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ABSTRACT 

INDEX-BASED JOIN OPERATIONS IN HIVE  

MAHSA MOFIDPOOR 

The exponential growth of data being generated, manipulated, analyzed, and archived 

nowadays introduces new challenges and opportunities for dealing with the so called big 

data. Hive is a batch-oriented big data software, well suited for query processing and data 

analysis. Originally developed by Facebook in 2009 and now under the Apache Software 

Foundation, Hive is gaining popularity for its SQL like query language HiveQL and for 

supporting majority of the SQL operations in relational database management systems 

(RDBMS). Being the expensive operation in RDBMS, join has been the focus of many 

query optimization techniques to improve performance of database systems. We 

investigate such techniques for join operations in Hive and develop an index-based join 

algorithm for queries in HiveQL. When a query requires only a small subset of data 

selected by a predicate in the WHERE clause, the brute-force method which scans the 

entire tables results in poor performance for redundant disk I/Os, and irrelevant maps 

initiation in case the query is issued using the mapreduce.  

In this work, we implement the proposed index-based technique and integrate it in Hive. 

To add our extension, we obtain Hive architecture details by reverse engineering the code 

and map our design to the conceptual optimization flow.To evaluate the performance, 

after setting up the environment, we run relevant test queries on datasets generated using 

the industry standard benchmark, TPC-H. Our results indicate significant performance 

gain over relatively large data or highly selective queries. 
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Chapter 1 

Introduction 

With the advent of Web 2.0, roles of the users and web applications went through a 

revolution. The passive view-only users have become the content creators. The chance to 

interact over the Internet granted to users, dumped all the data from social media, blogs, 

videos and other web.2.0 technologies to web sites has caused increased loads to the 

already accumulated massive pile of data on servers. This change demands innovative 

solutions to store this vast amount of data and support efficient querying over it. The raw 

data has to be queried to extract the worthwhile information from it. This opens new 

horizons for development of novel algorithms, tools, and services to process queries over 

this huge amount of data in a reasonable time frame. 

In this regard, a bunch of terms or even buzzwords have appeared in the related literature. 

We begin by trying to clear the distinctions and relations among big data, cloud 

computing, and Not Only SQL (NoSQL) from a technical viewpoint. We will then 

introduce our chosen use case study, Hive [5], to set up the stage for our work in this 

research. 

1.1 Big Data 

Big data spans three dimensions: Volume, Velocity, and Variety, mostly known as three 

Vs [27], which answer how big the data is, how fast it grows, and how different the 
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structure is, respectively. 

1. Volume: The data being stored in the World Wide Web (WWW) every day is 

exploding. The size of this data was reported to be 8×1020 bytes and predicted to 

reach 35×1021 bytes by 2020. Twitter generates more than 7 terabytes (TB) of 

data every day. Facebook does the same at 10 TB level [15: Part I, Characteristics 

of Big Data].  

A great portion of this gigantic amount of data is not analyzed or even “used,” but 

that does not save us from drowning into it. 

2. Velocity: Velocity in the data context is the pace at which data is arrived, stored, 

retrieved, and flown or streamed. Scrutinizing 5 million trade events created each 

day for fraud detection or analyzing 500 million daily records of call details in 

real-time to predict customer churn faster gives a flavour of how fast processing is 

required. 

3. Variety: Organizations have to draw insights from structured, semi-structured, 

and unstructured raw data from a variety of sources to make the best decisions. 

Both traditional and non-traditional data are crucial for enterprises to make 

decisions. The non-traditional data indeed spans a greater part of the world data 

[15: Part I, How Fast is Fast? The Velocity of Data]. 

1.1.1 Big Data Solutions Application 

All the issues a big data solution can overcome fascinatingly do not make it as an all-

purpose magical replacement for the existing establishments. There are key principles on 

which a big data solution is determined [15: Part I, When to Consider a Big Data 

Solution]. For example, the following situations explain the big data solution is the right 
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choice: 

1. When sampling of data to analyze the whole data is either ineffective or 

impossible to achieve, 

2. When we need iterative or exploratory analysis of data, 

3. When it is profitable, 

4. When traditional databases can not solve challenges at hand 

Big data tools by no means do not eliminate or replace traditional database technologies. 

In fact, conventional DBMS technologies are relevant and vital part of an overall 

effective solution to problems in big data management.  

1.2 Cloud Computing 

“Cloud Computing is the long dreamed vision of computing as a utility, where users can 

remotely store their data into the cloud so as to enjoy the on-demand high quality 

applications and services from a shared pool of configurable computing resources.” [26] 

Cloud computing is a service-oriented way of computing with abstract infrastructure. 

Among all the marketing buzzwords describing cloud computing, we consider the 

following definition from the USA National Institutes of Standards and technology 

(NIST) that points out five essential characteristics for cloud computing [18]. 

1. On-demand/self-service: The customers are provided with computing capabilities 

as per their needs without requiring separate human interactions with the service 

provider.  

2. Broad network access: Services are available over the Internet and can be 

accessed from a variety of devices (e.g., PCs, laptops, mobile phones, etc.). 
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3. Resource pooling: Computing resources are pooled to be assigned to multiple 

customers dynamically using a multi-tenant model. 

4. Rapid elasticity: The customers can assume the available resources are unlimited. 

5.  Measured service: The customers pay only for the exact usage. 

The three well known service models of cloud computing are Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS is about 

outsourcing all the equipment including storage, servers and network components 

required for the operations. PaaS goes one level higher and delivers operating systems 

and other associated system services without download or installation. Finally, SaaS hosts 

customers’ applications through a vendor or service provider.  

Cloud is an abstract infrastructure or computing setup, which makes big data accessible to 

customers. As an example, cloud can host a big data solution, often called Database as a 

Service (DaaS).  

1.3 NoSQL 

NoSQL concept literally emerged in 2009 when the designers of Web. 2.0 services 

realized that RDBMS are best fit for either small yet frequent read/write transactions or 

for large batch transactions with few write accesses [35]. The term NoSQL is used in 

contrast to relational databases, to refer to a database system which is distributed, may not 

require fixed table schemas, usually avoids join operations, typically scales horizontally, 

may not expose a SQL interface, and may be open source [35].  

Traditional databases, generally, import data slowly into a native representation before 

they are ready for querying. This makes them not suitable for management and processing 
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of streams of data.  

Moreover, traditional databases do not often scale up for “big data” which is at least 

petabytes of data in volume. 

NoSQL databases promise to bring high performance and high availability in the 

mentioned non-traditional situations. The data model typical to NoSQL databases 

(discussed in the following section) partially justifies its success. 

1.2.1 NoSQL Data Models 

Features of the NoSQL data model are as follows: 

 Key-Value: The simplest data model, in which data elements’ values are retrieved, is 

by a (unique) key. Values are un-interpreted byte arrays, which are independent and 

separated from each other. Therefore, the key-value model is in a way schema-free. 

Definition, management, and interpretation of any data model over key-value format 

should be done at the application level. Dynamo [2] is a popular example of key-value 

structured database.  

 Column family: Column family does not use the conventional row-store. Instead, an 

arbitrary number of key value pairs are stored within rows. Multiple versions of 

values are stored in chronological order to support versioning and more precise 

consistency.  

Column family stores its data in a table, but the entries are columns instead of rows. 

Column family does not allow table associations since the value part of the table is 

meaningless to the system. A popular example of column family solutions is Hbase 

[6]. 
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 Document: A document is the key-value structure with semantic value part, which 

means the value part is a meaningful object to the system. The value component, 

stored in JSON or XML, can hold data types and complex data structures, and hence 

can be queried as well. Document stores are pretty convenient in data integration and 

schema migration tasks because they allow multi attribute search on records, which 

may have completely different kinds of key value pairs. MongoDB [29] is a popular 

example of document-oriented databases. 

 Graph: In graph databases, an example of which includes Neo4j [30], a graph with its 

nodes, edges, and properties is used to store the data. The main characteristic of graph 

databases is that adjacent elements of a node are accessed directly without indexes. 

The strength of this model is efficient management of heavily linked data. More 

specifically, to perform the recursive join of multiple relations, it uses tree traversals, 

which are less expensive, compared to the traditional approach like nested loops.   

NoSQL databases plan to achieve their goals at the price of weakening the transactions’ 

properties of being Atomic, Consistent, Isolated, and Durable (ACID) that are assumed in 

traditional relational databases. According to CAP theorem [17], a distributed system 

cannot have Consistency, Availability, and Partition tolerance simultaneously; it can only 

support two at a time. Consistency means nodes of a distributed system see the same data 

at the same time; availability guarantees receiving a response (fail/success), and partition 

tolerance indicates the system as a whole continues to operate despite a partition(s) 

failure.  

Among all the big data solutions already introduced to the technology globe, we consider 

working on Hive, a non-NoSQL, relational big data solution, for query optimizations. The 
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next section introduces Hive. 

1.4 Hive 

Hive is a data warehouse software best suited for OLAP (OnLine Analytical Processing) 

workloads to handle and query over vast volume of data residing in a distributed storage. 

The Hadoop Distributed File System (HDFS) [1] is the ecosystem in which Hive 

maintains the data reliably and survives from hardware failures [12]. Hive is the only 

SQL-like relational big data warehousing approach developed on top of Hadoop to the 

best of our knowledge. 

A high-level programming model, called mapreduce framework, on top of Hadoop 

enables it to stream the data at a high bandwidth and perform massive computation. 

HiveQL as described in Section 2.1, is an SQL-like query language for expressing queries 

in Hive. After a query is issued through an interface in Hive, it undergoes several 

processing phases including parsing, semantic analysis, logical plan generation, physical 

plan generation, etc; ultimately the plan is transformed to a sequence of mapreduce 

operations which are then executed over Hadoop.  

1.5 Motivation 

Relational Database Management Systems (RDBMS) have robust and established 

qualities for managing and querying relational data. SQL is the de facto standard 

language to conveniently query relational data. Ironically, SQL is the biggest missing 

piece of NoSQL [33: chapter 1, Challenges of RDBMS].  

In the context of databases and data warehousing, to achieve the highest level of 
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efficiency in processing, first the primitive operations should be improved. Join as the 

most expensive operation, makes a critical performance improvement if enhanced.   

The join operation allows information from various relations to be “combined.” This 

facility provides more analysis opportunities to the user. 

One of the techniques to accelerate the join computations is using the indexes. Without 

indexing, the brute-force scanning of the entire data is prohibitive in general for large 

data. This is especially important when a small fraction of tuples participate in a join 

operation.   

Two major factors influence the indexing approach in Hive to speed up joins: 

1. Incredibly high data volume 

2. Low index maintenance cost 

Hive as a host for handling big data is supposed to work well with vast amount of data. 

The more data we have, the better the performance becomes. As a result, indexing can 

promisingly make a huge difference in response time. 

Having infrequent updates, is another characteristic of big data, which makes the index 

maintenance simple and affordable. Additionally, the index types proposed and developed 

for data in Hive take up a pretty small space, as we will observe in Section 5.5, 

Experiment 1 and in Section 5.6, Experiment 2. 

1.6 Contributions 

Our aim in this research is to accelerate join queries with the assistance of suitable 

indexes. On this matter the contributions of this thesis are summarized as follows: 

1. We provide a clear, concise description of the Hive architecture and query life 
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cycle (Chapter 3). This also provides a basis for better understanding the Hive 

framework, useful for its further extensions and improvements deemed required.  

2. The main contribution of our work is an extension of the query processing in Hive 

query language (Chapter 4) for performing index-based join operations, without 

user’s interference. The proposed extension is incorporated in the Hive source 

code and checked for correctness of the implementation and efficiency. The 

results of our experiments show effectiveness of the proposed index-based join 

technique.  

1.7 Thesis Outline 

The rest of this document is organized as follows. Following the first chapter in which we 

introduced Hive, in Chapter 2, we study HiveQL plus Hive indexing component. 

Afterwards, we will cover Hadoop/mapreduce as the background and foundation of Hive. 

Chapter 3 explicates the technical details about Hive architecture focusing on the parts 

that are relevant to this research. Chapter 4 introduces our proposed technique along with 

the related work on Hive join algorithms and optimizations. Chapter 5 is dedicated to 

experiments and analysis of the results followed by conclusion and future work in 

Chapter 6. 
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Chapter 2 

Background  

In this chapter, we first review Hive Query Language and Hive data model. We then 

provide a brief description of the data in Hive including data types, file formats, and 

loading data into Hive tables. This part can be used as an exposition of our experiments 

described in Chapter 4.  

In the second half of this chapter, we review Hadoop, as it is the underlying system for 

Hive. We then introduce mapreduce and its implementation of relational algebra 

operators. We also study join algorithms on mapreduce.  

2.1 HiveQL 

HiveQL is an SQL-like language, but not fully conforms to it and it is used to express 

queries over Hive. Unlike standard SQL engines, Hive does not support update, delete, 

row-level insert operations and does not support transactions. 

Hive, as the Hadoop client, is supposed to function with infrequently updated and batch-

mode inserted data. These are the characteristics of the underlying system of Hive. 

Hive is an OnLine Analytical Processing (OLAP) data warehouse solution and is best 

suited for large data mined for insights, reports, etc. For Online Transaction Processing 

(OLTP) features working with big data, one should consider a NoSQL database, good 

example of which would be Hbase [6]. 
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To start with, we explore the Hive data model. The next section provides an introduction 

to the Hive Data Definition Language (DDL) followed by a review of the Hive Data 

Manipulation Language (DML). 

As a guide throughout this chapter, using any clause/parameter in square brackets means 

an optional feature and any parentheses is for more clarity. 

2.2 Hive Data Model 

2.2.1 Databases 

The notion of database in Hive is a catalog or namespace to organize tables. When a 

database is created, a directory with a user-given name ending with .db is created. All 

such directories are created under a top-level directory which by default is /user/hive/ 

warehouse.  

A database can be easily created in Hive using the following command.  

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name 

[COMMENT database_comment] 

[LOCATION hdfs_path] 

[WITH DBPROPERTIES (property_name = property_value,...)]; 

A description of the parameters and options in the above command are as follows:  

LOCATION specifies a custom location other than the default one.  

WITH DBPROPERTIES are user-defined parameters that can contain any arbitrary meta data 

about the database. As an example “created_by = Mahsa“ stores the name of the 

database creator. Both property_name and property_value are strings. Other parts of 

the command have the same functionality as they do in SQL. 

The above description can be pronounced using: 

DESCRIBE [EXTENDED] DATABASE database_name; 
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Similar to a standard SQL engine, Hive also has SHOW, USE and DROP DATABASE 

commands with obvious meanings. 

SHOW DATABASES; 

USE database_name; 

DROP (DATABASE|SCHEMA) [IF EXISTS] database_name 

[RESTRICT|CASCADE];  

2.2.2 Tables 

In the hierarchy of the Hive data model, there exists the database concept at the top. Right 

after that, we have the notion of tables. Table creation with HiveQL is more extended and 

elaborate compared to SQL, which will be explained as we proceed. Hive provides two 

types of tables: managed (or internal) tables and external tables. Managed tables are 

created by the CREATE TABLE command and the data for each table is stored under a 

subdirectory called /user/hive/warehouse. Dropping a managed table causes its data to be 

deleted from the mentioned directory. External tables are created by CREATE EXTERNAL 

TABLE…LOCATION. Unlike in a managed table, dropping an external table does not affect 

the data. Additionally, external tables do not copy the data; instead they access the data 

from the location mentioned in the LOCATION part, which makes loading the data to a 

table a fast process. 

Here is the Hive table declaration, followed by a detailed description of its parameters and 

options: 

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name 

[(col_name data_type [COMMENT col_comment], ...)] 

[COMMENT table_comment] 

[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 

[CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name 

[ASC|DESC], ...)] INTO num_buckets BUCKETS] 

[SKEWED BY (col_name, col_name, ...) ON ([(col_value, col_value, 

...), ...|col_value, col_value, ...])] 

[ 

[ROW FORMAT row_format] [STORED AS file_format] 

 | STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES 
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(...)]  

] 

[LOCATION hdfs_path] 

[TBLPROPERTIES (property_name=property_value, ...)]   

[AS select_statement]   

The IF NOT EXISTS and COMMENT have the same functionality as they do in SQL. 

LOCATION and TBLPROPERTIES clauses have the same functionality of LOCATION and 

DBPROPERTIES described in the previous section, with the possibility of using COMMENT at 

several places in table declaration. 

Keyword AS at the end of the command is analogous to its SQL counterpart, which is 

used to mention aliases. 

Other points about this command: 

 The EXTERNAL keyword marks the table as external. 

 PARTITIONED BY partitions the table based on the column names specified as its 

parameters. A separate directory is created for each distinct value combination in the 

partition columns. 

 The CLUSTER BY along with the option INTO num_buckets BUCKETS bucketizes the 

data on the specified columns. The SORTED BY option sorts data in every bucket on 

the specified columns. 

 SKEWED BY indicates that the data is skewed over which column and for what values 

of that column.  

 The ROW FORMAT shows how the data is organized in the file, i.e., how tuples, 

attributes and elements of complex data types are separated.    

 STORED AS is the file type choice to save the table data.  

 STORED BY defines the serializer/deserializer to read from and write to the underlying 
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system. 

We will provide representative examples, as we proceed, to illustrate applications of these 

options. 

2.2.3 Partitions 

The traditional method of distributing data horizontally is also supported in Hive. 

Partitions are means for re-organizing the data logically so that accessing the data is much 

faster. Each partition defined for a table is equivalent to a sub-directory under the 

directory where the table is located. 

Both managed tables and external tables can be partitioned. In managed tables, partitions 

are defined at the table creation time and data is loaded afterwards to each partition using 

SELECT or LOAD commands. In external tables, to partition a table, the user has to omit the 

LOCATION in the CREATE EXTERNAL TABLE and each partition should be added to the 

table separately using:  

ALTER table_name  

ADD partition (partition parameters and values) 

LOCATION location; 

2.2.4 Buckets 

Bucketing is another approach to segregate datasets into more manageable parts. 

Bucketing is useful to avoid having a lot of small partitions that may overwhelm the file 

system. In addition, unlike partitions, bucketizing provides means for data sampling and 

bucket map join. This is described in Chapter 4. 

Buckets are defined at the table creation time, however it is the responsibility of the user 

to insert data correctly into each bucket. 
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Here is an example to define buckets and load data appropriately into them.  

CREATE TABLE students (id INT, name STRING, course STRING)  

CLUSTERED BY (id) INTO 12 BUCKETS; 

      SET hive.enforce.bucketing = true; 

FROM raw_students  
INSERT OVERWRITE TABLE students  
SELECT id, name,course; 

The parameter HIVE.ENFORCE.BUCKETING instructs the system to load the data into 

buckets. If it is not set, the data will not be distributed into the buckets.  

2.3 Data in Hive 

2.3.1    Hive Data Types 

Hive defines the common relational databases data types as well as the three collection 

types: STRUCT, MAP, and ARRAY. 

Collections are not supported in most relational databases because using them tends to 

break the normal forms. The consequences of breaking the normal forms would be data 

duplication that may lead to space waste and inconsistencies. In big data, however, 

sacrificing the normal forms allows efficient processing of complex data types within a 

record. 

Hive gives the users full control over the data persistence and its life cycle. This allows 

management and processing of data with variety of tools, i.e., Hive can be bound with 

various data sources.  

Since Hive itself is implemented in Java, the exact behaviour of each data type is the 

same as the corresponding data type in Java.  
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2.3.2    Hive File Formats 

Hive is intended to work in batch mode. As a result, a statement like INSERT INTO 

table_name VALUES(values) does not make sense in Hive. Instead, big amount of data 

is read from a local or remote source and then loaded in one shot into Hive tables. Hive is 

able to process data coming from various sources using Extract, Transform and Load 

(ETL) tools by supporting reading data from different file formats and their 

customization. This section explains the STORED AS and ROW FORMAT SERDE parameters 

of Hive table declaration statement and gives a brief description of the type of files Hive 

can read from and how they should be managed.  

2.3.2.1 Text file 

The simplest file format supported in Hive is a text file. Hive uses control characters that 

are less likely to appear in a text to separate fields, lines and the components of a complex 

data type. The following example shows use of delimiters to distinguish between rows, 

fields of a struct, items of a collection, elements of a map and lines.  

CREATE TABLE students ( 

name STRING, 

id  INT, 

courses ARRAY<STRING>, 

grades MAP<STRING, FLOAT>, 

address STRUCT<street:STRING, city:STRING, state:STRING, 

zip:INT> 

                      ) 

ROW FORMAT DELIMITED 

FIELDS TERMINATED BY '\001' 

COLLECTION ITEMS TERMINATED BY '\002' 

MAP KEYS TERMINATED BY '\003' 

LINES TERMINATED BY '\n' 

STORED AS TEXTFILE; 

2.3.2.2 Non-Text files  

While text files are the most suitable choice for sharing data and viewing in an editor, 
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binary files are more space-efficient which is critical for big data. Examples of such files 

are SequenceFile and RCFile (Record Columnar File).  

Sequence file is the standard Hadoop file format which is a flat file consisting of binary 

key-value pairs. 

RCFile stores columns of a table in a columnar way. It first partitions rows horizontally 

into row splits and then each row is vertically partitioned on columns way. RCFile first 

stores the meta data of a row split, as the key part of a record, and as the value part it 

stores the data of a row split. 

Below is an example of how a column-oriented table is created and loaded using a row-

oriented table. 

CREATE TABLE columnTable (key int, value int) 

ROW FORMAT SERDE 

'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe' 

STORED AS 

  INPUTFORMAT 'org.apache.hadoop.hive.ql.io.RCFileInputFormat' 

  OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat'; 

FROM anyTable  

INSERT OVERWRITE TABLE columnTable  

SELECT anyTable.col1, anyTable.col2; 

SerDe (Serializer/Deserilizer) converts the unstructured bytes in a record into a record 

that Hive can understand or converts a Hive record to bytes suitable for writing to a table. 

Hive uses the INPUTFORMAT along with the de-serializer to read from a table and uses the 

OUTPUTFORMAT with the serializer to write to a table respectively. 

2.3.3    Loading Data into Tables 

As a requirement of big data, Hive has no row-level INSERT, UPDATE, or DELETE 

statement. Data is only inserted into tables through bulk load operations or simply batch-

mode. 
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As mentioned before, for external tables the data is loaded using the LOCATION clause in 

CREATE TABLE statement. In managed tables, after a table is created, we can load data into 

it using the command LOAD DATA [LOCAL] INPATH, illustrated in the following example: 

LOAD DATA LOCAL INPATH '${env:HOME}/CS-students'  

OVERWRITE INTO TABLE students  
PARTITION (dept = 'CS'); 

The above command, loads the data from the specified directory mentioned in the INPATH 

part to the specified partition. Obviously, if the table is not partitioned, the user is not 

supposed to declare it. It is important to note that once the data is loaded, any data already 

stored in the table is first deleted before the new data is loaded, unless the parameter 

OVERWRITE is omitted which leads to appending the data. 

The keyword LOCAL instructs Hive system to copy the data from the directory CS-

students in our example, to where the table is located in the distributed file system. If 

LOCAL is omitted, the data is just moved to the location of the table. In other words, LOCAL 

chooses between working with a copy of the data or the original one. This becomes 

crucial when the user decides to drop the table. 

The result of a query can also be inserted into a table: 

INSERT OVERWRITE TABLE students  

PARTITION (dept = 'CS')  

SELECT * FROM CS-students; 

Here also if the user wishes to append the data the parameter OVERWRITE should be left 

out or replaced with the keyword INTO.  

2.4 Index Related Commands  in Hive 

An index is an extra data structure associated with a table in the database that allows 

retrieving defined by a query the records more efficiently using only one or more fields of 
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a table input.  

Indexing is a technique that provides a faster means to access a portion of the data, rather 

than the whole data, based on the column values. This technique is effective when the 

selectivity of the query is “high enough.” The threshold for using the index purely 

depends on the data size, data distribution, index size, and its cost, including creation time 

and storage utilization. 

Supporting indexing in Hive started in 2009 in order to speed up processing simple 

queries having a predicate expressing a condition over individual columns (no 

aggregation function on column values). Later on, bitmap indexes were considered for the 

same type of queries, which worked well when the columns had small number of distinct 

values. 

Index handlers are JAVA classes that implement indexing. The index handlers 

implemented use a tabular format to store the index, i.e., they create a table even though 

other structures are claimed to be supported [21].  

Hive requires the user to create indexes manually. Indexing, as a reasonably new mission 

in Hive provides few options. Alternatively, the design is intended to be customizable, 

meaning that a desired index code can be easily plugged to extend the functionality. 

Indexes help to prune the data especially when partitions are plentiful and tiny; indexes 

are a better substitution for table partitions.  

Not all Hive statements can benefit from indexes. Indexes so far are used in queries with a 

WHERE clause or a GROUP BY clause. The EXPLAIN statement can be used to verify if a Hive 

command can potentially use the index. 
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2.4.1 Index Construction in Hive  

Here is how we can create an index in Hive: 

CREATE INDEX index_name 

ON TABLE base_table_name (col_name, ...) 

AS 'index.handler.class.name' 

WITH DEFERRED REBUILD 

[IDXPROPERTIES (property_name=property_value, ...)] 

[IN TABLE index_table_name] 

[PARTITIONED BY (col_name, ...)] 

[[ROW FORMAT ...] STORED AS ...| STORED BY ...] 

[LOCATION hdfs_path] 

[TBLPROPERTIES (...)] 

[COMMENT "index comment"]  

 

There are some parameters and keywords used in the command listing: 

1. index_name : The index name given by the user used to access the index by the 

user itself. This name is used to refer to the index in ALTER INDEX and DROP 

INDEX commands. 

2. base_table_name (col_name, ...): The table over which the index is to be 

created using the desired columns listed. 

3. 'index.handler.class.name': this specifies the type of the index, which could 

be bitmap or compact values.  

4. index_table_name: The index name given by Hive (the default name) or the 

user, used to access the index as a table by the user or Hive. For example the user 

can see the content of an index using this parameter (Figure 1). Any other 

behaviour of the index as a table can be addressed using this name. 

5. WITH DEFERRED REBUILD: This means the index starts empty. Index will be 

populated using: 

 ALTER INDEX index_name ON table_name [PARTITION (...)] REBUILD 
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6. IDXPROPERTIES : This gives the properties of the index. For example:  

'index_creator' = 'Mahsa' can be considered a property for an index. 

7. IN TABLE index_table_name: This is used when the user wishes to build an 

index in a different table from an already built index (if any), to keep them 

separate.  

Other possible options are the same as the one used in Hive CREATE TABLE. 

Indexes are built in two phases. In the first phase, index layout and variables are validated 

at the index creation time. Examples include checking if the column being indexed exists 

in the input table, or checking if the partitions are valid, etc. In the second phase, the 

index table is loaded with relevant data, which takes a major time of building an index. 

If PARTITIONED BY clause is omitted from the CREATE INDEX, index spans all the table 

partitions. Index partitions and table partitions do not have necessarily the same level of 

granularity [10, chapter 8, Creating an Index]. The following examples show that table 

partitions and index partitions could be different: 

CREATE TABLE students(Id int, Name string, Dept_id int, Major_id 

int) 

PARTITIONED BY (Dept_id int,Major_id int); 

 

CREATE INDEX students_index ON TABLE students  

AS 'compact' WITH DEFERRED REBUILD 

PARTITIONED BY (Dept_id); 

The data must be scanned thoroughly and sorted to be imported to the index. If data in the 

base table changes, then the REBUILD command is used to bring the index up to date. This 

is an atomic operation, so if the table was previously indexed, and a rebuild fails, then the 

stale index remains intact.  

We have provided an example of creating an index and a table at the same time.  

Here is the index creation command we have used in our experiments: 



 

 

 

 

22 

CREATE INDEX x  

ON TABLE lineitem (L_ORDERKEY)  

as 'compact' WITH DEFFERED REBUILD; 

 

ALTER INDEX x ON lineitem REBUILD; 

Note that,  L_ORDERKEY in lineitem has a large number of values, the index type bitmap 

is not a suitable choice in our experiments, instead it is useful when there are few distinct 

values among the index key.  

2.4.2 Showing Indexes 

The following statement can reveal indexes over a table: 

SHOW [FORMATTED] INDEX[EX] ON TABLE table_name; 

Column titles of an index table do not appear in the output of the above command unless 

the parameter FORMATTED is mentioned.  

2.4.3 Dropping an Index 

An index can be dropped using the command: 

 DROP INDEX [IF EXISTS] index_name ON table_name; 

Upon dropping a table or a table partition, the corresponding index is also dropped but the 

opposite does not happen. 

2.4.4 Hive Index Structures 

In the relational databases context, there are a number of structures that can hold the 

index. They include [16: chapter 13]: 

1. Primary indexes on sorted file 

2. Secondary indexes 

3. B-trees  
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4. Hash tables 

The primary indexes have key-pointer pairs in an index file. A search key is associated 

with a pointer to a record holding that search key. Primary indexes are either dense 

meaning there is one entry in the index for every record or sparse in the sense that there 

exist an entry in the index file for every block of records. The key point is that the data 

file is sorted on the search key and the index only determines the location of the desired 

records. 

Secondary indexes find the location of the desired records in an un-sorted file and they 

are always dense with the same structure described for primary indexes. Compared to the 

primary index, secondary index requires more disk I/Os as is in general a result of the un-

sorted data.  

In commercial systems, B-trees and its most common variant B+ trees organize data in a 

balanced tree. B-tree has the advantage of searching a key at a time proportional to the 

height of the tree with minimum number of disk I/O operations. 

In a Hash table, a hash function takes a search key as an argument and computes an 

integer in the range 0 to B-1, where B is the number of buckets. This integer is the index 

of an array that holds the headers of B linked lists containing the records. Each search 

takes an ideal 1 disk I/O operation. 

Current Hive index structure is pretty analogous to the secondary indexes or sometimes 

the primary index once the data is sorted on the search key/index key as will be explained 

shortly. 

Presently, Hive supports two types of indexes, compact and bitmap. The corresponding 

handlers in both index types store the index in a tabular format, i.e., indexes are stored in 
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tables.  

The compact index, as the name suggests, builds a compressed index separate from the 

data. This means that rather than storing the HDFS location of each occurrence of a 

particular value, it only stores the addresses of HDFS blocks containing that value. This is 

optimized for point-lookups when a value typically occurs more than once in nearby 

rows; the index size is kept small since there are many fewer blocks than rows. The trade 

off is that extra work is required during query processing in order to filter out the other 

rows from the indexed blocks, but as we will see in Section 5.5, that extra search is not 

considerable. 

There are only a few columns in a compact index, which include the name of the 

column(s) on which the index is built, the block followed by a string column 

“_bucketname” (indicating the name of the file containing the indexed block) followed by 

a column “_offsets array<string>” (indicating the block offsets within the corresponding 

file). As an example of the compact index content, Figure 1 provides a sample of the data 

in the index we used in our experiments. The first column shows the values of the 

attribute L_ORDERKEY, the second column is the HDFS location, and the third column is 

an array of offsets from the file mentioned in the former column.   

 

 

Similar to compact indexes in coding technique, bitmap indexes are created for columns 

with few distinct values, such as gender. Bitmap operations are then used to quickly 

        Figure 1 Compact index structure 



 

 

 

 

25 

identify rows that satisfy a combination of conditions on such columns.  

Bitmap index has the same columns as the compact index in addition to a number of 

binary bit vectors used to represent the value of the indexed column. The index uses one 

bit vector for each possible value of the column. Each value in the vector represents a row 

and is set to 1 if the value is present in the row, and set to 0 otherwise.  

As an example of the bitmap indexes (Figure 2), consider the following query, and 

assume we have bitmap indexes on  gender and major: 

SELECT * 

FROM CS_students  

WHERE gender = 'female' AND major = 'CS'; 

 

                                         students 

 
id name gender major 

13434 Alex male SE 

11435 Mahsa female CS 

45455 Indrani female SE 

78388 Philip male CS 

 

                               gender                                                                 major  

                       female          male                                                CS              SE 

 

                                                                                      

     

 

 

 

 

 female             CS         

 

 

 

 

 

 

 

The bitmap indexes over columns gender and major, which have few values, are fed to 
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id name gender major 

13434 Alex male SE 

11435 Mahsa female CS 

45455 Indrani female SE 

78388 Philip male CS 

            Figure 2 Bitmap index example 
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the logical AND to produce the results. 

As most of the HiveQL syntax is similar to MySQL, we only focused on the portion of 

HiveQL that is very different from SQL and we used in our work. The reader is referred 

to [10: chapter 4-8] for a full description about HiveQL.  

The indexing component was covered thoroughly as it is used in our work of providing 

further improvement in Hive indexing techniques.  

The next section introduces Hadoop, which is the foundation of Hive. 

2.5 Hadoop 

Hadoop is a platform for storing big data economically and reliably. In addition, it can use 

its powerful mapreduce algorithms to process big data. We begin this section by an 

introduction to modern distributed file systems and proceed with Hadoop. 

2.5.1 Distributed File systems (DFS) 

In contrast to single processing computer systems, called “compute node,” which consists 

of a sole processor with its main memory, cache, and a local disk, parallel processing is 

performed on special-purpose computers with specialized hardware. This pattern has 

changed to use more commodity machines as “compute nodes” that work relatively 

independently. The strategy used in case of crashes is replication of data and dividing a 

job to independent tasks.    

In this new environment, files have also different characters and behaviours. DFS is 

typically used when the files are large (terabyte in size) and updates do not happen or 

append-only updates are done, since otherwise if the data is small or it changes quickly, 

using a DFS is pointless.   
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Each file is divided into chunks (commonly 64 MB) that are replicated on different 

compute nodes of different racks. The association between these chunks and their location 

is stored in a small file, called master node or name node. This file is also replicated. A 

directory for the entire file system as a whole keeps track of where these copies are saved. 

The directory itself can be replicated too. 

Examples of popular file systems exploiting the described architecture including: 

1.  GFS (Google File System), the pioneer  

2. HDFS (Hadoop Distributed File System)  

2.5.2 Hadoop Distributed File System (HDFS) 

 HDFS forms the underlying structure of Hive that hosts Hive data and also executes the 

queries. The storage, computation capacity, and I/O bandwidth can be enhanced crudely 

by adding more commodity hardware. Here are the key characteristics of HDFS: 

1. Quick failure detection and automatic recovery 

2. High throughput of data access  

3. Handling computation over large datasets 

4. Ability to append files 

5. Portability 

In the next section, we describe the HDFS architecture in brief. 

2.5.2.1 HDFS Architecture 

2.5.2.1.1 NameNode and DataNodes 

HDFS architecture conforms to the traditional master/slave style. In each cluster, the 

master sever, called NameNode, maintains the file system namespace and manages access 
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to the data. Slaves or the DataNodes are the machines that store the data and execute 

operations like opening/closing a file.  

The NameNode and DataNode are pieces of software designed to run on commodity 

machines, often running GNU/Linux operating system, rather than super computers.  

2.5.2.1.2 Block Placement 

HDFS uses data replication as the fault tolerance technique. The NameNode receives 

reports from DataNodes periodically or on-demand to determine if data is under-

replicated to replicate it. 

The default HDFS block placement targets at minimizing the write cost, maximizing data 

reliability and availability and economizing the bandwidth. For this, HDFS puts the first 

replica of a block on the node where the writer is located. The second and third replicas 

are placed on two different nodes in different racks and the remaining replicas are placed 

randomly in such a way that no DataNode holds more than one replica and when the 

number of replicas is less than twice the number of racks, at most two replicas are placed 

on the same rack [12].  In case of a read, HDFS chooses the closer replica to the reader. 

2.5.2.1.3 HDFS Failures 

There are two files residing on the NameNode local file system that hold critical meta 

data: a transaction log file and the entire namespace file. Each time the NameNode starts, 

it applies all the changes from the transaction log to the in-memory namespace file and 

writes it to the disk and then truncates the log file.  

These two vital files are replicated on the NameNode and all replicas get updated 

synchronously when a replica is modified. 
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NameNode is the only single point of failure in a Hadoop cluster for which the solution 

requires manual intervention.   

In management of big data, the environment in which huge datasets can be stored and 

retrieved is the main issue to address. The next step is to perform computation on multi-

tera-bytes of data in parallel. 

2.5.2.2 Mapreduce 

Inspired by the map and reduce functions in commonly used functional programming 

languages, mapreduce framework is implemented to do huge calculations that is tolerant 

of hardware failures with a simple programming model. Only two functions map and 

reduce need to be written and thereafter the execution flow is as follows:  

2. One or more chunks of data are given to some map tasks. Map tasks transform the 

input to a sequence of key-value pairs. The way these pairs are produced is code-

dependent. 

3. Key-value pairs are collected by master controller and sorted by the key. Pairs are 

distributed to reduce tasks in such a way that pairs holding the same key go to the 

same reduce task. 

4. The reduce tasks combine all the values for that key. The way combine works is code-

dependent too. 

In Figure 3, the mapreduce execution in Hadoop is depicted in more details. The user 

program forks a master controller process and some number of worker processes at 

different compute nodes. A worker is either a mapper or a reducer. Based on the 

parameters provided by the user program, master creates some number of map tasks 

and reduce tasks and assigns them to the workers. A chunk can be given to a single 
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map task, but it can be given to one or more reduce tasks because the number of 

output files that is equal to the number of reducers cannot exceed the limited space 

capacity. The master also knows the status of each worker whether it is idle, 

executing, or completed. When a task is completed, the worker informs the master so 

that the master assigns it a new task. 

Each map task executes the code (functionality provided) on its chunk(s) of data and 

creates a file for each reduce task on its local disk. The master knows the size of the 

file, its location, and the reducers to which they are destined. When a reducer begins 

execution, all these files become accessible to it. After the reduce task completes the 

execution of the code, it writes the output to a single file in the file system. 

Depending on where a node failure happens, the recovery time varies. Master node 

failures are the most severe one for which the whole mapreduce job has to be 

restarted. Hadoop has a backup master node (secondary name node) to survive in case 

of a failure. If a mapper fails, all the tasks have to be redone, even those completed, 

since the output of the map task became unavailable to the destined reducers. When 

the tasks are restarted on another node, the location of the output is reported to the 

reducers. Failures in reducers only involve restarting the task on another reducer. 

2.5.2.2.1 Map Task 

A chunk consists of elements, which can be of any type (tuple, document, etc.).  All 

inputs to mappers and outputs of reducers are key-value pairs. Normally the key part of 

the input is not relevant which we ignore. Assuming that every input/output is in the form 

of key-value pairs is necessary for the sequence of mapreduce operations to process. 

Based on the number of reducers, say r, the master controller picks a hash function say 
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mod, which when applied to keys, produces a bucket number from 0 to r-1. Each hash 

key, that is the key part of the map task output, is hashed to select specific reducers out of 

reducer0 to redicer r-1 and then the key-value pairs are put on the local files. These local 

files are destined for the determeined reducers. This process is called “grouping.” 

When all the map tasks are finished, the master controller merges the file from each map 

task that is destined for a particular reduce and feeds the merged files to that reducer as a 

sequence of key-list of values pairs, like (k, [v1,v2,…,vn]). This process is called 

“aggregation.” 

2.5.2.2.2 Reduce Task 

The reducer is responsible for combining the values associated with a key in some way. 

The combine operation is commonly commutative and associative, i.e., combining can be 

accomplished in any order without affecting the input data. When the order does not 

matter, some of the operations that the reducer is supposed to do can be pushed to the 

mapper. Nevertheless, the reducer cannot be eliminated because pairs coming from 

different mappers can also have the same key. The output of the reduce is the key along 

with the combined values. The outputs from all the reducers are merged into a single file. 

2.5.2.3 Mapreduce and Relational Algebra  

A relation or table, however large, can be stored as a file in a distributed system with its 

elements behaving as the tuples or rows. 

Standard database query primitives such as selection, projection, set operations, natural 

joins, and grouping/aggregation operations can be implemented within the mapreduce 

framework. The next section explains how each operation is developed over mapreduce. 

Before that, there are a few considerations about mapreduce to be always kept in mind, as 
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follows. At the outset, input and output of the map and reduce functions are in the form of 

key-value pairs except for the input of the map which may be simply ignored. Examples 

include the first time we feed the untouched data into map functions. Second, basically 

map function transforms the input (tuple) to a pair of tuples. Finally, the reduce function 

input is of the form (key, list of values) [32].  

Table 1 describes the notations in relational algebra used in the pseudo-codes that follow. 

 

 

  

 
 

 

 

 

Figure 3 Mapreduce execution flow [14] 

Variable Type 

R and S Relation 

t and 𝑡′ Tuples in either S or R 

c Boolean condition 

s A list of desired attributes for projection 

A, B, C Columns/Attributes in R and S 

(a,b), (a,b,c), (b,c) Tuples containing values for attributes A, B, and C 

𝜃 Aggregation function 

                         Table 1 Relational algebra notation for mapreduce 
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2.5.2.3.1 Selection 𝝈𝒄(R) 

Selection can be described as a map-only or reduce-only job. The reduce function above 

is just an identity function, that is, f (x) = x. Note that the output of the selection is only 

the key part or the value part of the mapreduce output. 

 Map function:  

      for each t in R 

    if (c)  

        emit (t,t) 

 Reduce function:  

      for each (t,t) 

    emit (t,t) 

2.5.2.3.2 Projection πs(R) 

 Map function 

      for each tuple t in R 

          emit(𝑡′, 𝑡′)  

 Reduce Function: 

for each 𝑡′ key in (𝑡′, [𝑡′, 𝑡′,… 𝑡′])  

    emit (𝑡′, 𝑡′) 

𝑡′ is a tuple obtained from t by taking only the values corresponding to the attributes 

listed in s. The elimination of the duplicates of tuples obtained by the reduce function 

can be done at the map phase too, but for excluding identical tuples coming from 

different mappers, the presence of a reduce function is essential. In other words, if 

duplicate elimination is performed at the mappers, in each mapper there is no 

duplicates, but the final result obtained by merging the outputs of all the mappers may 

contain duplicates. Therefore, excluding the duplicates at the reduce side is 
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indispensable. 

2.5.2.3.3 Union R∪S 

 Map function 

for each t in R 

          emit (t,t) 

for each t in S 

    emit (t,t) 

 Reduce Function 

for each t in (t,[t,t]) or (t,[t]) 

    emit (t,t) 

Note that here the relations R and S should be compatible. For the set union operation, the 

reduce removes the duplicates. If the input of the reduce is of the form (t,[t,t]), it means 

the tuple exists in both relations. On the other hand, (t,[t]) indicates that the tuple belongs 

only to one of the two relations. 

2.5.2.3.4 Intersection R∩S 

 Map function 

for each t in R 

    emit (t,t) 

for each t in S 

    emit (t,t) 

 Reduce Function: 

for each t in (t,[t,t]) 

    emit (t,t) 

for each (t,[t]) 

    emit(t, NULL) 

Since any input/output is of the key-value form, (t, NULL) is generated when no tuple is 

generated, that is, neither of the relations contains it.  
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2.5.2.3.5 Set Difference R-S 

 Map function: 

for each t in R 

    emit (t,R) 

for each t in S 

    emit (t,S) 

 Reduce Function: 

for each t in (t,[R]) 

    emit (t,t) 

for each t in (t,[(R,S), (S), (S,R)]) 

          emit(t, NULL) 

For set difference, we distinguish between the tuples coming from R from the ones 

coming from S. (t,[R]) means the tuple t only belongs to R and is supposed to be in 

the output. In any other case, no tuple is generated in the final result. 

2.5.2.3.6 Natural Join R⋈S 

Considering relation schemas R(a,b) and S(b,c) with the common attribute b: 

 Map function 

for each (a,b) in R 

    emit (b, (R,a)) 

for each (b,c) in S 

    emit (b,(S,c)) 

 Reduce Function: 

for each b in [(b, (R,a)), (b,(S,c))] 

      emit all combinations of (a,b,c) 

The map function re-organizes the tuples in a way that the key part is the common 

attribute b and the value part is the rest of the tuple. The reduce function receives all the 

tuples from both relations, sorted on the common attribute that allows performing the join 

efficiently. In the reduce function, for each value of b if the pairs come from different 
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relations, this is determined using the value part of the pairs, the pairs are combined to be 

in the output. 

2.5.2.3.7 Grouping and Aggregation 𝜸𝑨,𝜽(𝑩)(R) 

 Map function: 

for each (a,b,c) in R 

    emit (a,b) 

 Reduce Function: 

for each a in (a,b) 

    emit (a ,𝜃(b)) 

Notice that, each ‘a’ in pair (a,b) represents a group and each ‘b’ is a list of b values in 

the pair. 

The standard relational operators can be extended in a straightforward way to support 

more number of relations and attributes. For generalization, each of these components 

mentioned in the implementation above should be replaced by a list of components of 

the same type. 

In the subsequent section, we provide details of joins implemented over mapreduce, 

by considering different types of join algorithms and through examples. 

2.5.2.4 Join Algorithms in mapreduce 

It is essential to mention that join algorithms developed for RDBMs are not appropriate to 

execute over mapreduce. Mapreduce join algorithms have a different framework, as we 

will discuss later on in the current section. 

The join algorithms suitable to run for mapreduce in general fall into the three categories 

[11]: 
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1. Reduce-side joins  

2. Map-side joins 

3. Broadcast joins 

If the join is performed in the map phase, it is a map-side join, and if done in the reduce 

phase, it is called the reduce-side join. Broad-cast join is a more efficient map-side 

join.To explain these two algorithms, we start with the reduce-side join since it makes use 

of both the map and the reduce phase (contrary to map-side join).  

We preferred to keep this classification as simple and as generic as possible. At the end of 

this section, we will consider its variations.  

2.5.2.4.1 Reduce-side joins 

Since the actual join happens in the reduce phase, the ‘map’ phase only pre-processes the 

tuples of the input tables in order to organize them in terms of the join key. 

2.5.2.4.1.1 Map Phase 

The map function reads one tuple at a time from both of the input tables via a stream from 

HDFS. The key part of the key-value pairs is the join attribute, and the value part consists 

of a tag that identifies the input table along with the rest of the tuples being fetched.  

The output tuples of the map phase are partitioned based on their keys. It is useful to send 

all the tuples with the same key to the same reducer. Partitioning and sorting are done 

simultaneously.      

2.5.2.4.1.2 Reduce Phase 

The result of the map phase is already sorted (primary sort) on the join key. However, a 

secondary sort on the tag is done before the reduce function is called.  
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The reason for having a secondary sort is that, after the data is read through an HDFS 

stream, the connection is closed and therefore there is no access to the values. This then 

requires buffering the values. When the data is sorted on tag, which is associated with the 

base table, it is possible to read all the tuples in the first dataset in the HDFS stream but 

read the second table one tuple at a time.  

Figure 4 shows an example of reduce-side join for the following query in mapreduce: 

SELECT Employees.Name, Employees.Age, Department.Name   

FROM Employees INNER JOIN Department ON  

Employees.Dept_Id = Department.Dept_Id; 

The tables Employees(Name,Age,Dept_Id) and Department(Dept_Id,Dept_Name) are 

joined on the attribute Dept_Id. The map phase and the reduce phase are separated by a 

horizontal dotted line. In the map phase initially the tuples are transformed into the key-

value pairs. Then pairs sharing the same join key form a partition. In the reduce stage, 

each reducer receives only the pairs having equal join key values in both tables. The pairs 

are sorted on the table tags and then the pairs coming from different tables are joined and 

the result is produced. Needless to say that, in each reducer there is a one-to-one 

(reducer3), one-to-many or many-to-many or many-to-one join (reducer 1), no tuple is 

produced or there is only one or more pairs originating from one of the tables for which 

nothing is emitted. 

As evident from the description above, the costs or drawbacks involved including sorting, 

tagging tables, and probably skewed data that causes workload imbalance among the 

reducers [8]. 

This join strategy is close to the partitioned sort-merge algorithm in the parallel RDBMS 

context and is called Repartition Join in [9]. 
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2.5.2.4.2 Map-Side Join 

The sorting step described above in the reduce-side join is a time-consuming operation 

that can be skipped if the data is already sorted. 

The reduce-side join seems like the natural way to join tables using Map/Reduce. Hadoop 

offers another way of joining tables without using reducers. This allows a faster join, 

however requires that (1) all the input tables be sorted in the same order on the join key. 

This is simply for performing the least number of comparisons on the join key. (2) All the 

input tables use the same partitioner module with the same algorithm and parameters. (3) 

The number of partitions of the input tables must all be the same. A given key must be in 

the same partition in both tables so that all partitions having the same key are joined 

together. This is why the partitions in both tables have to be identical in terms of the 

number of partitions and partitioning algorithm. Hadoop default practitioner is a hash-

based one that builds the partition on the join key or set of join keys. The number of 

partitions is equal to the number of reduce tasks for the job and can be set in the Hadoop 

job configuration file [28]. 

What if the data is not sorted? The conditions can be simply satisfied with passing all the 

input data through a basic Hadoop job. The Hadoop job partitions, groups, and sorts the 

data without doing any heavy processing. The rest of the join process is the same as the 

one mentioned earlier. 

The map-side join eliminates the sorting and shuffling (distributing map outputs to 

reducers) and performs better than the reduce-side join in terms of response time; though 

we should consider the cost of running additional mapreduce jobs to prepare the data if 

the requirements are not met. 
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Map-side join is quite popular in DFS. The reason is that, unlike in a parallel RDBMS, 

where data is located near to the computation module, there is no guarantee that the tables 

we wish to join are located on the same node. In other words, the NameNode makes 

independent decisions over where to put data blocks. As a result, at the query processing 

time if the data is not on the local machine, it is first loaded into a hash table for faster 

access time.  

Map-side join is referred to as Directed Join in [9]. 

2.5.2.4.3 Broadcast Join 

Broadcast is a map-only algorithm. If one table is small enough to fit in the memory, it is 

loaded into the memory. The map function is then called for each tuple in the bigger 

table, one at a time. 

The map function probes the in-memory table and finds the matching tuples. Loading the 

small table into a hash table can further speed up this process. This approach is called 

memory-backed join in [8]. 

Hive leverages all these implementations within its own constraints and introduces its 

supported joins that we will discuss shortly. 

Our index-based join implementation targets the Hive compiler and optimizer, thus it 

leaves the underlying mapreduce framework intact.  

Blanas et al. added another join strategy to the classification above [9]. It introduces semi-

join that tries to prepare the distinct values of the join key of one table and extract values 

from the other table if there is a match in the distinct value list. It organizes three 

consequent mapreduce jobs (one reduce-side and two broadcasts) to perform the join. 

This design avoids the bandwidth needed to produce un-matched pairs at the cost of extra 
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scanning.    

Another work [8] introduces a hybrid approach for join that accomplishes the partitioning 

of the mappers’ outputs partly and avoids tagging the tables to improve the performance. 

Understanding the details of mapreduce along with its trade offs helps creating 

appropriate solutions and clarifies why traditional approaches, which may seem more 

intuitive, do not fit well in big data context.  

Now that Hadoop, as the basic layer of Hive, and HiveQL are covered sufficiently, we 

can look Hive from a higher-level view. Next chapter introduces Hive architecture.   
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Employee                                                    Department 

 

 

 

 

 

 

 

                   (Dept_Id, {table name, Name, Age})       (Dept_Id, {table name, Name}) 

                          (2, {Employee, Alex, 26})                         (5, {Department, Mkt}) 

                          (2, {Employee, Ben, 24})                          (2, {Department, Eng}) 

                          (5, {Employee, Sara, 34})                          (3, {Department, Sales}) 

 

 

  (2, {Employee, Alex,26}) 

   (2, {Department, Eng}) 

    (2, {Employee, Ben, 24}) 

 

(3, {Department, Sales}) 

 

   

                                        (5, {Employee, Sara,34}) 

                                   (5, {Department, Mkt}) 

 

 

(2, {Employee, Alex, 26})  (3, {Department, Sales})  (5, {Employee, Sara, 5}) 

(2, {Employee, Ben, 24})                                              (5, {Department, Mkt}) 

(2, {Department, Eng} 

reducer1                                    reducer2                        reducer3 

   

 

           

          Alex, 26,Eng 

          Ben, 24,Eng 

          Sara, 34, Mkt 

 

Name Age Dept_Id 

Alex 26 2 

   Ben  24 2 

Sara 34 5 

Dept_Id Name 

5 Mkt 

2 Eng 

3 Sales 

                   Figure 4 Reduce-side join example 

 

 

Partition 1 
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Partition 3 
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Chapter 3 

Hive Architecture 

In order to make changes to any system, the foundation and the interactions among its 

components have to be recognized. In Chapter 2, we studied Hadoop, the underlying layer 

of Hive. This chapter goes one level higher and describes the Hive architecture and 

justifies what, where and how changes have to be applied to implement our proposed 

technique. 

3.1 High-level View 

Hive system architecture consists of several components and their interactions, and the 

Hadoop Map-reduce framework.  The high level view of this data-warehouse architecture 

is depicted in Figure 5. 

At the bottom of Figure 5, we can see the Hadoop system. At the top of Figure 5, the 

elevated part of Hive is placed in consort with its fundamental elements. A brief 

description of these elements and their roles are as follows: 

 Meta-store: Hive system catalog contains schemas, tables, columns, and their 

types, tables’ locations, statistics and other information essential for data 

management. Since meta data should be available fast, Hive uses a traditional 

RDBMS (e.g., Derby SQL Server, MySQL Server, etc.) to manage meta data 

rather than using the HDFS. Because Java works with objects and an RDBMS 
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uses the relational model, an Object Relational Mapping (ORM), called 

DataNucleus [13], is accompanied by the RDBMS to translate between objects 

and relational schema. 

With respect to meta data availability, meta-store is backed up regularly. On the 

subject of scalability, the meta-store can become overloaded by the calls from 

mappers or reducers of a job. 

 

 

Therefore, the query compiler generates the desired meta data and passes them to 

mappers and reducers through query plan files so that mappers/reducers do not 

need to ping meta-store.  

For example, in our index-based join implementation we need to know whether a 

table mentioned in the query is indexed or not. Or we need to know if the index 

CREATE TABLE test_delimited(c1 string, c2 int) 

  ROW FORMAT DELIMITED 

     FIELDS TERMINATED BY '\002' 

     LINES TERMINATED BY '\012'; 

 

specifies that the data for table test_delimited uses ctrl-B 

(ascii code 2) as a column delimiter and uses ctrl-L(ascii code 

12) as  a row delimiter. In addition, delimiters can be specified 

to delimit the serialized keys and values of maps and different 

delimiters can also be specified to delimit the various 

elements of a list (collection). This is illustrated by the 

following statement. 

 

CREATE TABLE test_delimited2(c1 string,  

                                                        c 2 list<map<string, int>>) 

  ROW FORMAT DELIMITED 

    FIELDS TERMINATED BY '\002' 

    COLLECTION ITEMS TERMINATED BY '\003' 

    MAP KEYS TERMINATED BY '\004'; 

 

     Apart from LazySerDe, some other interesting SerDes are 

present in the hive_contrib.jar that is provided with the 

distribution. A particularly useful one is RegexSerDe which 

enables the user to specify a regular expression to parse 

various columns out from a row. The following statement can 

be used for example, to interpret apache logs. 

 

add jar 'hive_contrib.jar'; 

CREATE TABLE apachelog( 

    host string, 

    identity string, 

    user string, 

    time string, 

    request string, 

    status string, 

    size string, 

    referer string, 

    agent string) 

  ROW FORMAT SERDE  

      'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' 

  WITH SERDEPROPERTIES( 

   'input.regex' = '([^ ]*) ([^ ]*) ([^ ]*) (-|\\[[^\\]]*\\]) ([^ 

\"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^ 

\"]*|\"[^\"]*\"))?', 

  'output.format.string' = '%1$s %2$s %3$s %4$s %5$s %6$s 

%7$s %8$s %9$s'); 

 

The input.regex property is the regular expression applied on 

each record and the output.format.string indicates how the 

column fields can be constructed from the group matches in 

the regular expression. This example also illustrates how 

arbitrary key value pairs can be passed to a serde using the 

WITH SERDEPROPERTIES clause, a capability that can be 

very useful in order to pass arbitrary parameters to a custom 

SerDe. 

C. File Formats 

Hadoop files can be stored in different formats. A file 

format in Hadoop specifies how records are stored in a file. 

Text files for example are stored in the TextInputFormat and 

binary files can be stored as SequenceFileInputFormat. Users 

can also implement their own file formats. Hive does not 

impose an restrictions on the type of file input formats, that 

the data is stored in. The format can be specified when the 

table is created. Apart from the two formats mentioned above, 

Hive also provides an RCFileInputFormat which stores the 

data in a column oriented manner. Such an organization can 

give important performance improvements specially for 

queries that do not access all the columns of the table. Users 

can add their own file formats and associate them to a table as 

shown in the following statement. 

 

CREATE TABLE dest1(key INT, value STRING)  

  STORED AS  

      INPUTFORMAT  

             'org.apache.hadoop.mapred.SequenceFileInputFormat' 

  OUTPUTFORMAT  

      'org.apache.hadoop.mapred.SequenceFileOutputFormat' 

 

The STORED AS clause specifies the classes to be used to 

determine the input and output formats of the files in the 

table’s or partition’s directory. This can be any class that 

implements the FileInputFormat and FileOutputFormat java 

interfaces. The classes can be provded to Hadoop in a jar in 

ways similar to those shown in the examples on adding 

custom SerDes. 

IV. SYSTEM ARCHITECTURE AND COMPONENTS 

 

Fig. 1: Hive System Architecture 

                     Figure 5 Hive System Architecture [5] 
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covers all the partitions of a table.  Such information is stored in the meta-store 

and is requested by the query compiler only once, but the vital part of this 

information is sent to several task trackers. 

 Driver: The component that receives the query, after it is received by the UI from 

the user, and manages the lifespan of a query inside Hive. It also implements the 

notion of session handles and retrieves the session statistics. Session has the same 

meaning as it does in traditional databases: “The SQL operations that are 

performed while a connection is active form a session.” [16: chapter8, sessions] In 

Hive, we start a session as soon as we start Hive and close it by the quit or exit 

command. Below is a sample of a Hive session:  

$ cd $HIVE_HOME $ bin/hive Hive history 
file=/tmp/myname/hive_job_log_mahsa_201201271126_1992326118.

txt hive> SHOW TABLES;  
OK  
orders 

lineitem 

Time taken: 0.543 seconds 

hive> exit; $ 

In Figure 5, the Driver consists of three main components, namely, Compiler, 

Optimizer, and Executor. The compiler translates HiveQL into a DAG (Directed 

Acyclic Graph) of mapreduce tasks that are executed by the executor or execute 

engine in the order of their dependencies. The optimizer resides at some point 

between the compiler and executor to improve the performance. Our proposed 

index-based join algorithm interacts with the compiler and optimizer modules, 

which will be discussed later in more detail.  

Hive Server: Hive server or Thrift Server allows access to Hive with a single port, 

that is, it allows programmatically access to Hive remotely. Therefore it provides 
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means to integrate Hive with other applications. Thrift is a scalable cross-language 

service development framework; or simply, a binary communication protocol [7]. 

Clients in different programming languages can communicate seamlessly with 

Hive using the “thrift interface”. Here, by client we mean any source that issues a 

query. 

 JDBC/ODBC: JDBC (Java Database Connection) and ODBC (Open Database 

Connection) which are implemented on top of Thrift sever are other access points 

to Hive. These Application Programming Interfaces (API) provide access to Hive 

from other applications. JDBC is dedicated to provide access to Java applications. 

 Command Line Interface/Hive Web Interface: Shortly CLI and HWI, are the 

points to issue a query (usually by a human user) to Hive. CLI is the most popular 

way to use Hive that can work both interactively or with a batch of scripts. We 

have used CLI in our experiments. 

How the components of Hive architecture interact with each other?  

A user submits the query via Hive CLI/Hive web Interface, JDBC/ODBC, or Thrift 

interface. The Driver receives the query and passes it to the compiler. Compiler does the 

typical parsing, type checking, semantic analysis, and pings the meta-store if needed. 

Finally it generates a logical query plan that is sent to the optimizer. The optimized query 

plan is converted to a DAG of mapreduce jobs. The executor executes these jobs in the 

order of dependency on Hadoop.  Figure 6 shows the steps of this process. 

Since our work is focused on the Driver component, we further elaborate on this in the 

following section.  
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3.2 Query Processor 

The query processor is a group of components that transforms DML and DDL commands 

to a sequence of executable database operations. The components in a conventional 

RDBMS query processor and the ones in Hive along with the operations that the query 

goes through in query processor are almost the same. Next section reviews the Hive query 

processor elements. 

 

 

 

 

Figure 6 Hive components interaction 
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3.2.1 Compiler 

Needless to say, query compiler translates the query into an internal form that uses 

relational algebra notation and file system operations to be applied on the data. Hive 

compiler includes these steps: parsing, type checking, semantic analysis, plan generation, 

and task generation.  

3.2.2 Parsing 

A SQL query parser builds a tree structure out of the textual form of the query. Similarly, 

Hive parser examines the user query for syntactic errors. The parser used in Hive is an 

automatic LL parser, called ANTLR [4], which generates the Abstract Syntax Tree 

(AST). 

The main difference between a parse tree and an AST is that the former looks very much 

like the original query except that it is in a tree form, whereas AST is more abstract, in 

which tokens such as braces, parentheses, etc., do not exist in the output.  

A user can print the non-tree format of AST for any query using the EXPLAIN command.  

 

 

Figure 7 shows the AST of a sample query printed on the Hive Command Line. Figure 8 

represents the same query in a tree structure.  

                 Figure 7 Hive EXPLAIN command 
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AST consists of Hive tokens and literals (column names, table names, etc.).  AST is quite 

useful for understanding what Hive does to a user’s query. 

The TOK_QUERY is the label of the root used in all ASTs generated for all queries, and 

represents the query. (TOK_INSERT (TOK_DESTINATION (TOK_DIR 

TOK_TMP_FILE)) is shown up in the AST whenever there is an output to be displayed 

on the screen; though the output is printed on the screen, Hive first writes the output of a 

query to a temporary file. This is why this instruction is present in the AST. 

 

 

Since AST becomes an input for the Semantic Analyzer and the query is transformed 

from one internal representation to another in the subsequent phases, changing AST 

          Figure 8 Abstract Syntax tree 
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requires changing all other data structures that will be used to maintain the query 

representation in next steps. What is more, the AST only holds the query text and divides 

the query elements to Hive tokens and literals. The constituents of the AST do not carry 

other meaningful information and the AST is not changed unless there is a change in the 

query syntax. Accordingly, our index-based join implementation leaves the AST as is. 

3.2.3 Type Checking and Semantic Analysis 

Checking type compatibilities and flagging out any semantic error is the core 

responsibility of the Semantic Analyzer, e.g., verification of the column or table names, 

performing *, type checking, implicit type conversion, collecting information about 

sampling (if the table under consideration is sampled) and partitions (if the table under 

consideration is partitioned; such information could be used for pruning the partitions). 

3.2.4 Logical Query Plan Generation 

A conventional RDBMS performs such semantic checks via the “query pre-processor.” It 

also does some transformations to turn the parse tree to query plan tree whose nodes are 

relational algebra operators. In Hive, this transition happens more smoothly by using 

another internal representation of the query in between the AST and the operator tree. 

Hive Semantic Analyzer transforms the AST to an internal representation of the query, 

called Query Block (QB), which is still block based and not an operator tree. The 

compiler converts nested queries into parent-child relationships in a QB tree and relevant 

parts of the AST are reorganized. This makes it easier to transform the AST to Directed 

Acyclic Graph (DAG) of operators.  
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The operators consist of  (1) relational algebra operators and (2) Hive specific operators. 

Table 2 lists all operators followed by functionalities of some hive-specific operators.  

3.2.5 Query Optimization 

The DAG of operators is passed to the optimizer to choose the best possible sequence of 

operations on the actual data in the query plan. Most RDBMSs today benefit from a cost-

based query optimizer. Hive offers a simple yet rule-based optimizer in which the 

operator tree is recursively traversed and broken up into a series of mapreduce serializable 

tasks, each encapsulating a part of the query plan, suitable to be executed on HDFS. The 

plan also carries the required samples/partitions if specified as such by the query itself. 

Hive optimization includes a chain of transformations in which the operator DAG output 

of one transformation step is fed as an input to the next. The starting point to change the 

optimizer or add new optimization algorithm is the Transform interface. To do so, one 

should implement the Transform interface using their custom logic to add it to the chain 

of optimizations in Hive Optimizer. Hive optimizer does nothing but invoking all the 

transformation, one after another, to alter the query plan. 

Figure 9 is a generic optimizer showing the optimization steps along with its components. 

In the source code, each element is an interface (an abstract type) so that each 

optimization can use its own implementation. The roles of these modules are as follows:  

1. Node: This interface implements the nodes in the operator DAG. In the Hive 

architecture, a Node could be an AST node, an Operator (Table 2), a Task (Table 

3), or an ExprNodeDesc (Table 4). ASTs are the tokens generated during the 

parsing phase mentioned earlier. Tasks are serializable HDFS tasks that will be 
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discussed in Section 3.2.7. 

ExprNodeDesc is the node used to represent compartments of an expression in a 

query such as columns, constant values, null values, fields of a struct and a generic 

function.  

2. GraphWalker: This interface facilitates traversing the operator DAG. In Figure 9 

we see the graph walker fetching each Node for visiting and keeps track of the 

ones already visited. 

3. Dispatcher: This component is basically in charge of rule matching and, in case a 

certain rule is matched with a Node, it calls the corresponding processor. In Figure 

9, “rule  = dispatcher.getMatchingRule()” checks whether there is a rule matched 

for the node being visited. If it returns null, it means either there is no rule 

associated with the current Node or the condition in the rule is not satisfied.  

4. Rule: “Rule.java” is an interface implemented by a single class to specify a rule 

using the aid of regular expressions notation. Since the elements in the DAG are 

operators, the basic tokens used in such regular expressions are also of the same 

type. For example, the rule “TS.*RS” denotes TableScanOperator followed by any 

operator for any number of times, followed by “ReduceSinkOperator.” Our index-

based optimization applies one rule specified by “TS%” that simply tries to find a 

match for “TableScanOperator.” The reason is that “TableScanOperator” points to 

the base table, which is the primary entity that has to be located in the query. 

5. Processor: This interface describes the computation required for a specific rule, 

for example, to use index for the query mentioned in the Node section. In a 
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nutshell, the processor includes the optimization logic. 

To illustrate the optimization components with representative examples in Chapter 4 we 

will consider a few optimizations with index in Section 4.2.1 for accelerating a query with 

a WHERE clause and in Section 4.2.2 for accelerating a query with a GROUP BY clause.  

 

 

Table 2 consolidates the Hive physical operators that extend the abstract Operator.java 

class. The functionality of JoinOperator, GroubByOperator, LimitOperator, 

SelectOperator, and UnionOperator can be intuitively understood. CommonJoinOperator 

consists of various join implementations including MapJoinOperator. FilterOperator is the 

implementation of the so-called WHERE clause. UDFOperator implements User Defined 

               Figure 9 Hive optimization flow [5] 
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Functions to be applied on the table columns. Hive specific operators like Terminal 

Operator contains implementations for operators such as ReduceSinkOperator, which is 

practically the reduce operator. Other operators in Hive are more or less used internally. 

 

 

 

 

 

 

 

 

Table 3 shows the serializable Hive tasks or jobs directly executed on HDFS. In Table 3 

CopyTask and MoveTask are file system tasks. BlockedMergeTask is used in merging 

RCFiles. DDLTask contains all the DDL commands including create, alter, drop, alter, 

add and rename of a table/partition/database/view and more. 

ExplainTask implements the EXPLAIN facility. FunctionTask is used for creating various 

functions including User-Defined Functions, Generic User-Defined Functions, and User-

Defined Aggregate Functions. MapRedLocalTask and ConditionalTask are used in 

mapjoins discussed in Section 4.3.1.2. 

In Table 4, the expression nodes from top to bottom represent a column, a constant value, 

Hive physical operator 

Collect operator 

CommonJoin operator 

ExtarctOperator 

FilterOperator 

ForwardOperator 

GroubByOperator 

HashTableDummyOperator 

LateralViewForwardOperator 

LateralViewJoinOperator 

LimitOperator 

ScriptOperator 

Terminal Operator 

SelectOperator 

TableScanOperator 

UDFOperator 

UnionOperator 

Table 2 Hive Operators 
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a field of a struct, a function defined on the column values (such as an aggregate 

function), and a null value, respectively. 

These nodes represent the SELECT list of columns or the conditions mentioned in the 

WHERE clause. 

 

 

At the end of the optimization phase, the DAG of operators is converted to a DAG of 

tasks, each of which is either a map/reduce task or an HDFS task encapsulating a part of 

the query plan. 

 

 

 

3.2.6 Physical Query Plan Generation 

The logical query plan is split into several map/reduce and HDFS tasks. At the end of this 

stage the physical plan looks like a DAG of tasks with each task encapsulating a part of 

the plan.  

3.2.7 Query Execution 

When all the prerequisites of a task have been executed, it can be executed. A mapreduce 

ExprNodeColumnDesc 

ExprNodeConstanctDesc 

ExprNodeFieldDesc 

ExprNodeGenericFuncDesc 

ExprNodeNodeNullDesc 

          Table 3 Hive expression nodes 

BlockMergeTask 

ConditionalTask 

CopyTask 

DDLTask 

ExecDriver 

ExplainTask 

FunctionTask 

IndexMetadataChangeTask 

MapRedLocalTask 

MoveTask 

StatsTask 

          Table 4 Hive serialization tasks 
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task first serializes its part of the query plan into the query plan file called plan.xml. This 

file is added to the HDFS job cache and instances of ExecMapper and ExecReducers are 

spawned using Hadoop. ExecMapper and ExecReducer are classes which de-serialize 

plan.xml and then execute the relevant part of the operator DAG. The output is written to 

a temporary file. If the query is DML, this temporary file is then moved to the desired 

location [5].  

In order to clarify the steps a query goes through in Hive and the Hive architecture 

modules, we next present the lifecycle of a sample query.  

3.2.8 A Sample Query Life Cycle 

The query under investigation is a variation of the standard SQL syntax. Hive offers a 

multi-table INSERT in which data is scanned only once (this is why the FROM clause below 

comes first) yet the result can be split into different tables. 

FROM (SELECT a.status, b.school, b.gender FROM status_updates a 

JOIN profiles b 

ON (a.userid = b.userid AND a.ds='2009-03-20' )) subq1 

 

INSERT OVERWRITE TABLE gender_summary PARTITION(ds='2009-03-20') 

SELECT subq1.gender, COUNT(1) GROUP BY subq1.gender 

 

INSERT OVERWRITE TABLE school_summary PARTITION(ds='2009-03-20') 

SELECT subq1.school, COUNT(1) GROUP BY subq1.school 

The query plan is exhibited in Figure 10.  There are 3 map/reduce jobs generated to 

execute the query. Nodes are physical operators and the arrows represent the flow. The 

last line in each node shows the output schema of the operator. 

In the first map job on the left first the table status_updates with the columns userid, 
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status and ds (the partition) becomes available for reading in the TableScan Operator. 

Through the FilterOperator the data in the desired partition is fetched which is then sent to 

the reducer by ReduceSinkOperator. The partition cols mentioned in the 

ReduceSinkOperator specifies the column on which the map outputs are classified. Note 

that this is different from the logical partitions defined over the table. The partition 

column here is the join key. Map outputs are split into classes in a way that each class 

holds the key-value pairs having the same key. The same processing happens for the table 

profiles except for the filtering. 

The JoinOperator receives data from both tables and performs the join using the predicate 

col[0.0] = col[1.0].  Practically it ensures that the tuples come from different sources. 

Tables are tagged by 0 and 1 before they are passed to the JoinOperator. The component 

SelectOperator fetches status, school and gender fields accordingly from all the 

columns. The component GroupByOperator on the left hashes the output of the join on 

school (key: school-value: 1) and the one on the right does the same thing on gender 

field. Afterwards the FileSinkOperator writes these into two temporary files tmp1 and 

tmp2. 

The TableScanOperator in Map2 and Map3 reads the entire sequence of data from the 

file. The ReduceSink sends the pairs with the same school to the reducers on the left 

GroupByOperator and the pairs with the same gender value to the right one. The 

GroupByOperator collects the pairs with the same key in each group and sends them to 

SelectOperator which fetches the field and the number of tuples for each value of that 

filed. Finally the component  
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FileSinkOperator writes the outputs to the tables school_summary and gender_summary.  

Realizing the different modules and their interactions in Hive is the fundamental step in 

building insightful solutions that will not only break the architecture but can also fit well. 

Moreover, such solution can be easily analyzed to recognize potential improvements. We 

achieved a clear picture of Hive architecture out of the few established publications and 

reverse engineer of Hive code.  Our proposed index-based join relies on this architecture 

and complies with its conceptual standards, as we will see in the next chapter. 
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               Figure 10 Query plan for a multi-table insert transaction [5] 
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Chapter 4 

Hive Index-based Join 

4.1 Hive Optimization 

Query optimization aims at selecting the best plan for executing the query. In relational 

databases, an SQL query is translated into relational algebra followed by compile-time 

and run-time optimizations before it is executed. 

Hive query optimization is a part of its query processing module, which instead of 

relational algebra uses mapreduce implementation of relational operators. It is worth 

mentioning that Hive only supports compile-time optimization for Hive. Even though 

some optimizations like the index-based operations seem intuitively run-time 

optimizations, they are indeed compile time techniques.  

An operator tree is broken into several tasks to be executed on mapreduce. A physical 

optimization takes a task and modifies and/or optimizes it. Physical optimizations in Hive 

implement the interface PhysicalPlanResolver.java and non-physical optimizations 

implement the interface Transform.java. The optimization flow in both interfaces is the 

same, as elaborated with examples in Section 4.2. 

Before we get into technical details of the optimizations, we introduce some of the Hive 

optimizations using the operator tree transformation notion as follows: 

 Column pruning: Only the required attributes are projected out of a row. Required 
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columns are mentioned in various clauses of a query, e.g., SELECT, WHERE, GROUP 

BY, etc. 

  Predicate pushdown: pushes a predicate down to the TableScanOperator so the 

rows get pre-filtered. 

 Partition pruning: the same as column pruning, but for partitions. 

 Join re-ordering: Keeps the smaller table in memory and streams out the larger 

one. 

 Handling skews in GROUP BY: randomly distributes the data, performs partial 

aggregations and then re-distributes them based on the GROUP BY columns. 

 Hash-based partial aggregations: performs local hash-based GROUP BY in the 

mapper. Reducer has to only merge these partial aggregations. 

The central idea in the implementation of the above optimization is to reduce read/write 

or data transfer. 

4.2 Related Work 

Hive project uses JIRA [22] as its issue-tracking software and issues are addresses in the 

form of “HIVE-issued code.” There are two main features regarding index-based 

optimization which are described first. We will then review other works related to Hive. 

4.2.1 Accelerating a query with a WHERE clause with 

index 

HIVE-1644 [23] is the implementation of a query containing a WHERE clause that 

leverages the index to fetch the tuples. The main questions are: when/where the 



 

 

 

 

62 

optimization is applied, how it is applied, what the constraints are, and how it can be 

triggered?  

HIVE-1644 is a physical query optimization. As mentioned in the Hive architecture, the 

optimizer receives an operator DAG and performs the enabled or possible optimizations. 

This means optimization is applied at the end of or during the logical plan generation 

stage. The case for HIVE-1644 is slightly different. As a physical optimization it happens 

more precisely after the logical plan operation when the complete operator tree is being 

transferred to the tree of tasks, but Hive optimizer and physical optimizer have the same 

components we already discussed and consequently the tree goes through similar steps. 

The physical plan optimizer invokes all the physical optimizations in turn.  

As all previously discussed optimizations implement the Transform interface, physical 

optimizers implement the PhysicalPlanResolver interface. For HIVE-1644, 

IndexWhereResolver.java implements PhysicalOptimizer.java as the start point. 

Afterwards, the appropriate dispatcher, IndexWhereTaskDispatcher.java, is passed to the 

graph walker to traverse the tree. The dispatcher looks for the rule “TS%,” but only those 

TableScanOperators that point to tables being indexed. This is simply done by querying 

the meta-store for the indexes on all the TableScanOperators in the query plan. Upon a 

positive response from the meta-store the corresponding processor IndexWhereProcessor 

is called. It worth is mentioning that the TableScanOperator used for obtaining the 

indexes, is also sufficient to recognize the WHERE clause. In the operator tree, WHERE 

clause, expressed by ExprNodeDesc node, is a child of the TableScanOperator, which is 

represented by Operator node. The “IndexWhereProcessor” is used to extract the 

predicate out of TableScanOperator, check the coverage of the indexes over the partitions 
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(if any), check if the table size is greater than 5GB (configurable), and if all these 

conditions hold, it calls CompactIndexHandler because the query can benefit from the 

compact index type. CompactIndexHandler first decomposes the predicate to the parts 

that can be processed by the index and the part that cannot benefit form the index. It then 

re-writes a query upon the index table using the relevant parts of the predicate. The re-

written query is compiled and the produced root tasks replace the main query root tasks. 

As an example, let us consider the query below: 

INSERT INTO intermediate_file_name 

SELECT name 

FROM students 

WHERE age > 22 AND major = 'CS'; 

If a compact index is already built on attribute major and the optimization is set to true, 

this query is internally re-written to: 

SELECT _BUCKETNAME, _OFFSETS 

FROM students_index 

WHERE age > 22 AND major = 'CS'; 

As this is not the original query, the intermediate results should be kept somewhere. The 

INSERT part takes this responsibility. _bucketname and _offsets are columns of the 

index table and are used to fetch the corresponding values from the SELECT clause on 

table students.  

This optimization should be enabled by the user through setting the configuration variable 

HIVE.OPTIMIZE.INDEX.FILTER to true.  

HIVE-1644 only allows the part of the WHERE clause that contains pure conjunctions over 

binary expressions, i.e., comparing a column reference with a constant value. Another 

limitation is that all columns must refer to the same table (no joins or sub-query). If the 

suitable part of the predicate contains a single condition, such as the query above, Hive 
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searches the index using a binary search.  

HIVE-1644 is not applicable for joins. The basic idea it uses is to look for a single 

constant value or a set of such values all at the same time. The join is supposed to 

compare all relevant partitions of both tables (in case we have two tables) rather than 

comparing the data with a single constant value.   

In Hive 0.8.0 there are four physical optimizations in addition to HIVE-1644 including: 

mapjoin and automatic conversion of the common join to mapjoin, skew join, and meta 

data only optimization which optimizes queries that reference only partition columns in 

the WHERE clause. More precisely, it decides which TableScanOperator points to only 

partition columns and uses metadata to execute the query. An example of a query that can 

benefit from metadata optimization is as follows: 

CREATE TABLE employee (empNo int, empName string)  

PARTITIONED BY (deptNo);  

SELECT COUNT (DISTINCT deptNo) FROM employee; 

4.2.2 Accelerating a query with a GROUP BY clause 

using index 

The goal of HIVE-1694 is to accelerate queries containing GROUP BY clauses. As in 

HIVE-1644, it uses query re-writing technique, but its core design is not limited to re-

writing only. Here is an example of a query and its rewritten form using HIVE-1694. 

 

SELECT COUNT (KEY) 

FROM TABLE  

GROUP BY KEY 

 

SELECT SUM (_COUNT_OF_KEY) 

FROM IDX_TABLE 

GROUP BY KEY 

Though this optimization seem intuitively as physical, in the code it is not organized in 
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the physical optimization package, and as a result its optimizer implements the Transform 

interface. 

In its optimizer called RewriteGBUsingIndex.java, it first checks if the query meets all 

the constraints such as:  

1. The presence of the index over the join key 

2. Validation of the index 

3. Coverage of the index over partitions (if any) 

4. Having only one table (no joins) in the query 

5. Having a single COUNT (index_key) function in the query 

6. Addressing barely the columns that are in the index key 

Clearly, the optimization is applied on the operator DAG. Unlike HIVE-1644 that adds up 

to the operator tree, HIVE-1694 only manipulates the elements inside the operator tree in 

the sense that no additional minor query and its produced task tree is plugged into the 

current operator tree. Instead, all the data structures containing the base table are modified 

so that they point to the index table. This apparent inconsistency between the DAG 

operator and other data structures created before the operator tree is built, is not causing a 

problem since there is no dependency on those previous data structures once the query is 

executed. In addition, the SELECT clause and GROUP BY clause are re-written completely to 

fetch the data from the new index table. 

HIVE-1694 queries can also have a WHERE clause or a sub-query, but again all the six 

constraints should be satisfied to benefit from the index. 

Table 5 exhibits the results of this optimization on a cluster of 2 server class machines 

each of them having the specifications: CentOS 5.x Linux, 5 SAS disks in RAID5 
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and16GB RAM and using TPC-H Data[34] lineitem table as benchmark. A query used to 

test this approach is:  

SELECT YEAR(L_SHIPDATE), MONTH(L_SHIPDATE) AS MONTH_BKT, COUNT(1) 

FROM lineitem 

GROUP BY YEAR(L_SHIPDATE), MONTH(L_SHIPDATE); 

 

HIVE-1694 imposes a plenty of constraints and works for a limited number of queries; 

nevertheless, they have added a number of new rewrite assist methods and a skeleton 

generic rewrite engine that helps being inspired for implementing further optimizations. 

Neither HIVE-1644 nor HIVE-1694 aim at accelarating joins; both can only support one 

single table in the query FROM clause.  

4.2.3 Using Indexing over mapreduce 

Hive consolidates all necessary facilities required to perform queries over mapreduce. 

This means one can issue a query without Hive by writing their own map and reduce 

methods and managing the query lifecycle themselves.  

A recent work integrated the index into mapreduce framework [3], which tries to   reduce 

the number of maps generated to access the initial data using an index with random 

access. The index structure is a B+-tree, which is not built using a conventional create-by-

insert in a top-down fashion. Instead, since the data and accordingly the index is not 

supposed to be updated, the data is read in batch-mode using the mapreduce framework 

itself; afterwards it is sorted on the (index_key,offset) pairs and written sequentially to a 

file. These pairs form the leaf nodes of the index tree. In the next step, all the leaf nodes 

are scanned and the intermediate index nodes are created in a bottom-up manner. In a 

 1M 1G 10G 30G 

Index-less 24.161 76.790 506.005 1551.555 

Index-based 21.268 27.292 35.502 86.133 

                  Table 1 Query execution times (seconds) for HIVE-1694 [20] 
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conventional B+-tree, pointers connect the leaves while this method keeps all the leaves in 

a consecutive space. 

In this work, given a query, the index is accessed twice to locate the start point and the 

end point in the leaves. The nodes between these two positions satisfy the query. Map 

jobs are generated and attached to blocks of data covered between the start point and the 

end point. Each map first scans the index and then retrieves the records using the offset. 

In a conventional B+ tree, since leaf nodes point to each other there is no need to use the 

index to locate the end nodes. Simply the block in the sequence is scanned until a record 

with a key bigger than the value of the end point is found.  

Hive index structure is slightly different from the one described in [3]; in the sense that 

the index creation in Hive ends by writing the pairs (index_key, offset) to the index file. 

This makes the index creation more efficient with respect to time and space, even though 

there is no formal evaluation on the index creation time or the space requirement in this 

work. In case there is a query like: 

SELECT * 

FROM table_name 

WHERE column_name = column_value; 

Hive simply performs a binary search on the sorted index keys rather than traversing a 

tree that is built over the sorted keys.  

A predominant alteration this approach brings to Hive index is the random access it uses. 

Although they have applied paging techniques instead of a less efficient method of 

reading one record at a time, there is no guarantee that the consecutive offsets in the index 

drop into the range of the page and finally this number of I/O disks dominates the 

response time. It is worth mentioning that the cost-model in [3] considers all these factors 
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completely.  

Not astonishingly, the proposed method outperforms when the selectivity of the predicate 

is low. Their best result over a 20GB dataset and a cluster of 8 nodes is more than two 

times better than the brute-force full scan assuming the selectivity is less than 40% and 

the I/O volume ratio is less than 80%. This is totally in contrast with the Hive index 

functioning in which the performance dramatically increases as the selectivity ratio 

reduces and the data grows.  

4.2.4 Query optimization using statistics 

Statistics play a key role in the context of query optimization. Statistics either help the 

optimizer to choose the more economical plan such as join reordering or serve as a query 

output like the COUNT(*) clause in a query. Hive provides table and partition level 

statistics as well as column-level statistics.  

A recent work proposed storing column-level meta data in Hive tables to benefit from 

during query execution [19]. Column-level statistics or more specifically, histograms that 

exhibit value distribution within a table provide more accurate information than just the 

table size to estimate the output size. A new table is added to Hive meta-store that holds 

the number of distinct values, number of null values, min and max values and most 

frequent values as its fields.   

In their experiments [19], Gruenheid et al. perform join re-ordering, with consideration of 

a rough estimation over either the final output size or intermediate tables, as the case 

study.  

There are few weaknesses about their work as follows: 

1. Collection of meta data at any levels like partition, table or column imposes extra 
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overhead in terms of time and space for the database management system though 

it is not frequently updated. 

2. The implemented component is rather a separate component than an elaborately 

embedded constituent in Hive. Other optimization techniques require more 

sophisticated implementation that requires additional detailed knowledge over the 

architecture and dependencies. 

3. The time taken to extract the statistics, done by issuing direct queries to Hive, is 

totally neglected.  

This work provides enough functionality and satisfactory results to determine whether or 

not to use the approach. More importantly, their mapreduce-specific cost formula is very 

precise. When a computation can not be accomplished in a single mapreduce job, a 

sequence of several mapreduce tasks have to be carried on and the intermediate results of 

a reduce is written to the disk to be read for the next map or reduce operation. Their 

proposed cost formula takes the extra I/O to write to and read from intermediate files into 

consideration. 

Column level stats can provide a rough estimation of the query selectivity to decide 

between the index-based plan or the regular one. The cost-based query optimization area 

in Hive has a lot of opportunities to work on. 

4.3 Hive Joins 

Hive joins syntactically conform to the classic ANSI join, but support only equi-joins. In 

equi-join, the predicates only check for equality of one or more pairs of attributes from 

different tables. These equality expressions can be combined by the logical AND.  
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Join key is the attribute on which two or more tables are being joined in the join 

predicate. The predicate is recognized by the ON keyword. 

The reason for no provision of theta-join in Hive is that it is a difficult operation to be 

implemented over mapreduce. An algorithm called “1-bucket” theta is recently proposed 

to process arbitrary joins over mapreduce [31], which uses statistics (input cardinality), 

though it is not incorporated in Hive yet. 

Hive predominantly uses one mapreduce job for each pair of attributes to join, working 

from left to right. However, if the join key is common between subsequent joins, for each 

pair of those joins that share the common join key, it uses only one mapreduce job. 

In a sequence of joins, Hive buffers tables from left to right except for the last one, which 

is streamed. Therefore, it is economical to consider the largest table at last. If not, the user 

can give a hint to the compiler as to which table to stream. For example, in the following 

query, table “a” will be streamed. 

SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val  

FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1); 

4.3.1 Implementations of Hive Joins 

In practice, a join query can be executed using diverse implementations. Either the user, 

with prior knowledge about the data, or the Hive compiler, chooses the implementation to 

use. Different data distributions, tables’ sizes, and tuples’ order in tables can create 

different use cases where a particular join implementation happens to be more efficient. 

This section describes Hive join implementations and the use case in which each shines.  

A review on the Hive join implementation in the next section is useful to see where our 

implementation fits in and how it is related to other joins.  
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4.3.1.1 Common Join 

Common join, illustrated in Figure 11, is the basic join implementation on mapreduce 

framework and works for most of the use cases. In Figure 11, tables X and Y are read 

through some mappers and the key-values are extracted and passed to the shuffle stage in 

which they are merged, sorted, and finally sent to some reducers to produce the results.  

CommonJoin is the default join implementation in Hive. 

 
 

4.3.1.2 Map Join 

The shuffle stage in Figure 11 is a quite expensive phase and can be disregarded when 

one of the tables is small enough to fit into the mapper memory. As it can be seen in 

Figure 12, map join is a map-only job in which the small table is copied into all mappers 

and some portions of the big table is loaded into the corresponding mappers. Being 

accessed from numerous mappers, the small table turns out to be a bottleneck for map 

joins. To overcome this, the small table is converted to a hash table locally, compressed 

and archived in the Hadoop distributed local cache. The hash table can be duplicated as 

Common Join 

Task A 

Mapper 

Mapper 

Table X 

Mapper 

… 

… 

Mapper 

Mapper … 

Mapper 

Reducer 

Table Y 

Shuffle 

Common Join Task 

             Figure 11 Common Join [24] 
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many times as needed by changing the replication parameter to ensure all mappers can 

read the small table data from their local disks.  

As mentioned, map join can be accomplished if a user gives a hint to the compiler poiting 

out table the small one. If hint was not given, Hive tries to convert the common join into 

the map join automatically. In this case, a conditional task is performed between Tasks A 

and C in Figure 12. In the compile time, there is no precise information on the size of the 

result, however all possible solutions to join the tables can be generated. At run-time, the 

conditional task performs the optimal execution based on the size of the result table using 

the already generated solutions at the compile time.  

It is not always the table size that leads to a common join execution. If there is plenty of 

join keys, we possibly run out of memory, in which case, the task is automatically aborted 

to perform the original common join. 

This strategy, though showed to be the fastest in [24], does not yield the best performance 

for all cases. Even though the hash table is compressed and archived, large hash tables 

can become potential bottleneck. Moreover, until the hash table is not copied to a mapper, 

it cannot start processing. 

 4.3.1.3 Bucket Map Join 

In data warehousing framework, there are arguably large tables for which map join cannot 

be a suitable solution. In Section 2.2.4, we introduced the notion of buckets. A bucket is a 

fairly smaller piece of data compared to tables and table partitions and is a candidate for 

map joins. 

Hive requires the user to manually enable bucket map join using the following 

instruction: 
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SET HIVE.OPTIMIZE.BUCKETMAPJOIN = TRUE;  

This is because bucketing itself is not done automatically and the user has to ensure a 

table is bucketized and the buckets are properly populated. 

 

 

 

 

There are certain conditions to be satisfied before performing bucket map joins. First, 

tables must be bucketized on the join keys. This is because the whole idea of bucket map 

join is to avoid reading the entire tables, but only the relevant buckets. Second, the 

number of buckets of a table must be a multiple of that of the other table. Note that every 

table involved in the join must be bucketed. Figure 13 illustrates a bucket map join 

process. 

4.3.1.4 Merge sort bucket map join 

Bucket map join limits the size of a bucket to the available main memory capacity. The 

                     Figure 12 Map Join [24] 
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number of mappers cannot exceed the practical number of mappers per job determined for 

each cluster.  

If the tables have the same number of buckets and they are sorted, a sequential scan of the 

tables is sufficient to accomplish the join. This is the idea in the merge sort bucket map 

join that outperforms bucket map join by avoiding the costly shuffle and reduce tasks. 

The only requirement here is that the join key columns, sorting columns, and bucketing 

column must all be the same.   

 

 

Like Bucket map join, this technique is not triggered automatically. The following 

commands are used to trigger it: 

SET HIVE.INPUT.FORMAT = 

ORG.APACHE.HADOOP.HIVE.QL.IO.BUCKETIZEDHIVEINPUTFORMAT; 

SET HIVE.OPTIMIZE.BUCKETMAPJOIN=TRUE; 

SET HIVE.OPTIMIZE.BUCKETMAPJOIN.SORTEDMERGE=TRUE; 

A use case of this implementation by Facebook is rolling aggregates, which used to be 

                 Figure 13 Bucket Map Join [24] 
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done all at once, but now it is computed incrementally on a daily basis and then merged 

using the merge sort bucket map join. 

4.3.1.5 Skew Join 

The first step to do a join is to read the data form tables. This ends up in extracting the 

key-value pairs form the data in a sorted format (if the data is not already sorted) such that 

all pairs sharing the same key will be sent to the same reducers. Since the original data 

may not be distributed uniformly, it is possible that a table is highly skewed, i.e., a 

specific key corresponds to a large number of values. The skewed key is basically a table 

column or the join key. When the data is skewed, all other reducers finish quickly except 

for the one that receives the skewed key, which has become the bottleneck.  

The basic idea of skew join is, if a table or a portion of a table fits into the memory, this is 

b-K1 in Figure 14, we build an in-memory hash table to perform a map join with the table 

or the portaion of a table that is highly skewed (a-K1 in Figure 14). For non-skewed 

values, nothing changes. The results of these two phases (the one produced out of the map 

join and the ones produced without the map join) can be merged to make the final result. 

Skewed join helps if a small number of skewed keys covers a major percentage of the 

whole data. Figure 14 illustrates this case.  

As it can be seen in the figure, unfortunately tables A and B have to be read twice. The 

first time they are read to perform the join and the second time they are read partially to 

do the map-join. Furthermore, the results of the map-join and the ones coming from the 

reducers have to be read and written twice to merge for producing the final result. A 

solution is to first read B and build the hash-table, and then read A. For the skewed key, 

take the hashed-B and execute a map-join. For the non-skewed keys, send them to the  
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reducer to do a normal join. This strategy reads only B twice that is the non-skewed table.  

Skew join has to be prompted manually by the user using the statements:  

SET HIVE.OPTIMIZE.SKEWJOIN = TRUE;   
SET HIVE.SKEWJOIN.KEY = SKEW_KEY_THRESHOLD; 

A problem here is the Hive user should have prior information about the data distribution 

and skewed keys in order to take advantage of the approach.  

4.4. Proposed Index-based Join 

To provide a background for our proposed technique, we begin by defining join in the 

context of this project with the aid of basic relational algebra. Afterwards we cast this 

definition onto the query we consider to optimize. 

4.4.1 Two-way joins 

 Given two relations A and B, a two-way join is a dataset obtained by combining tuples  

Skew Join  
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            Figure 14 Skewed Join [24] 
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a  A and b  B, such that A.c = B.d, where c and d are column values in A and B 

respectively on which the join is to be performed. This is called equi-join in database 

terminology and is denoted by: 

A⋈ c=d B 

The two-way join can be extended in a straightforward way to join more than two 

relations, called “multi-join:”  given n relations R1, R2, ..., Rn, a multi-way join 

produces combination of tuples r1 ∈ R1, r2 ∈ R2, ..., rn ∈ Rn, such that r1.a1 = r2.a2 = ... 

= rn.an. The join attributes are a1, a2, ..., an which are column values in R1, R2, ..., Rn 

respectively. This join is denoted by: 

R1⋈ a1=a2 R2⋈ a2=a3 ...⋈ an-1=an Rn 

4.4.2 Objective 

The aim of our work is to speed up a two-way join query expressed in HiveQL as below 

SELECT column_list 

FROM table1 JOIN table2  

ON (table1.col1 = table2.col1) 

            [WHERE ...] 

[GROUP BY…]; 

 

in which WHERE and GROUP BY clauses are optional in the queries we consider. All our 

changes are internal and the syntax of the query remains intact. Though, our 

implementation can be easily modified to work for mutiple tables. 

4.4.3 Index-based Joins vs. Index Joins 

The existing indexes in Hive are built only over single tables. There is an interesting idea 

of “join indexes” for materialized views once Hive could support such structures [21]. An 

implication of this definition, we note, would be that an assembly of index built over 
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more than one table could be used at the time of a join. In RDBMS, a join index is a pre-

computed access structure that maintains pairs of identifiers of tuples from two or more 

relations that would match in case of a join. This assembly is used for the tables that are 

updated infrequently and thus would be a suitable optimization approach in Hive. A 

sample design for an index join is to keep unique identifiers of the matched tuples in the 

same structure and cluster them on either of the unique identifiers of one or both tables. 

Though, one should keep in mind that current implementation of Hive does not support 

the concept of primary keys [10, chapter 9, Unique Keys and Normalization], which are 

considered the unique identifiers of tuples in RDBMSs. For further details on index join 

please refer to [25][36].  

4.4.4 Design  

This optimization flow conforms to the regular optimization flow we already described.  

The optimizer receives an operator tree and invokes all the possible or enabled 

optimizations one by one. Each optimization class implements the Transform interface 

and transforms the operator tree into an optimized one. In our implementation, 

“RewriteJoinUsingIndex.java” implements the Transform and it is inside its transform() 

method that the query is examined carefully to ensure it meets the requirements. Figure 

14 is an abstract representation of what happens inside the transform() method. In Figure 

14, the query plan is given to the optimizer in the form of a DAG of operators. First, the 

optimizer searches for a JoinOperator. If this step is omitted the optimization is enabled 

for any query, which may fail at last. Depending on the different operators, different 

decisions have to be made. As mentioned earlier in Related work in Section 4.2, a query 

containing a WHERE clause uses a distinguishably different design to benefit from the 
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index from the one a query containing a GROUP BY does. Second, the optimizer examines 

the query for a two-way join. Our technique can be easily extended to support multi-way 

joins, by leaving this check out, but since we have limitations over the SELECT column 

list, the SELECT columns turns out to be a small subset of all provided columns. 

Depending on the use case (the desired columns to be projected) our implementation can 

work for a two-way or  multi-way join. In the next step we get the operator 

TableScanOperator which points to the table, it should manipulate. We have to check that 

the table has an index and the index is valid. The optimizer iterates over the indexes and 

checks if the index is valid. An index is valid if 1) it is of type compact 2) it covers all the 

partitions of the table. The bitmap index obviously does not fall into this kind of 

optimization. In practice, normally the join key is a column with considerable number of 

values, which makes the bitmap index an improper choice. About the partitions, the query 

is inspected for having any references to partitions. Partitions are those previously known 

to user, distinct valued and meaningless columns, in the sense that they do not hold real 

data. Thus the partitions are not referred to in SELECT clause. They can appear in the 

WHERE or GROUP BY clauses. In our implementation, the optimizer checks whether the 

WHERE clause contains any partitions and returns both the confirmed and the unknown 

partitions. Confirmed partitions are the ones that satisfy the condition in the WHERE clause 

obviously the unknown partitions are the ones that their usability becomes clear only at 

run-time. The index validity check returns true if a table is not partitioned, or if it has 

partitions, they are not mentioned in the WHERE clause. In case it has partitions and they 

are mentioned in the WHERE clause, it returns true if all the mentioned partitions are 

covered by the index. After this step the optimizer attempts to re-write the query. 
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In the Hive architecture, introduced in Chapter 3, we studied the normal flow of the query 

optimization. We described the “rules” and “rule matching” which are used to invoke the 

relevant optimization logic, called processor. If the query goes through all the steps in 

Figure 15 to ensure that the optimization can be applied, what is the role of a rule? In 

other words, between the rule and the examination process in Figure 15 which one 

decides to apply the optimization? Figure 15 ensures the query meets all the requirements 

of the specific optimization. Rules, expressed by regular expressions, are unable or 

sometimes too complex to decide suitability for the optimization. On the other hand, they 

are fast in recognizing the nodes. Once the query is proved to be able to benefit from the 

optimization by going through the steps in Figure 15, the rules are used to point to the 

target pieces in the operator tree that have to be manipulated. In our case the rule “TS%” 

seeks for the TabeScanOperator that has indexes.  

After the existence and suitability of the index is confirmed, query is re-written to use the 

index: 

SELECT column_list 

FROM index_table JOIN table2 ON (table1.col1 = table2.col1) 

[WHERE ...] 

[GROUP BY…]; 

The first or the second table (whichever that has the index) is replaced by its 

corresponding index table. This means that table must be removed from every internal 

data structure in the operator DAG and the new table must be added instead. Other data 

structures such as QB or AST created previously do not match with the new operator 

DAG. However since there is no dependency on them, this is not of an issue when the 

optimization process starts. Since the table is changed, the schema is also changed. This 

requires adjusting the de-serializer.  
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If any of the conditions is not met in the flow described in Figure 15, the cycle ends in 

“Exit,” which means the execution does not use the index and produces the result as usual 

without considering indexes. 

It is important to mention that, since there is no longer any access to the base table, there 

is no access to all of its columns either. Instead, a subset of the attributes (the ones that 

are indexed) is available after the re-write. This limits the queries that can be handled to 

only queries referencing those specific columns. We will elaborate on this point when we 

present our experiments. Index-based join can be set through a run-time parameter as 

follows: 

SET HIVE.OPTIMIZE.INDEX.JOIN = TRUE; 

By analyzing the works on Hive query optimization we inspired how to accelerate a query 

joining two tables using indexes. We first inspect the query representation elements for 

one join operator, two tables and indexes built over at least one of the tables. Then we 

replace a table with its effective index. This flow conforms to the normal Hive query 

optimization flow and causes our optimization to easily integrate with Hive. We will 

proceed with evaluating our solution performance in the next chapter.  
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Figure 15 Optimization flow for index-based join 
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Chapter 5 

Experiments and Results 

This chapter describes our experiments to evaluate the performance of the proposed 

index-based optimization in Hive. 

The testing environment includes a two-node Hadoop cluster, each node having Intel 

Core i5-2400 3.10GHz 6MB Quad Core, 250GB SATA HDD and 8GB of RAM. Both 

machines were running Ubuntu v10.04 as the OS. 

To generate the data used in our experiments, we considered the standard benchmark 

TPC-H version 2.14.4. Among the eight tables defined in the benchmark, we used 

lineitem and orders for containing the largest number of tuples. We created datasets of 

various sizes ranging from 1GB to 20GB, distributed between these two tables with 

lineitem being relatively 5 times larger than orders. Tables 6 and 7 depict the precise 

data distribution used in Experiment 1in Section 5.5.  

 

    Table 2 Data distribution in orders in Experiment 1 

Data distribution (GB) 1 5 10 15 20 

Size (GB) 0.00015 0.81 1.6 2.5 3.3 

No. of tuples 1,500,000 7,500,000 15,000,000 22,500,000 30,000,000 

Data distribution (GB) 1 5 10 15 20 

Size (GB) 0.71 3.6 7.2 10.9 14.6 

No. of tuples 6,001,215 29,999,795 59,986,052 89,987,373 119,994,608 

        Table 3 Data distribution in lineitem in Experiment 1 
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5.1 Test Datasets 

During testing, first, each query is executed using the already existing technique. The 

second time, query is executed using the proposed index approach. Experiments are 

repeated 5 times for each query and the average time is reported as the response time. 

Performance is measured with respect to two different criteria. First, performance is 

evaluated over different dataset sizes. The volume of data being tested ranges from 1GB 

to 20 GB and the number of tuples ranging from 7 ×106 to 150×106. The queries used are 

presented in Section 5.2. The results are organized and presented in Tables 8 to 11. The 

experiments are conducted on both single-node setup and multi-node setup. 

The second evaluation criterion is measured performance with regard to query selectivity 

ratio. The sizes of datasets considered were in the 1 GB to 90 GB range; in each step the 

data is double that of the previous step (Table 14). Consequently, though the output of the 

query has a fixed size of 1,500,000 tuples, when the number of tuples is doubled in each 

step, the selectivity ratio gets doubled too. 

5.2 Test Query sets 

In order to evaluate the performance, a two-way join is executed with and without the 

presence of a WHERE clause and/or GROUP BY.  This leads to the following 4 different 

combinations: 

 
1. INSERT OVERWRITE TABLE result_q1 SELECT DISTINCT o.O_ORDERKEY, 

o.O_TOTALPRICE, o.O_ORDERDATE FROM orders o JOIN lineitem l ON 

o.O_ORDERKEY = l.L_ORDERKEY; 
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2. INSERT OVERWRITE TABLE result_q1 SELECT DISTINCT o.O_ORDERKEY, 

o.O_TOTALPRICE, o.O_ORDERDATE FROM orders o JOIN lineitem l ON 

o.O_ORDERKEY = l.L_ORDERKEY WHERE o.O_TOTALPRICE > 15000; 

3. INSERT OVERWRITE TABLE result_q1 SELECT o.O_ORDERKEY, 

o.O_TOTALPRICE, o.O_ORDERDATE FROM orders o JOIN lineitem l ON 

o.O_ORDERKEY = l.L_ORDERKEY GROUP BY  o.O_ORDERKEY, 

o.O_TOTALPRICE, o.O_ORDERDATE; 

4. INSERT OVERWRITE TABLE result_q1 SELECT o.O_ORDERKEY, 

o.O_TOTALPRICE, o.O_ORDERDATE FROM orders o JOIN lineitem l ON 

o.O_ORDERKEY = l.L_ORDERKEY WHERE o.O_TOTALPRICE > 15000 GROUP BY  

o.O_ORDERKEY, o.O_TOTALPRICE, o.O_ORDERDATE; 

 

In the query plan, if there is  WHERE or GROUP BY clause, it is the child of the 

TableScanOperator. In other words,  WHERE are GROUP BY clauses are dependants of the 

TableScanOperator. Since we locate and manipulate the TableScanOperator in our 

technique, we considered queries 2-4 in order to ensure our approach does not affect any 

of the potential dependants of the  TableScanOperator. The result of all queries is written 

to a table to check for consistency with those of Hive approach, and hence correctness of 

our implementation and also to avoid lengthy display time. 

The DISTINCT keyword appears in all types of the queries. The reason is that the index 

file stores the unique values of the join attributes and when the base table is replaced with 

the index table, only the distinct values are accessible. Elimination of the DISTINCT 

keyword is possible when the query contains a GROUP BY, as it eliminates the duplicates 

at the final stage. GROUP BY and DISTINCT arrange for the same functionality in our work 

but in different stages.  
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Another consideration is that not all the columns are accessible with the developed 

approach. As soon as an index table is placed in the query plan, access to the previous 

table would be limited only to the ones stated in the index file.  

5.3 Run-time Parameters 

Between the two sets of experiments, all parameters have equal values. There are two 

mapreduce parameters, which are set specifically for these tests. The parameter 

mapred.map.tasks controls the number of map tasks and mapred.reduce.tasks holds 

the number of reduce tasks. As a rule of thumb, number of map tasks is 10 times the 

number of tasktrackers and reduce tasks are twice the number of tasktrackers. In our 

experiment, these parameters were set to 20 and 4, respectively. 

5.4 Evaluation Metrics 

In all of our experiments, we measure performance using the query response time in 

seconds(s). In Experiment 2, we measure performance by also considering query 

selectivity since it becomes important in the presence of indexes. [9] took a glance at the 

number of map/reduce tasks in their experiments; however, this was not considered as an 

evaluation metrics in their work.  

5.5 Experiment 1 

Experiment 1 includes execution of the 4 query types on a multi-node and a single-node 

Hadoop cluster using the data size ranging from 1GB to 20GB with lineitem holding 

almost 5/6 of the total data and number of tuples ranging from about 7 ×10 6 to 150×10 6. 
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5.5.1 Query1 

Query1 is the simplest query to test our approach. It joins two tables on a single join 

attribute: 

INSERT OVERWRITE TABLE result_q1 

SELECT DISTINCT o.O_ORDERKEY, o.O_TOTALPRICE, o.O_ORDERDATE  

FROM orders o JOIN lineitem l  

ON o.O_ORDERKEY = l.L_ORDERKEY; 

  

We can see the response time (s) in Table 8 for using existing implementation of Hive (no 

index) and index-based (our approach) for multi-node and single-node setup. The average 

response times are depicted in Figure 16. 

 

In the multi-node setup, moving from 1GB of data to 20GB, in all steps our index-based 

Table 4 Query1 Response time with/out index on multi-node 

and single-node setups 

 Index-less approach response time (s) Index-based approach response time (s) 

 

M
u
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i-

n
o

d
e 
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p
 

1GB 5GB 10GB 15GB 20GB 1GB 5GB 10GB 15GB 20GB 

73.8 191.58 294.29 436.15 585.85 72.32 147.82 198.56 230.40 342.05 

68.88 187.06 297.13 426.89 519.54 70.89 139.22 211.65 212.16 321.87 

70.76 193.57 299.06 418.89 560.63 66.94 146.03 219.45 219.37 317.09 

69.34 187.02 291.36 387.16 522.61 65.76 141.56 201.14 220.07 320.40 

69.50 186.57 317.04 387.16 574.43 66.77 137.83 208.45 214.07 317.37 

70.46 189.16 299.78 411.25 552.6 68.54 142.49 207.85 219.21 323.76 

 

S
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g
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-n
o

d
e 

se
tu

p
 54.14 274.61 545.91 807.93 1104.47 36.18 145.50 284.88 338.30 636.92 

55.15 257.49 551.75 811.14 1136.64 36.40 141.31 296.48 344.92 626.15 

55.78 255.15 546.37 804.14 1134.2 35.36 144.87 284.81 334.98 624.23 

55.14 269.85 544.83 825.83 1132.37 36.63 145.64 288.62 345.95 621.92 

54.40 273.78 546.87 806.35 1134.4 36.40 160.45 287.56 341.49 614.19 

54.93 266.18 547.15 811.08 1128.42 36.20 147.55 288.47 341.13 624.68 
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approach outperforms the existing one. The larger the data is, the bigger the gap between 

the index-less and index-based approaches becomes. The largest response time gap is at 

15GB in Figure 16 and our index-based method is almost twice as fast as the index-less 

approach.  

In the single-node setup, we see the same behaviour; for each data size, our proposed 

method outperforms the normal one and the larger the data is, the bigger the gap between 

the index-less and index-based approaches becomes. The index-based method is almost 

always more than two times faster than the index-less approach.  

 

 

Comparing the results from both setups, the single-node setup works faster than the multi-

node setup for 1GB in both approaches. For 5GB, the multi-node setup is slightly faster 
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Figure 16 Comparison of executing join Query 1 with/out index on multi-node and 

single-node setup 
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than the single-node one. Afterwards, multi-node is almost two times faster than the 

single-node. The performance difference between the two setups indicates the networking 

overhead only pays off when the data size is relatively big. In our experiments, the data 

size over 5GB is suitable for the multi-node setup. We say ‘relatively’ because this 

measure depends on the hardware configuration of the computers as well as the 

networking equipment.      

As can be seen in Table 8 that repeating the same query over the same dataset does not 

lead to significantly different response times. If we had run the same query with the same 

dataset on a traditional RDBMS like MySQL, the first response time would have been the 

largest one. The reason is, unlike in traditional RDBMSs, Hive does not cache the query 

plan and starts from scratch for each query. This causes the first response time not to be 

always the longest one (The first response time for 10 GB in Table 8 is the smallest one). 

With the growth of data size, the deviation from the average response time in each step 

grows. 

To better study the performance of our technique, in the rest of Experiment 1, we conduct 

the same test with different queries, which are extensions of query 1.  

5.5.2 Query2 

 
INSERT OVERWRITE TABLE result_q1  

SELECT DISTINCT o.O_ORDERKEY, o.O_TOTALPRICE, o.O_ORDERDATE  

FROM orders o JOIN lineitem l  

ON o.O_ORDERKEY = l.L_ORDERKEY  

WHERE o.O_TOTALPRICE > 15000; 
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 Index-less approach response time(s) Index-based approach response time(s) 

 

M
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n
o

d
e 
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1GB 5GB 10GB 15GB 20GB 1GB 5GB 10GB 15GB 20GB 

69.90 187.68 293.26 436.16 517.01 70.10 140.66 202.12 219.83 318.13 

72.81 194.72 285.84 387.01 529.52 68.11 138.92 202.63 218.24 315.70 

70.00 185.14 287.73 392.63 508.36 68.68 139.51 195.59 212.21 311.33 

71.66 195.89 308.49 430.85 562.9 69.63 140.24 212.38 218.02 313.03 

71.81 186.08 290.68 388.88 503.01 67.77 138.82 207.27 219.12 315.99 

71.23 189.90 293.2 407.11 524.16 68.86 139.63 204.00 217.48 314.84 

 

S
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e-
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d
e 
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56.18 268.63 531.2 802.41 1120.21 35.60 150.70 298.55 348.24 636.2 

54.26 272.28 596.26 801.76 1127.75 36.63 148.04 300.51 340.93 631.27 

56.00 269.62 532.24 802.9 1131.64 36.69 152.49 301.00 342.71 646.23 

56.01 273.50 540.28 803.63 1090.02 36.67 148.78 301.04 344.44 605.03 

56.29 271.49 606.83 791.4 1207.17 36.32 148.83 305.17 337.5 632.71 

55.75 271.10 561.36 800.42 1135.36 36.38 149.77 301.25 342.76 630.29 
Table 5 Query2 Response time with/out index on multi-node 

and single-node setups 

Figure 17 Comparison of executing join Query 2 with/out index on multi-node and 

single-node setup 
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5.5.3 Query3 

 
INSERT OVERWRITE TABLE result_q1  

SELECT o.O_ORDERKEY, o.O_TOTALPRICE, o.O_ORDERDATE  

FROM orders o JOIN lineitem l  

ON o.O_ORDERKEY = l.L_ORDERKEY  

GROUP BY  o.O_ORDERKEY, o.O_TOTALPRICE, o.O_ORDERDATE; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Index-less approach response time(s) Index-based approach response time(s) 

 

M
u
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n
o
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1GB 5GB 10GB 15GB 20GB 1GB 5GB 10GB 15GB 20GB 

71.64 180.63 286.13 437.8 528.85 69.28 139.67 206.38 212.67 310.01 

70.56 190.65 309 405.8 521.32 68.68 147.87 203.01 215.93 327.87 

70.57 187.71 287.22 430.4 513.65 65.85 142.24 206.15 218.18 312.33 

70.93 184.35 298.02 435.35 527.58 66.83 143.71 209.80 225.87 308.46 

70.49 186.60 316.28 426.2 553.39 68.51 138.44 209.86 221.26 361.97 

70.84 185.99 299.33 427.11 528.96 67.83 142.39 207.04 218.78 324.13 
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55.12 270.29 536.28 807.36 1123.52 35.41 145.53 300.55 349.04 627.6 

55.42 273.59 541.68 815.46 1127.75 35.36 147.57 301.17 339.63 611.81 

54.60 270.04 531.66 811.67 1126.56 35.65 146.64 300.39 334.84 656.55 

53.47 268.18 549.4 820.93 1131.92 35.33 145.90 302.84 344.70 661.83 

54.94 269.11 620.72 810.71 1135.86 36.44 152.49 301.26 345.65 643.96 

54.71 270.24 555.95 813.23 1129.12 35.64 147.63 301.24 342.77 640.35 

Table 6 Query3 Response time with/out index on multi- 

node and single-node setups 
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5.5.4 Query4 

INSERT OVERWRITE TABLE result_q1  

SELECT o.O_ORDERKEY, o.O_TOTALPRICE, o.O_ORDERDATE  

FROM orders o JOIN lineitem l  

ON o.O_ORDERKEY = l.L_ORDERKEY  

WHERE o.O_TOTALPRICE > 15000  

GROUP BY  o.O_ORDERKEY, o.O_TOTALPRICE, o.O_ORDERDATE; 
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Figure 18 Comparison of executing join Query 3 with/out index on multi-node and 

single-node setup 
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 Index-less approach response time(s) Index-based approach response time(s) 

 

M
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1GB 5GB 10GB 15GB 20GB 1GB 5GB 10GB 15GB 20GB 

69.53 185.09 287.22 429.12 565.72 68.47 143.50 202.88 222.54 321.12 

72.90 191.07 300.48 402.4 574.45 71.03 141.57 207.91 211.39 307.60 

70.67 187.98 308.98 427.11 495.04 68.86 139.94 193.11 212.01 321.03 

73.84 188.14 300.25 392.3 547.99 69.55 136.82 197.81 248.85 318.07 

70.45 189.37 309.15 405.78 516.28 66.77 143.98 195.86 223.28 317.21 

71.48 188.33 301.22 411.34 539.90 68.94 141.16 199.51 223.62 317 
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55.12 271.49 541.67 806.68 1089.36 37.55 147.43 302.71 343.55 636.25 

54.54 272.21 538.28 809.75 1127.72 36.29 145.58 300.43 346.32 630.82 

54.15 264.64 576.79 807.53 1122.83 36.30 148.90 283.82 345.89 655.01 

56.61 269.03 523.18 810.46 1135.85 36.44 147.59 290.94 346.32 650.01 

56.44 271.85 545.09 815.59 1184.92 36.27 144.92 296.00 345.01 667.44 

55.37 269.84 545.00 810.00 1132.14 36.57 146.88 294.78 345.42 647.90 

Table 7 Query4 Response time with/out index multi- 

node and single-node setups 
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Similar to Figure 16, the index-based approach showed in Figures 17 to 19, is faster than 

the index-less one as the data grows and the overhead to choose the index alternative only 

pays off when the data is huge enough. 

Looking at Figures 16 to 19, the graphs show similar curves, using which we concluded 

that the 4 types of query have almost the same behaviour and they did not lead to 

significantly different response times in neither approaches (Figure 20 to 21). The most 

expensive operator in all the queries is the JOIN. Neither WHERE nor GROUP BY, which 

where extra clauses added to queries 2-4, initiates a new mapreduce job. The number of 

mapreduce jobs in all the queries is equal to 2, 1 for the JOIN part and 1 for moving the 

output to table result_q1.  

As a result, in the rest of the experiments we only use Query 1. 
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Figure 19 Comparison of executing join Query 4 with/out index on multi-node and 

single-node setup 
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Figure 20 Response times of 4 different queries without index on multi-node setup 

Figure 21 Response times of 4 different queries with index on multi-node setup 

Data 

distribution 

1GB 5GB 10GB 15GB 20GB 

Size (GB) 0.131 0.69 1.38 2.1 2.82 

Time (s) 43.38 109.37 209.35 302.75 411.57 

     Table 8 Index size and index creation time for Experiment 1 
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We also studied the cost of index creation in terms of time and space to decide whether or 

not to use index. Table 12 presents the information on the space and time taken for 

creating indexes in Experiment 1. Figures 22 and 23 compare the size of the index with 

the size of the data and the time taken for creating the index with the average time taken 

for an index-less Query1 execution on multi-node setup respectively, since Figures 20 and 

21 show almost constant response times for all the queries and the indexes were all built 

in the multi-node setup. 

As shown in Figure 22, the size of the index is less than 15% of the input dataset size, 

which is relatively small. This is due to the simple tiny structure of indexes in Hive which 

only stores pairs of values and their relative locations from the beginning of the index file. 

 

 

 

However, since indexes are built manually, the index size can vary based upon the 

number of columns on which the index is created. In all our tests, the index had been built 

over the join attribute, L_ORDERKEY. 
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Figure 22 Index size vs. data size 
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Depending on the dataset size, the index creation time increases as the data size grows. As 

shown in Figure 23, the time grows from 60% to 75% of the time taken for executing the 

query itself. This is because processing the query and creating the index scan the entire 

dataset for both which takes the major part of the process. This scan operation is 

considerably reduced for the queries when base table is replaced by the index table.  

Recall that indexes are built only once, and its cost is amortized over many executions of 

queries using the index. 

 

 

 

 

 

 
 

 

 

 

 

Table 13 looks at the execution of Query 1 from mapreduce perspective. Index-less 

approach results in dramatically less number of map tasks as the data grows. Also, we can 

see that the number of map tasks goes beyond 20, which we previously configured in 

Section 5.3. This means, mapred.map.tasks is just a hint to Hadoop and in practice the 

number of map tasks is determined by the size of the input data. 
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Figure 23 Index creation time vs. query response time 
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Another point about mapreduce implementation of joins in Table 13 is that the lengthiest 

part is the shuffle phase described in Section 4.3.1.1. To avoid this, one can execute 

mapjoin (see Section 4.3.1.2) instead of the standard join. 

5.6 Experiment 2 

The second set of experiments we conducted for performance measurement considered 

different query selectivity ratios. For this we used Query1 over the tables orders having a 

fixed size of 164 MB with 15 × 10 5 tuples and also table lineitem of size ranging from 

0.71 GB to 90.6 GB and with the number of tuples ranging from 6×106 to 7×108. Table 

14 provides details of data distribution in table lineitem and our measure of selectivity 

(number of output tuples/number of input tuples) for Experiment 2. In order to increase 

the selectivity, the lineitem distinct join key or the output size of the query was kept at 

1,500,000 while the data was doubled each time. In this experiment, we were interested to 

find the point at which our index-based approach works noticeably better than the index-

less approach on our current multi-node setup. 

         Table 9 Mapreduce metrics for query 1 executed on multi-node setup 

 Index-less approach  Index-based approach 

Data Size 1GB 5GB 10GB 15GB 20GB 1GB 5GB 10GB 15GB 20GB 

No of maps 4 19 20 55 74 2 7 7 20 27 

No of Reduce 4 4 4 4 4 4 4 4 4 4 

Average map time (s) 8 9 9 11 10 6 9 10 12 12 

Average shuffle time (s) 7 48 52 170 219 7 20 20 68 87 

Average reduce time (s) 5 33 32 83 101 3 14 16 49 65 

 #1 #2 #3 #4 #5 #6 #7 #8 
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The response times are provided in Table 15. Figure 24 shows the graphs for average 

response times measured. 

 

In Figure 24, as we move from case 1 to 8, the index-less approach grows non-linearly, 

while the index-based approach remains more or less constant at an average of about 87 

seconds. In case 7, with 45GB of data and 0.3% as query selectivity, the index-based 

approach is an order of magnitude faster than the index-less approach. The next iteration, 

case 8, with double query selectivity (0.1%) and double data size (90GB), our approach is 

20 times faster than the index-less method. The exponential behaviour of the index-less 

graph in Figure 24, started at iteration 6 with 0.7% as the query selectivity. If the curve 

keeps the same trend, our index-based approach can possibly be 2 orders of magnitude 

faster than the index-less approach at 45TB of data with 0.0007% query selectivity. 

 

No of tuples 6,001,215 12,002,430 24,004,860 48,009,720 96,019,440 192,038,880 384,077,760 768,155,520 

Size (GB) 0.71 1.4 2.8 5.7 11.3 22.6 45.3 90.6 

output/input 0.24 0.12 0.06 0.03 0.01500 0.00781 0.00390 0.00195 

                      Table 10 Data distribution in lineitem in Experiment 2 
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As indicated in Table 16 and Figures 25 and 26, the index size gradually drops from 18% 

of the data size to 9% over the 8 iterations. The Hive index size grows or shrinks 

proportional to the data size or distribution. In Experiment 2, the index decreasing rate is 

due to the data distribution, as at each iteration, the number of distinct values of all 

attributes, was kept the same while the volume of data was doubled.  

In regard to index construction time, we can see that, up to iteration 5, index creation time 
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90.31 101.32 117.16 162.3 251.86 421.78 846.63 1826.77 

84.95 96 113.75 159.63 247.67 423.42 847.55 1901.92 

87.1 96.82 114.04 159.27 250.31 422.94 850.34 1835.74 

87.50 97.39 116.08 161.28 250.40 424.14 845.44 1864.65 
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83.84 79.42 84.95 80.70 89.96 90.88 94.01 115.24 

82.61 79.82 85.16 82.15 91.85 91.92 90.57 121.85 

79.61 79.62 82.73 81.79 87.71 94.24 89.89 121.60 

77.07 79.71 82.08 80.96 85.90 93.89 88.81 120.52 

81.08 78.89 82.99 81.48 90.38 93.41 92.45 95.84 

Table 11 Query1 Response time with/out index on multi- 

node setup 

Figure 24 Comparison of joins with/out index in Experiment 2 
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is slightly less than the execution of Query 1 without index, and exceeds the query run-

time afterwards. 
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 #1 #2 #3 #4 #5 #6 #7 #8 

Size (GB)  0.13 0.19 0.31 0.56 1.07 2.14 4.28 8.58 

Time (s) 40.72 56.31 79.23 135.41 257.36 529.33 1307.23 3629.91 

    Table 12 Index size and index creation time for Experiment 2 

Figure 25 Index size vs. data size 

Figure 26 Index creation time vs. query response time 
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We conducted two sets of experiments using TPCH data and 4 custom queries on both a 

multi-node and a single-node Hadoop cluster. The dataset size, response time, selectivity 

ratio, and related costs were considered to evaluate the performance. Overall, our index-

based join was faster than the existing Hive approach and the performance gap between 

the two approaches was wider when query selectivity was considered, assuming the index 

construction time as the only cost.  

 

 

 

Chapter 6 

Conclusion and Future Work 

Current Hive joins work in a scan-centric manner, meaning that a large number of map 

tasks get initiated to read the whole dataset. When a small fraction of the whole dataset 

satisfies the query, this solution becomes inefficient. In such cases, helper structures like 

indexes can be used to locate records faster.  

Indexes have been around for long time and the benefit of using them is obvious. 

However, deciding when to use indexes in a situation requires extensive evaluation of its 

cost and performance.  

In this work, we used the current Hive indexing structure to speed up join queries. In the 
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first set of experiments in Experiment 1, we observed that generally the larger the data is 

the larger the performance gain becomes. Our approach grew linearly in all curves shown 

in Figures 16 to 19. In the second set of experiments in Experiment 2, we increased the 

sizes of the datasets with growing selectivity ratios. The results of these experiments 

indicated that our approach is exponentially faster than the current Hive approach.  

We saw in Figure 22, that the index size was almost fixed at only 15% of the data size in 

Experiment 1 and in Figure 25, it took an average of 12% of the data in Experiment 2. 

Though index size depends on the data distribution and the number of attributes for 

indexing, our experiments showed the Hive index space utilization is reasonable.  

Index creation time graphs depicted in Figures 23 and 26 showed the time required on 

building an index depended on the data distribution, the more duplicated tuples resulted in 

a slower index creation process became. In Figure 26, the worst case (iteration 8) index 

creation took almost twice the query execution time. Index construction comprises of 

reading the whole data, sorting it, and eliminating the duplicates, which is a quite lengthy 

process. Until the data in the base table is untouched, any types of queries that have the 

privilege to utilize the index can use the index, nevertheless the index creation cost is only 

incurred once.  

With respect to accessing the index, current Hive indexes do not provide an instant access 

to values, which undoubtedly comes with heavy space overhead. What they offer instead 

is, scanning a huge amount of data is replaced with scanning a drastically small set of it 

that holds the desired values. The cost of finding a value in the current index Hive is O(n), 

where n is the number of tuples.  Assuming a Hive table of n tuples and its index with m 

entries, accessing a specific value in the index is reduced from O(n) to O(m) with m much 
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smaller than n.  

Hive index maintenance cost is noticeably low, considering the infrequent updates and 

batch-mode data insertion as the characteristics of big data. If new data is loaded into a 

new partition of a base table, indexes can be created dynamically for that partition and 

kept separately without any need to perform expensive update operations. 

The indexing technique in Hive is rather new and the progress has been limited to current 

index structure and also the query life cycle. There are a number of optimization ideas to 

further improve Hive index-based joins, including: 

 Designing a cost-based optimizer, which can evaluate a query plan to help decide 

to use indexes or not, probably by using column level statistics. 

 Auto-indexing or the ability for the compiler to create indexes internally if proved 

to be more efficient than the brute-force scanning of the data. 

 Index selection in which the best index out of all of the available ones is chosen to 

be used. The best index could be the smallest or the one with the optimum set of 

attributes.  Current Hive naively picks the first applicable index to execute a query 

plan.    

  Avoiding index creation time by building the index when loading the data into a 

table. Obviously, in Hive managed tables data is read twice. Once for copying it to 

the base table and once for creating the index. The former can be eliminated if the 

index can be created in the background while loading data into a table. 

 Implementation of a hash-based index at the bucket level. Buckets, as the smallest 

data model units in Hive, are potential candidate for the fast hash-based index 

structure.  
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 Design of block-scope B+ trees or R-trees or integration of other powerful 

indexing tools in Hive that could help improve the index performance as in 

standard database management systems.  
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