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Using thens-2-simulator to experiment with different aspects of
user- or session-behaviors and network configurations and focus-
ing on the qualitative aspects of a wavelet-based scaling analysis,
we present a systematic investigation into how and why variability
and feedback-control contribute to the intriguing scalingproper-
ties observed in actual Internet traces (as our benchmark data, we
use measured Internet traffic from an ISP). We illustrate howvari-
ability of both user aspects and network environments (i) causes
self-similar scaling behavior over large time scales, (ii)determines
a more or less pronounced change in scaling behavior around a
specific time scale, and (iii) sets the stage for the emergence of sur-
prisingly rich scaling dynamics over small time scales; i.e., multi-
fractal scaling. Moreover, our scaling analyses indicate whether or
not open-loop controls such as UDP or closed-loop controls such
as TCP impact the local or small-scale behavior of the trafficand
how they contribute to the observed multifractal nature of measured
Internet traffic. In fact, our findings suggest an initial physical ex-
planation for why measured Internet traffic over small time scales
is highly complex and suggest novel ways for detecting and identi-
fying, for example, performance bottlenecks.

This paper focuses on the qualitative aspects of a wavelet-based
scaling analysis rather than on the quantitative use for which it
was originally designed. We demonstrate how the presented tech-
niques can be used for analyzing a wide range of different kinds
of network-related measurements in ways that were not previously
feasible. We show that scaling analysis has the ability to extract
relevant information about the time-scale dynamics of Internet traf-
fic, thereby, we hope, making these techniques available to alarger
segment of the networking research community.1 Introduction
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a variety of scaling phenomena observed in measured ISP traffic.
In particular, our empirical studies clarify what is meant by state-
ments of the form “Self-similar scaling behavior over largetime
scales is mainly caused by user/session characteristics and has lit-
tle to do with network-specific aspects” (e.g., see [8]; for related
earlier work, see also [19]). In support of yet another conjec-
ture that can be found in [8], we also present empirical evidence
demonstrating that time scales on the order of a “typical” round-
trip time within the network are directly related to a ratherabrupt
transition from self-similar scaling to a more complex scaling be-
havior; i.e., multifractal scaling. Finally, through experiments with
the different components of a full-blown TCP implementation, we
partly demystify the occurrence of this highly complex scaling be-
havior of measured Internet traffic over small time scales byre-
ducing it to and pointing out a plausible explanation in terms of
previously observed phenomena in the dynamics of TCP-type con-
gestion control, among them ACK-compression; see for example
[12, 27, 26, 32, 17], or the more recent study [20]. This empirical
observation begs for a simple mathematical construction that incor-
porates the essence of flow control phenomena and leads to multi-
fractal scaling behavior. Unfortunately, we have not yet succeeded
in this endeavor and at this stage, referring to the observedfine-
time scaling behavior of IP traffic as “highly complex” or “multi-
fractal” makes little difference. However, we believe thataiming
for an intuitive and rigorous physical explanation in the network-
ing context of the mathematical concept of multifractals will shed
new light on features of realistic IP networks that have largely gone
unnoticed in the past. Succeeding in this endeavor would offer the
attractive alternative of being able to avoid the notion of multifrac-
tals all together because the concept could be explained in genuine
networking terms.

As a by-product of our empirical investigations into the dynam-
ics of IP traffic, we present and advertise in this paper a class of
wavelet-based scaling techniques and illustrate how theirability to
localize a set of network measurements in time and scale enables
one to uncover relevant information about the time-scale dynamics
of network traffic. By doing so, we hope to make these techniques
more readily available to a larger segment of the networkingre-
search community, thus drawing attention to the potential that these
techniques have for analyzing network measurements in waysthat
are novel and that had not been feasible previously. In particular,
we illustrate throughout this paper that these wavelet techniques are
highly effective in identifying and extracting regular patterns in a
way that cannot be easily accomplished with Fourier-based tech-
niques. In combination with the ubiquitous nature of the observed
scaling properties in network measurements, the wavelets’natural
abilities to detect scaling behavior have made wavelet-based anal-
ysis the method-of-choice for studying various types of network
measurements and for understanding some of their most useful
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and relevant characteristics. We show in this paper how to inter-
pret the results from such a time- and scale-localization approach
and demonstrate how to relate the findings to underlying network-
ing configurations and/or predominant user characteristics. To this
end, we emphasize and exploit primarily the networking context
in which these techniques are applied and focus less on the math-
ematical and statistical aspects and features of a time-scale anal-
ysis (e.g., multifractal formalism, estimation of multifractal spec-
tra). Consequently, our findings are qualitative rather than quan-
titative in nature; that is, as far as, for example, self-similar scal-
ing is concerned, we are mainly interested in using the proposed
scaling techniques for the purpose of detecting self-similar scaling
behavior over large time scales, which turns out to be a property
that is highly robust under a variety of changes in the underlying
network configuration. Our work relies on a set of measured traf-
fic traces from an ISP environment and on various traces collected
from a simulation environment that uses thens-2-simulator [3] and
exploits its ability to implement different network configurations.
The ISP traces serve as benchmarks and are used for reality checks,
while thens-2-generated traces allow us to identify the effects that
different aspects of user/session characteristics or network config-
urations can have on the dynamics of network traffic. Our analysis
techniques, the measured IP traffic traces, and the simulation envi-
ronments are described in detail in Section 2.

Over the last few years, network-related measurements havebe-
come a rich source for observing interesting and at times surprising
scaling behaviors; e.g., self-similar scaling [15, 21, 9] and multi-
fractal scaling [24, 8]. Intuitively, the ubiquity with which some
of these scaling phenomena occur in measurements from today’s
IP networks is related to the absence of an intrinsic scale wherever
one looks: link speeds span an ever increasing range of scales (from
Kbps modem access to Gbps optical fiber connections), as do laten-
cies (on the order of microseconds for fiber optic links to seconds
for satellite links), and packet round-trip times. At the same time, in
today’s Web-dominated Internet, the sizes or durations of sessions,
number of HTTP requests/responses, TCP connections or IP-flows
typically span up to six orders of magnitude (e.g., see [5, 29, 9]).
Mathematically, the absence of an intrinsic scale is equivalent to
high variability and can be captured in a parsimonious manner us-
ing heavy-tailed (also known as scale-invariant) distributions with
infinite variance. Thus, one of the main objectives of this paper
is to present a coherent picture of how this kind of variability of
user/session- and network-related behaviors impacts the time-scale
dynamics of network traffic. In particular, we identify in Section 3
those aspects of packet traffic that are affected by the absence of an
intrinsic scale for certain user- and network configuration-related
features; these aspects cover the self-similar scaling property of IP
traffic over large time scales and the location of the (lower)cutoff
scale(s) beyond which self-similarity ceases to exist and gives way
to a richer and more complex scaling structure. In this sense, our
studies suggest a clean separation between user- or session-related
aspects and network-related features, at least as far as thephysical
explanations of self-similar and multifractal scaling areconcerned.

Another major focus of our studies is to highlight the role that
closed-loop flow control plays in providing a better understanding
of the observed highly complex scaling behavior of IP trafficover
small time scales [8]. To this end, we provide in Section 4 empiri-
cal evidence that TCP-like flow control in a heterogeneous network
environment gives rise to actual packet flow patterns that exhibit a
surprisingly rich mathematical structure consistent withmultifrac-
tals. In contrast, open-loop controls such as UDP give rise to traffic
patterns that are essentially smooth (i.e., regular) and lack signif-
icant local scaling behavior. By experimenting with the various
components of a full-blown TCP-implementation, we can further
clarify the contributions of congestion control and reliable transfer
to the multifractal nature of Internet traffic. In this sense, our find-

ings offer an initial physical explanation for the observedmultifrac-
tal scaling property of measured IP traffic. In addition, ourfindings
relate the observed multifractal scaling to a pronounced cluster-
ing effect of the packets belonging to individual TCP connections,
which in turn is caused by the highly bursty dynamics of ACK
packets (a well-known phenomenon calledACK compression). Our
findings thus confirm an earlier conjecture made in [8], namely
that a likely physical explanation for why measured Internet traf-
fic over small time scales is highly complex will require a more
detailed understanding of the TCP mechanism in a non-trivial net-
working environment. Moreover, by relating multifractal scaling to
the physics of TCP (e.g., slow start, congestion control, retransmis-
sion, ACK compression), we have gained access to a substantial
body of knowledge about various aspects of the dynamics of con-
gestion control mechanisms; for example, see [13, 12, 25, 26, 32]
and the empirical studies of Internet traffic dynamics [17, 20]. As
a result, we believe to have set the stage for a physical explana-
tion and understanding of the multifractal scaling phenomenon of
measured IP traffic over small time scales that may be as plausible,
intuitive, appealing and relevant as the one that has recently been
found for the self-similar scaling (e.g., see [30, 29, 9]). This and
other open problems, together with some practical applications of
our scaling analysis and some limitations of our study and ofthe
underlying network configurations are discussed in Section5.2 Towards a scaling analysis for network measurements
The special appeal for using wavelet methods for analyzing and un-
derstanding network-related measurements is that (i) wavelets are
a natural mathematical tool for detecting, identifying andexploit-
ing scaling phenomena, and (ii) scaling phenomena appear tobe a
dominant feature in variety of measurements from modern commu-
nication networks. In this section, we introduce and describe a set
of wavelet-based scaling analysis techniques and show witha few
toy examples and measured traffic traces from an ISP environment
some of their most basic abilities for interpreting scaling-related
characteristics and deviations. The last subsection contains a de-
scription of the simulation engine that we use throughout the rest
of the paper for our empirical studies.2.1 Description of scaling analysis techniques
Consider a time seriesXn;k, k = 0; 1; 2; : : :, at the finest level
of resolution2�n (or the finest scalen). This might represent the
number of packets per 1 msec, for example. We coarsenXn by
averaging (with a slightly unusual normalization factor) over non-
overlapping blocks of size twoXn�1;k = 1p2 (Xn;2k +Xn;2k+1) (1)

and obtain the time seriesXn�1, a coarser resolution picture of the
original seriesXn. The difference between these two pictures isDn�1;k = 1p2 (Xn;2k �Xn;2k+1) : (2)

We can write the original time seriesXn as the sum of the “blur-
rier” seriesXn�1 and the differenceDn�1,Xn = 2�1=2(Xn�1+Dn�1). We can repeat this process (i.e., writeXn�1 as the sum
of yet another averageXn�2 and the differenceDn�2, and iter-
ate) for as many scales as are present in the original time seriesXn = 2�n=2X0 + 2�n=2D0 + � � � + 2�1=2Dn�1. We refer to
the collection of differencesDj;k as thediscrete (Haar) wavelet
coefficientsdj;k, they make up what is commonly referred to as the
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discrete wavelet transform, and they may be calculated iteratively
using Eqns. (1–2)1.

We use the wavelet transform of a time series to study both its
global and local scaling properties. We begin with the global prop-
erties, by which we mean the statistics of the time series viewed at
each resolution level or scale, taken as a function of scale.In par-
ticular, we examine the average energy contained in each scale of
the trace and examine how that quantity changes as we move from
coarser to finer scales. The average energy at scalej is the average
of the sum of the squared wavelet coefficientsjdj;kj2; i.e.,Ej = 1NjXk jdj;kj2;
whereNj is the number of coefficients at scalej. To determine the
global scaling property of the data, we plotlog(Ej) as a function of
scalej, from coarsest to finest scales, and determine qualitatively
over what range of scales there exists a linear relationshipbetweenlog(Ej) and scalej; that is, over what range of time scales there
exists self-similar scaling (see [1] for more details). In all of the
figures in this paper, the scalej is on the bottom axis and the corre-
sponding time (in seconds) is plotted on the top axis for reference.

The local scaling analysis is slightly more complicated than the
global analysis in that we wish to gather information about local
features (e.g., bursts of packets) rather than statistics about the time
series viewed as a whole at each scale. In particular, we wantto
know how the number of packets in an interval of size� about timet0 is related to the size� of the interval. The “stronger” and more
concentrated the burst around timet0, the less the number of pack-
ets depends on the size of the interval. The strength of the spike
around timet0 or the degree of “local burstiness” can be captured
mathematically by a (possibly) time-dependent scaling exponent,
and the goal of a local scaling analysis is to collect characteristic
information about the strengths and locations of the various scal-
ing exponents (for a more detailed presentation see, e.g. [8] or [2]).
To gather the statistics of the local scaling exponents, we again use
the discrete wavelet transform of the underlying data and define the
partition functionS(q; j) as the sum over the local maxima of the
(normalized) wavelet coefficients raised to theqth power at each
scalej: S(q; j) =Xmax j2�j=2dj;kjq
(see [8, 11] and the references therein)2. Although we need sev-
eral additional transformations of the partition functionto quan-
tify rigorously the distribution of scaling exponents, foran intuitive
picture and the sort of qualitative interpretation of localscaling be-
havior considered in this paper, we rely upon the graphical features
of the partition function to detect and assess the local scaling be-
havior of the data. To that end, our local scaling analysis consists
of plotting, for each value ofq, log S(q; j) as a function of scalej (from coarsest to finest) on one graph (throughout the paper,the
local scaling plots will typically show the curves corresponding toq = 0; 2; 4; : : : ; 18; 20, with S(0; j) being the straight reference
line). This way we obtain a family of curves, and determiningqual-
itatively, for a range of the smallerq-values, if there exists a more or
less linear relationship betweenlog S(q; j) and scalej over a range
of the finest scales provides information about the nature oflocal
scaling. In particular, “interesting” local scaling (i.e., scaling con-
sistent with multifractal behavior) manifests itself, fora range of
small-to-mediumq’s, in a linear relationship betweenlog S(q; j)
and scalej that extends over a range of fine time scales, where1We use the Haar wavelets primarily for exposition and we use more general
wavelets (e.g., compactly supported Daubechies wavelets [6]) for the scaling analysis.2In practice, we slide a window of length five (this parameter can be varied) over
the coefficients at each scale, extracting the local maxima.
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Figure 1: Global (top) and local (bottom) scaling analysis for the
toy examples “pinch” (top) and “fold” (bottom).

the slope of the linear regime depends in a non-linear fashion onq. The essence of multifractal analysis is to determine for a given
data set how to infer these slopes and whether or not they depend
in a non-linear manner onq. A linear dependence onq suggests
a less interesting or “monofractal” local scaling where essentially
one exponent characterizes the entire scaling behavior (e.g., self-
similar processes with self-similarity parameter0 < H < 1).2.2 Detecting and identifying scaling behavior
Rather than focusing on the quantitative aspects of self-similarity
estimation using wavelet-based techniques (as, for example, em-
phasized in [1]), we suggest a more qualitative usage of the above-
mentioned scaling techniques. To this end, we show with simple
toy examples how, by manipulating certain aspects of a time se-
ries, the global scaling behavior can be changed in quite drastic
ways. Starting with an exactly self-similar trace, we modify the
wavelet coefficients at a fixed scale, e.g., scalej = 12, by adding
to each coefficient at that scale a fixed multiple ofmaxkfjdj;kjg.
The global scaling plot for the resulting toy example time series
“pinch” is given in Figure 1 (top) and shows a pronounced “spike”
at scale 12. “Dips” can be introduced in a similar way, and by
explicitly manipulating the wavelet coefficients over a range of dif-
ferent scales, the “spikes” and “dips” can be made wider or nar-
rower. Clearly, data that exhibit such features will give rise to intri-
cate global scaling plots, and blindly applying quantitative methods
(e.g., wavelet-based estimation of the self-similarity parameter) in
these situations can easily lead to wrong conclusions.

To demonstrate how certain features in the data can have an
impact on the local scaling analysis, we begin with a time series
derived from a conservative cascade with fixed generatorW (we
takeW to be a truncated normal on[0; 1] with mean1=2 and vari-
ance 0.01; for details, see [8, 11, 23]). From this sequence,we
construct the toy example time series “fold” by targeting a selected
range of scales and replacing the wavelet coefficients at those scales
by appropriately chosen fixed (possibly scale-dependent) quanti-
ties. From the corresponding local scaling plot shown in Figure 1
(bottom) we see that adding in this way periodic components at the
specified scales causes a pronounced dip, while removing selec-

3



tively variability by inserting smaller coefficients givesrise to the
apparent “folding over;” that is, the structure function plots become
negative for some scales, indicating that the corresponding wavelet
coefficients have become very small. As in the case of the global
scaling analysis, even a qualitative assessment of multifractality of
a data set with such distinguished features becomes a non-trivial
task and requires extreme care.

While these examples are simplifications of real-life situations,
they do highlight the effects that adding certain types of local pe-
riodicities can have on the scaling behavior of data. Moreover,
note that such disturbances often cannot be easily identified using
Fourier-type transforms of actual data, but they can be detected by
extracting the wavelet coefficients at the desired scale(s). However,
with these toy examples, such periodicities are readily apparent in
the Fourier spectrum.2.3 Measured Internet tra�c dynamics
Next we illustrate the global and local scaling analysis techniques
described earlier with two data sets of measured IP traffic from an
ISP environment (see Appendix for a detailed description ofthe
data). The results serve mainly as benchmarks and reality checks
for our simulation work described in the rest of the paper. How-
ever, they also show that even though the measurements were taken
about one year apart, their statistical characteristics asfar as the
global and local scaling are concerned are quite similar. This ob-
servation supports earlier conjectures about self-similar large time
scaling and multifractal scaling over small time scales representing
two invariants for Internet traffic; that is, characteristics of the dy-
namic nature of IP packet traffic that are robust under a wide range
of possible networking- and application-related changes.

On the one hand, the right plot in Figure 6 which depicts the
global scaling behaviors forDIAL 1 andDIAL 2 shows that both data
sets exhibit very similar global scaling behavior (i.e., self-similar
scaling over time scales larger than a few hundreds of milliseconds
– look for approximately linear behavior on the left half of the plot,
for scales 1–10; emergence of a different regime for scales 11–18).
On the other hand, looking at the right plot in Figure 7 which shows
the local scaling analysis forDIAL 2 measured at the 1 msec scale,
we observe non-trivial local scaling behavior over small time scales
(i.e., over time scales on the order of a few hundred milliseconds
and below) which, upon further investigations, can be shownto be
consistent with multifractal scaling (look for approximately linear
behavior of the partition function plots for scales 15–19 or, by “cut-
ting across the spike” at scale 14, for scales 12–19). Similar results
(not shown here) apply for the data setDIAL 1.

Finally, to hint at things to come, we show in Figure 2 the re-
sults of a local scaling analysis for three subsets of the traceDIAL 2.
The subsets represent traffic that is transmitted between three dif-
ferent networks and the ISP clients and can be obtained usingIP-
header-information. (Two IP addresses are considered to belong to
the same network if they have the same high-order 16 bit IP ad-
dresses.)NET1 turns out to consist mostly of traffic between the
ISP clients and the ISP web servers,NET2 is traffic between the
ISP and major news servers, andNET3 consists mainly of realau-
dio UDP traffic. The observed differences in the corresponding
local scaling plots are telling. There is a folding-over in the local
scaling behavior, similar in nature to the toy example “fold” shown
at the bottom of Figure 1, and it becomes more pronounced as we
move fromNET1 to NET2: There is more RTT variability inNET2
than inNET1 because packets have to travel across ISP boundaries,
and the traffic patterns show higher regularities (i.e., small wavelet
coefficients, and hence small values oflog S(q; j)) over a substan-
tially wider range of the medium time scales. In contrast, the local
scaling plot forNET3 shows trivial structure: Much in the spirit of
realaudio UDP, packets are essentially sent at constant rate, with a

periodicity on the order of about 40 msec (i.e., all partition func-
tions coincide roughly at scalej = 15, they are all roughly linear,
and their slopes are approximately linear inq). These observations
give an indication that local scaling analysis is capable ofperform-
ing “detective” work in identifying and explaining which aspects of
network behavior contribute to what features observed in the mea-
sured traces.2.4 Using ns-2 to replicate realistic IP tra�c dynamics
The simulation engine used throughout this study isns-2(Network
Simulator version 2) [3]. This discrete event simulator provides a
rich library of modules such as different flavors of TCP, scheduling
algorithms, routing mechanism, and trace collection support.

Using the measured ISP traces as benchmarks and road map
for the experimental studies described below, our choices of net-
work topologies and types of clients are basically determined by at-
tempting to replicate a reasonably realistic ISP environment. Since
roughly 60-80% of all packets and bytes measured in our ISP envi-
ronment are Web-traffic, our primary user is a consumer accessing
the network through an ISP via a modem bank to browse the Web.
To accurately simulate HTTP transfers, we extend the existingns-2
HTTP modules to accommodate for the variability that is inherent
in the Web.

In a typical HTTP 1.0 transaction, a web client sends a request
to the Web server for a web object after establishing a TCP connec-
tion. The server responds with a reply header (sometimes attaching
data) and then continues to send data. However, the originalns-2
TCP connection module failed to send the connection set-up and
tear-down packets. In fact, the TCP connection modules allow the
transfer of data in only one direction. To circumvent this prob-
lem, we emulated the exchange of the HTTP header information
with two ns-2TCP connections that have the same “port” num-
bers which facilitates object identification3. During a Web session
a user usually requests several Web pages and each page may con-
tain several web objects (e.g.jpg images orau files). To capture
this hierarchical structure and its inherent variability,we allow for
different probability distributions for the following user/session at-
tributes: inter-session time, pages per session, inter-page time, ob-
jects per page, inter-object time, and object size (in KB). For each
of these distributions, we can choose from the many built-indis-
tributions (such as constant, uniform, exponential, Pareto, etc.) or
we may define our own. Details about the parameters required for
these distributions and used in our studies can be found in the Ap-
pendix. We base our choice of distributions (including the specific
parameters) on the work surrounding SURGE [4], a Web workload
generator designed to generate realistic Web traffic patterns, and
upon [7, 18]. Note that we simulate HTTP without pipelining and
without persistent connections.

The protocol stack, network topology (including delays and
bandwidths), and the sequence of Web requests define a simula-
tion. Since TCP Reno and HTTP 1.0 [28] are assumed to be the
predominant protocols in the ISP environment at hand, we emulate
them in our simulations. We vary the number of sessions from 100
(low load scenarios) to 300 or 400 for high load scenarios. Each
session consists of a fixed number (300) of Web pages. This en-
sures that for almost all simulations all sessions are active for the
duration of the simulation (4200 seconds). We discard an initial
segment of each simulation run during which we randomly activate
all sessions.

As far as choosing a network topology is concerned, we are
again motivated by the ISP environment where we obtained our
measurements. To find out how various attributes of network topol-
ogy and web request sequence affect the traffic characteristics, we3The latest releases ofns-2support two-way TCP with detailed connection estab-
lishment and teardown.
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Figure 2: Local scaling analysis plots for three subsets of traceDIAL 2: NET1 (left, ISP Web server traffic),NET2 (middle, traffic to news
server ),NET3 (right, realaudio UDP traffic).

experiment with a set of network topologies. We concentrateon
simulation environments that consist of a set of clients connected
to an access network which in turn provides connectivity to aset of
servers, in effect creating a “dumbbell.” We map each user session
to a single client node (either home computer connected via slow
speed modems or office workstation connected via switched Ether-
net), referred to asMODEM NODESor HIGH-SPEED NODESrespec-
tively. This means that the simplest architecture is one where a set
of client nodes is connected to an access node that is connected to a
single Web server Figure 3 (top). To understand the impact ofcon-
gestion on the middle link, we split it into two separate links that
can have different delays and bandwidths. If no bottleneck is intro-
duced we refer to the topology asCAPBELL (unlimited capacity). If
the link labeledA in the top plot in Figure 3 has lower capacity than
the link labeledB, we refer to the topology asSINGLEBELL. To in-
crease the variability of the delays and/or bandwidths to different
servers, we expand the single servers into a set of servers asshown
in the bottom plot in Figure 3 and refer to the topology asFLEX-
BELL. To experiment with cross traffic, a set of clients and servers
can be added to either the link labeledA in Figure 3 (bottom) or the
links labeledB andC. This topology is calledCROSSBELL. To en-
sure that the modem clients are not the bottleneck links, thebuffers
in the queues on those links are configured to have sufficient space.3 On the role of variability
In this section we explore the role variability in its many forms
plays in determining the scaling properties of network traffic. We
divide the types of variability into two main categories: user- or
session-centered variability (e.g., sizes of Web sessionsor sizes of
HTTP data transfers, number of requests per session) and network-
related variability (including delays, bandwidths, and topology). To
understand the scaling behavior observed in the measured data, we
hold all but one of the above forms of variability fixed and explore
the effects of the remaining element of variability. In doing so,
we sometimes simulate artificially simple networks; nevertheless,
we are able to find clear “fingerprints” in the measurements that
are caused by the different aspects of variability. We startwith
user/session variability and its effects on the scaling properties of
the time series of packet counts. Then we examine how network
variability impacts the scaling behavior of traffic.3.1 User- and session-related variability
One of the least complex forms of variability is that of the users
and their sessions. It is expressed in terms of the distributions of
the number of objects per page, the number of packets per object,
the interarrival times of pages, etc. By high user variability, we

mean that at least one of the “workload-specific” distributions (i.e.,
number of objects per page or number of packets per object) must
be chosen from the class of heavy-tailed distributions withinfinite
variance (e.g., Pareto-type tail behavior), while low uservariability
reflects the fact that all these distributions are either exponential or
trivial (i.e., constant).

We use theCAPBELL configuration with its essentially unlim-
ited bandwidth constraints and with 1 msec link delays to illustrate
the difference between how low user variability and high user vari-

Figure 3: Network topologies:CAPBELL/SINGLEBELL (top),
FLEXBELL (bottom); Mb=Mbps, Kb=Kbps, ms=millisecond.
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Figure 4: Impact of user variability on global scaling analysis: low
user variability (CAPBELL, 400HIGH-SPEED NODES, EXPONEN-
TIAL 1); high user variability (CAPBELL, HIGH-SPEED NODES,
PARETO 1).

ability contribute to the dynamics of the measured traffic. We con-
sider the environment with high-speed access nodes and perform a
global scaling analysis of the time series representing thenumber
of packets per 1 msec recorded at linkA. The results are shown
in Figure 44. While the low user variability simulation yields a
trivial global scaling plot (i.e., horizontal line, consistent with the
absence of long-range dependence), the high user variability setting
gives rise to a pronounced global scaling behavior over large time
scales; that is, the packetcounts exhibit long-range dependenceand
the traffic is asymptotically self-similar. Of course, these empirical
results are in full agreement with the rigorous physical explana-
tion of the self-similar scaling of network traffic over large time
scales in terms of the infinite variance or high-variabilityproperty
of user session sizes (for details, e.g. see [21, 9]). In thissense,
global scaling plots such as the ones shown in Figure 4 (see also
below for global scaling plots where we explicitly change a vari-
ety of network-related features, without any significant effect on
the large time scaling behavior) illustrate what is meant bysaying
that “self-similar scaling over large time scales is primarily caused
by user/session characteristics and has little to do with network-
specific aspects” [8] (for earlier related findings, see [19]).3.2 Network-related variability: Delays
In the above discussion of the results of our global scaling analy-
sis, we focused solely on the large time scale features and checked
whether or not there exists a more or less linear relationship in Fig-
ure 4, and if so, whether or not the slope is zero or strictly neg-
ative. In particular, we ignored two other prominent features in
those global scaling plots: an apparent departure from linearity at
some more or less pronounced medium-to-small time scale, and
the emergence of some structure other than self-similaritybelow
that scale. In this subsection, we identify a variability aspect that is
not user- or session-related but network-specific and that is primar-
ily responsible for the observed departure from self-similar scal-
ing at some specific time scale. The question about what structure
emerges when considering time scales below (i.e., to the right of)
that specific time scale will be discussed later in this section.

Using the same high-accessCAPBELL configuration as before,
the only network-related aspect that we change is link delay, which
of course impacts the round-trip time (RTT) behavior of the pack-
ets sent over the network. More specifically, we considerCAPBELL

with a low link delay ofz = 1 msec (resulting in a packet RTT of24 msec) and compare it with a high link delay ofz = 640 msec4The convention used throughout the paper is to indicate the simulation environ-
ment associated with each plot by given the triple (CONFIGURATION, LOAD, WORK-
LOAD SCENARIO); for WORKLOAD SCENARIOrefer to Appendix A.2.

Scale j

lo
g2

(E
ne

rg
y(

j))

Link delay: z = 640ms
Link delay: z = 1ms

3 5 7 9 11 13 15 17 19

-1

0

1

2

3

4

5

6

7

8

9

10

11

12
260.000 66.000 16.000 4.100 1.000 0.260 0.064 0.016 0.004

Figure 5: Impact of delay variability on global scaling: short de-
lays (CAPBELL, 400 HIGH-SPEED NODES, PARETO 1); long de-
lays (CAPBELL, HIGH-SPEED NODES, PARETO 1).

(i.e., RTT= 1:3 sec). In both situations, we collect the time series
of number of packets per 1 msec at link labeledA and compute
the global scaling plots shown in Figure 5. Notice that the time
scale where self-similar scaling breaks down is the smallest scale
(scale 10 = 2.0 seconds) that is larger than the data packet RTT in
the respective networks5. Moreover, the type of breakdown of self-
similar scaling (i.e., a pronounced “dip” at time scale 10) matches
that of the toy example presented in Section 2.2, for the simple rea-
son that the RTT behavior in this network configuration identifies a
distinct and significant periodic component in the traffic. Also note
that the additional dips at finer time scales can be attributed to the
presence of periodic components caused by, for example, thetime
it takes for an ACK packet to travel to a client and the TCP packet
released by the server to get to the monitored link, or for a TCP data
packet to travel to a client and the corresponding ACK to return to
the monitored link.3.3 Network-related variability: Congestion I
We have seen that theCAPBELL environment imposes a rigid RTT
behavior that has essentially the same effect on the global scal-
ing plot as manipulating the wavelet coefficients at the timescale
corresponding to the packet RTT in the network to introduce a
pronounced periodic component in the resulting packet trace (see
Section 2.2). To illustrate the effect of adding variability to the
RTT behavior, we use the high-accessSINGLEBELL configuration
which is identical to the aboveCAPBELL environment except that
the capacity on the middle link A has been decreased toy = 2:5
Mbps. Keeping the same number of user sessions, we introducein
this way a single bottleneck and create congestion (resulting in a
loss rate of 3.85%). The resulting global scaling plot (not shown
here) differs in three ways from the global scaling plot for the cor-
respondingCAPBELL scenario. First the self-similar scaling breaks
down earlier (i.e., coarser scale) than in the non-bottleneck sce-
nario; second, the transition from self-similar scaling issmoother
(i.e., pronounced dips essentially disappear, or are “smoothed out”
over a range of time scales) than in the non-congested environment;
and third, the energy in the trace is substantially smaller at each
scale than in theCAPBELL configuration (i.e., smaller wavelet co-
efficients throughout, resulting in a scaling plot that liesbelow its
counterpart, except for the finest scale). The first two observations
are a result of the higher variability in RTT due to the presence
of congestion, while the third feature simply reflects a decrease of
variability in the overall trace (i.e., filling up the link leaves little5Note that if2�j�1 <RTT� 2�j , the break down will occur at scalej because
there every wavelet coefficient includes at least one packetfrom the added periodic
component (and hence, these coefficients are less variable than those at scalej � 1,
some of which do not include packets from the added periodic component).
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Figure 6: Impact of network bottleneck and load on global scaling; left (FLEXBELL, 400HIGH-SPEED NODES, PARETO 1) generating losses
of 0.46%; middle (FLEXBELL, 400 MODEM NODES, PARETO 2) generating a loss rate of 6.4%; right (global scaling plots for measured
Internet tracesDIAL 1 andDIAL 2, for comparison).
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Figure 7: Local scaling analysis: left (FLEXBELL, 400HIGH-SPEED NODES, PARETO 2); middle (FLEXBELL, 400MODEM NODES, PARETO
2); right (local scaling plot for measured IP traffic traceDIAL 2, for comparison).

room for even modest traffic fluctuations).
Another way to drive a network into congestion thus introduc-

ing more variability to the RTT behavior is by adding load. Tothis
end, we consider theSINGLEBELL configuration with low-speed
modem clients and run the simulation with 100 user sessions (low
load) and 400 user sessions (high load), respectively. Simply by
comparing the observed loss rates (i.e., 0.002% in the low load sce-
nario, 8.72% in the high load scenario), we see that the 100 user
case is essentially congestion-free while the 400 user caseexperi-
ences significant congestion. The resulting global scalingplots are
essentially the same as before, with one noticeable exception. The
energy in the congested trace over the fine time scales is apprecia-
bly larger than in the non-congested case. This is a first indication
that the more congested the link is (i.e., the more packets are lost)
the larger the wavelet coefficients at time scales below the “typical”
RTT will be. We will return to this issue shortly.

Finally, to add yet another component to RTT variability, we
run theFLEXBELL configuration to identify the effect that the pres-
ence of different bottleneck links (possibly with different delays)
within one and the same network has on the dynamics of the traf-
fic. In Figure 6 we display the results of our global scaling analysis
for the 400 nodes high-speed access case (left plot) and for the 400
nodes modem access case (middle plot). In each case, we show the
global scaling plots for the aggregate traffic and for the traffic mea-
sured over 45 Mbps and 0.5 Mbps bottleneck links, respectively;
i.e., over the links to nodes labelled 1 and 4 in the bottom plot of
Figure 3, respectively. As we can see, the global scaling of the ag-
gregate traffic is to a large degree determined by that of the “big”
pipe (i.e., 45 Mbps link) and that the global scaling plot forthe
highly congested 0.5 Mbps link shows many of the features that we
discussed earlier in this section in conjunction with congestion.

Note that the global scaling plot in Figure 6 (middle) of the
aggregate traffic obtained from running theFLEXBELL configura-
tion supporting 400 modem clients agrees reasonably well (slightly
less energy, though, and a more pronounced dip at scales 12–13)
with the global scaling plots for the measured IP tracesDIAL 1 and
DIAL 2 shown in the right plot of Figure 6. Recall that this match
has been achieved without explicitly modeling any specific aspects
of the underlying traces. Instead, we have relied exclusively on
the physical understanding of the impacts that certain aspects of
user/session- and network-related variability have on thescaling
behavior of network traffic. By accounting qualitatively for the dif-
ferent aspects as well as for the proper “shades” of variability, we
have done away with conventional statistical inference approaches
and have nevertheless succeeded in roughly matching the second-
order properties of the measured traces. Next we address theques-
tion whether we can do even better.3.4 Network-related variability: Congestion II
In the previous subsection, we alluded to the observation that on
a congested link, there seems to be in general more energy in the
packet fluctuations at time scales below the the “typical” RTT as
compared to a non- or low-congested link. We argued that thisfea-
ture is due to the fact that the underlying TCP protocol is faced
with more losses when there is congestion, which in turn causes
the packet density fluctuations to exhibit more “interesting” local
burstiness structure than when there is little congestion.In view of
recent findings reported in [8], this local burstiness structure can be
observed in its clearest form at the level of individual TCP connec-
tions where it has been shown to conform to multifractal scaling.
At the aggregate level, multifractal scaling has been observed in a

7



number of measured Internet traces (e.g., see [24, 16, 8]).
Given this empirical connection with multifractal scalingbe-

havior over fine time scales, our aim in this subsection is to pro-
vide initial insights into and a first physical understanding for what
aspects of variability contribute to what features of the fine time
scale behaviorof network traffic. Because we have shown thatuser-
or session-related variability is almost exclusively responsible for
how IP traffic behaves over large time scales but has no apprecia-
ble impact on the dynamics of network traffic over fine time scales,
we consider in the following network-related aspects of variability
such as delay, bottleneck links, loads, etc. To start with, Figure 7
shows the results of our local scaling analysis for theFLEXBELL

configurations with 400 high-speed access clients (left) and 400
modem users (middle), respectively (these are the same configura-
tions for which the global scaling plots are shown in Figure 6). To
compare, the right plot in Figure 7 depicts the results of ourlocal
scaling analysis for the measured IP traceDIAL 2. Thus, while we
have seen that the global scaling of theFLEXBELL configuration
with modem clients qualitatively fits that of the measured IPtraces,
the corresponding structure functions in Figure 7 show someob-
vious differences. Most prominently, we observe in the measured
trace a pronounced dip around scales on the order of 1 sec, remi-
niscent of the toy examples discussed in Section 2.2. Also note that
across the medium to small time scales in the local scaling plot of
the IP traceDIAL 2 (right plot), the variability in the packet density
fluctuations is consistently higher than in the corresponding plots
on the left in Figure 7 (e.g., compare the values of the correspond-
ing log S(q; j)-functions for scales 12 and larger).

To identify which aspect of variability inherent in theFLEX-
BELL configuration is primarily responsible for the observed dif-
ferences in the local scaling plots, we go back to theSINGLEBELL

environment with its single 2.5 Mbps bottleneck link and corre-
sponding delay ofz = 640 msec. We find that using both a low
load and a high load scenario, we are able to replicate the pro-
nounced dips in the low load scenario around time scales related to
the “typical” RTT. At the same time, for the congested high load
scenario, we observe a much wider dip due to an increased RTT
variability. Moreover, the whole dip moves to the left; i.e., the
packets experience in general longer RTTs, and the variability in
the packet density fluctuations over time scales associatedwith the
wide dip are diminished.

Using this understanding, we can now perform a local scaling
analysis of the traffic from theFLEXBELL environment on a per-
server basis; i.e., for each of the four servers, we record the packets
coming from or destined for this server. Packets from the result-
ing traces go over the same bottleneck link and experience more
or less the same amount of congestion. The local scaling plots for
two of the four different traces corresponding to the four differ-
ent servers are given in Figure 8 and show some familiar features.
The 45 Mbps link (top plot) provides essentially unlimited capac-
ity in this modem environment and the previous observation about
a pronounced RTT behavior applies directly (a similar observation
holds for the 1.2 Mbps link). In contrast, the 0.5 Mbps link (bot-
tom plot) is highly congested, hence shows a significantly wider
dip which is, in addition, located further to the left of, forexample,
the corresponding 0.8 Mbps-link dip; also, the variabilityin the
packet counts over time scales associated with this wide dipis sig-
nificantly smaller than in the 0.8Mbps case implying the presence
of a highly regular traffic pattern over those time scales caused by
a close-to full pipe. Putting it all together, we have that the local
scaling plot of the full trace combines the different effects seen at
the different bottleneck links. While the variability due to differ-
ent RTTs reflects itself through a relatively smooth (as compared
to very pronounced) dip, bottleneck-related variability shows up in
terms of an appreciable amount of variability in the packet density
fluctuations over time scales on the order of the location of the dip.
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Figure 8: Impact of network load on local scaling – separating traf-
fic according to servers. Top: Server 1 with 45 Mbps link; bottom:
Server 4 with 0.5 Mbps link); (FLEXBELL, 400 MODEM NODES,
PARETO 2).

However, compared to the local scaling plot of the measured trace
DIAL 2 (right plot in Figure 7), the corresponding local scaling anal-
ysis of theFLEXBELL configuration with 400 modem users shown
in Figure 7 (middle plot) falls short of matching at least qualita-
tively the high variability in the packet density fluctuations across
the medium to small time scales in the measured traffic as seen
through the local scaling plots. Even theFLEXBELL configuration
with the 400 high-speed access clients fails to match this variability
over the small time scales (see left plot in Figure 7). This problem
remains even if we add yet another aspect of variability; i.e., we
replace theFLEXBELL with theCROSSBELLconfiguration, thereby
introducing two-way or cross-traffic (not shown here).

To get a better understanding for how this mismatch in local
scaling behavior can occur and to point out a possible approach
for tackling this problem, we consider once again theFLEXBELL
configuration with the 400 modem clients and focus on the traffic
that traverses the 1.2Mbps link associated with server 2. Weper-
form a local scaling analysis of the resulting trace and of its two
components consisting, respectively, only of TCP data packets and
only of the ACKs. The results are given in Figure 9 and comparing
the left and middle plots shows that any non-trivial packet density
fluctuations on this link are almost exclusively due to non-trivial
fluctuations in the time series of ACK counts. In fact, over small
to medium time scales, the wavelet coefficients associated with the
time series of number of TCP data packets per msec (and hence
the values of the structure function) are extremely small (see right
plot in Figure 9), implying an essentially regular stream ofTCP
packets when viewed over those time scales. This should come
as no surprise, though, since a close-to-saturated link is not likely
to see significant traffic fluctuations. Thus, in order to increase
the variability of the packet density fluctuations over the small to
medium time scales of the aggregate traffic, one has to allow for
significant fluctuations not only in the ACKs but also in the TCP
data packet streams. To accomplish this task, a basic understanding
of the interactions between the dynamics of ACK packet and TCP
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Figure 9: Local scaling analysis for traffic to and from server 2: all packets (left), ACK only (middle), TCP data only (right); (FLEXBELL,
400MODEM NODES, PARETO 2).

data packet streams in a not-too-simplistic networking environment
is needed. Thus, to gain insight into the dynamics of measured IP
traffic, it is not sufficient to understand how the various aspects of
user- and network-related variability impacts the traffic.It also re-
quires knowing (at least qualitatively) which features of what pro-
tocols contribute to what aspects of measured network traffic. In
the context of today’s Internet and in view of the findings reported
earlier in this paper, this means gaining insight into what features of
TCP impact what aspects of the multifractal scaling behavior over
small time scales.4 On the impact of feedback control
Intuitively, the results of the previous section show that there is
more to IP traffic dynamics than understanding the differentaspects
and shades of user- and network-related variability. More formally,
our task is to explore how flow control impacts the local scaling
behavior of measured IP traffic; i.e., the empirically observed mul-
tifractal structure over small time scales. In networking terminol-
ogy, the objective of this section is to gain insight into theeffects
that the different components of a full-blown TCP implementation
have on the nature of the local burstiness or clustering of packets of
measured IP traffic. To this end, we follow a similar approachas in
Section 3 and report on a set ofns-2-based experiments using the
FLEXBELL configuration with the 400 modem users, where we sys-
tematically manipulate the various components of TCP. Although
this scenario leads to appreciable loss rates on the order of6%, we
have observed similar results as the ones described below inlower
load scenarios. Note that the results of our local scaling analysis
for the scenario that uses “genuine” TCP is shown in the rightplot
in Figure 7.4.1 Open-loop or UDP-like controls
To start our investigation of the impact of flow control on thelocal
scaling behavior of IP traffic, we consider the extreme case of no
flow control. In particular, we use UDP which injects packetsinto
the network at a constant rate without feedback. More precisely,
our modem clients use TCP to send a request to the Web server re-
liably in order to receive data; once the session is established, the
server uses UDP to transmit the data. We investigate two scenarios
which differ by how fast the Web servers are permitted to inject data
into the network; in the first case, the server can send a packet every
100 milliseconds, in the second case every 10 milliseconds.The re-
sults of the local scaling analysis for the second case are depicted in
the top plot in Figure 10. As expected, we observe some dipping ef-
fect because of the periodic nature with which UDP injects packets
into the network. Because of significant loss rates in both settings

(24.5% in the 100 msec case and 69.86% in the 10 msec case), the
locations of the dips do not exactly coincide with the periodicities
of 100 and 10 msec, respectively, but occur at some slightly larger
time scale. In addition, the local scaling behavior over time scales
14–19 is approximately linear, with a slope that can be shownto
be roughly linear inq. Similar results hold for other network con-
figurations and load scenarios, which we take as strong indication
that open-loop flow controls such as UDP have little impact onthe
observed fine-time scaling behavior of measured Internet traffic. In
the case of large-time scaling behavior, similar findings have been
reported in [19].4.2 Closed-loop control: Stop and Wait
Moving from UDP that does not adjust its sending rate in the face
of network congestion to a closed-loop control with some UDP-like
flavor, we can proceed in two ways. In this subsection we consider
a version of TCP that has the retransmission component enabled
(i.e., reliable transfer) but uses a modification of TCP’s congestion
control algorithm where the window size is set to a fixed value,
namely window=1. Compared to a full-blown TCP implementa-
tion, limiting the window size means more work when transmitting
data, especially when the load is non-trivial (as is the casehere).
The losses are lower than for full TCP, simply because with a win-
dow size of 1 the source can generally not take advantage of the
available bandwidth. The local scaling behavior of the resulting
trace is depicted in the middle plot in Figure 10 and shows a clear
dip around time scales on the order of the expected RTT, whichin
this case is about 1 second. More importantly, when comparedto
the top plot, we observe the emergence of non-trivial local scaling
behavior over the smaller time scales, which can be shown to be
consistent with multifractal scaling (i.e., the partitionfunctions are
approximately linear for scales 13–19, with slopes that change in
a non-linear fashion asq changes from small to medium to large.
Thus, even a very bare-bones implementation of TCP’s window-
ing mechanism causes complex local clustering of packets, which
demonstrates the importance of closed-loop flow control forunder-
standing local scaling behavior in measured Internet traffic.4.3 Closed-loop controls and reliable transfer
Instead of modifying, as we have just done, TCP’s congestioncon-
trol algorithm and keeping the retransmission feature of TCP in-
tact, we can also consider a version of TCP where we keep the full
congestion control component intact but where we disable TCP’s
retransmission feature. If this version of TCP detects a loss, e.g.,
by receiving multiple ACKs or by timeout, it will adjust its con-
gestion window but will assume that the packet has been delivered
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successfully. In this sense, this version of TCP can “move on”
even if a lot of the packets are dropped, while “genuine” TCP will
have to deal with the losses. The resulting local scaling behavior
is similar to the one obtained in the previous subsection, with the
exception that the variability in the packet density fluctuations is
somewhat reduced when we permit the full range of window sizes
as compared to when we set the window size to 1. Intuitively, re-
duced variability means that TCP with its genuine congestion con-
trol algorithm has to work “less hard” as compared to TCP withthe
“broken” window=1 algorithm. Moreover, we also observe a much
more pronounced dip around scales 11–12 than for the full TCPor
the window=1 version. What makes this dip so pronounced in the
present case is the fact that this version of TCP is not required to
wait for the retransmitted packets so the impact of the timeouts is
not as severe as in the full TCP case. Instead it will just advance
its window. As a result, there is significantly less variability in the
RTT behavior for this version of TCP as compared to, for example,
full TCP with its timeouts and rules about waiting for the ACKs of
the retransmitted packets.4.4 Closed-loop controls and TCP-type congestion avoid-ance
Finally, we consider a version of TCP that is the more aggressive
than the window=1 case. While the window=1 version of TCP is
network-friendly it does not work very efficiently (cannot in gen-
eral fill the pipe), by setting window=10 and leaving everything else
the same as in the window=1 case (in particular, we do have retrans-
mission in place), we deal with an aggressive version of TCP that
can burst many back-to-back packets into the network and avoids
many aspects of slow start and congestion avoidance. In fact, set-
ting the congestion window size to 10 allows this version of TCP
to send up to 10 packets, a full window, back to back before it has
to receive any acknowledgments, thereby potentially swamping the
network. In effect, in a relatively uncongested environment, ACK
clocking is now done for the transmission of a whole window in-
stead of on a packet-by-packet basis. The impact of using a version
of TCP that eliminates a major component of TCP flow control, can
be seen in the bottom plot in Figure 10. As expected, the ability to
send back-to-back packets creates local scaling behaviorover small
time scales that is distinctly different from all the other versions of
TCP or, for that case, UDP. A precise reasoning for why this ver-
sion of TCP generates such distinctive local scaling needs however
further investigations,4.5 Putting the pieces together, not quite(!)
By experimenting with various versions of full TCP, we provide
initial empirical evidence that in a reasonably heterogeneous net-
work environment, TCP-like flow control (with or without retrans-
mission, with fixed but small window size or with the “real” dy-
namic windowing mechanism) is a major reason for the emergence
of complex local scaling phenomena (i.e., multifractal scaling) in
measured IP traffic over fine time scales. This observation suggests
that to gain a physical or networking-related understanding of the
mathematical concept of multifractals, it is necessary to gain in-
sight into the intricate interactions between the ACK packets and
TCP data packets within one and the same connection in a hetero-
geneous network environment and across the different connections
that share a common link in that same environment.

To illustrate that the ACK/TCP data packet interactions maybe
related to the complex local scaling phenomenon that can be math-
ematically described using multifractals, we return to theexample
of Figure 9, where we looked at the ACK-only and TCP data-only
traffic associated with server 2 in theFLEXBELL configuration with
400 modem clients. Here, we slightly modify this setup by mov-
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Figure 10: Impact of feedback control on local scaling: UDP with
interpacket spacing of 10 msec (top, loss rate: 63.86%); TCPwith
window size fixed to 1 (middle, loss rate: 5.63%); TCP with flow
control disabled, i.e., fixed window size of 10 (bottom, lossrate:
10.38%). (FLEXBELL, 400MODEM NODES, PARETO 2).

ing to a version of theCROSSBELLconfiguration that is identical to
the 400 modemFLEXBELL environment, except that we introduce
cross-traffic on links labeled B and C in Figure 3 that specifically
interferes with the ACK packet stream on the0:9 and0:6 Mbps
links. The resulting local scaling plots for link B (0:9 Mbps) are
shown in Figure 11, left plot for the time series of total number
of packets per 1 msec, middle plot for ACK-only time series and
right plot for the trace consisting of TCP data-only packets. Due
to the presence of cross-traffic that interferes with the ACKs on the
link connecting server 2 to the rest of the network, the localscal-
ing plot for the ACKs looks more “interesting” (i.e., shows higher
variability on the medium to small scales) than the corresponding
local scaling plot for the ACK-only trace in Figure 9 which does
not see any interfering cross traffic. Consequently, because ACK
packets trigger TCP packets, the characteristics of the spacing of
the TCP packets changes as well. This observation of a more in-
teresting local burstiness of packet clustering behavior in the pres-
ence of cross-traffic as compared to a one-way traffic environment
is known asACK-compression phenomenonand agrees with find-
ings reported, for example, in [26, 32, 17]. A more recent study
[20] found ACK compression to be fairly common in measured IP
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Figure 11: Impact of ACK compression on local scaling – traffic to and from server 2 according to its protocol components. From left: all
packets, ACKs only, and TCP data only; (CROSSBELL, 400MODEM NODES, PARETO 2).

traffic traces but concluded that it has no real effect on network
performance. Without contradicting this latter conclusion, we con-
tribute here to the existing literature on ACK-compressionby sug-
gesting that the ACK-compression phenomenon may be directly
related to the observed highly complex scaling behavior of mea-
sured IP traffic over fine time scales and hence may be a potential
candidate for explaining and understanding multifractality in terms
of observed networking-related mechanisms. Rather than having a
direct impact on performance, such an explanation could point to-
ward properties of actual IP networks that have not been considered
in the past and may in turn lead to an improved understanding of
the dynamics of IP networks.

While our conjecture does not do much at this stage to demys-
tify either the ACK-compression or the multifractal scaling phe-
nomenon, it is interesting to note that the intuition behindboth
features (i.e., complex “clustering” and “burstiness,” respectively)
agrees – at least heuristically – with the visual appearanceof the
time series of ACK’s resulting from a purely one-way traffic sce-
nario or from a scenario where cross-traffic is present. In fact, there
is in general an appreciable difference between the two timeseries
and little disagreement about their visual effects; namelythat the
one-way traffic time series is “less bursty” (or, depending on one’s
background, “shows less ACK-compression” or “exhibits a less in-
teresting multifractal behavior”) than the two-way traffictime se-
ries. Further investigation into the one-way delay times ofACK
packets from individual connections confirms that ACK compres-
sion is indeed taking place.

We conclude this section with a reminder and warning about re-
placing the empirically validated hierarchical and variable session
structure employed in our simulations by simpler versions which in
essence equate a session with an infinite file transfer. Whilesuch
simplifications are often convenient for analytical studies of TCP
dynamics (e.g., see [14] and references therein), they leadin gen-
eral to very different behaviors of the resulting traffic, especially
in a reasonably heterogeneous network environment. To illustrate,
Figure 12 shows the local scaling analysis at link B for theFLEX-
BELL configuration under two comparable load scenarios. In one
case (top plot), the clients exert high variability in termsof their ses-
sion structure (in the sense discussed in Section 3.1); in the other
case (bottom plot), the clients exhibit no variability; that is, sessions
are infinite file transfers. Despite keeping all other components of
the network environment constant, the differences in the local scal-
ing behavior between the two resulting traffic traces are extreme
and so is their global scaling behavior (not shown here). This ex-
ample should serve as a reminder that mathematically convenient
models do not necessarily reflect reality and should undergomore
scrutiny, especially if the differences are as drastic as observed
here.

5 Conclusions and outlook
By presenting a set of wavelet-based scaling techniques forana-
lyzing and understanding network-related measurements, we have
identified in this paper various user- and network-related aspects
and the effects that they have on the dynamics of measured IP traf-
fic. In other words, we have illustrated how these analysis tech-
niques can be used for detecting and identifying “fingerprints” in
measured IP traffic traces that provide relevant information about
user- and network-specific behaviors. In particular, we have gained
new insights into how various aspects of user- and network-related
variability contribute to the observed scaling phenomena (e.g., self-
similar scaling over large time scales, multifractal scaling over small
time scales) in measured Internet traffic. On the one hand, wehave
shown how and why self-similar scaling over large time scales is
almost exclusively due to user-related variability and is essentially
oblivious to underlying, network-specific aspects. On the other
hand, we have also explained how and why multifractal scaling
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Figure 12: Impact of infinite sources on local scaling: top (FLEX-
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MODEM NODES, CONSTANT).
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over small time scales cannot be solely explained in terms ofthe
various aspects of network-related variability, but is impacted in
a major way by the presence of TCP-like flow control algorithms
which give rise to a surprisingly rich burstiness or clustering struc-
ture over small time scales of IP packets as they traverse theInter-
net.

Potential practical applications of this “detective” aspect of our
work are numerous. To illustrate this, consider the local scaling
analysis of the traces associated with the three networks shown in
Figure 2 in Section 2.3. By isolating the traffic that is destined to
the same part of the Internet and by applying scaling analysis to
the resulting time series, one can gain insight into the performance
of the paths between the measurement point and the network. For
example, by comparing the left and middle plots, we can conclude
that the expected performance when going to the second network
is substantially worse as compared to the first network – TCP is
likely to see more congestion which in turn shows up in the lo-
cal scaling plot as a pronounced “folding” effect. The folding in
the middle plot also indicates that somewhere along the pathto
and from this network, there is a bottleneck link of fairly limited
capacity. A real-time implementation of this feature of the“finger-
printing” capability would have the advantage of using purely pas-
sive measurements for uncovering aspects of Internet performance
that are of current interest. Such an implementation also begs for
a full-blown exploitation of the local scaling analysis techniques;
that is, providing the capability of localizing in time “interesting”
features in a set of network-related measurements. Anotherpoten-
tial application that is motivated by Figure 2 in Section 2.3is us-
ing local scaling analysis techniques for detecting and identifying
non-TCP-friendly connections. However, the feasibility and actual
implementation of this idea remains an open problem.

On a different note, the detective nature of our investigations
also has an impact on the problem related to simulation of “realis-
tic” Internet scenarios. The challenges associated with simulating
Internet-like environments are clearly spelled out in [22]but our
empirical work points towards an approach that does away with
traditional simulation modeling and coincides with a number of ar-
guments put forward in [22]. In particular, we have demonstrated
in this paper that by relying almost exclusively on the physical
or networking-related understanding of the impacts of the various
user- and network-related aspects of variability and of such basic
concepts as closed-loop flow control, it appears to be possible to
end up with a full-blown networking environment that is in the
right “ball park” when compared to real networks. Note that this
has been achieved by replacing traditional statistical inference and
estimation methodologies by a qualitative understanding of which
aspects impact the different scaling phenomenaassociatedwith net-
works, but much work is left to achieve this goal and to feel com-
fortable with the proposed method.

Clearly, exploring the parameter space relevant to our empiri-
cal approach is non-trivial and at times overwhelming. While the
present work explores some dimensions of this space (e.g., user
variability, network-related variability), others remain untouched or
sufficiently obscure. For example, we have not yet systematically
explored issues related to traffic synchronization (see forexample
[31, 10]). Although we have observed a significant amount of syn-
chronization effects in simulations that assume infinite sources (see
Section 4.5), very little of this phenomenonseems to show upwhen
assuming our hierarchical and variable session structure for web
users or when analyzing measured traces from our ISP environ-
ment. We conjecture that this lack of observed synchronization is
due to the realistic variability structure of a typical web session.
This conjecture is supported by our findings that in our simulation
environments, we are typically able to reproduce the self-similar
property of observed flow arrivals and the infinite variance or high-
variability of the flows’ sizes or durations. Another dimension of

the parameter space that has been left unexplored but appears to
play a crucial role in advancing our understanding of the spatio-
temporal dynamics of IP networks is the impact or “fingerprint”
of network topology-related variability. Also, while we conjec-
ture that our findings are generic and not TCP-specific, the prob-
lem remains open as well. Finally, one of the most intriguingopen
issues that remains is how precisely TCP-like congestion control
algorithms give rise to multifractal scaling. While we haveob-
tained initial empirical evidence that seems to relate multifractal
scaling of IP traffic with phenomena such as ACK-compression, a
mathematical rigorous and intuitively appealing construction and
explanation that makes sense in the networking context still eludes
us. However, the experimental studies using different versions of
closed-loop TCP-like or open-loop UDP-like controls shed some
light on how one may want to proceed.Acknowledgments
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The following provides a detailed description of the user/session
attributes for which one has to specify a probability distribution:

Inter–session time: Time between sessions from different users

Pages per session:Number of Web pages accessed within a ses-
sion by the same user.

Inter–page time: Time between consecutive pages downloaded
by the same user. We experienced with two different vari-
ances of inter–page times. In one case, the inter–page time is
the time between when the page download was initiate and
when the next page download is initiated. In the second case,
the download of the current Web page has to complete (in-
cluding the download of all of the inlined object) before the
interpage time is applied. For each download of a Web page
the user picks one of the available Web server at random.

Objects per page: Number of inlined objects within a Web page.
All inlined objects are retrieved from the same Web server as
the original Web page.

Inter–object time: Time between requests to the inlined objects.

Object size: Size of an object in KB (equals number of packets
required to transfer the object).A.2 Probability distributions for user/session attributes

Name inter–page objs. per page inter–object obj. size

PARETO 1 Pareto Pareto Pareto Pareto
mean 50 mean 4 mean 0.5 mean 12
shape 2 shape 1.2 shape 1.5 shape 1.2

PARETO 2 Pareto Pareto Pareto Pareto
mean 10 mean 3 mean 0.5 mean 12
shape 2 shape 1.5 shape 1.5 shape 1.2

EXP 1 Pareto Constant — Exp
mean 25 1 12
shape 2

EXP 2 Exp Constant — Exp
mean 10 1 12

CONSTANT Constant Constant — Constant
mean 10 1 1000000A.3 Description of the data sets:

Throughout this paper we use the following high-quality data sets
(i.e., packet drops reported bytcpdumpwere negligible and other
causes for drops have been identified to be negligible as well; high
time stamp accuracy of about 10-100�sec). The traceDIAL 1 was
gathered from an FDDI ring (with typical utilization levelsof 5-
10%) that connects about 420 modems to the rest of the Internet.
Although we collect every packet seen on the FDDI ring on July
22, 1997 between 22:00 and 23:00,DIAL 1 contains (bidirectional)
modem user traffic only. This amounts to 2,752,779 packets. This
is the same dataset that has been used in a previous study [8] of
the multifractal scaling behavior of Internet traffic. A second trace
DIAL 2 was collected in the same location asDIAL 1, on January
21, 1998 again between 22:00 and 23:00, and contains 2,882,859
packets.
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