Results 1 
2 of
2
A proof of the Kepler conjecture
 Math. Intelligencer
, 1994
"... This section describes the structure of the proof of ..."
Abstract

Cited by 112 (11 self)
 Add to MetaCart
This section describes the structure of the proof of
Proof synthesis and reflection for linear arithmetic. Submitted
, 2006
"... This article presents detailed implementations of quantifier elimination for both integer and real linear arithmetic for theorem provers. The underlying algorithms are those by Cooper (for Z) and by Ferrante and Rackoff (for R). Both algorithms are realized in two entirely different ways: once in ta ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
This article presents detailed implementations of quantifier elimination for both integer and real linear arithmetic for theorem provers. The underlying algorithms are those by Cooper (for Z) and by Ferrante and Rackoff (for R). Both algorithms are realized in two entirely different ways: once in tactic style, i.e. by a proofproducing functional program, and once by reflection, i.e. by computations inside the logic rather than in the metalanguage. Both formalizations are highly generic because they make only minimal assumptions w.r.t. the underlying logical system and theorem prover. An implementation in Isabelle/HOL shows that the reflective approach is between one and two orders of magnitude faster. 1