
Nullspae Composition of Control Laws for GraspingRobert Platt Jr. Andrew H. Fagg Roderi A. GrupenLaboratory for Pereptual RobotisDepartment of Computer SieneUniversity of Massahusetts, Amherstfrplatt, fagg, grupeng�s.umass.eduAbstratMuh of the tradition in robot grasping is rooted ingeometrial, planning-based approahes in whih itis assumed that objet and �nger geometries are wellmodeled a priori. Some reent approahes have ho-sen instead to deal with objets of unknown geometry.These tehniques treat grasping as an ative sensory-driven problem. At any given time, �nger ontatsare inrementally displaed along the objet's loalsurfae using a single ontrol law. In this paper,we extend this approah by allowing multiple ontrollaws to be ative simultaneously. Three ontrol lawsare ombined by projeting the ations of subordinateontrol laws into other ontrol law nullspaes. Theresulting omposite ontroller �nds grasps that aremore robust than the omponent primitives in iso-lation. Finally, we show how this approah may beused on hand/arm manipulation systems with arbi-trary kinematis.1 IntrodutionHumans exhibit a remarkable ability to manipu-late their environment by using their limbs to ap-ply fores. Whether someone is lifting a box, typingon a keyboard, using a hammer, or simply walking,that person is intelligently applying fores to aom-plish high-level goals. A omponent of robotis re-searh deals with the searh for algorithms that en-able robots to apply fores intelligently with theire�etors. We investigate this problem in the ontextof roboti grasping.Signi�ant work exists in whih grasping is ap-proahed as a geometri planning problem. For ex-ample, Faverjon [9℄ and Nguyen [12℄ have developedalgorithms for plaing ontats on objets of knowngeometry. Their methods are based on a detailedexploration of geometrially suÆient onditions fordeveloping a seure grasp on an objet. For this typeof approah to be viable, extensive geometrial infor-mation about the objet is generally required.

An alternative approah is to make as few initial as-sumptions as possible about the geometry of a spe-i� objet and instead rely on tatile data. For ex-ample, Teihmann and Mishra [15℄ use loal surfaenormal information to solve for the gradient of the lo-ally minimal area triangle that enloses the objet.Contats are iteratively positioned and re-positionednear the objet surfae in an e�ort to minimize thiserror funtion.A ommon thread in these approahes is that theyposit a single suÆient ondition for a \good grasp."This belies intuition that the way humans grasp ob-jets often depends on task, objet size, and preisionor fore requirements. Coelho and Grupen [6℄ ap-ture some of the variety of di�erent possible grasps byframing grasping as a ontroller omposition prob-lem. They posit that robust grasps result fromontrollers that follow net fore and moment gra-dients. Eah ontrol law partiipates in an iterativeimprovement proess. It is assumed that all ontatsare touhing the objet before the ontroller begins.Contats are repeatedly removed from the objet,displaed tangentially on the surfae in the diretionof the negative error gradient, and plaed bak onthe objet. Eventually the hand/arm manipulatoron�guration onverges to a point in a stable region.Primitive behaviors have often been ombined to a-omplish higher-level goals. This idea has been ap-plied in many areas inluding mobile robotis [1℄, anddynami stability [13℄. Although there are few otherrobust behavior-omposition methods for graspingobjets of unknown geometry, suh methods do existfor manipulating objets. Mihelman and Allen [10℄desribe how a olletion of rotation and translationprimitives may be sequentially ombined to aom-plish a manipulation task objetive suh as remov-ing a hildproof bottle top. Farooqi and Omata [8℄desribe two primitives for rotating an objet of un-known geometry. One important distintion betweenthese approahes and our work is that we ombineprimitive ontrollers onurrently while these ap-



proahes ombine primitive behavior sequentially.This paper extends the work of Coelho and Gru-pen [6℄ in two ways. First, we introdue an addi-tional ontrol law for kinemati onditioning whihprefers ontat plaement suh that individual �n-gers an apply fores normal to the objet's surfae(Setion 2). Seond, we formulate a small set of on-trol laws that an be ombined onurrently throughthe use of nullspae projetion to aomplish a va-riety of grasp objetives using all available manipu-lator and hand degrees-of-freedom (Setion 3). Wedemonstrate the utility of the omposite grasp on-troller in several simulated and real robot experi-ments involving a Barrett Hand mounted on a WholeArm Manipulator (Setion 4).2 Grasp Control LawsThree primitive manipulation ontrol laws are em-ployed in this work to searh for quality grasps onobjets of unknown geometry. We utilize the ontrollaws derived by Coelho and Grupen [6, 5℄ to addressfore and moment riteria. We outline the formula-tion of these ontrol laws below and then introduea ontrol law for kinemati onditioning.2.1 Fore-Based Contat Position ControlLawThe fore-based ontat position ontrol law (�fore)is a potential funtion that has equilibria in on�g-urations where the ontats exert the referene netfore. Without loss of generality, we hereafter as-sume this referene to be zero. Let ~f be the netfore vetor applied by the ontats (eah ontat isassumed to apply a unit fore that is tangential tothe sensed surfae normal). The ontat on�gura-tion error is de�ned as:�f = ~fT ~f: (1)�f follows the negative gradient of �f with respet tothe ontat on�guration by repositioning the on-tats on the surfae of the objet.Let ~x 2 R3k be a vetor desribing the on�gurationof k ontats: ~x = � ~x1T ~x2T : : : ~xkT�T where ~xi isthe Cartesian loation of a ontat in R3. On eahprobe, a step is taken in the diretion of the negativegradient, ��f�~x . To ompute the gradient, we expand��f�~x using the hain rule:��f�~x = ��f� ~f � ~f�~x : (2)The �rst term on the right side of Equation 2 is easily

derived from Equation 1:��f� ~f = 2~fT : (3)Calulating the seond term requires that we knowhow ~f hanges as the k ontats move independentlyover the surfae of the objet. In the absene of in-formation on the geometry of the objet, we assumethat ~f hanges as if eah ontat were moving on a�nite radius sphere tangent to the objet surfae atthe ontat point. This is diagramed in Figure 1(a).The preise alulation of � ~f�~x is detailed in [6℄.
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(a) (b)Figure 1: (a) The fore ontrol law assumes eahontat moves on the surfae of a sphere. (b) Themoment ontrol law assumes eah ontat moves onan in�nite plane. In both diagrams, ~N is the foreapplied normal to the objet surfae.2.2 Moment-Based Contat Position Con-trol LawThe moment-based ontat position ontrol law(�moment) has equilibria in on�gurations where theontats exert zero net moment. Let ~m be the netmoment vetor. Contat on�guration error is de-�ned as: �m = ~mT ~m: (4)The omputation of the gradient ��m�~x parallels theomputation of the fore gradient:��m�~x = ��m� ~m � ~m�~x : (5)��m� ~m = 2~mT : (6)However, the alulation of � ~m�~x now assumes thateah ontat moves on an in�nite plane, as shown inFigure 1(b). See [6℄ for details.



2.3 Kinemati Conditioning Con�gurationControl LawThe kinemati onditioning on�guration ontrol law(�kinemati) is a potential funtion with equilibria inon�gurations where the minor axis of the �nger'sfore ellipsoid is parallel to the ontat normal. Thisis advantageous for two reasons. First, in these on-�gurations, the minor axis of the veloity ellipsoid isparallel to the loal objet surfae. This failitatesontrolled ontat displaements in these diretions.Seond, sine the fore is most aurately ontrolledin the diretion perpendiular to the objet surfae,the manipulator on�guration is optimized for pre-ise fore ontrol.Alignment of the prinipal axes of the hand veloityellipsoid an be viewed as optimization of manip-ulator posture to meet task onstraints. A generalexpression for task optimization of manipulator kine-matis was introdued by Chiu [4℄. We base the errorfuntion for the kinemati ontrol law on his deriva-tion of the fore transmission ratio.The manipulator fore ellipsoid is de�ned as follows,where Ji is the Jaobian of ontat i with respet tothe degrees of freedom in the hand:~fiT (JiJTi )~fi = 1:As in Chiu's formulation, let � be the fore transmis-sion ratio (i.e. the distane from the enter to thesurfae of the fore ellipse) in the diretion of ~ni:(�~ni)T (JiJTi )(�~ni) = 1:Solving for � yields:� = h~niT (JiJTi )~nii�1=2 :Sine we want to maximize the ontrol of fore inthe diretion of the ontat normal, we de�ne erroras the reiproal of �:�i = h~niT (JiJTi )~nii1=2 : (7)In order to de�ne a ontrol law to desend the gradi-ent of �i , we must speify two sets of (not neessarilydisjoint) degrees of freedom (DOFs) for eah ontat.The �rst set is that used in the alulation of Ji inEquation 7. Let ~i be a vetor omposed of the mem-bers of this set. As denoted by the subsript, ~i anbe di�erent for eah ontat. The seond set is thespae in whih �i is optimized. These are the DOFswhih the hand/arm system ontrols to optimize theerror funtion. Let ~q be a vetor omposed of mem-bers of this set. We assume that all ontats are op-timized with respet to the same ~q. For k ontats,

the error funtion beomes:� = kXi=1 �i� = kXi=1 "~niT (� ~xi� ~i � ~xi� ~i T )~ni#1=2 : (8)In order to desend this funtion, we take the gradi-ent with respet to ~q:���~q = kXi=1 �� ~xi� ~i T ~ni�T � �2 ~xi� ~i�~q T ~ni�r�� ~xi� ~i T ~ni�T �� ~xi� ~i T ~ni� : (9)In the speial ase when ~i is one dimensional, thegradient redues to a partiularly simple form:���~q = kXi=1 ~niT ��i ��~x�~q� : (10)In this ase, the on�guration ~q is optimized withrespet to a single joint per �nger. This makes sensefor us beause the hand/armmanipulator used in ourexperiments has only one exion DOF in eah �nger.The on�guration of the hand/arm manipulator wasoptimized with respet to the task ompatibility ofthis exion degree of freedom.As with the other ontrol laws, we generate on�gu-ration displaements in the diretion of the negativegradient: d~qdt / ����~q :3 Combining Manipulation ControlLawsOur objetive for the three primitive ontrol lawsdesribed is to produe interesting and useful grasp-ing behavior. Sine the three ontrollers an be exe-uted independently of one another, there are at leastthree di�erent behaviors whih an result. However,suh an approah ignores new ontrollers arising fromombinations of ontrol laws.Our approah to ombining ontrol laws is to projetsome ontrol laws into the nullspae of others:�fore . �moment . �kinematiIn this expression, �i denotes the ith ontrol law.The . symbol is used to express the \subjet to" re-lationship. This expression should read: �kinematisubjet to �moment subjet to �fore. The \subjetto" onstraint is shorthand for a projetion of one



ontrol law into the nullspae of another. The on-troller written above will reon�gure the manipula-tor to try to minimize net fore as a �rst priority.If possible, it will also try to minimize net moment.Finally, it will optimize the kinemati on�gurationwith respet to the objet without disrupting the �rsttwo objetives.This nullspae approah should be ontrasted witha diret ombination of ontrol laws. Approaheswhih simply superimpose ontrollers on eah otherannot haraterize the behavior of the ompositeontroller very well. If two ontrol laws have oppositeobjetives in on�guration spae, they ould aneleah other and no behavior would result. In ontrast,the nullspae approah ensures that one ontrol lawis maximally e�etive while others partiipate sub-jet to the �rst. In this setion, we demonstrate howwe aomplish this.3.1 Combining Fore and Moment ControlLawsFrom Setion 2, we have ��f�~x and ��m�~x for the foreand moment gradients, respetively. We want toombine these using the \subjet to" onstraint.Sine � ~f�~x is underonstrained, we an multiply bothsides of Equation 2 by � ~f�~x# yielding��f�~x � ~f�~x# = ��f� ~fwhere � ~f�~x# denotes the pseudoinverse of � ~f�~x . For�moment ontat displaements not to disrupt �fore,they must not a�et net fore. Therefore, they mustbe projeted into the nullspae of � ~f�~x#. The followingprojets the moment ontrol law into the nullspaeof the fore ontrol law:���~x = ��f� ~f � ~f�~x + ��m� ~m � ~m�~x  I � � ~f�~x � ~f�~x#! : (11)The form of this equation has been shown to be ro-bust to algorithmi singularities [3℄.The utility of ombining ontrol laws in this way de-pends on whether the ontrol laws are ompatible ornot. If the nullspae of � ~f�~x# is orthogonal to � ~m�~x , theseond term in Equation 11 will drop out. For thefore ontrol law, however, there is a equipotentialsurfae of on�gurations that yield equivalent foresolutions where moment an be optimized.As before, ���~x is used as the basis for gradient de-sent: d~xdt / � ���~x:

3.2 Combining the Kinemati Control Lawwith Fore and MomentNow that we an desribe the diretion of the gradi-ent for eah ontat, we need to express this in termsof the manipulator joint spae ~q. Normally, this isaomplished using the pseudoinverse of the manip-ulator Jaobian. Here, we atually need to solve forthe ~q whih satis�es the various displaements forall k ontats. This an be aomplished using anaugmented Jaobian:�~x�~q =  � ~x1�~q T : : : � ~xk�~q T!T : (12)In this equation, � ~xi�~q denotes the manipulator Jao-bian for the ith �nger. It represents how the loationof ith ontat point hanges with DOFs in both thearm and hand. �~x�~q desribes this relationship for ev-ery ontat in the system.Using the pseudoinverse of the augmented Jaobianis a way of satisfying multiple objetives on an equalfooting. If there is no solution that satis�es all ob-jetives, it selets the minimum norm solution. Thismethod has been used by many inluding [14℄ to sat-isfy multiple objetives. An augmented Jaobian islikely to possess singularities not present in the orig-inal manipulator Jaobian. For this reason, we usedthe SR-inverse instead of the pseudoinverse in ouromputations. We denote the SR-Inverse by (�)�.The ontat on�guration displaement �~x�t is pro-jeted into manipulator on�guration spae and op-timizes with respet to the kinemati ontrol law inthe standard way:�~q�t = �~x�~q � �~x�t +�I � �~x�~q � �~x�~q� � ~q�t : (13)4 ExperimentsWe onduted experiments to empirially demon-strate that the ontrollers onverged, and to showthat the regions of onvergene orrespond to rea-sonable grip on�gurations. To aomplish this, aseries of trials were run on di�erent objets. On eahtrial, the ontroller was initialized in a random on-�guration and run until onvergene. We show thaton average, ontrol law error onverges regardless ofthe starting loation and orientation of the manipu-lator. Figures 4, 5, and 6 haraterize the points inon�guration spae the manipulator onverges to.The UMass Torso was used to test our approah.The UMass Torso is a humanoid platform onsistingof two Barrett WAMs (Barrett Tehnologies, Cam-bridge MA) mounted on a frame. Eah BarrettWAM is equipped with a 3-�nger, 4 DOF Barrett



Figure 2: The Barrett Hand has four DOFs. Theseinlude one exion DOF for eah of the three �n-gers and one addution DOF. The addution DOFspreads two of the �ngers about axes in the palm.Hand as shown in Figure 2. Mounted on the tipof eah Barrett hand �nger is a 6-axis fore-torquesensor. The fore-torque sensor is used to ompute�ngertip ontat loation and the diretion and mag-nitude of the ontat normal vetor [2℄. In order totest our ontrollers in the absene of sensor noise andatuator error, some experiments were onduted insimulation.Simulated experiments were run for 40 trials. Exper-iments on the physial system were run for approxi-mately 20 trials. We tested the ontroller in simula-tion on a ylinder, a prismati hexagon, and an irreg-ular six-sided polygon. We ran experiments on thephysial system for a ylinder. For simulated trials,the ontroller was run for approximately 60 tatileprobes. On the physial system, the ontroller wasrun for approximately 25 tatile probes per trial. Ittook the physial system an average of two minutesto omplete eah 25-probe trial. For both simulatedand physial experiments, initial degree of addutionrandomly varied between 10 and 90 degrees. Initialorientation of the hand varied between 30 and 50 de-grees from the x/y plane. Initial x/y loation variedbetween -18 and +18 m from the objet enter.4.1 Convergene of ontrol law error fun-tionsOur �rst goal is to demonstrate that the ontrollaws funtion as intended. The omposite ontroller�fmk = �fore . �moment . �kinemati was exeutedin simulation for 40 trials on the ylinder. Error wasalulated at eah probe and averaged over the 40trials for �f , �m, and �. Figure 3 shows that foreand moment error onverge to zero while kinematierror hovers near 0.1 radians. Kinemati error neverreahes zero beause in this omposite ontroller op-erates subjet to both the fore and moment ontrollaws.Figure 4 haraterizes the performane of these on-trollers in terms of degree of addution and orienta-tion of the Barrett hand. It shows the performane
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Figure 3: �f ; �m; �k as a funtion of time for theylinder. Data is averaged aross 40 trials. �f is inNewtons, �m is in 1/2 Newton-millimeters, and �k isin radians.of the �fmk ontroller on a ylinder, a hexagon, andan irregular 6-sided prismati polygon in simulation.The graphs show that the region where the ontrolleronverges depends on objet geometry. For the ylin-der, all trials onverge to a very small region. For thehexagon (Figure 4b), the omposite ontroller on-verges to a line segment that orresponds to equipo-tential solutions for ontats moving along a side ofthe hexagon. The onvergene region is even largerfor the irregular objet due to the existene of mul-tiple possible robust grasps. Figure 5 shows the per-formane of the ontroller grasping a ylinder on thephysial UMass Torso system. Although the onver-gene points are signi�antly more distributed on thephysial system, the results are qualitatively similarto those obtained in simulation.
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Figure 5: Hand orientation and degree of addu-tion for grasp trials on a 6.5m radius ylinder using�fmk on the physial system.4.2 Alternative Control Law CombinationsThe fore and moment riteria are neessary ondi-tions for establishing a stable grasp. However, thekinemati onditioning onstraint does not diretly
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()Figure 4: Hand orientation and degree of addution at starting points and onvergene points for simulatedgrasp trials on: (a) a 5m radius ylinder, (b) a prismati hexagon with 6m sides, and () a prismati, irregularsix-sided polygon. The dots mark where trials begin and irles indiate where the hand/arm manipulatoronverged.
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Figure 6: Hand orientation and degree of addutionfor grasp trials on a 5m radius ylinder using �fmin simulation.a�et grasp stability. Here, we explore the lass ofsolutions that are disovered when kinemati on-straint is not inluded in the ontroller formulation.When �fm = �fore . �moment is used instead of�fmk, the regions of onvergene are ategoriallydi�erent. Figure 6 shows that on the ylinder, �fmonverges to a range of di�erent hand addution an-gles (ompare to Figure 4). As veloity ontrol tan-gent to the objet surfae dereases, the ompositeontroller may reah on�gurations where �f and �mgradients are limited by poor kinemati on�gura-tion. In these ases, the omposite ontroller on-verges with di�erent angles of addution.5 Conlusions and Future WorkIn this paper, we have shown how to treat graspingas a multi-objetive ontrol problem. This is valu-able when information onerning the geometry andloation of the objet is impreise or not available.

We desribe three primitive ontrol laws whih anbe ombined to produe useful behavior. We showhow to ombine these ontrol laws into ompositeontrollers using nullspae projetions.There are numerous areas for future work. Re-ent work [7℄ suggests that visual features an belearned on the basis of how well they predit grasp-ing suess. The presene of visual features in subse-quent grasp targets an provide additional informa-tion whih an redue the number of probes requireduntil a suitable grasp is found.In addition, reent work has inorporated knowledgeof manipulator kinematis into a geometri graspplanning framework [11℄. We would like to explorehow to ombine geometri methods with the workpresented here.Finally, although we assume here that the manip-ulator makes ontat with the objet at the �nger-tips, this is not a neessary assumption. We planto explore the possibility of ontating the objet atdi�erent points on the manipulator. This ould re-sult in whole-hand grasps, two-handed grasps, andtwo-armed grasps.AknowledgmentsThe authors would like to thank David Wheeler forbuilding a signi�ant part of the UMass Torso in-frastruture, and Mihael T. Rosenstein and Anto-nio Morales for their intelletual ontributions to thiswork.This work was supported by the National SieneFoundation under grants CISE/CDA-9703217, andIRI-9704530, DARPA MARS DABT63-99-1-0004,and NASA/RICIS (University of Houston #215).
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