Results 1  10
of
48
Worstcase equilibria
 IN PROCEEDINGS OF THE 16TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE
, 1999
"... In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a ver ..."
Abstract

Cited by 631 (19 self)
 Add to MetaCart
In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a very simple network leads to some interesting mathematics, results, and open problems.
Tight bounds for worstcase equilibria
 Proc. 13th SODA
, 2002
"... We study the problem of traffic routing in noncooperative networks. In such networks, users may follow selfish strategies to optimize their own performance measure and therefore their behavior does not have to lead to optimal performance of the entire network. In this paper we investigate the worst ..."
Abstract

Cited by 160 (6 self)
 Add to MetaCart
We study the problem of traffic routing in noncooperative networks. In such networks, users may follow selfish strategies to optimize their own performance measure and therefore their behavior does not have to lead to optimal performance of the entire network. In this paper we investigate the worstcase coordination ratio, which is a game theoretic measure aiming to reflect the price of selfish routing. Following a line of previous work, we focus on the most basic networks consisting of parallel links with linear latency functions. Our main result is that the worstcase coordination ratio on m parallel links of possibly different speeds is logm Θ log log logm In fact, we are able to give an exact description of the worstcase coordination ratio depending on the number of links and the ratio of the speed of the fastest link over the speed of the slowest link. For example, for the special case in which all m parallel links have the same speed, we can prove that the worstcase coordination ratio is Γ (−1) (m) + Θ(1) with Γ denoting the Gamma (factorial) function. Our bounds entirely resolve an open problem posed recently by Koutsoupias and Papadimitriou [KP99].
The Price of Anarchy of Finite Congestion Games
 In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC
, 2005
"... Abstract We consider the price of anarchy of pure Nash equilibria in congestion games with linearlatency functions. For asymmetric games, the price of anarchy of maximum social cost is \Theta (p N),where N is the number of players. For all other cases of symmetric or asymmetric games andfor both max ..."
Abstract

Cited by 122 (7 self)
 Add to MetaCart
Abstract We consider the price of anarchy of pure Nash equilibria in congestion games with linearlatency functions. For asymmetric games, the price of anarchy of maximum social cost is \Theta (p N),where N is the number of players. For all other cases of symmetric or asymmetric games andfor both maximum and average social cost, the price of anarchy is 5 /2. We extend the results tolatency functions that are polynomials of bounded degree. We also extend some of the results to mixed Nash equilibria.
The Structure and Complexity of Nash Equilibria for a Selfish Routing Game
, 2002
"... In this work, we study the combinatorial structure and the computational complexity of Nash equilibria for a certain game that models sel sh routing over a network consisting of m parallel links. We assume a collection of n users, each employing a mixed strategy, which is a probability distribu ..."
Abstract

Cited by 101 (22 self)
 Add to MetaCart
In this work, we study the combinatorial structure and the computational complexity of Nash equilibria for a certain game that models sel sh routing over a network consisting of m parallel links. We assume a collection of n users, each employing a mixed strategy, which is a probability distribution over links, to control the routing of its own assigned trac. In a Nash equilibrium, each user sel shly routes its trac on those links that minimize its expected latency cost, given the network congestion caused by the other users. The social cost of a Nash equilibrium is the expectation, over all random choices of the users, of the maximum, over all links, latency through a link.
Selfish Unsplittable Flows
 Theoretical Computer Science
, 2004
"... What is the price of anarchy when unsplittable demands are routed selfishly in general networks with loaddependent edge delays? Motivated by this question we generalize the model of [14] to the case of weighted congestion games. We show that varying demands of users crucially affect the nature o ..."
Abstract

Cited by 67 (7 self)
 Add to MetaCart
What is the price of anarchy when unsplittable demands are routed selfishly in general networks with loaddependent edge delays? Motivated by this question we generalize the model of [14] to the case of weighted congestion games. We show that varying demands of users crucially affect the nature of these games, which are no longer isomorphic to exact potential games, even for very simple instances. Indeed we construct examples where even a singlecommodity (weighted) network congestion game may have no pure Nash equilibrium.
Intrinsic Robustness of the Price of Anarchy
"... The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium ..."
Abstract

Cited by 56 (11 self)
 Add to MetaCart
The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium. This drawback motivates the search for inefficiency bounds that apply more generally to weaker notions of equilibria, such as mixed Nash and correlated equilibria; or to sequences of outcomes generated by natural experimentation strategies, such as successive best responses or simultaneous regretminimization. We prove a general and fundamental connection between the price of anarchy and its seemingly stronger relatives in classes of games with a sum objective. First, we identify a “canonical sufficient condition ” for an upper bound of the POA for pure Nash equilibria, which we call a smoothness argument. Second, we show that every bound derived via a smoothness argument extends automatically, with no quantitative degradation in the bound, to mixed Nash equilibria, correlated equilibria, and the average objective function value of regretminimizing players (or “price of total anarchy”). Smoothness arguments also have automatic implications for the inefficiency of approximate and BayesianNash equilibria and, under mild additional assumptions, for bicriteria bounds and for polynomiallength bestresponse sequences. We also identify classes of games — most notably, congestion games with cost functions restricted to an arbitrary fixed set — that are tight, in the sense that smoothness arguments are guaranteed to produce an optimal worstcase upper bound on the POA, even for the smallest set of interest (pure Nash equilibria). Byproducts of our proof of this result include the first tight bounds on the POA in congestion games with nonpolynomial cost functions, and the first
On the price of anarchy and stability of correlated equilibria of linear congestion games
, 2005
"... ..."
Computing Nash equilibria for scheduling on restricted parallel links
 In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC
, 2004
"... We consider the problem of routing n users on m parallel links, under the restriction that each user may only be routed on a link from a certain set of allowed links for the user. Thus, the problem is equivalent to the correspondingly restricted problem of assigning n jobs to m parallel machines. In ..."
Abstract

Cited by 48 (8 self)
 Add to MetaCart
We consider the problem of routing n users on m parallel links, under the restriction that each user may only be routed on a link from a certain set of allowed links for the user. Thus, the problem is equivalent to the correspondingly restricted problem of assigning n jobs to m parallel machines. In a pure Nash equilibrium, no user may improve its own individual cost (delay) by unilaterally switching to another link from its set of allowed links. As our main result, we introduce a polynomial time algorithm to compute from any given assignment a pure Nash equilibrium with nonincreased makespan. The algorithm gradually changes a given assignment by pushing unsplittable user traffics through a network that is defined by the users and the links. Here, we use ideas from blocking flows. Furthermore, we use similar techniques as in the generic PreflowPush algorithm to approximate a schedule with minimum makespan, gaining an improved approximation factor of 2 − 1 for identical links, where w1 is the largest user traffic. w1 We extend this result to related links, gaining an approximation factor of 2. Our approximation algorithms run in polynomial time. We close with tight upper bounds on the coordination ratio for pure Nash equilibria.
Coordination mechanisms
 PROCEEDINGS OF THE 31ST INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES AND PROGRAMMING, IN: LECTURE NOTES IN COMPUTER SCIENCE
, 2004
"... We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish and noncolluding agents. The quality of a coordination mechanism is measured by its price of anarchy—the worstcase performance of a Nash equilibrium over the (centrally controlled) soc ..."
Abstract

Cited by 42 (5 self)
 Add to MetaCart
We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish and noncolluding agents. The quality of a coordination mechanism is measured by its price of anarchy—the worstcase performance of a Nash equilibrium over the (centrally controlled) social optimum. We give upper and lower bounds for the price of anarchy for selfish task allocation and congestion games.
Regret minimization and the price of total anarchy
 In STOC ’08: Proceedings of the fortieth annual ACM symposium on Theory of computing
, 2007
"... We propose weakening the assumption made when studying the price of anarchy: Rather than assume that selfinterested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret ..."
Abstract

Cited by 38 (7 self)
 Add to MetaCart
We propose weakening the assumption made when studying the price of anarchy: Rather than assume that selfinterested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret minimization can be done via simple, efficient algorithms even in many settings where the number of action choices for each player is exponential in the natural parameters of the problem. We prove that despite our weakened assumptions, in several broad classes of games, this “price of total anarchy ” matches the Nash price of anarchy, even though play may never converge to Nash equilibrium. In contrast to the price of anarchy and the recently introduced price of sinking [15], which require all players to behave in a prescribed manner, we show that the price of total anarchy is in many cases resilient to the presence of Byzantine players, about whom we make no assumptions. Finally, because the price of total anarchy is an upper bound on the price of anarchy even in mixed strategies, for some games our results yield as corollaries previously unknown bounds on the price of anarchy in mixed strategies. 1