck links (possibly with diffetesfelays)
within one and the same network has on the dynamics of the traf
fic. In Figure 6 we display the results of our global scalinglgais
for the 400 nodes high-speed access case (left plot) anddetG0
nodes modem access case (middle plot). In each case, welshow t
global scaling plots for the aggregate traffic and for théitranea-
sured over 45 Mbps and 0.5 Mbps bottleneck links, respdgtive
i.e., over the links to nodes labelled 1 and 4 in the bottont gio
Figure 3, respectively. As we can see, the global scalinget-
gregate traffic is to a large degree determined by that of tg’“
pipe (i.e., 45 Mbps link) and that the global scaling plot foe
highly congested 0.5 Mbps link shows many of the featuretatiea
discussed earlier in this section in conjunction with ccstige.

Note that the global scaling plot in Figure 6 (middle) of the
aggregate traffic obtained from running theexBELL configura-
tion supporting 400 modem clients agrees reasonably wiglhly
less energy, though, and a more pronounced dip at scaleg)12—1
with the global scaling plots for the measured IP traces 1 and
DIAL 2 shown in the right plot of Figure 6. Recall that this match
has been achieved without explicitly modeling any specffmests
of the underlying traces. Instead, we have relied exclisioa
the physical understanding of the impacts that certain csp
user/session- and network-related variability have onsiteding
behavior of network traffic. By accounting qualitatively the dif-
ferent aspects as well as for the proper “shades” of vaiigbite
have done away with conventional statistical inference@gghes
and have nevertheless succeeded in roughly matching toadec
order properties of the measured traces. Next we addresgitse
tion whether we can do even better.

3.4 Network-related variability: Congestion Il

In the previous subsection, we alluded to the observatiahdh

a congested link, there seems to be in general more energpgin t
packet fluctuations at time scales below the the “typicalTRB
compared to a non- or low-congested link. We argued thafelais
ture is due to the fact that the underlying TCP protocol isthc
with more losses when there is congestion, which in turn esus
the packet density fluctuations to exhibit more “interegtitocal
burstiness structure than when there is little congestioriew of
recent findings reported in [8], this local burstiness stiteecan be
observed in its clearest form at the level of individual T@mRigec-
tions where it has been shown to conform to multifractal isgal
At the aggregate level, multifractal scaling has been okegkin a



number of measured Internet traces (e.g., see [24, 16, 8]).

Given this empirical connection with multifractal scalibg-
havior over fine time scales, our aim in this subsection isrt® p
vide initial insights into and a first physical understarmgfior what
aspects of variability contribute to what features of thes firme
scale behavior of network traffic. Because we have showntest
or session-related variability is almost exclusively m@sgible for
how IP traffic behaves over large time scales but has no ajaprec
ble impact on the dynamics of network traffic over fine timelessa
we consider in the following network-related aspects ofataility
such as delay, bottleneck links, loads, etc. To start withufe 7
shows the results of our local scaling analysis for thexseLL
configurations with 400 high-speed access clients (leftj 400
modem users (middle), respectively (these are the samegooafi
tions for which the global scaling plots are shown in Figuye™®
compare, the right plot in Figure 7 depicts the results oflooal
scaling analysis for the measured IP tragelL 2. Thus, while we
have seen that the global scaling of theexBELL configuration
with modem clients qualitatively fits that of the measurett#iees,
the corresponding structure functions in Figure 7 show soine
vious differences. Most prominently, we observe in the meag
trace a pronounced dip around scales on the order of 1 se¢, rem
niscent of the toy examples discussedin Section 2.2. Alsathat
across the medium to small time scales in the local scaliogdsl
the IP tracepIAL 2 (right plot), the variability in the packet density
fluctuations is consistently higher than in the correspogdgtlots
on the left in Figure 7 (e.g., compare the values of the cpoad-
inglog S(q, j)-functions for scales 12 and larger).

To identify which aspect of variability inherent in tireEx-
BELL configuration is primarily responsible for the observed dif
ferences in the local scaling plots, we go back togmeGLEBELL
environment with its single 2.5 Mbps bottleneck link andreer
sponding delay of = 640 msec. We find that using both a low
load and a high load scenario, we are able to replicate the pro
nounced dips in the low load scenario around time scaleteckta
the “typical” RTT. At the same time, for the congested highdo
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Figure 8: Impact of network load on local scaling — sepagstiaf-
fic according to servers. Top: Server 1 with 45 Mbps link; bt
Server 4 with 0.5 Mbps link); (LEXBELL, 400 MODEM NODES,
PARETO 2).

However, compared to the local scaling plot of the measusextt
DIAL 2 (right plot in Figure 7), the corresponding local scalimgb
ysis of theFLEXBELL configuration with 400 modem users shown
in Figure 7 (middle plot) falls short of matching at least tigaa
tively the high variability in the packet density fluctuat®across

scenario, we observe a much wider dip due to an increased RTTthe medium to small time scales in the measured traffic as seen

variability. Moreover, the whole dip moves to the left; j.¢he
packets experience in general longer RTTs, and the vatjabil
the packet density fluctuations over time scales assoaidtedhe
wide dip are diminished.

Using this understanding, we can now perform a local scaling
analysis of the traffic from theLEXBELL environment on a per-
server basis; i.e., for each of the four servers, we recargitkets
coming from or destined for this server. Packets from thelltes
ing traces go over the same bottleneck link and experienae mo
or less the same amount of congestion. The local scaling foot
two of the four different traces corresponding to the foufedi
ent servers are given in Figure 8 and show some familiar featu
The 45 Mbps link (top plot) provides essentially unlimitezpac-
ity in this modem environment and the previous observatimoua
a pronounced RTT behavior applies directly (a similar obston
holds for the 1.2 Mbps link). In contrast, the 0.5 Mbps linloth
tom plot) is highly congested, hence shows a significanttyewi
dip which is, in addition, located further to the left of, fexample,
the corresponding 0.8 Mbps-link dip; also, the variabilitythe
packet counts over time scales associated with this widésdijg-
nificantly smaller than in the 0.8Mbps case implying the pres
of a highly regular traffic pattern over those time scalesseallby
a close-to full pipe. Putting it all together, we have that thcal
scaling plot of the full trace combines the different effeseen at
the different bottleneck links. While the variability due differ-
ent RTTs reflects itself through a relatively smooth (as carag
to very pronounced) dip, bottleneck-related variabiliy®'s up in
terms of an appreciable amount of variability in the paclestsity
fluctuations over time scales on the order of the locatiomefdip.

through the local scaling plots. Even theexBELL configuration
with the 400 high-speed access clients fails to match thialvitity
over the small time scales (see left plot in Figure 7). Thizbpgm
remains even if we add yet another aspect of variability; e
replace thecLEXBELL with the CROSSBELLconfiguration, thereby
introducing two-way or cross-traffic (not shown here).

To get a better understanding for how this mismatch in local
scaling behavior can occur and to point out a possible apgproa
for tackling this problem, we consider once again HiE€XBELL
configuration with the 400 modem clients and focus on thditraf
that traverses the 1.2Mbps link associated with server 2.p&ve
form a local scaling analysis of the resulting trace and ®tito
components consisting, respectively, only of TCP data ptscknd
only of the ACKs. The results are given in Figure 9 and congari
the left and middle plots shows that any non-trivial paclestsity
fluctuations on this link are almost exclusively due to novidl
fluctuations in the time series of ACK counts. In fact, oveam
to medium time scales, the wavelet coefficients associaitbdne
time series of number of TCP data packets per msec (and hence
the values of the structure function) are extremely smat (sght
plot in Figure 9), implying an essentially regular streamTd&P
packets when viewed over those time scales. This should come
as no surprise, though, since a close-to-saturated linktisikely
to see significant traffic fluctuations. Thus, in order to @age
the variability of the packet density fluctuations over tiheadl to
medium time scales of the aggregate traffic, one has to albow f
significant fluctuations not only in the ACKs but also in thePC
data packet streams. To accomplish this task, a basic uaddisg
of the interactions between the dynamics of ACK packetanig TC
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Figure 9: Local scaling analysis for traffic to and from se®eall packets (left), ACK only (middle), TCP data only (nig); (FLEXBELL,

400MODEM NODES, PARETO 2).

data packet streams in a not-too-simplistic networkingrenwnent
is needed. Thus, to gain insight into the dynamics of measiie
traffic, it is not sufficient to understand how the variousexgp of
user- and network-related variability impacts the trafficalso re-
quires knowing (at least qualitatively) which features dfatpro-
tocols contribute to what aspects of measured networkdraffi
the context of today’s Internet and in view of the findingsaeted
earlier in this paper, this means gaining insight into wiatdires of
TCP impact what aspects of the multifractal scaling belrawier
small time scales.

4 On the impact of feedback control

Intuitively, the results of the previous section show tHare is
more to IP traffic dynamics than understanding the diffeesmtects
and shades of user- and network-related variability. Mormally,
our task is to explore how flow control impacts the local suali
behavior of measured IP traffic; i.e., the empirically obsermul-
tifractal structure over small time scales. In networkiegninol-
ogy, the objective of this section is to gain insight into #feects
that the different components of a full-blown TCP implenzgion
have on the nature of the local burstiness or clustering ckgis of
measured IP traffic. To this end, we follow a similar approasin
Section 3 and report on a set i$-2based experiments using the
FLEXBELL configuration with the 400 modem users, where we sys-
tematically manipulate the various components of TCP.Altth
this scenario leads to appreciable loss rates on the ordi6pive
have observed similar results as the ones described bellmwar
load scenarios. Note that the results of our local scalirajyasis
for the scenario that uses “genuine” TCP is shown in the riddit

in Figure 7.

4.1 Open-loop or UDP-like controls

To start our investigation of the impact of flow control on tbeal
scaling behavior of IP traffic, we consider the extreme cdseo
flow control. In particular, we use UDP which injects packats
the network at a constant rate without feedback. More pedgis

our modem clients use TCP to send a request to the Web server re

liably in order to receive data; once the session is estaddisthe
server uses UDP to transmit the data. We investigate twoesiosn
which differ by how fast the Web servers are permitted todtgiata
into the network; in the first case, the server can send a packey
100 milliseconds, in the second case every 10 millisecofls re-
sults of the local scaling analysis for the second case quietee in
the top plotin Figure 10. As expected, we observe some dipgfin
fect because of the periodic nature with which UDP injectskpts
into the network. Because of significant loss rates in botfinggs

(24.5% in the 100 msec case and 69.86% in the 10 msec case), the
locations of the dips do not exactly coincide with the peiddzs
of 100 and 10 msec, respectively, but occur at some sligatelr
time scale. In addition, the local scaling behavior overetiscales
14-19 is approximately linear, with a slope that can be shmwn
be roughly linear ing. Similar results hold for other network con-
figurations and load scenarios, which we take as strongatidic
that open-loop flow controls such as UDP have little impacthen
observed fine-time scaling behavior of measured Intera#idr In
the case of large-time scaling behavior, similar findinggehiaeen
reported in [19].

4.2 Closed-loop control: Stop and Wait

Moving from UDP that does not adjust its sending rate in tloe fa
of network congestion to a closed-loop control with some LIRE
flavor, we can proceed in two ways. In this subsection we cl&mnsi

a version of TCP that has the retransmission component esabl
(i.e., reliable transfer) but uses a modification of TCP'ag®stion
control algorithm where the window size is set to a fixed value
namely window=1. Compared to a full-blown TCP implementa-
tion, limiting the window size means more work when trangingt
data, especially when the load is non-trivial (as is the deese).
The losses are lower than for full TCP, simply because withre w
dow size of 1 the source can generally not take advantageeof th
available bandwidth. The local scaling behavior of the itasy
trace is depicted in the middle plot in Figure 10 and showarcl
dip around time scales on the order of the expected RTT, which
this case is about 1 second. More importantly, when compared
the top plot, we observe the emergence of non-trivial localisg
behavior over the smaller time scales, which can be showr®to b
consistent with multifractal scaling (i.e., the partitifamctions are
approximately linear for scales 13—-19, with slopes thanhgean

a non-linear fashion ag changes from small to medium to large.
Thus, even a very bare-bones implementation of TCP’s window
ing mechanism causes complex local clustering of packetishw
demonstrates the importance of closed-loop flow controlifater-
standing local scaling behavior in measured Internet traffi

4.3 Closed-loop controls and reliable transfer

Instead of modifying, as we have just done, TCP’s congestion

trol algorithm and keeping the retransmission feature oPTiG-
tact, we can also consider a version of TCP where we keep the fu
congestion control component intact but where we disablB’3§C
retransmission feature. If this version of TCP detects a,leg.,

by receiving multiple ACKs or by timeout, it will adjust itoo-
gestion window but will assume that the packet has beeneateliv



successfully. In this sense, this version of TCP can “movk on
even if a lot of the packets are dropped, while “genuine” TGP w
have to deal with the losses. The resulting local scalingabiein

is similar to the one obtained in the previous subsectiot) the
exception that the variability in the packet density flutias is
somewhat reduced when we permit the full range of windowssize
as compared to when we set the window size to 1. Intuitively, r
duced variability means that TCP with its genuine congestan-
trol algorithm has to work “less hard” as compared to TCP it
“broken” window=1 algorithm. Moreover, we also observe acmu
more pronounced dip around scales 11-12 than for the full 3ICP
the window=1 version. What makes this dip so pronounceden th
present case is the fact that this version of TCP is not requi
wait for the retransmitted packets so the impact of the tinteds
not as severe as in the full TCP case. Instead it will just adea
its window. As a result, there is significantly less variapiin the
RTT behavior for this version of TCP as compared to, for exiamp
full TCP with its timeouts and rules about waiting for the ACKf
the retransmitted packets.

4.4 Closed-loop controls and TCP-type congestion avoid-
ance

Finally, we consider a version of TCP that is the more aggress
than the window=1 case. While the window=1 version of TCP is
network-friendly it does not work very efficiently (cannat gen-
eralfill the pipe), by setting window=10 and leaving evenythelse
the same as in the window=1 case (in particular, we do hargn®et
mission in place), we deal with an aggressive version of THa® t
can burst many back-to-back packets into the network aniigvo
many aspects of slow start and congestion avoidance. Indatt
ting the congestion window size to 10 allows this version GfPT
to send up to 10 packets, a full window, back to back beforadt h
to receive any acknowledgments, thereby potentially swagihe
network. In effect, in a relatively uncongested environin&cK
clocking is now done for the transmission of a whole window in
stead of on a packet-by-packetbasis. The impact of usingsiove
of TCP that eliminates a major component of TCP flow contrah ¢
be seen in the bottom plot in Figure 10. As expected, thetglbdli
send back-to-back packets creates local scaling behaxdosmall
time scales that is distinctly different from all the othersions of
TCP or, for that case, UDP. A precise reasoning for why this ve
sion of TCP generates such distinctive local scaling needgber
further investigations,

4.5 Putting the pieces together, not quite(!)

By experimenting with various versions of full TCP, we prdei
initial empirical evidence that in a reasonably heterogeisenet-
work environment, TCP-like flow control (with or without rahs-
mission, with fixed but small window size or with the “real”-dy
namic windowing mechanism) is a major reason for the emegen
of complex local scaling phenomena (i.e., multifractalliscg in
measured IP traffic over fine time scales. This observatiggasts
that to gain a physical or networking-related understapdinthe
mathematical concept of multifractals, it is necessarydm gn-
sight into the intricate interactions between the ACK paslead
TCP data packets within one and the same connection in acheter
geneous network environment and across the different atioms
that share a common link in that same environment.

To illustrate that the ACK/TCP data packet interactions inay
related to the complex local scaling phenomenon that candtle-m
ematically described using multifractals, we return to éxample
of Figure 9, where we looked at the ACK-only and TCP data-only
traffic associated with server 2 in tiReEXBELL configuration with
400 modem clients. Here, we slightly modify this setup by mov
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Figure 10: Impact of feedback control on local scaling: UDEhw
interpacket spacing of 10 msec (top, loss rate: 63.86%); Wil
window size fixed to 1 (middle, loss rate: 5.63%); TCP with flow
control disabled, i.e., fixed window size of 10 (bottom, loate:
10.38%). ELEXBELL, 400MODEM NODES, PARETO 2).

ing to a version of theRoSSBELLconfiguration that is identical to
the 400 modenfFLEXBELL environment, except that we introduce
cross-traffic on links labeled B and C in Figure 3 that speailfjc
interferes with the ACK packet stream on the and0.6 Mbps
links. The resulting local scaling plots for link B.6 Mbps) are
shown in Figure 11, left plot for the time series of total nienb
of packets per 1 msec, middle plot for ACK-only time seried an
right plot for the trace consisting of TCP data-only packdlsie

to the presence of cross-traffic that interferes with the A©K the
link connecting server 2 to the rest of the network, the |eal-
ing plot for the ACKs looks more “interesting” (i.e., showigher
variability on the medium to small scales) than the corresiiny
local scaling plot for the ACK-only trace in Figure 9 whicheto
not see any interfering cross traffic. Consequently, bez@GK
packets trigger TCP packets, the characteristics of theiisgaf
the TCP packets changes as well. This observation of a mere in
teresting local burstiness of packet clustering behavidné pres-
ence of cross-traffic as compared to a one-way traffic enxriemt

is known asACK-compression phenomenand agrees with find-
ings reported, for example, in [26, 32, 17]. A more recentgtu
[20] found ACK compression to be fairly common in measured IP
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Figure 11: Impact of ACK compression on local scaling — teatifi and from server 2 according to its protocol componentsirHeft: all
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traffic traces but concluded that it has no real effect on petw
performance. Without contradicting this latter conclusiove con-
tribute here to the existing literature on ACK-compresdigrsug-
gesting that the ACK-compression phenomenon may be directl
related to the observed highly complex scaling behavior em
sured IP traffic over fine time scales and hence may be a patenti
candidate for explaining and understanding multifrattati terms

of observed networking-related mechanisms. Rather thainga
direct impact on performance, such an explanation couldtgot
ward properties of actual IP networks that have not beeniderexd

in the past and may in turn lead to an improved understanding o
the dynamics of IP networks.

While our conjecture does not do much at this stage to demys-

tify either the ACK-compression or the multifractal scaliphe-
nomenon, it is interesting to note that the intuition behirath
features (i.e., complex “clustering” and “burstinessgpectively)
agrees — at least heuristically — with the visual appearahtiee
time series of ACK’s resulting from a purely one-way traffices
nario or from a scenario where cross-traffic is present. ¢h there
is in general an appreciable difference between the two sienes
and little disagreement about their visual effects; nantiedy the
one-way traffic time series is “less bursty” (or, dependingoe’s
background, “shows less ACK-compression” or “exhibitssslm-
teresting multifractal behavior”) than the two-way traffime se-
ries. Further investigation into the one-way delay timesAGK
packets from individual connections confirms that ACK coespr
sion is indeed taking place.

We conclude this section with a reminder and warning aboeut re
placing the empirically validated hierarchical and valgabession
structure employed in our simulations by simpler versiohgvin
essence equate a session with an infinite file transfer. VBhié
simplifications are often convenient for analytical stisdig TCP
dynamics (e.g., see [14] and references therein), theyitegdn-
eral to very different behaviors of the resulting traffic pesially
in a reasonably heterogeneous network environment. Tstriéite,
Figure 12 shows the local scaling analysis at link B for ghex-
BELL configuration under two comparable load scenarios. In one
case (top plot), the clients exert high variability in terafisheir ses-
sion structure (in the sense discussed in Section 3.1);eirother
case (bottom plot), the clients exhibit no variability; tisga sessions
are infinite file transfers. Despite keeping all other cormgraa of
the network environment constant, the differences in thallscal-
ing behavior between the two resulting traffic traces arecex¢
and so is their global scaling behavior (not shown here) s Exi
ample should serve as a reminder that mathematically coewen
models do not necessarily reflect reality and should underge
scrutiny, especially if the differences are as drastic aseoked
here.
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5 Conclusions and outlook

By presenting a set of wavelet-based scaling techniquearfar
lyzing and understanding network-related measurememdave
identified in this paper various user- and network-relategeats
and the effects that they have on the dynamics of measuredfiP t
fic. In other words, we have illustrated how these analysih-te
nigues can be used for detecting and identifying “fingetptim
measured IP traffic traces that provide relevant infornmatibout
user- and network-specific behaviors. In particular, weshgained
new insights into how various aspects of user- and netweldted
variability contribute to the observed scaling phenomerz ( self-
similar scaling over large time scales, multifractal scglver small
time scales) in measured Internet traffic. On the one handave
shown how and why self-similar scaling over large time ssde
almost exclusively due to user-related variability andssentially
oblivious to underlying, network-specific aspects. On tlieeo
hand, we have also explained how and why multifractal sgalin
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Figure 12: Impact of infinite sources on local scaling: tepeX-
BELL, 400MODEM NODES PARETO 2); bottom ¢LEXBELL, 100
MODEM NODES, CONSTANT).



over small time scales cannot be solely explained in termbef
various aspects of network-related variability, but is @ofed in

a major way by the presence of TCP-like flow control algorighm
which give rise to a surprisingly rich burstiness or clustgistruc-
ture over small time scales of IP packets as they traversintae
net.

Potential practical applications of this “detective” asipaf our
work are numerous. To illustrate this, consider the localling
analysis of the traces associated with the three networksrsin
Figure 2 in Section 2.3. By isolating the traffic that is dest to
the same part of the Internet and by applying scaling armlygsi
the resulting time series, one can gain insight into thequerédnce
of the paths between the measurement point and the network. F
example, by comparing the left and middle plots, we can catel
that the expected performance when going to the second retwo
is substantially worse as compared to the first network — TCP i
likely to see more congestion which in turn shows up in the lo-
cal scaling plot as a pronounced “folding” effect. The falgliin
the middle plot also indicates that somewhere along the fmath
and from this network, there is a bottleneck link of fairlynited
capacity. A real-time implementation of this feature of tfieger-
printing” capability would have the advantage of using fyupas-
sive measurements for uncovering aspects of Internet pesfoce
that are of current interest. Such an implementation algs lfer
a full-blown exploitation of the local scaling analysis heéues;
that is, providing the capability of localizing in time “iettesting”
features in a set of network-related measurements. Angtiten-
tial application that is motivated by Figure 2 in Section B3is-
ing local scaling analysis techniques for detecting andtifiéng
non-TCP-friendly connections. However, the feasibilindactual
implementation of this idea remains an open problem.

On a different note, the detective nature of our investigeti
also has an impact on the problem related to simulation flige
tic” Internet scenarios. The challenges associated wittulsiting
Internet-like environments are clearly spelled out in [BR} our
empirical work points towards an approach that does awaly wit
traditional simulation modeling and coincides with a numdfear-
guments put forward in [22]. In particular, we have demaatst
in this paper that by relying almost exclusively on the phgki
or networking-related understanding of the impacts of tagous
user- and network-related aspects of variability and ohdoasic
concepts as closed-loop flow control, it appears to be plestib
end up with a full-blown networking environment that is ireth
right “ball park” when compared to real networks. Note tHast
has been achieved by replacing traditional statisticararice and
estimation methodologies by a qualitative understandfrghich
aspectsimpact the different scaling phenomena assoeiétedet-
works, but much work is left to achieve this goal and to feeheo
fortable with the proposed method.

Clearly, exploring the parameter space relevant to our gmpi
cal approach is non-trivial and at times overwhelming. Whiie
present work explores some dimensions of this space (esgr, u
variability, network-related variability), others remmaintouched or
sufficiently obscure. For example, we have not yet systexalyi
explored issues related to traffic synchronization (seefample
[31, 10]). Although we have observed a significant amounyat s
chronization effects in simulations that assume infiniterses (see
Section 4.5), very little of this phenomenon seems to showlugn
assuming our hierarchical and variable session structurevéb
users or when analyzing measured traces from our ISP environ
ment. We conjecture that this lack of observed synchroioizas
due to the realistic variability structure of a typical wedssion.
This conjecture is supported by our findings that in our satiah
environments, we are typically able to reproduce the detfiar
property of observed flow arrivals and the infinite variancaigh-
variability of the flows’ sizes or durations. Another diménsof
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the parameter space that has been left unexplored but apioear
play a crucial role in advancing our understanding of thetispa
temporal dynamics of IP networks is the impact or “fingergirin
of network topology-related variability. Also, while we @jec-
ture that our findings are generic and not TCP-specific, tod{r
lem remains open as well. Finally, one of the most intriguipgn
issues that remains is how precisely TCP-like congestiarirab
algorithms give rise to multifractal scaling. While we havk-
tained initial empirical evidence that seems to relate ifnadttal
scaling of IP traffic with phenomena such as ACK-compression
mathematical rigorous and intuitively appealing congiarcand
explanation that makes sense in the networking contekegiiles
us. However, the experimental studies using differentigassof
closed-loop TCP-like or open-loop UDP-like controls shedche
light on how one may want to proceed.
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Appendix

A.1 Detailed description of user/session attributes

The following provides a detailed description of the ussfion
attributes for which one has to specify a probability digition:

Inter—session time: Time between sessions from different users

Pages per sessionNumber of Web pages accessed within a ses-

sion by the same user.
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Inter-pagetime: Time between consecutive pages downloaded
by the same user. We experienced with two different vari-
ances of inter—page times. In one case, the inter—pagegime i
the time between when the page download was initiate and
when the next page download is initiated. In the second case,
the download of the current Web page has to complete (in-
cluding the download of all of the inlined object) before the
interpage time is applied. For each download of a Web page
the user picks one of the available Web server at random.

Objects per page: Number of inlined objects within a Web page.
All inlined objects are retrieved from the same Web server as
the original Web page.

Inter—objecttime: Time between requests to the inlined objects.

Object size: Size of an object in KB (equals number of packets
required to transfer the object).

A.2 Probability distributions for user/session attributes

[ Name [ inter-page| objs. per pagd inter—object]| obj. size |

PARETO1 Pareto Pareto Pareto Pareto
mean 50 mean 4 mean 0.5 mean 12
shape 2 shape 1.2 shape 1.5 | shapel.2

PARETO 2 Pareto Pareto Pareto Pareto
mean 10 mean 3 mean 0.5 mean 12
shape 2 shape 1.5 shape 1.5 | shapel.2

Exp 1 Pareto Constant — Exp
mean 25 1 12
shape 2

Exp 2 Exp Constant — Exp
mean 10 1 12

CONSTANT || Constant | Constant — Constant
mean 10 1 1000000

A.3 Description of the data sets:

Throughout this paper we use the following high-qualityedsets
(i.e., packet drops reported bgpdumpwere negligible and other
causes for drops have been identified to be negligible as kigh
time stamp accuracy of about 10-106ec). The trac®I1AL 1 was
gathered from an FDDI ring (with typical utilization levets 5-
10%) that connects about 420 modems to the rest of the Interne
Although we collect every packet seen on the FDDI ring on July
22,1997 between 22:00 and 23:@0AL 1 contains (bidirectional)
modem user traffic onlyThis amounts to 2,752,779 packets. This
is the same dataset that has been used in a previous studf [8] o
the multifractal scaling behavior of Internet traffic. A sac trace
DIAL 2 was collected in the same location m®\L 1, on January
21, 1998 again between 22:00 and 23:00, and contains 2882,8
packets.



