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tMu
h of the tradition in robot grasping is rooted ingeometri
al, planning-based approa
hes in whi
h itis assumed that obje
t and �nger geometries are wellmodeled a priori. Some re
ent approa
hes have 
ho-sen instead to deal with obje
ts of unknown geometry.These te
hniques treat grasping as an a
tive sensory-driven problem. At any given time, �nger 
onta
tsare in
rementally displa
ed along the obje
t's lo
alsurfa
e using a single 
ontrol law. In this paper,we extend this approa
h by allowing multiple 
ontrollaws to be a
tive simultaneously. Three 
ontrol lawsare 
ombined by proje
ting the a
tions of subordinate
ontrol laws into other 
ontrol law nullspa
es. Theresulting 
omposite 
ontroller �nds grasps that aremore robust than the 
omponent primitives in iso-lation. Finally, we show how this approa
h may beused on hand/arm manipulation systems with arbi-trary kinemati
s.1 Introdu
tionHumans exhibit a remarkable ability to manipu-late their environment by using their limbs to ap-ply for
es. Whether someone is lifting a box, typingon a keyboard, using a hammer, or simply walking,that person is intelligently applying for
es to a

om-plish high-level goals. A 
omponent of roboti
s re-sear
h deals with the sear
h for algorithms that en-able robots to apply for
es intelligently with theire�e
tors. We investigate this problem in the 
ontextof roboti
 grasping.Signi�
ant work exists in whi
h grasping is ap-proa
hed as a geometri
 planning problem. For ex-ample, Faverjon [9℄ and Nguyen [12℄ have developedalgorithms for pla
ing 
onta
ts on obje
ts of knowngeometry. Their methods are based on a detailedexploration of geometri
ally suÆ
ient 
onditions fordeveloping a se
ure grasp on an obje
t. For this typeof approa
h to be viable, extensive geometri
al infor-mation about the obje
t is generally required.

An alternative approa
h is to make as few initial as-sumptions as possible about the geometry of a spe-
i�
 obje
t and instead rely on ta
tile data. For ex-ample, Tei
hmann and Mishra [15℄ use lo
al surfa
enormal information to solve for the gradient of the lo-
ally minimal area triangle that en
loses the obje
t.Conta
ts are iteratively positioned and re-positionednear the obje
t surfa
e in an e�ort to minimize thiserror fun
tion.A 
ommon thread in these approa
hes is that theyposit a single suÆ
ient 
ondition for a \good grasp."This belies intuition that the way humans grasp ob-je
ts often depends on task, obje
t size, and pre
isionor for
e requirements. Coelho and Grupen [6℄ 
ap-ture some of the variety of di�erent possible grasps byframing grasping as a 
ontroller 
omposition prob-lem. They posit that robust grasps result from
ontrollers that follow net for
e and moment gra-dients. Ea
h 
ontrol law parti
ipates in an iterativeimprovement pro
ess. It is assumed that all 
onta
tsare tou
hing the obje
t before the 
ontroller begins.Conta
ts are repeatedly removed from the obje
t,displa
ed tangentially on the surfa
e in the dire
tionof the negative error gradient, and pla
ed ba
k onthe obje
t. Eventually the hand/arm manipulator
on�guration 
onverges to a point in a stable region.Primitive behaviors have often been 
ombined to a
-
omplish higher-level goals. This idea has been ap-plied in many areas in
luding mobile roboti
s [1℄, anddynami
 stability [13℄. Although there are few otherrobust behavior-
omposition methods for graspingobje
ts of unknown geometry, su
h methods do existfor manipulating obje
ts. Mi
helman and Allen [10℄des
ribe how a 
olle
tion of rotation and translationprimitives may be sequentially 
ombined to a

om-plish a manipulation task obje
tive su
h as remov-ing a 
hildproof bottle top. Farooqi and Omata [8℄des
ribe two primitives for rotating an obje
t of un-known geometry. One important distin
tion betweenthese approa
hes and our work is that we 
ombineprimitive 
ontrollers 
on
urrently while these ap-



proa
hes 
ombine primitive behavior sequentially.This paper extends the work of Coelho and Gru-pen [6℄ in two ways. First, we introdu
e an addi-tional 
ontrol law for kinemati
 
onditioning whi
hprefers 
onta
t pla
ement su
h that individual �n-gers 
an apply for
es normal to the obje
t's surfa
e(Se
tion 2). Se
ond, we formulate a small set of 
on-trol laws that 
an be 
ombined 
on
urrently throughthe use of nullspa
e proje
tion to a

omplish a va-riety of grasp obje
tives using all available manipu-lator and hand degrees-of-freedom (Se
tion 3). Wedemonstrate the utility of the 
omposite grasp 
on-troller in several simulated and real robot experi-ments involving a Barrett Hand mounted on a WholeArm Manipulator (Se
tion 4).2 Grasp Control LawsThree primitive manipulation 
ontrol laws are em-ployed in this work to sear
h for quality grasps onobje
ts of unknown geometry. We utilize the 
ontrollaws derived by Coelho and Grupen [6, 5℄ to addressfor
e and moment 
riteria. We outline the formula-tion of these 
ontrol laws below and then introdu
ea 
ontrol law for kinemati
 
onditioning.2.1 For
e-Based Conta
t Position ControlLawThe for
e-based 
onta
t position 
ontrol law (�for
e)is a potential fun
tion that has equilibria in 
on�g-urations where the 
onta
ts exert the referen
e netfor
e. Without loss of generality, we hereafter as-sume this referen
e to be zero. Let ~f be the netfor
e ve
tor applied by the 
onta
ts (ea
h 
onta
t isassumed to apply a unit for
e that is tangential tothe sensed surfa
e normal). The 
onta
t 
on�gura-tion error is de�ned as:�f = ~fT ~f: (1)�f follows the negative gradient of �f with respe
t tothe 
onta
t 
on�guration by repositioning the 
on-ta
ts on the surfa
e of the obje
t.Let ~x 2 R3k be a ve
tor des
ribing the 
on�gurationof k 
onta
ts: ~x = � ~x1T ~x2T : : : ~xkT�T where ~xi isthe Cartesian lo
ation of a 
onta
t in R3. On ea
hprobe, a step is taken in the dire
tion of the negativegradient, ��f�~x . To 
ompute the gradient, we expand��f�~x using the 
hain rule:��f�~x = ��f� ~f � ~f�~x : (2)The �rst term on the right side of Equation 2 is easily

derived from Equation 1:��f� ~f = 2~fT : (3)Cal
ulating the se
ond term requires that we knowhow ~f 
hanges as the k 
onta
ts move independentlyover the surfa
e of the obje
t. In the absen
e of in-formation on the geometry of the obje
t, we assumethat ~f 
hanges as if ea
h 
onta
t were moving on a�nite radius sphere tangent to the obje
t surfa
e atthe 
onta
t point. This is diagramed in Figure 1(a).The pre
ise 
al
ulation of � ~f�~x is detailed in [6℄.
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(a) (b)Figure 1: (a) The for
e 
ontrol law assumes ea
h
onta
t moves on the surfa
e of a sphere. (b) Themoment 
ontrol law assumes ea
h 
onta
t moves onan in�nite plane. In both diagrams, ~N is the for
eapplied normal to the obje
t surfa
e.2.2 Moment-Based Conta
t Position Con-trol LawThe moment-based 
onta
t position 
ontrol law(�moment) has equilibria in 
on�gurations where the
onta
ts exert zero net moment. Let ~m be the netmoment ve
tor. Conta
t 
on�guration error is de-�ned as: �m = ~mT ~m: (4)The 
omputation of the gradient ��m�~x parallels the
omputation of the for
e gradient:��m�~x = ��m� ~m � ~m�~x : (5)��m� ~m = 2~mT : (6)However, the 
al
ulation of � ~m�~x now assumes thatea
h 
onta
t moves on an in�nite plane, as shown inFigure 1(b). See [6℄ for details.



2.3 Kinemati
 Conditioning Con�gurationControl LawThe kinemati
 
onditioning 
on�guration 
ontrol law(�kinemati
) is a potential fun
tion with equilibria in
on�gurations where the minor axis of the �nger'sfor
e ellipsoid is parallel to the 
onta
t normal. Thisis advantageous for two reasons. First, in these 
on-�gurations, the minor axis of the velo
ity ellipsoid isparallel to the lo
al obje
t surfa
e. This fa
ilitates
ontrolled 
onta
t displa
ements in these dire
tions.Se
ond, sin
e the for
e is most a

urately 
ontrolledin the dire
tion perpendi
ular to the obje
t surfa
e,the manipulator 
on�guration is optimized for pre-
ise for
e 
ontrol.Alignment of the prin
ipal axes of the hand velo
ityellipsoid 
an be viewed as optimization of manip-ulator posture to meet task 
onstraints. A generalexpression for task optimization of manipulator kine-mati
s was introdu
ed by Chiu [4℄. We base the errorfun
tion for the kinemati
 
ontrol law on his deriva-tion of the for
e transmission ratio.The manipulator for
e ellipsoid is de�ned as follows,where Ji is the Ja
obian of 
onta
t i with respe
t tothe degrees of freedom in the hand:~fiT (JiJTi )~fi = 1:As in Chiu's formulation, let � be the for
e transmis-sion ratio (i.e. the distan
e from the 
enter to thesurfa
e of the for
e ellipse) in the dire
tion of ~ni:(�~ni)T (JiJTi )(�~ni) = 1:Solving for � yields:� = h~niT (JiJTi )~nii�1=2 :Sin
e we want to maximize the 
ontrol of for
e inthe dire
tion of the 
onta
t normal, we de�ne erroras the re
ipro
al of �:�
i = h~niT (JiJTi )~nii1=2 : (7)In order to de�ne a 
ontrol law to des
end the gradi-ent of �
i , we must spe
ify two sets of (not ne
essarilydisjoint) degrees of freedom (DOFs) for ea
h 
onta
t.The �rst set is that used in the 
al
ulation of Ji inEquation 7. Let ~
i be a ve
tor 
omposed of the mem-bers of this set. As denoted by the subs
ript, ~
i 
anbe di�erent for ea
h 
onta
t. The se
ond set is thespa
e in whi
h �
i is optimized. These are the DOFswhi
h the hand/arm system 
ontrols to optimize theerror fun
tion. Let ~q be a ve
tor 
omposed of mem-bers of this set. We assume that all 
onta
ts are op-timized with respe
t to the same ~q. For k 
onta
ts,

the error fun
tion be
omes:�
 = kXi=1 �
i�
 = kXi=1 "~niT (� ~xi� ~
i � ~xi� ~
i T )~ni#1=2 : (8)In order to des
end this fun
tion, we take the gradi-ent with respe
t to ~q:��
�~q = kXi=1 �� ~xi� ~
i T ~ni�T � �2 ~xi� ~
i�~q T ~ni�r�� ~xi� ~
i T ~ni�T �� ~xi� ~
i T ~ni� : (9)In the spe
ial 
ase when ~
i is one dimensional, thegradient redu
es to a parti
ularly simple form:��
�~q = kXi=1 ~niT ��
i ��~x�~q� : (10)In this 
ase, the 
on�guration ~q is optimized withrespe
t to a single joint per �nger. This makes sensefor us be
ause the hand/armmanipulator used in ourexperiments has only one 
exion DOF in ea
h �nger.The 
on�guration of the hand/arm manipulator wasoptimized with respe
t to the task 
ompatibility ofthis 
exion degree of freedom.As with the other 
ontrol laws, we generate 
on�gu-ration displa
ements in the dire
tion of the negativegradient: d~q
dt / ���
�~q :3 Combining Manipulation ControlLawsOur obje
tive for the three primitive 
ontrol lawsdes
ribed is to produ
e interesting and useful grasp-ing behavior. Sin
e the three 
ontrollers 
an be exe-
uted independently of one another, there are at leastthree di�erent behaviors whi
h 
an result. However,su
h an approa
h ignores new 
ontrollers arising from
ombinations of 
ontrol laws.Our approa
h to 
ombining 
ontrol laws is to proje
tsome 
ontrol laws into the nullspa
e of others:�for
e . �moment . �kinemati
In this expression, �i denotes the ith 
ontrol law.The . symbol is used to express the \subje
t to" re-lationship. This expression should read: �kinemati
subje
t to �moment subje
t to �for
e. The \subje
tto" 
onstraint is shorthand for a proje
tion of one




ontrol law into the nullspa
e of another. The 
on-troller written above will re
on�gure the manipula-tor to try to minimize net for
e as a �rst priority.If possible, it will also try to minimize net moment.Finally, it will optimize the kinemati
 
on�gurationwith respe
t to the obje
t without disrupting the �rsttwo obje
tives.This nullspa
e approa
h should be 
ontrasted witha dire
t 
ombination of 
ontrol laws. Approa
heswhi
h simply superimpose 
ontrollers on ea
h other
annot 
hara
terize the behavior of the 
omposite
ontroller very well. If two 
ontrol laws have oppositeobje
tives in 
on�guration spa
e, they 
ould 
an
elea
h other and no behavior would result. In 
ontrast,the nullspa
e approa
h ensures that one 
ontrol lawis maximally e�e
tive while others parti
ipate sub-je
t to the �rst. In this se
tion, we demonstrate howwe a

omplish this.3.1 Combining For
e and Moment ControlLawsFrom Se
tion 2, we have ��f�~x and ��m�~x for the for
eand moment gradients, respe
tively. We want to
ombine these using the \subje
t to" 
onstraint.Sin
e � ~f�~x is under
onstrained, we 
an multiply bothsides of Equation 2 by � ~f�~x# yielding��f�~x � ~f�~x# = ��f� ~fwhere � ~f�~x# denotes the pseudoinverse of � ~f�~x . For�moment 
onta
t displa
ements not to disrupt �for
e,they must not a�e
t net for
e. Therefore, they mustbe proje
ted into the nullspa
e of � ~f�~x#. The followingproje
ts the moment 
ontrol law into the nullspa
eof the for
e 
ontrol law:���~x = ��f� ~f � ~f�~x + ��m� ~m � ~m�~x  I � � ~f�~x � ~f�~x#! : (11)The form of this equation has been shown to be ro-bust to algorithmi
 singularities [3℄.The utility of 
ombining 
ontrol laws in this way de-pends on whether the 
ontrol laws are 
ompatible ornot. If the nullspa
e of � ~f�~x# is orthogonal to � ~m�~x , these
ond term in Equation 11 will drop out. For thefor
e 
ontrol law, however, there is a equipotentialsurfa
e of 
on�gurations that yield equivalent for
esolutions where moment 
an be optimized.As before, ���~x is used as the basis for gradient de-s
ent: d~xdt / � ���~x:

3.2 Combining the Kinemati
 Control Lawwith For
e and MomentNow that we 
an des
ribe the dire
tion of the gradi-ent for ea
h 
onta
t, we need to express this in termsof the manipulator joint spa
e ~q. Normally, this isa

omplished using the pseudoinverse of the manip-ulator Ja
obian. Here, we a
tually need to solve forthe ~q whi
h satis�es the various displa
ements forall k 
onta
ts. This 
an be a

omplished using anaugmented Ja
obian:�~x�~q =  � ~x1�~q T : : : � ~xk�~q T!T : (12)In this equation, � ~xi�~q denotes the manipulator Ja
o-bian for the ith �nger. It represents how the lo
ationof ith 
onta
t point 
hanges with DOFs in both thearm and hand. �~x�~q des
ribes this relationship for ev-ery 
onta
t in the system.Using the pseudoinverse of the augmented Ja
obianis a way of satisfying multiple obje
tives on an equalfooting. If there is no solution that satis�es all ob-je
tives, it sele
ts the minimum norm solution. Thismethod has been used by many in
luding [14℄ to sat-isfy multiple obje
tives. An augmented Ja
obian islikely to possess singularities not present in the orig-inal manipulator Ja
obian. For this reason, we usedthe SR-inverse instead of the pseudoinverse in our
omputations. We denote the SR-Inverse by (�)�.The 
onta
t 
on�guration displa
ement �~x�t is pro-je
ted into manipulator 
on�guration spa
e and op-timizes with respe
t to the kinemati
 
ontrol law inthe standard way:�~q�t = �~x�~q � �~x�t +�I � �~x�~q � �~x�~q� � ~q
�t : (13)4 ExperimentsWe 
ondu
ted experiments to empiri
ally demon-strate that the 
ontrollers 
onverged, and to showthat the regions of 
onvergen
e 
orrespond to rea-sonable grip 
on�gurations. To a

omplish this, aseries of trials were run on di�erent obje
ts. On ea
htrial, the 
ontroller was initialized in a random 
on-�guration and run until 
onvergen
e. We show thaton average, 
ontrol law error 
onverges regardless ofthe starting lo
ation and orientation of the manipu-lator. Figures 4, 5, and 6 
hara
terize the points in
on�guration spa
e the manipulator 
onverges to.The UMass Torso was used to test our approa
h.The UMass Torso is a humanoid platform 
onsistingof two Barrett WAMs (Barrett Te
hnologies, Cam-bridge MA) mounted on a frame. Ea
h BarrettWAM is equipped with a 3-�nger, 4 DOF Barrett



Figure 2: The Barrett Hand has four DOFs. Thesein
lude one 
exion DOF for ea
h of the three �n-gers and one addu
tion DOF. The addu
tion DOFspreads two of the �ngers about axes in the palm.Hand as shown in Figure 2. Mounted on the tipof ea
h Barrett hand �nger is a 6-axis for
e-torquesensor. The for
e-torque sensor is used to 
ompute�ngertip 
onta
t lo
ation and the dire
tion and mag-nitude of the 
onta
t normal ve
tor [2℄. In order totest our 
ontrollers in the absen
e of sensor noise anda
tuator error, some experiments were 
ondu
ted insimulation.Simulated experiments were run for 40 trials. Exper-iments on the physi
al system were run for approxi-mately 20 trials. We tested the 
ontroller in simula-tion on a 
ylinder, a prismati
 hexagon, and an irreg-ular six-sided polygon. We ran experiments on thephysi
al system for a 
ylinder. For simulated trials,the 
ontroller was run for approximately 60 ta
tileprobes. On the physi
al system, the 
ontroller wasrun for approximately 25 ta
tile probes per trial. Ittook the physi
al system an average of two minutesto 
omplete ea
h 25-probe trial. For both simulatedand physi
al experiments, initial degree of addu
tionrandomly varied between 10 and 90 degrees. Initialorientation of the hand varied between 30 and 50 de-grees from the x/y plane. Initial x/y lo
ation variedbetween -18 and +18 
m from the obje
t 
enter.4.1 Convergen
e of 
ontrol law error fun
-tionsOur �rst goal is to demonstrate that the 
ontrollaws fun
tion as intended. The 
omposite 
ontroller�fmk = �for
e . �moment . �kinemati
 was exe
utedin simulation for 40 trials on the 
ylinder. Error was
al
ulated at ea
h probe and averaged over the 40trials for �f , �m, and �
. Figure 3 shows that for
eand moment error 
onverge to zero while kinemati
error hovers near 0.1 radians. Kinemati
 error neverrea
hes zero be
ause in this 
omposite 
ontroller op-erates subje
t to both the for
e and moment 
ontrollaws.Figure 4 
hara
terizes the performan
e of these 
on-trollers in terms of degree of addu
tion and orienta-tion of the Barrett hand. It shows the performan
e
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Figure 3: �f ; �m; �k as a fun
tion of time for the
ylinder. Data is averaged a
ross 40 trials. �f is inNewtons, �m is in 1/2 Newton-millimeters, and �k isin radians.of the �fmk 
ontroller on a 
ylinder, a hexagon, andan irregular 6-sided prismati
 polygon in simulation.The graphs show that the region where the 
ontroller
onverges depends on obje
t geometry. For the 
ylin-der, all trials 
onverge to a very small region. For thehexagon (Figure 4b), the 
omposite 
ontroller 
on-verges to a line segment that 
orresponds to equipo-tential solutions for 
onta
ts moving along a side ofthe hexagon. The 
onvergen
e region is even largerfor the irregular obje
t due to the existen
e of mul-tiple possible robust grasps. Figure 5 shows the per-forman
e of the 
ontroller grasping a 
ylinder on thephysi
al UMass Torso system. Although the 
onver-gen
e points are signi�
antly more distributed on thephysi
al system, the results are qualitatively similarto those obtained in simulation.
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Figure 5: Hand orientation and degree of addu
-tion for grasp trials on a 6.5
m radius 
ylinder using�fmk on the physi
al system.4.2 Alternative Control Law CombinationsThe for
e and moment 
riteria are ne
essary 
ondi-tions for establishing a stable grasp. However, thekinemati
 
onditioning 
onstraint does not dire
tly
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(
)Figure 4: Hand orientation and degree of addu
tion at starting points and 
onvergen
e points for simulatedgrasp trials on: (a) a 5
m radius 
ylinder, (b) a prismati
 hexagon with 6
m sides, and (
) a prismati
, irregularsix-sided polygon. The dots mark where trials begin and 
ir
les indi
ate where the hand/arm manipulator
onverged.
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Figure 6: Hand orientation and degree of addu
tionfor grasp trials on a 5
m radius 
ylinder using �fmin simulation.a�e
t grasp stability. Here, we explore the 
lass ofsolutions that are dis
overed when kinemati
 
on-straint is not in
luded in the 
ontroller formulation.When �fm = �for
e . �moment is used instead of�fmk, the regions of 
onvergen
e are 
ategori
allydi�erent. Figure 6 shows that on the 
ylinder, �fm
onverges to a range of di�erent hand addu
tion an-gles (
ompare to Figure 4). As velo
ity 
ontrol tan-gent to the obje
t surfa
e de
reases, the 
omposite
ontroller may rea
h 
on�gurations where �f and �mgradients are limited by poor kinemati
 
on�gura-tion. In these 
ases, the 
omposite 
ontroller 
on-verges with di�erent angles of addu
tion.5 Con
lusions and Future WorkIn this paper, we have shown how to treat graspingas a multi-obje
tive 
ontrol problem. This is valu-able when information 
on
erning the geometry andlo
ation of the obje
t is impre
ise or not available.

We des
ribe three primitive 
ontrol laws whi
h 
anbe 
ombined to produ
e useful behavior. We showhow to 
ombine these 
ontrol laws into 
omposite
ontrollers using nullspa
e proje
tions.There are numerous areas for future work. Re-
ent work [7℄ suggests that visual features 
an belearned on the basis of how well they predi
t grasp-ing su

ess. The presen
e of visual features in subse-quent grasp targets 
an provide additional informa-tion whi
h 
an redu
e the number of probes requireduntil a suitable grasp is found.In addition, re
ent work has in
orporated knowledgeof manipulator kinemati
s into a geometri
 graspplanning framework [11℄. We would like to explorehow to 
ombine geometri
 methods with the workpresented here.Finally, although we assume here that the manip-ulator makes 
onta
t with the obje
t at the �nger-tips, this is not a ne
essary assumption. We planto explore the possibility of 
onta
ting the obje
t atdi�erent points on the manipulator. This 
ould re-sult in whole-hand grasps, two-handed grasps, andtwo-armed grasps.A
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